1
|
Samanta P, Bhowmik A, Biswas S, Sarkar R, Ghosh R, Pakhira S, Mondal M, Sen S, Saha P, Hajra S. Therapeutic Effectiveness of Anticancer Agents Targeting Different Signaling Molecules Involved in Asymmetric Division of Cancer Stem Cell. Stem Cell Rev Rep 2023:10.1007/s12015-023-10523-3. [PMID: 36952080 DOI: 10.1007/s12015-023-10523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2023] [Indexed: 03/24/2023]
Abstract
Intra-tumoral heterogeneity is maintained by cancer stem cells (CSCs) with dysregulated self-renewal and asymmetric cell division (ACD). According to the cancer stem cell theory, by ACD a CSC can generate two daughter progenies with different fates such as one cancer stem cell and one differentiated cell. Therefore, this type of mitotic division supports vital process of the maintenance of CSC population. But this CSC pool reservation by ACD complicates the treatment of cancer patients, as CSCs give rise to aggressive clones which are prone to metastasis and drug-insensitivity. Hence, identification of therapeutic modalities which can target ACD of cancer stem cell is an intriguing part of cancer research. In this review, other than the discussion about the extrinsic inducers of ACD role of different proteins, miRNAs and lncRNAs in this type of cell division is also mentioned. Other than these, mode of action of the proven and potential drugs targeting ACD of CSC is also discussed here.
Collapse
Affiliation(s)
- Priya Samanta
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Arijit Bhowmik
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India.
| | - Souradeep Biswas
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Rupali Sarkar
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Rituparna Ghosh
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Shampa Pakhira
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Mrinmoyee Mondal
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Soummadeep Sen
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Prosenjit Saha
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Subhadip Hajra
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India.
| |
Collapse
|
2
|
Ortega-Campos SM, García-Heredia JM. The Multitasker Protein: A Look at the Multiple Capabilities of NUMB. Cells 2023; 12:333. [PMID: 36672267 PMCID: PMC9856935 DOI: 10.3390/cells12020333] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
NUMB, a plasma membrane-associated protein originally described in Drosophila, is involved in determining cell function and fate during early stages of development. It is secreted asymmetrically in dividing cells, with one daughter cell inheriting NUMB and the other inheriting its antagonist, NOTCH. NUMB has been proposed as a polarizing agent and has multiple functions, including endocytosis and serving as an adaptor in various cellular pathways such as NOTCH, Hedgehog, and the P53-MDM2 axis. Due to its role in maintaining cellular homeostasis, it has been suggested that NUMB may be involved in various human pathologies such as cancer and Alzheimer's disease. Further research on NUMB could aid in understanding disease mechanisms and advancing the field of personalized medicine and the development of new therapies.
Collapse
Affiliation(s)
- Sara M. Ortega-Campos
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41013 Sevilla, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Manuel García-Heredia
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41013 Sevilla, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
3
|
Abdi K, Neves G, Pyun J, Kiziltug E, Ahrens A, Kuo CT. EGFR Signaling Termination via Numb Trafficking in Ependymal Progenitors Controls Postnatal Neurogenic Niche Differentiation. Cell Rep 2019; 28:2012-2022.e4. [PMID: 31433979 PMCID: PMC6768562 DOI: 10.1016/j.celrep.2019.07.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/02/2019] [Accepted: 07/17/2019] [Indexed: 12/30/2022] Open
Abstract
Specialized microenvironments, called niches, control adult stem cell proliferation and differentiation. The brain lateral ventricular (LV) neurogenic niche is generated from distinct postnatal radial glial progenitors (pRGPs), giving rise to adult neural stem cells (NSCs) and niche ependymal cells (ECs). Cellular-intrinsic programs govern stem versus supporting cell maturation during adult niche assembly, but how they are differentially initiated within a similar microenvironment remains unknown. Using chemical approaches, we discovered that EGFR signaling powerfully inhibits EC differentiation by suppressing multiciliogenesis. We found that EC pRGPs actively terminated EGF activation through receptor redistribution away from CSF-contacting apical domains and that randomized EGFR membrane targeting blocked EC differentiation. Mechanistically, we uncovered spatiotemporal interactions between EGFR and endocytic adaptor protein Numb. Ca2+-dependent basolateral targeting of Numb is necessary and sufficient for proper EGFR redistribution. These results reveal a previously unknown cellular mechanism for neighboring progenitors to differentially engage environmental signals, initiating adult stem cell niche assembly.
Collapse
Affiliation(s)
- Khadar Abdi
- Department of Cell Biology, Duke University, School of Medicine, Durham, NC 27710, USA
| | - Gabriel Neves
- Department of Cell Biology, Duke University, School of Medicine, Durham, NC 27710, USA
| | - Joon Pyun
- Department of Cell Biology, Duke University, School of Medicine, Durham, NC 27710, USA
| | - Emre Kiziltug
- Department of Cell Biology, Duke University, School of Medicine, Durham, NC 27710, USA
| | - Angelica Ahrens
- Department of Cell Biology, Duke University, School of Medicine, Durham, NC 27710, USA
| | - Chay T Kuo
- Department of Cell Biology, Duke University, School of Medicine, Durham, NC 27710, USA; Department of Neurobiology, Duke University, School of Medicine, Durham, NC 27710, USA; Preston Robert Tisch Brain Tumor Center, Duke University, School of Medicine, Durham, NC 27710, USA; Institute for Brain Sciences, Duke University, School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
4
|
Farah CA, Dunn TW, Hastings MH, Ferguson L, Gao C, Gong K, Sossin WS. A role for Numb in Protein kinase M (PKM)-mediated increase in surface AMPA receptors during facilitation in Aplysia. J Neurochem 2019; 150:366-384. [PMID: 31254393 DOI: 10.1111/jnc.14807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022]
Abstract
There is considerable evidence from both vertebrates and invertebrates that persistently active protein kinases maintain changes in synaptic strength that underlie memory. In the hermaphrodite marine mollusk, Aplysia californica, truncated forms of protein kinase C (PKC) termed protein kinase Ms have been implicated in both intermediate- and long-term facilitation, an increase in synaptic strength between sensory neurons and motor neurons thought to underlie behavioural sensitization in the animal. However, few substrates have been identified as candidates that could mediate this increase in synaptic strength. PKMs have been proposed to maintain synaptic strength through preventing endocytosis of AMPA receptors. Numb is a conserved regulator of endocytosis that is modulated by phosphorylation. We have identified and cloned Aplysia Numb (ApNumb). ApNumb contains three conserved PKC phosphorylation sites and PKMs generated from classical and atypical Aplysia PKCs can phosphorylate ApNumb in vitro and in cells. Over-expression of ApNumb that lacks the conserved PKC phosphorylation sites blocks increases in surface levels of a pHluorin-tagged Aplysia glutamate receptor measured using live imaging after intermediate- or long-term facilitation. Over-expression of this form of ApNumb did not block increases in synaptic strength seen during intermediate-term facilitation, but did block increases in synaptic strength seen during long-term facilitation. There was no effect of over-expression of this form of ApNumb on other putative Numb targets as measured using increases in calcium downstream of neurotrophins or agonists of metabotropic glutamate receptors. These results suggest that in Aplysia neurons, Numb specifically regulates AMPA receptor trafficking and is an attractive candidate for a target of PKMs in long-term maintenance of synaptic strength. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. Open Science: This manuscript was awarded with the Open Materials Badge For more information see: https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Carole A Farah
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Tyler W Dunn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Margaret H Hastings
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Larissa Ferguson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Cherry Gao
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Katrina Gong
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
5
|
Chen X, Liu Z, Shan Z, Yao W, Gu A, Wen W. Structural determinants controlling 14-3-3 recruitment to the endocytic adaptor Numb and dissociation of the Numb·α-adaptin complex. J Biol Chem 2018; 293:4149-4158. [PMID: 29382713 DOI: 10.1074/jbc.ra117.000897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/24/2018] [Indexed: 12/15/2022] Open
Abstract
Traffic of cargo across membranes helps establish, maintain, and reorganize distinct cellular compartments and is fundamental to many metabolic processes. The cargo-selective endocytic adaptor Numb participates in clathrin-dependent endocytosis by attaching cargoes to the clathrin adaptor α-adaptin. The phosphorylation of Numb at Ser265 and Ser284 recruits the regulatory protein 14-3-3, accompanied by the dissociation of Numb from α-adaptin and Numb's translocation from the cortical membrane to the cytosol. However, the molecular mechanisms underlying the Numb-α-adaptin interaction and its regulation by Numb phosphorylation and 14-3-3 recruitment remain poorly understood. Here, biochemical and structural analyses of the Numb·14-3-3 complex revealed that Numb phosphorylation at both Ser265 and Ser284 is required for Numb's efficient interaction with 14-3-3. We also discovered that an RQFRF motif surrounding Ser265 in Numb functions together with the canonical C-terminal DPF motif, required for Numb's interaction with α-adaptin, to form a stable complex with α-adaptin. Of note, we provide evidence that the phosphorylation-induced binding of 14-3-3 to Numb directly competes with the binding of α-adaptin to Numb. Our findings suggest a potential mechanism governing the dynamic assembly of Numb with α-adaptin or 14-3-3. This dual-site recognition of Numb by α-adaptin may have implications for other α-adaptin targets. We propose that the newly identified α-adaptin-binding site surrounding Ser265 in Numb functions as a triggering mechanism for the dynamic dissociation of the Numb·α-adaptin complex.
Collapse
Affiliation(s)
- Xing Chen
- From the Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Ziheng Liu
- From the Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Zelin Shan
- From the Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Weiyi Yao
- From the Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Aihong Gu
- From the Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Wenyu Wen
- From the Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| |
Collapse
|
6
|
Shao X, Liu Y, Yu Q, Ding Z, Qian W, Zhang L, Zhang J, Jiang N, Gui L, Xu Z, Hong Y, Ma Y, Wei Y, Liu X, Jiang C, Zhu M, Li H, Li H. Numb regulates vesicular docking for homotypic fusion of early endosomes via membrane recruitment of Mon1b. Cell Res 2016; 26:593-612. [PMID: 26987402 PMCID: PMC4856763 DOI: 10.1038/cr.2016.34] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/17/2015] [Accepted: 01/17/2015] [Indexed: 02/05/2023] Open
Abstract
Numb is an endocytic protein that plays crucial roles in diverse cellular processes such as asymmetric cell division, cell migration and differentiation. However, the molecular mechanism by which Numb regulates endocytic trafficking is poorly understood. Here, we demonstrate that Numb is a docking regulator for homotypic fusion of early endosomes (EEs). Numb depletion causes clustered but unfused EEs, which can be rescued by overexpressing cytosolic Numb 65 and Numb 71 but not plasma membrane-attached Numb 66 or Numb 72. Time-lapse analysis reveals that paired vesicles tend to tether but not fuse with each other in the absence of Numb. We further show that Numb binds to another docking regulator, Mon1b, and is required for the recruitment of cytosolic Mon1b to the EE membrane. Consistent with this, deletion of Mon1b causes similar defects in EE fusion. Our study thus identifies a novel mechanism by which Numb regulates endocytic sorting by mediating EE fusion.
Collapse
Affiliation(s)
- Ximing Shao
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yi Liu
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- West China Developmental & Stem Cell Biology Institute, West China Second University Hospital, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Current address: Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Qian Yu
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- West China Developmental & Stem Cell Biology Institute, West China Second University Hospital, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhihao Ding
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Wenyu Qian
- West China Developmental & Stem Cell Biology Institute, West China Second University Hospital, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- SARITEX Center for Stem Cell Engineering Translational Medicine, Shanghai East Hospital, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Lei Zhang
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jianchao Zhang
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Nan Jiang
- West China Developmental & Stem Cell Biology Institute, West China Second University Hospital, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Current address: Department of Biology, University of Washington, Seattle, Washington, USA
| | - Linfei Gui
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Hong
- Department of Cell Biology & Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Yifan Ma
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yanjie Wei
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Xiaoqing Liu
- SARITEX Center for Stem Cell Engineering Translational Medicine, Shanghai East Hospital, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Changan Jiang
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- West China Developmental & Stem Cell Biology Institute, West China Second University Hospital, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Minyan Zhu
- SARITEX Center for Stem Cell Engineering Translational Medicine, Shanghai East Hospital, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Hongchang Li
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Huashun Li
- SARITEX Center for Stem Cell Engineering Translational Medicine, Shanghai East Hospital, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200123, China
- ATCG Corp, BioBay, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| |
Collapse
|
7
|
Yap CC, Winckler B. Adapting for endocytosis: roles for endocytic sorting adaptors in directing neural development. Front Cell Neurosci 2015; 9:119. [PMID: 25904845 PMCID: PMC4389405 DOI: 10.3389/fncel.2015.00119] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 03/16/2015] [Indexed: 01/01/2023] Open
Abstract
Proper cortical development depends on the orchestrated actions of a multitude of guidance receptors and adhesion molecules and their downstream signaling. The levels of these receptors on the surface and their precise locations can greatly affect guidance outcomes. Trafficking of receptors to a particular surface locale and removal by endocytosis thus feed crucially into the final guidance outcomes. In addition, endocytosis of receptors can affect downstream signaling (both quantitatively and qualitatively) and regulated endocytosis of guidance receptors is thus an important component of ensuring proper neural development. We will discuss the cell biology of regulated endocytosis and the impact on neural development. We focus our discussion on endocytic accessory proteins (EAPs) (such as numb and disabled) and how they regulate endocytosis and subsequent post-endocytic trafficking of their cognate receptors (such as Notch, TrkB, β-APP, VLDLR, and ApoER2).
Collapse
Affiliation(s)
- Chan Choo Yap
- Department of Neuroscience, University of Virginia Charlottesville, VA, USA
| | - Bettina Winckler
- Department of Neuroscience, University of Virginia Charlottesville, VA, USA
| |
Collapse
|
8
|
Krieger JR, Taylor P, Moran MF, McGlade CJ. Comprehensive identification of phosphorylation sites on the Numb endocytic adaptor protein. Proteomics 2015; 15:434-46. [PMID: 25403733 DOI: 10.1002/pmic.201400232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/28/2014] [Accepted: 11/11/2014] [Indexed: 11/08/2022]
Abstract
Numb is an adaptor protein that functions in the endocytosis and intracellular trafficking of membrane receptors and adhesion molecules. Previous studies have indicated that Numb localization and function are regulated through phosphorylation by atypical protein kinase C at several key sites. Here, using LC-MS/MS, we report the identification of 25 serine/threonine Numb phosphorylation sites, and a single tyrosine phosphorylation site. Amino acid sequences flanking several of the sites identified conform to consensus motifs for cyclin-dependent kinase 5 (CDK5). In vitro kinase assays and immunoblotting confirmed that CDK5 phosphorylates Numb. LC-MS/MS analysis identified specific CDK5-directed phosphorylation of Numb at position S288 and at two additional regions. Therefore, Numb is likely to exist in multiple phospho-isoforms, and may be subject to phosphorylation-mediated regulation downstream of CDK5. These findings provide a basis for further investigations into the complex role of Numb phosphorylation in regulating its subcellular localization, protein interactions, and function. All MS data have been deposited in the ProteomeXchange with identifier PXD000997 (http://proteomecentral.proteomexchange.org/dataset/PXD000997).
Collapse
Affiliation(s)
- Jonathan R Krieger
- Program in Cell Biology, The Hospital For Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Center, The Hospital for Sick Children, Toronto, ON, Canada
| | | | | | | |
Collapse
|
9
|
Nieber F, Hedderich M, Jahn O, Pieler T, Henningfeld KA. NumbL is essential for Xenopus primary neurogenesis. BMC DEVELOPMENTAL BIOLOGY 2013; 13:36. [PMID: 24125469 PMCID: PMC3852787 DOI: 10.1186/1471-213x-13-36] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/04/2013] [Indexed: 12/27/2022]
Abstract
Background Members of the vertebrate Numb family of cell fate determinants serve multiple functions throughout early embryogenesis, including an essential role in the development of the nervous system. The Numb proteins interact with various partner proteins and correspondingly participate in multiple cellular activities, including inhibition of the Notch pathway. Results Here, we describe the expression characteristics of Numb and Numblike (NumbL) during Xenopus development and characterize the function of NumbL during primary neurogenesis. NumbL, in contrast to Numb, is expressed in the territories of primary neurogenesis and is positively regulated by the Neurogenin family of proneural transcription factors. Knockdown of NumbL afforded a complete loss of primary neurons and did not lead to an increase in Notch signaling in the open neural plate. Furthermore, we provide evidence that interaction of NumbL with the AP-2 complex is required for NumbL function during primary neurogenesis. Conclusion We demonstrate an essential role of NumbL during Xenopus primary neurogenesis and provide evidence for a Notch-independent function of NumbL in this context.
Collapse
Affiliation(s)
- Frank Nieber
- Institute of Developmental Biochemistry, University of Goettingen, Goettingen, Germany.
| | | | | | | | | |
Collapse
|
10
|
Feldman DE, Chen C, Punj V, Machida K. The TBC1D15 oncoprotein controls stem cell self-renewal through destabilization of the Numb-p53 complex. PLoS One 2013; 8:e57312. [PMID: 23468968 PMCID: PMC3584131 DOI: 10.1371/journal.pone.0057312] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 01/21/2013] [Indexed: 01/22/2023] Open
Abstract
Stem cell populations are maintained through self-renewing divisions in which one daughter cell commits to a specific fate while the other retains the multipotent characteristics of its parent. The p53 tumor suppressor, in conjunction with its interacting partner protein Numb, preserves this asymmetry and functions as a vital barrier against the unchecked expansion of tumor stem cell pools; however, little is known about the biological control of the Numb-p53 interaction. We show here that Numb and p53 are the constituents of a high molecular mass complex, which is disintegrated upon activation of aPKCζ, a Numb kinase. Using large-scale affinity purification and tandem mass spectrometry, we identify TBC1D15 as a Numb-associated protein and demonstrate that its amino-terminal domain disengages p53 from Numb, triggering p53 proteolysis and promoting self-renewal and pluripotency. Cellular levels of TBC1D15 are diminished upon acute nutrient deprivation through autophagy-mediated degradation, indicating that TBC1D15 serves as a conduit through which cellular metabolic status is linked to self-renewal. The profound deregulation of TBC1D15 expression exhibited in a diverse array of patient tumors underscores its proposed function as an oncoprotein.
Collapse
Affiliation(s)
- Douglas E. Feldman
- Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, Los Angeles, California, United States of America
| | - Chialin Chen
- Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, Los Angeles, California, United States of America
| | - Vasu Punj
- Bioinformatics Core, Norris Comprehensive Cancer Center at University of Southern California and Division of Hematology, University of Southern California, Keck School of Medicine, Los Angeles, California, United States of America
| | - Keigo Machida
- Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, Los Angeles, California, United States of America
- Southern California Research Center for ALPD and Cirrhosis, University of Southern California, Keck School of Medicine, Los Angeles, California, United States of America
| |
Collapse
|
11
|
Kim SY, Yang D, Myeong J, Ha K, Kim SH, Park EJ, Kim IG, Cho NH, Lee KP, Jeon JH, So I. Regulation of calcium influx and signaling pathway in cancer cells via TRPV6-Numb1 interaction. Cell Calcium 2013; 53:102-11. [PMID: 23140583 DOI: 10.1016/j.ceca.2012.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/10/2012] [Accepted: 10/12/2012] [Indexed: 11/19/2022]
Abstract
Ca(2+) is a critical factor in the regulation of signal transduction and Ca(2+) homeostasis is altered in different human diseases. The level of Ca(2+) in cells is highly regulated through a diverse class of regulators. Among them is the transient receptor potential vanilloid 6 (TRPV6), which is a Ca(2+) selective channel that absorbs Ca(2+) in the small intestine. TRPV6 is overexpressed in some cancers and exhibits oncogenic potential, but its exact mechanism is still poorly understood. The Numb protein is a cell fate determinant that functions in endocytosis and as a tumor suppressor via the stabilization of p53. Numb protein consisted of four isoforms. Here, we showed a novel function of Numb1, which negatively regulates TRPV6 activity. The expression of Numb1 decreased cytosolic Ca(2+) concentrations in TRPV6-transfected HEK293 cells. When all the isoforms of Numb were depleted using siRNA in a TRPV6 stable cell line, the levels of cytosolic Ca(2+) increased. We observed an interaction between Numb1 and TRPV6 using co-immunoprecipitation. We confirmed this interaction using Fluorescence Resolution Energy Transfer (FRET). We identified the TRPV6 and Numb1 binding site using TRPV6 C-terminal truncation mutants and Numb1 deletion mutants. The binding site in TRPV6 was an aspartic acid at amino acid residue 716, and that binding site in Numb1 was arginine at amino acid residue 434. A Numb1 mutant, lacking TRPV6 binding activity, failed to inhibit TRPV6 activity. Every isoform of Numb knockdown, using an siRNA-based approach in MCF-7 breast cancer cells, not only showed enhanced TRPV6 expression but also both the cytosolic Ca(2+) concentration and cell proliferation were increased. The down-regulated expression of TRPV6 using siRNA increased Numb protein expression; however, the cytosolic influx of Ca(2+) and proliferation of the cell were decreased. To examine downstream signaling during Ca(2+) influx, we performed Western blotting analysis on TRPV6 upregulated cancer cells (MCF-7, PC-3). Taken together, these results demonstrated that Numb1 interacts with TRPV6 through charged residues and inhibits its activity via the regulation of protein expression. Moreover, we provided evidence for a Ca(2+)-regulated cancer cell signaling pathway and that the Ca(2+) channel is a target of cancer cells.
Collapse
Affiliation(s)
- Sung-Young Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Krieger JR, Taylor P, Gajadhar AS, Guha A, Moran MF, McGlade CJ. Identification and selected reaction monitoring (SRM) quantification of endocytosis factors associated with Numb. Mol Cell Proteomics 2012; 12:499-514. [PMID: 23211419 DOI: 10.1074/mcp.m112.020768] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Numb is an endocytic adaptor protein that regulates the endocytosis and trafficking of transmembrane receptors including Notch, E-cadherin, and integrins. Vertebrate Numb is alternatively spliced at exons 3 and 9 to give rise to four protein isoforms. Expression of these isoforms varies at different developmental stages, and although the function of Numb isoforms containing exon 3 has been studied, the role of exon 9 inclusion has not been shown. Here we use affinity purification and tandem mass spectrometry to identify Numb associated proteins, including novel interactions with REPS1, BMP2K, and BCR. In vitro binding measurements indicated exon 9-independent Numb interaction with REPS1 and Eps15 EH domains. Selected reaction monitoring mass spectrometry was used to quantitatively compare the proteins associated with the p72 and p66 Numb isoforms, which differ by the exon 9 region. This showed that significantly more EPS15 and three AP-2 subunit proteins bound Numb isoforms containing exon 9. The EPS15 preference for exon 9-containing Numb was confirmed in intact cells by using a proximity ligation assay. Finally, we used multiplexed selected reaction monitoring mass spectrometry to assess the dynamic regulation of Numb association with endocytic proteins. Numb hyper-phosphorylation resulted in disassociation of Numb endocytic complexes, while inhibition of endocytosis did not alter Numb association with the AP-2 complex but altered recruitment of EPS15, REPS1, and BMP2K. Hence, quantitative mass spectrometric analysis of Numb protein-protein interactions has provided new insights into the assembly and regulation of protein complexes important in development and cancer.
Collapse
Affiliation(s)
- Jonathan R Krieger
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 2M9, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Boggetti B, Jasik J, Takamiya M, Strähle U, Reugels AM, Campos-Ortega JA. NBP, a zebrafish homolog of human Kank3, is a novel Numb interactor essential for epidermal integrity and neurulation. Dev Biol 2012; 365:164-74. [PMID: 22387208 DOI: 10.1016/j.ydbio.2012.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 12/01/2011] [Accepted: 02/14/2012] [Indexed: 01/15/2023]
Abstract
Numb is an adaptor protein implicated in diverse basic cellular processes. Using the yeast-two hybrid system we isolated a novel Numb interactor in zebrafish called NBP which is an ortholog of human renal tumor suppressor Kank. NBP interacts with the PTB domain of Numb through a region well conserved among vertebrate Kanks containing the NGGY sequence. Similar NBP and Numb morphant phenotype such as impaired convergence and extension movements during gastrulation, neurulation and epidermis defects and enhanced phenotypic aberrations in double morphants suggest that the genes interact genetically. We demonstrate that the expression of NBP undergoes quantitative and qualitative changes during embryogenesis and that the protein accumulates at the cell periphery to sites of cell-cell contact during gastrulation and later in development it concentrates at the basal poles of differentiated cells. These findings imply a possible role of NBP in establishing and maintaining cell adhesion and tissue integrity.
Collapse
Affiliation(s)
- Barbara Boggetti
- Institut für Entwicklungsbiologie, University of Cologne, 50923 Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
14
|
Ouyang Y, Petritsch C, Wen H, Jan L, Jan YN, Lu B. Dronc caspase exerts a non-apoptotic function to restrain phospho-Numb-induced ectopic neuroblast formation in Drosophila. Development 2011; 138:2185-96. [PMID: 21558368 DOI: 10.1242/dev.058347] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Drosophila neuroblasts have served as a model to understand how the balance of stem cell self-renewal versus differentiation is achieved. Drosophila Numb protein regulates this process through its preferential segregation into the differentiating daughter cell. How Numb restricts the proliferation and self-renewal potentials of the recipient cell remains enigmatic. Here, we show that phosphorylation at conserved sites regulates the tumor suppressor activity of Numb. Enforced expression of a phospho-mimetic form of Numb (Numb-TS4D) or genetic manipulation that boosts phospho-Numb levels, attenuates endogenous Numb activity and causes ectopic neuroblast formation (ENF). This effect on neuroblast homeostasis occurs only in the type II neuroblast lineage. We identify Dronc caspase as a novel binding partner of Numb, and demonstrate that overexpression of Dronc suppresses the effects of Numb-TS4D in a non-apoptotic and possibly non-catalytic manner. Reduction of Dronc activity facilitates ENF induced by phospho-Numb. Our findings uncover a molecular mechanism that regulates Numb activity and suggest a novel role for Dronc caspase in regulating neural stem cell homeostasis.
Collapse
Affiliation(s)
- Yingshi Ouyang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
15
|
Gupta-Rossi N, Ortica S, Meas-Yedid V, Heuss S, Moretti J, Olivo-Marin JC, Israël A. The adaptor-associated kinase 1, AAK1, is a positive regulator of the Notch pathway. J Biol Chem 2011; 286:18720-30. [PMID: 21464124 PMCID: PMC3099689 DOI: 10.1074/jbc.m110.190769] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 03/04/2011] [Indexed: 11/06/2022] Open
Abstract
The Notch pathway is involved in cell-cell signaling during development and adulthood from invertebrates to higher eukaryotes. Activation of the Notch receptor by its ligands relies upon a multi-step processing. The extracellular part of the receptor is removed by a metalloprotease of the ADAM family and the remaining fragment is cleaved within its transmembrane domain by a presenilin-dependent γ-secretase activity. γ-Secretase processing of Notch has been shown to depend upon monoubiquitination as well as clathrin-mediated endocytosis (CME). We show here that AAK1, the adaptor-associated kinase 1, directly interacts with the membrane-tethered active form of Notch released by metalloprotease cleavage. Active AAK1 acts upstream of the γ-secretase cleavage by stabilizing both the membrane-tethered activated form of Notch and its monoubiquitinated counterpart. We propose that AAK1 acts as an adaptor for Notch interaction with components of the clathrin-mediated pathway such as Eps15b. Moreover, transfected AAK1 increases the localization of activated Notch to Rab5-positive endocytic vesicles, while AAK1 depletion or overexpression of Numb, an inhibitor of the pathway, interferes with this localization. These results suggest that after ligand-induced activation of Notch, the membrane-tethered form can be directed to different endocytic pathways leading to distinct fates.
Collapse
Affiliation(s)
- Neetu Gupta-Rossi
- Unité de Signalisation Moléculaire et Activation Cellulaire, CNRS URA 2582, CNRS URA 2582, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | | | | | |
Collapse
|
16
|
Tickets to ride: selecting cargo for clathrin-regulated internalization. Nat Rev Mol Cell Biol 2009; 10:583-96. [PMID: 19696796 DOI: 10.1038/nrm2751] [Citation(s) in RCA: 418] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Clathrin-mediated endocytosis oversees the constitutive packaging of selected membrane cargoes into transport vesicles that fuse with early endosomes. The process is responsive to activation of signalling receptors and ion channels, promptly clearing post-translationally tagged forms of cargo off the plasma membrane. To accommodate the diverse array of transmembrane proteins that are variably gathered into forming vesicles, a dedicated sorting machinery cooperates to ensure that non-competitive uptake from the cell surface occurs within minutes. Recent structural and functional data reveal remarkable plasticity in how disparate sorting signals are recognized by cargo-selective clathrin adaptors, such as AP-2. Cargo loading also seems to govern whether coats ultimately bud or dismantle abortively at the cell surface.
Collapse
|
17
|
Mine T, Matsueda S, Li Y, Tokumitsu H, Gao H, Danes C, Wong KK, Wang X, Ferrone S, Ioannides CG. Breast cancer cells expressing stem cell markers CD44+ CD24 lo are eliminated by Numb-1 peptide-activated T cells. Cancer Immunol Immunother 2009; 58:1185-94. [PMID: 19048252 PMCID: PMC2726795 DOI: 10.1007/s00262-008-0623-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 10/29/2008] [Indexed: 12/22/2022]
Abstract
Cancer stem cells (CSC) are resistant to chemo- and radiotherapy. To eliminate cells with phenotypic markers of CSC-like we characterized: (1) expression of CD44, CD24, CD133 and MIC-A/B (NKG2 receptors) in breast (MCF7) and ovarian (SK-OV-3) cells resistant to gemcitabine (GEM), paclitaxel (PTX) and 5-fluorouracil (5-FU) and (2) their elimination by Numb- and Notch-peptide activated CTL. The number of cells in all populations with the luminal CSC phenotype [epithelial specific antigen(+) (ESA) CD44(hi) CD24(lo), CD44(hi) CD133(+), and CD133(+) CD24(lo)] increased in drug-resistant MCF7 and SK-OV-3 cells. Similarly, the number of cells with expressed MIC-A/B increased 4 times in drug-resistant tumor cells compared with drug-sensitive cells. GEM(Res) MCF7 cells had lower levels of the Notch-1-extracellular domain (NECD) and Notch trans-membrane intracellular domain (TMIC) than GEM(Sens) MCF7. The levels of Numb, and Numb-L-[P]-Ser(265) were similar in GEM(Res) and GEM(Sens) MCF7 cells. Only the levels of Numb-L (long)-Ser(295) decreased slightly. This finding suggests that Notch-1 cleavage to TMIC is inhibited in GEM(Res) MCF7 cells. PBMC activated by natural immunogenic peptides Notch-1 (2112-2120) and Numb-1 (87-95) eliminated NICD(positive), CD24(hi) CD24(lo) MCF7 cells. It is likely that the immunogenic Numb-1 peptide in MCF7 cells originated from Numb, [P]-lated by an unknown kinase, because staurosporine but not wortmannin and MAPK-inhibitors decreased peptide presentation. Numb and Notch are antagonistic proteins which degrade each other to stop and activate cell proliferation, respectively. Their peptides are presented alternatively. Targeting both antagonistic proteins should be useful to prevent metastases in patients whose tumors are resistant to conventional treatments.
Collapse
MESH Headings
- Anticarcinogenic Agents/pharmacology
- Biomarkers, Tumor/immunology
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/immunology
- Breast Neoplasms/metabolism
- CD24 Antigen/immunology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- Cell Line, Tumor
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/physiology
- Female
- GPI-Linked Proteins
- Humans
- Hyaluronan Receptors/immunology
- Immunotherapy, Active
- Immunotherapy, Adoptive
- Intercellular Signaling Peptides and Proteins/immunology
- Intercellular Signaling Peptides and Proteins/metabolism
- Interferon-gamma/biosynthesis
- Interferon-gamma/immunology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lymphocyte Activation
- Membrane Proteins/immunology
- Membrane Proteins/metabolism
- Neoplastic Stem Cells/immunology
- Neoplastic Stem Cells/metabolism
- Nerve Tissue Proteins/immunology
- Nerve Tissue Proteins/metabolism
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/metabolism
- Peptides/immunology
- Receptor, Notch1/immunology
- Receptor, Notch1/metabolism
Collapse
Affiliation(s)
- Takashi Mine
- Department of Gynecologic Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Schlüter T, Knauth P, Wald S, Boland S, Bohnensack R. Numb3 is an endocytosis adaptor for the inflammatory marker P-selectin. Biochem Biophys Res Commun 2009; 379:909-13. [PMID: 19138666 DOI: 10.1016/j.bbrc.2008.12.166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 12/25/2008] [Indexed: 11/30/2022]
Abstract
The endocytic protein Numb3 was found to bind to the cytosolic tail of the leukocyte adhesion receptor P-selectin. The N-terminal phosphotyrosine-binding (PTB) domain of Numb3 is responsible for this activity. An alanine scan revealed the FTNAAFD sequence as recognition region in P-selectin. Structural modeling of the interaction between the Numb PTB domain and the P-selectin tail suggests that both phenylalanines within the recognition sequence fit into hydrophobic cavities of the PTB surface. Their exchange for alanine gave Numb-negative mutants detaining the inhibition of P-selectin endocytosis by Numb PTB overexpression. Cells stable expressing P-selectins internalized the negative mutants markedly slower than the wild type. Consistent with other reports on the phosphorylation of Numb, we found that only the dephospho-Numb is able to bind P-selectin. Our observations demonstrate that Numb3 is an endocytic receptor for P-selectin and may be responsible for the rapid internalization of P-selectin when endothelial activation ends.
Collapse
Affiliation(s)
- Thomas Schlüter
- Institut für Biochemie und Zellbiologie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Strasse 44, D-39120 Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
19
|
Wayman GA, Lee YS, Tokumitsu H, Silva AJ, Silva A, Soderling TR. Calmodulin-kinases: modulators of neuronal development and plasticity. Neuron 2008; 59:914-31. [PMID: 18817731 DOI: 10.1016/j.neuron.2008.08.021] [Citation(s) in RCA: 443] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 08/18/2008] [Accepted: 08/19/2008] [Indexed: 11/26/2022]
Abstract
In the nervous system, many intracellular responses to elevated calcium are mediated by CaM kinases (CaMKs), a family of protein kinases whose activities are initially modulated by binding Ca(2+)/calmodulin and subsequently by protein phosphorylation. One member of this family, CaMKII, is well-established for its effects on modulating synaptic plasticity and learning and memory. However, recent studies indicate that some actions on neuronal development and function attributed to CaMKII may instead or in addition be mediated by other members of the CaMK cascade, such as CaMKK, CaMKI, and CaMKIV. This review summarizes key neuronal functions of the CaMK cascade in signal transduction, gene transcription, synaptic development and plasticity, and behavior. The technical challenges of mapping cellular protein kinase signaling pathways are also discussed.
Collapse
Affiliation(s)
- Gary A Wayman
- Vollum Institute, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Numb is an endocytic protein that is proposed to influence clathrin-coated pit assembly, although its mode of action and the mechanisms that regulate its activity are unknown. In this study, we show that Numb binds to and is phosphorylated by adaptor-associated kinase 1 (AAK1), a key endocytic kinase. We find that AAK1 redistributes Numb to perinuclear endosomes when overexpressed, while kinase depletion causes Numb to accumulate at the plasma membrane. Overexpression of a Numb point mutant (T102A) that lacks the AAK1 phosphorylation site potently disrupts transferrin and low-density lipoprotein internalization but does not impact EGF uptake. Consistent with Numb redistribution results, we find that T102A Numb no longer localizes to perinuclear endosomes. Instead, it is enriched at the plasma membrane where it shows elevated levels of colocalization with coated pit markers. Collectively, these observations demonstrate that Numb endocytic activity is regulated by AAK1 and that phosphorylation may be a critical step in promoting coated pit maturation.
Collapse
Affiliation(s)
- Erika B Sorensen
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|