1
|
Rodina N, Hornung S, Sarkar R, Suladze S, Peters C, Schmid PWN, Niu Z, Haslbeck M, Buchner J, Kapurniotu A, Reif B. Modulation of Alzheimer's Disease Aβ40 Fibril Polymorphism by the Small Heat Shock Protein αB-Crystallin. J Am Chem Soc 2024; 146:19077-19087. [PMID: 38973199 PMCID: PMC11258688 DOI: 10.1021/jacs.4c03504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Deposition of amyloid plaques in the brains of Alzheimer's disease (AD) patients is a hallmark of the disease. AD plaques consist primarily of the beta-amyloid (Aβ) peptide but can contain other factors such as lipids, proteoglycans, and chaperones. So far, it is unclear how the cellular environment modulates fibril polymorphism and how differences in fibril structure affect cell viability. The small heat-shock protein (sHSP) alpha-B-Crystallin (αBC) is abundant in brains of AD patients, and colocalizes with Aβ amyloid plaques. Using solid-state NMR spectroscopy, we show that the Aβ40 fibril seed structure is not replicated in the presence of the sHSP. αBC prevents the generation of a compact fibril structure and leads to the formation of a new polymorph with a dynamic N-terminus. We find that the N-terminal fuzzy coat and the stability of the C-terminal residues in the Aβ40 fibril core affect the chemical and thermodynamic stability of the fibrils and influence their seeding capacity. We believe that our results yield a better understanding of how sHSP, such as αBC, that are part of the cellular environment, can affect fibril structures related to cell degeneration in amyloid diseases.
Collapse
Affiliation(s)
- Natalia Rodina
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Simon Hornung
- Division
of Peptide Biochemistry, TUM School of Life Sciences, Technical University of Munich, Emil-Erlenmeyer-Forum 5, Freising 85354, Germany
| | - Riddhiman Sarkar
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Saba Suladze
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Carsten Peters
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Philipp W. N. Schmid
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Zheng Niu
- School
of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Martin Haslbeck
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Johannes Buchner
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Aphrodite Kapurniotu
- Division
of Peptide Biochemistry, TUM School of Life Sciences, Technical University of Munich, Emil-Erlenmeyer-Forum 5, Freising 85354, Germany
| | - Bernd Reif
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| |
Collapse
|
2
|
Ali M, Zhang Z, Ibrahim MAA, Soliman MES. Heat shock protein (Hsp27)-ceramide synthase (Cers1) protein-protein interactions provide a new avenue for unexplored anti-cancer mechanism and therapy. J Recept Signal Transduct Res 2024; 44:41-53. [PMID: 39189140 DOI: 10.1080/10799893.2024.2392711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Hsp27 is a member of the small heat-shock proteins (sHSPs) - the known cellular line of defence against abnormal protein folding behaviors. Nevertheless, its upregulation is linked to a variety of pathological disorders, including several types of cancers. The ceramide synthases (CerS) mediate the synthesis of ceramide, a critical structural and signaling lipid. Functionally, downstream ceramide metabolites are implicated in the apoptosis process and their abnormal functionality has been linked to anticancer resistance. Studies showed that CerS1 are possibly inhibited by Hsp27 leading to biochemical anticancer effects in vitro. Nevertheless, the nature of such protein-protein interaction (PPI) has not been considerably investigated in molecular terms, hence, we present the first description of the dynamics CerS1-Hsp27 interaction landscapes using molecular dynamics simulations. Time-scale molecular dynamics simulation analysis indicated a system-wide conformational events of decreased stability, increased flexibility, reduced compactness, and decreased folding of CerS1. Analysis of binding energy showed a favorable interaction entailing 56 residues at the interface and a total stabilizing energy of -158 KJ/mol. The CerS1 catalytic domain experienced an opposite trend compared to the protein backbone. Yet, these residues adopted a highly compact conformation as per DCCM and DSSP analysis. Furthermore, conserved residues (SER 212, ASP 213, ALA 240, GLY 243, ASP 319) comprising the substrate shuttling machinery showed notable rigidity implying a restrained ceramide precursor access and assembly; hence, a possible inhibitory mechanism. Findings from this report would streamline a better molecular understanding of CerS1-Hsp27 interactions and decipher its potential avenue toward unexplored anti-cancer mechanisms and therapy.
Collapse
Affiliation(s)
- Musab Ali
- Molecular Bio-Computation and Drug Design Research Group, School of Health Sciences, University of KwaZulu Natal, Durban, South Africa
| | - Zhichao Zhang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, China
| | - Mahmoud A A Ibrahim
- Molecular Bio-Computation and Drug Design Research Group, School of Health Sciences, University of KwaZulu Natal, Durban, South Africa
- Computational Chemistry Laboratory, Chemistry Department, Minia University, Minia, Egypt
| | - Mahmoud E S Soliman
- Molecular Bio-Computation and Drug Design Research Group, School of Health Sciences, University of KwaZulu Natal, Durban, South Africa
| |
Collapse
|
3
|
Ghosh D, Agarwal M, Radhakrishna M. Molecular Insights into the Inhibitory Role of α-Crystallin against γD-Crystallin Aggregation. J Chem Theory Comput 2024; 20:1740-1752. [PMID: 38078935 DOI: 10.1021/acs.jctc.3c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Cataracts, a major cause of global blindness, contribute significantly to the overall prevalence of blindness. The opacification of the lens, resulting in cataract formation, primarily occurs due to the aggregation of crystallin proteins within the eye lens. Despite the high concentration of these crystallins, they remarkably maintain the lens transparency and refractive index. α-Crystallins (α-crys), acting as chaperones, play a crucial role in preventing crystallin aggregation, although the exact molecular mechanism remains uncertain. In this study, we employed a combination of molecular docking, all-atom molecular dynamics simulations, and advanced free energy calculations to investigate the interaction between γD-crystallin (γD-crys), a major structural protein of the eye lens, and α-crystallin proteins. Our findings demonstrate that α-crys exhibits an enhanced affinity for the NTD2 and CTD4 regions of γD-crys. The NTD2 and CTD4 regions form the interface between the N-terminal domain (NTD) and the C-terminal domain (CTD) of the γD-crys protein. By binding to the interface region between the NTD and CTD of the protein, α-crys effectively inhibits the formation of domain-swapped aggregates and mitigates protein aggregation. Analysis of the Markov state models using molecular dynamics trajectories confirms that minimum free energy conformations correspond to the binding of the α-crystallin domain (ACD) of α-crys to NTD2 and CTD4 that form the interdomain interface.
Collapse
Affiliation(s)
- Deepshikha Ghosh
- Department of Biological Sciences and Engineering, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gujarat 382355, India
| | - Manish Agarwal
- Computer Services Centre, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, Delhi 110016, India
| | - Mithun Radhakrishna
- Department of Chemical Engineering, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gujarat 382355, India
- Center for Biomedical Engineering, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gujarat 382355, India
| |
Collapse
|
4
|
Bok J, Ha J, Ahn BJ, Jang Y. Disease-Modifying Effects of Non-Invasive Electroceuticals on β-Amyloid Plaques and Tau Tangles for Alzheimer's Disease. Int J Mol Sci 2022; 24:ijms24010679. [PMID: 36614120 PMCID: PMC9821138 DOI: 10.3390/ijms24010679] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Electroceuticals refer to various forms of electronic neurostimulators used for therapy. Interdisciplinary advances in medical engineering and science have led to the development of the electroceutical approach, which involves therapeutic agents that specifically target neural circuits, to realize precision therapy for Alzheimer's disease (AD). To date, extensive studies have attempted to elucidate the disease-modifying effects of electroceuticals on areas in the brain of a patient with AD by the use of various physical stimuli, including electric, magnetic, and electromagnetic waves as well as ultrasound. Herein, we review non-invasive stimulatory systems and their effects on β-amyloid plaques and tau tangles, which are pathological molecular markers of AD. Therefore, this review will aid in better understanding the recent technological developments, applicable methods, and therapeutic effects of electronic stimulatory systems, including transcranial direct current stimulation, 40-Hz gamma oscillations, transcranial magnetic stimulation, electromagnetic field stimulation, infrared light stimulation and ionizing radiation therapy, and focused ultrasound for AD.
Collapse
Affiliation(s)
- Junsoo Bok
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04736, Republic of Korea
| | - Juchan Ha
- Department of Biomedical Engineering, College of Engineering, Hanyang University, Seoul 04736, Republic of Korea
| | - Bum Ju Ahn
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, Republic of Korea
| | - Yongwoo Jang
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04736, Republic of Korea
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, Republic of Korea
- Correspondence: ; Tel.: +82-2-2220-0655
| |
Collapse
|
5
|
Xu Z, Gong Y, Zou Y, Wan J, Tang J, Zhan C, Wei G, Zhang Q. Dissecting the Inhibitory Mechanism of the αB-Crystallin Domain against Aβ 42 Aggregation and Its Effect on Aβ 42 Protofibrils: A Molecular Dynamics Simulation Study. ACS Chem Neurosci 2022; 13:2842-2851. [PMID: 36153964 DOI: 10.1021/acschemneuro.2c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Alzheimer's disease (AD) is related to the misfolding and aggregation of amyloid-β (Aβ) protein, and its major pathological hallmark is fibrillary β-amyloid plaques. Impeding the formation of Aβ β-structure-rich aggregates and dissociating Aβ fibrils are considered potent strategies to suppress the onset and progression of AD. As a molecular chaperone, human αB-crystallin has received extensive attention in the inhibition of protein aggregation. Previous experiments reported that the structured core region of αB-crystallin (αBC) exhibits a better preventive effect on Aβ aggregation and toxicity than the full-length protein. However, the molecular mechanism behind the effect of inhibition remains mostly unknown. Herein, we carried out six 500 ns molecular dynamics (MD) simulations to investigate the inhibitory mechanism of αBC on Aβ42 aggregation. Our simulations show that αBC greatly impedes the formation of β-structure contents. We find that the binding of αBC to the Aβ42 monomer is driven by polar, hydrophobic, and H-bonding interactions. To explore whether αBC could destabilize Aβ42 protofibrils, we also carried out MD simulations of Aβ42 protofibrils with and without αBC. The results show that αBC interacts with three binding sites of the Aβ42 protofibril, and the binding is mainly driven by polar and H-bonding interactions. The binding of αBC at these three sites has a preferred dissociation effect on the β-structure content, kink angle, and K28-A42 salt bridges. Overall, this study not only discloses the molecular mechanism of αBC against Aβ42 aggregation but also demonstrates the disruption effects of αBC on Aβ42 protofibrils, which yields an avenue for designing anti-AD drug candidates.
Collapse
Affiliation(s)
- Zhengdong Xu
- School of Physical Education, Shanghai University of Sport, 399 Chang Hai Road, Shanghai 200438, People's Republic of China
| | - Yehong Gong
- School of Physical Education, Shanghai University of Sport, 399 Chang Hai Road, Shanghai 200438, People's Republic of China.,School of Sports Science and Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, People's Republic of China
| | - Yu Zou
- Department Sport and Exercise Science, College of Education, Zhejiang University, 148 Tianmenshan Road, Hangzhou 310007, Zhejiang, People's Republic of China
| | - Jiaqian Wan
- School of Physical Education, Shanghai University of Sport, 399 Chang Hai Road, Shanghai 200438, People's Republic of China
| | - Jiaxing Tang
- School of Physical Education, Shanghai University of Sport, 399 Chang Hai Road, Shanghai 200438, People's Republic of China
| | - Chendi Zhan
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Qingwen Zhang
- School of Physical Education, Shanghai University of Sport, 399 Chang Hai Road, Shanghai 200438, People's Republic of China
| |
Collapse
|
6
|
Moncaster JA, Moir RD, Burton MA, Chadwick O, Minaeva O, Alvarez VE, Ericsson M, Clark JI, McKee AC, Tanzi RE, Goldstein LE. Alzheimer's disease amyloid-β pathology in the lens of the eye. Exp Eye Res 2022; 221:108974. [PMID: 35202705 PMCID: PMC9873124 DOI: 10.1016/j.exer.2022.108974] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 01/26/2023]
Abstract
Neuropathological hallmarks of Alzheimer's disease (AD) include pathogenic accumulation of amyloid-β (Aβ) peptides and age-dependent formation of amyloid plaques in the brain. AD-associated Aβ neuropathology begins decades before onset of cognitive symptoms and slowly progresses over the course of the disease. We previously reported discovery of Aβ deposition, β-amyloidopathy, and co-localizing supranuclear cataracts (SNC) in lenses from people with AD, but not other neurodegenerative disorders or normal aging. We confirmed AD-associated Aβ molecular pathology in the lens by immunohistopathology, amyloid histochemistry, immunoblot analysis, epitope mapping, immunogold electron microscopy, quantitative immunoassays, and tryptic digest mass spectrometry peptide sequencing. Ultrastructural analysis revealed that AD-associated Aβ deposits in AD lenses localize as electron-dense microaggregates in the cytoplasm of supranuclear (deep cortex) fiber cells. These Aβ microaggregates also contain αB-crystallin and scatter light, thus linking Aβ pathology and SNC phenotype expression in the lenses of people with AD. Subsequent research identified Aβ lens pathology as the molecular origin of the distinctive cataracts associated with Down syndrome (DS, trisomy 21), a chromosomal disorder invariantly associated with early-onset Aβ accumulation and Aβ amyloidopathy in the brain. Investigation of 1249 participants in the Framingham Eye Study found that AD-associated quantitative traits in brain and lens are co-heritable. Moreover, AD-associated lens traits preceded MRI brain traits and cognitive deficits by a decade or more and predicted future AD. A genome-wide association study of bivariate outcomes in the same subjects identified a new AD risk factor locus in the CTNND2 gene encoding δ-catenin, a protein that modulates Aβ production in brain and lens. Here we report identification of AD-related human Aβ (hAβ) lens pathology and age-dependent SNC phenotype expression in the Tg2576 transgenic mouse model of AD. Tg2576 mice express Swedish mutant human amyloid precursor protein (APP-Swe), accumulate hAβ peptides and amyloid pathology in the brain, and exhibit cognitive deficits that slowly progress with increasing age. We found that Tg2576 trangenic (Tg+) mice, but not non-transgenic (Tg-) control mice, also express human APP, accumulate hAβ peptides, and develop hAβ molecular and ultrastructural pathologies in the lens. Tg2576 Tg+ mice exhibit age-dependent Aβ supranuclear lens opacification that recapitulates lens pathology and SNC phenotype expression in human AD. In addition, we detected hAβ in conditioned medium from lens explant cultures prepared from Tg+ mice, but not Tg- control mice, a finding consistent with constitutive hAβ generation in the lens. In vitro studies showed that hAβ promoted mouse lens protein aggregation detected by quasi-elastic light scattering (QLS) spectroscopy. These results support mechanistic (genotype-phenotype) linkage between Aβ pathology and AD-related phenotypes in lens and brain. Collectively, our findings identify Aβ pathology as the shared molecular etiology of two age-dependent AD-related cataracts associated with two human diseases (AD, DS) and homologous murine cataracts in the Tg2576 transgenic mouse model of AD. These results represent the first evidence of AD-related Aβ pathology outside the brain and point to lens Aβ as an optically-accessible AD biomarker for early detection and longitudinal monitoring of this devastating neurodegenerative disease.
Collapse
Affiliation(s)
- Juliet A. Moncaster
- Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, MA, 02118, USA,Boston University Alzheimer’s Disease Research Center, Boston University School of Medicine, 72 East Concord Street, B-7800 Boston, MA, 02118, USA
| | - Robert D. Moir
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Mark A. Burton
- Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Oliver Chadwick
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Olga Minaeva
- Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, MA, 02118, USA,Boston University Alzheimer’s Disease Research Center, Boston University School of Medicine, 72 East Concord Street, B-7800 Boston, MA, 02118, USA
| | - Victor E. Alvarez
- Boston University Alzheimer’s Disease Research Center, Boston University School of Medicine, 72 East Concord Street, B-7800 Boston, MA, 02118, USA,Edith Nourse Rogers Memorial Veterans’ Hospital, Bedford, MA, 01730, USA
| | - Maria Ericsson
- Electron Microscopy Facility, Harvard Medical School, Boston, MA, 02115, USA
| | - John I. Clark
- Departments of Biological Structure and Ophthalmology, University of Washington, Seattle, WA, 98195, USA
| | - Ann C. McKee
- Boston University Alzheimer’s Disease Research Center, Boston University School of Medicine, 72 East Concord Street, B-7800 Boston, MA, 02118, USA,Edith Nourse Rogers Memorial Veterans’ Hospital, Bedford, MA, 01730, USA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Lee E. Goldstein
- Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, MA, 02118, USA,Boston University Alzheimer’s Disease Research Center, Boston University School of Medicine, 72 East Concord Street, B-7800 Boston, MA, 02118, USA,Corresponding author. Molecular Aging & Development Laboratory, Boston University, School of Medicine, 670 Albany Street, Boston, MA, 02118, USA. (L.E. Goldstein)
| |
Collapse
|
7
|
Malik A, Khan JM, Alhomida AS, Ola MS. Modulation of the Structure and Stability of Novel Camel Lens Alpha-Crystallin by pH and Thermal Stress. Gels 2022; 8:gels8050273. [PMID: 35621572 PMCID: PMC9140948 DOI: 10.3390/gels8050273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/10/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
Alpha-crystallin protein performs structural and chaperone functions in the lens and comprises alphaA and alphaB subunits at a molar ratio of 3:1. The highly complex alpha-crystallin structure challenges structural biologists because of its large dynamic quaternary structure (300−1000 kDa). Camel lens alpha-crystallin is a poorly characterized molecular chaperone, and the alphaB subunit possesses a novel extension at the N-terminal domain. We purified camel lens alpha-crystallin using size exclusion chromatography, and the purity was analyzed by gradient (4−12%) sodium dodecyl sulfate−polyacrylamide gel electrophoresis. Alpha-crystallin was equilibrated in the pH range of 1.0 to 7.5. Subsequently, thermal stress (20−94 °C) was applied to the alpha-crystallin samples, and changes in the conformation and stability were recorded by dynamic multimode spectroscopy and intrinsic and extrinsic fluorescence spectroscopic methods. Camel lens alpha-crystallin formed a random coil-like structure without losing its native-like beta-sheeted structure under two conditions: >50 °C at pH 7.5 and all temperatures at pH 2.0. The calculated enthalpy of denaturation, as determined by dynamic multimode spectroscopy at pH 7.5, 4.0, 2.0, and 1.0 revealed that alpha-crystallin never completely denatures under acidic conditions or thermal denaturation. Alpha-crystallin undergoes a single, reversible thermal transition at pH 7.5. The thermodynamic data (unfolding enthalpy and heat capacity change) and chaperone activities indicated that alpha-crystallin does not completely unfold above the thermal transition. Camels adapted to live in hot desert climates naturally exhibit the abovementioned unique features.
Collapse
Affiliation(s)
- Ajamaluddin Malik
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.A.); (M.S.O.)
- Correspondence:
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abdullah S. Alhomida
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.A.); (M.S.O.)
| | - Mohammad Shamsul Ola
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.A.); (M.S.O.)
| |
Collapse
|
8
|
Becerra-Hernández LV, Escobar-Betancourt MI, Pimienta-Jiménez HJ, Buriticá E. Crystallin Alpha-B Overexpression as a Possible Marker of Reactive Astrogliosis in Human Cerebral Contusions. Front Cell Neurosci 2022; 16:838551. [PMID: 35360493 PMCID: PMC8963874 DOI: 10.3389/fncel.2022.838551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The pathophysiology of traumatic brain injury (TBI) has not yet been fully elucidated. Crystallin alpha-B (CRYAB) is a molecular chaperone that apparently tries to stabilize the rapid thickening of the intermediate filaments of glial fibrillary acidic protein (GFAP) during the process of reactive astrogliosis in response to TBI. Previous analyses of the gene expression profile in human brain contusion tissue showed us an exacerbated CRYAB overexpression. Here, we used 3, 3’-diaminobenzidine (DAB) immunohistochemistry and immunofluorescence to verify CRYAB overexpression and to describe its expression and distribution in samples of contused cortical tissue derived from emergency decompressive surgery after severe TBI. The histological expression of CRYAB was mainly seen in subcortical white matter astrocytes of injured tissue. Most of the cells that overexpressed GFAP in the analyzed tissue also overexpressed CRYAB, a finding corroborated by the co-localization of the two markers. The only difference was the presence of a few pyramidal neurons that expressed CRYAB in layer V of the cerebral cortex. The selective vulnerability of layer V of the cerebral cortex during TBI could explain the expression of CRYAB in neurons of this cortical layer. Our results indicate a parallel behavior in the cellular expression of CRYAB and GFAP during the subacute response to TBI. These results lead us to postulate CRYAB as a possible marker of reactive astrogliosis in contused cortical tissue.
Collapse
|
9
|
Chen Y, Wang W, Fu X, Sun Y, Lv S, Liu L, Zhou P, Zhang K, Meng J, Zhang H, Zhang S. Investigation of the antidepressant mechanism of combined Radix Bupleuri and Radix Paeoniae Alba treatment using proteomics analysis of liver tissue. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122858. [PMID: 34329891 DOI: 10.1016/j.jchromb.2021.122858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/19/2021] [Accepted: 07/06/2021] [Indexed: 11/24/2022]
Abstract
Depression is a chronic, common mental illness characterized by depressed mood, anxiety, insomnia, cognitive impairment, and even suicidal tendency. In traditional Chinese medicine theory, the cause of depression is deemed to be "stagnation of liver qi". So relieving "stagnation of liver qi" is effective for depression. The combination of Radix Bupleuri and Radix Paeoniae Alba, which is used to soothe the liver and relieve depression, has antidepressant effects, but the mechanisms of the effects are still unclear. In this study, a rat model of chronic unpredictable mild stress was established as a model of depression, and proteomics analysis was used to explore the potential mechanisms of this combination in alleviating depression. Biological information analysis was performed on the selected differential proteins, and the enriched pathways mainly included the Jak-STAT signaling pathway, valine, leucine, and isoleucine degradation, and oxidative phosphorylation. The expression of key proteins included metallothionein-1, cyclin-dependent kinase, ubiquitin carboxyl-terminal hydrolase-1, and Cryab was further verified by western blotting, and the results which were consistent with the proteomics results, confirmed the reliability of the proteomic analysis. The antidepressant mechanism of combined Radix Bupleuri and Radix Paeoniae Alba treatment may be related to the oxidative stress response, neuroplasticity, the immune response, and neuroprotection.
Collapse
Affiliation(s)
- Yanyan Chen
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Wenran Wang
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xin Fu
- Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Yonghui Sun
- Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Shaowa Lv
- Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Lei Liu
- Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Peng Zhou
- Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ke Zhang
- Shenyang Pharmaceutical University, Shenyang 110000, China
| | - Jiannan Meng
- Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Hongcai Zhang
- Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China.
| | - Shuxiang Zhang
- Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China.
| |
Collapse
|
10
|
Guo X, Lie Q, Liu Y, Jia Z, Gong Y, Yuan X, Liu J. Multifunctional Selenium Quantum Dots for the Treatment of Alzheimer's Disease by Reducing Aβ-Neurotoxicity and Oxidative Stress and Alleviate Neuroinflammation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30261-30273. [PMID: 34169710 DOI: 10.1021/acsami.1c00690] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
At present, the complex pathogenesis, the difficult-to-overcome blood-brain barrier (BBB), the development of the disease course which cannot be prevented, and other problems are serious challenges in the treatment of Alzheimer's disease (AD). In order to enhance the therapeutic effect of drugs through BBB, we synthesized simple and easy-to-obtain selenium quantum dots (SeQDs), with a multitarget therapeutic effect. This new type of SeQDs has an ultrasmall size and can quickly penetrate the BBB. According to the fluorescence characteristics of SeQDs, we can diagnose and track AD. The experimental results show that SeQDs have strong free-radical scavenging activity, protect cells from oxidative stress induced by different stimuli, and show broad-spectrum antioxidant activity. The SeQDs can not only effectively inhibit Aβ aggregation and significantly reduce Aβ-mediated cytotoxicity, thus preventing AD cascade reaction, but also effectively reduce tau protein phosphorylation by down-regulating PHF1 and CP13 and further reduce oxidative stress, restore mitochondrial functions, and maintain nerve cell stability and protect nerve cells from oxidative stress. In vivo studies demonstrate that SeQDs can continuously accumulate in the brain after rapid passage of BBB and can quickly alleviate AD, significantly improve the memory impairment of AD mice, and improve their learning and memory ability. Therefore, the use of SeQDs in the treatment of AD has great advantages compared with traditional single-target drugs and provides a new direction for the combination of prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xian Guo
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Qiaoshan Lie
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Yanan Liu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zhi Jia
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Youcong Gong
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Xiaoyu Yuan
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Jie Liu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| |
Collapse
|
11
|
Malik A, Almaharfi HA, Khan JM, Hisamuddin M, Alamery SF, Haq SH, Ahmed MZ. Protection of ζ-crystallin by α-crystallin under thermal stress. Int J Biol Macromol 2020; 167:289-298. [PMID: 33278428 DOI: 10.1016/j.ijbiomac.2020.11.183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Abstract
Cataract is one of the major causes of blindness worldwide. Several factors including post-translational modification, thermal and solar radiations promote cataractogenesis. The camel lens proteins survive very harsh desert conditions and resist cataractogenesis. The folding and aggregation mechanism of camel lens proteins are poorly characterized. The camel lens contains three ubiquitous crystallins (α-, β-, and γ-crystallin) and a novel protein (ζ-crystallin) in large amounts. In this study, a sequence similarity search of camel α-crystallin with that of other organisms showed that the camel αB-crystallin consists of an extended N-terminal domain. Our results indicate that camel α-crystallin efficiently prevented aggregation of ζ-crystallin, with or without an obligate cofactor up to 89 °C. It performed a quick and efficient holdase function irrespective of the unfolding stage or aggregation. Camel α-crystallin exhibits approximately 20% chaperone activity between 30 and 40 °C and is completely activated above 40 °C. Camel α-crystallin underwent a single reversible thermal transition without loss of β-sheet secondary structure. Intrinsic tryptophan fluorescence and ANS binding experiments revealed two transitions which corresponded to activation of its chaperone function. In contrast to earlier studies, camel α-crystallin completely protected lens proteins during thermal stress.
Collapse
Affiliation(s)
- Ajamaluddin Malik
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hajar Ahmed Almaharfi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| | - Malik Hisamuddin
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Salman Freeh Alamery
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Samina Hyder Haq
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Z Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Saudi Arabia
| |
Collapse
|
12
|
Vendredy L, Adriaenssens E, Timmerman V. Small heat shock proteins in neurodegenerative diseases. Cell Stress Chaperones 2020; 25:679-699. [PMID: 32323160 PMCID: PMC7332613 DOI: 10.1007/s12192-020-01101-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Small heat shock proteins are ubiquitously expressed chaperones, yet mutations in some of them cause tissue-specific diseases. Here, we will discuss how small heat shock proteins give rise to neurodegenerative disorders themselves while we will also highlight how these proteins can fulfil protective functions in neurodegenerative disorders caused by protein aggregation. The first half of this paper will be focused on how mutations in HSPB1, HSPB3, and HSPB8 are linked to inherited peripheral neuropathies like Charcot-Marie-Tooth (CMT) disease and distal hereditary motor neuropathy (dHMN). The second part of the paper will discuss how small heat shock proteins are linked to neurodegenerative disorders like Alzheimer's, Parkinson's, and Huntington's disease.
Collapse
Affiliation(s)
- Leen Vendredy
- Department of Biomedical Sciences and Institute Born Bunge, Peripheral Neuropathy Research Group, University of Antwerp, Antwerp, Belgium
| | - Elias Adriaenssens
- Department of Biomedical Sciences and Institute Born Bunge, Peripheral Neuropathy Research Group, University of Antwerp, Antwerp, Belgium
| | - Vincent Timmerman
- Department of Biomedical Sciences and Institute Born Bunge, Peripheral Neuropathy Research Group, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
13
|
Webster JM, Darling AL, Uversky VN, Blair LJ. Small Heat Shock Proteins, Big Impact on Protein Aggregation in Neurodegenerative Disease. Front Pharmacol 2019; 10:1047. [PMID: 31619995 PMCID: PMC6759932 DOI: 10.3389/fphar.2019.01047] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
Misfolding, aggregation, and aberrant accumulation of proteins are central components in the progression of neurodegenerative disease. Cellular molecular chaperone systems modulate proteostasis, and, therefore, are primed to influence aberrant protein-induced neurotoxicity and disease progression. Molecular chaperones have a wide range of functions from facilitating proper nascent folding and refolding to degradation or sequestration of misfolded substrates. In disease states, molecular chaperones can display protective or aberrant effects, including the promotion and stabilization of toxic protein aggregates. This seems to be dependent on the aggregating protein and discrete chaperone interaction. Small heat shock proteins (sHsps) are a class of molecular chaperones that typically associate early with misfolded proteins. These interactions hold proteins in a reversible state that helps facilitate refolding or degradation by other chaperones and co-factors. These sHsp interactions require dynamic oligomerization state changes in response to diverse cellular triggers and, unlike later steps in the chaperone cascade of events, are ATP-independent. Here, we review evidence for modulation of neurodegenerative disease-relevant protein aggregation by sHsps. This includes data supporting direct physical interactions and potential roles of sHsps in the stewardship of pathological protein aggregates in brain. A greater understanding of the mechanisms of sHsp chaperone activity may help in the development of novel therapeutic strategies to modulate the aggregation of pathological, amyloidogenic proteins. sHsps-targeting strategies including modulators of expression or post-translational modification of endogenous sHsps, small molecules targeted to sHsp domains, and delivery of engineered molecular chaperones, are also discussed.
Collapse
Affiliation(s)
- Jack M Webster
- Department of Molecular Medicine, USF Byrd Institute, University of South Florida, Tampa, FL, United States
| | - April L Darling
- Department of Molecular Medicine, USF Byrd Institute, University of South Florida, Tampa, FL, United States
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Byrd Institute, University of South Florida, Tampa, FL, United States
| | - Laura J Blair
- Department of Molecular Medicine, USF Byrd Institute, University of South Florida, Tampa, FL, United States
| |
Collapse
|
14
|
Muraleva N, Kolosova N, Stefanova N. p38 MAPK–dependent alphaB-crystallin phosphorylation in Alzheimer's disease–like pathology in OXYS rats. Exp Gerontol 2019; 119:45-52. [DOI: 10.1016/j.exger.2019.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/24/2018] [Accepted: 01/15/2019] [Indexed: 11/15/2022]
|
15
|
Miller DJ, Fort PE. Heat Shock Proteins Regulatory Role in Neurodevelopment. Front Neurosci 2018; 12:821. [PMID: 30483047 PMCID: PMC6244093 DOI: 10.3389/fnins.2018.00821] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/22/2018] [Indexed: 01/20/2023] Open
Abstract
Heat shock proteins (Hsps) are a large family of molecular chaperones that are well-known for their roles in protein maturation, re-folding and degradation. While some Hsps are constitutively expressed in certain regions, others are rapidly upregulated in the presence of stressful stimuli. Numerous stressors, including hyperthermia and hypoxia, can induce the expression of Hsps, which, in turn, interact with client proteins and co-chaperones to regulate cell growth and survival. Such interactions must be tightly regulated, especially at critical points during embryonic and postnatal development. Hsps exhibit specific patterns of expression consistent with a spatio-temporally regulated role in neurodevelopment. There is also growing evidence that Hsps may promote or inhibit neurodevelopment through specific pathways regulating cell differentiation, neurite outgrowth, cell migration, or angiogenesis. This review will examine the regulatory role that these individual chaperones may play in neurodevelopment, and will focus specifically on the signaling pathways involved in the maturation of neuronal and glial cells as well as the underlying vascular network.
Collapse
Affiliation(s)
- David J Miller
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Patrice E Fort
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
16
|
Zhu Z, Reiser G. The small heat shock proteins, especially HspB4 and HspB5 are promising protectants in neurodegenerative diseases. Neurochem Int 2018; 115:69-79. [PMID: 29425965 DOI: 10.1016/j.neuint.2018.02.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/24/2018] [Accepted: 02/05/2018] [Indexed: 12/13/2022]
Abstract
Small heat shock proteins (sHsps) are a group of proteins with molecular mass between 12 and 43 kDa. Currently, 11 members of this family have been classified, namely HspB1 to HspB11. HspB1, HspB2, HspB5, HspB6, HspB7, and HspB8, which are expressed in brain have been observed to be related to the pathology of neurodegenerative diseases, including Parkinson's, Alzheimer's, Alexander's disease, multiple sclerosis, and human immunodeficiency virus-associated dementia. Specifically, sHsps interact with misfolding and damaging protein aggregates, like Glial fibrillary acidic protein in AxD, β-amyloid peptides aggregates in Alzheimer's disease, Superoxide dismutase 1 in Amyotrophic lateral sclerosis and cytosine-adenine-guanine/polyglutamine (CAG/PolyQ) in Huntington's disease, Spinocerebellar ataxia type 3, Spinal-bulbar muscular atrophy, to reduce the toxicity or increase the clearance of these protein aggregates. The degree of HspB4 expression in brain is still debated. For neuroprotective mechanisms, sHsps attenuate mitochondrial dysfunctions, reduce accumulation of misfolded proteins, block oxidative/nitrosative stress, and minimize neuronal apoptosis and neuroinflammation, which are molecular mechanisms commonly accepted to mirror the progression and development of neurodegenerative diseases. The increasing incidence of the neurodegenerative diseases enhanced search for effective approaches to rescue neural tissue from degeneration with minimal side effects. sHsps have been found to exert neuroprotective functions. HspB5 has been emphasized to reduce the paralysis in a mouse model of experimental autoimmune encephalomyelitis, providing a therapeutic basis for the disease. In this review, we discuss the current understanding of the properties and the mechanisms of protection orchestrated by sHsps in the nervous system, highlighting the promising therapeutic role of sHsps in neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhihui Zhu
- Institut für Inflammation und Neurodegeneration (Neurobiochemie), Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Leipziger Straße 44, 39120 Magdeburg, Germany; College of Medicine, Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Georg Reiser
- Institut für Inflammation und Neurodegeneration (Neurobiochemie), Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Leipziger Straße 44, 39120 Magdeburg, Germany.
| |
Collapse
|
17
|
Anders F, Liu A, Mann C, Teister J, Lauzi J, Thanos S, Grus FH, Pfeiffer N, Prokosch V. The Small Heat Shock Protein α-Crystallin B Shows Neuroprotective Properties in a Glaucoma Animal Model. Int J Mol Sci 2017; 18:E2418. [PMID: 29135941 PMCID: PMC5713386 DOI: 10.3390/ijms18112418] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/10/2017] [Accepted: 11/12/2017] [Indexed: 11/29/2022] Open
Abstract
Glaucoma is a neurodegenerative disease that leads to irreversible retinal ganglion cell (RGC) loss and is one of the main causes of blindness worldwide. The pathogenesis of glaucoma remains unclear, and novel approaches for neuroprotective treatments are urgently needed. Previous studies have revealed significant down-regulation of α-crystallin B as an initial reaction to elevated intraocular pressure (IOP), followed by a clear but delayed up-regulation, suggesting that this small heat-shock protein plays a pathophysiological role in the disease. This study analyzed the neuroprotective effect of α-crystallin B in an experimental animal model of glaucoma. Significant IOP elevation induced by episcleral vein cauterization resulted in a considerable impairment of the RGCs and the retinal nerve fiber layer. An intravitreal injection of α-crystallin B at the time of the IOP increase was able to rescue the RGCs, as measured in a functional photopic electroretinogram, retinal nerve fiber layer thickness, and RGC counts. Mass-spectrometry-based proteomics and antibody-microarray measurements indicated that a α-crystallin injection distinctly up-regulated all of the subclasses (α, β, and γ) of the crystallin protein family. The creation of an interactive protein network revealed clear correlations between individual proteins, which showed a regulatory shift resulting from the crystallin injection. The neuroprotective properties of α-crystallin B further demonstrate the potential importance of crystallin proteins in developing therapeutic options for glaucoma.
Collapse
Affiliation(s)
- Fabian Anders
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany.
| | - Aiwei Liu
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany.
| | - Carolina Mann
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany.
| | - Julia Teister
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany.
| | - Jasmin Lauzi
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany.
| | - Solon Thanos
- Department of Experimental Ophthalmology, School of Medicine, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany.
| | - Franz H Grus
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany.
| | - Norbert Pfeiffer
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany.
| | - Verena Prokosch
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany.
| |
Collapse
|
18
|
Roher AE, Kokjohn TA, Clarke SG, Sierks MR, Maarouf CL, Serrano GE, Sabbagh MS, Beach TG. APP/Aβ structural diversity and Alzheimer's disease pathogenesis. Neurochem Int 2017; 110:1-13. [PMID: 28811267 PMCID: PMC5688956 DOI: 10.1016/j.neuint.2017.08.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/25/2017] [Accepted: 08/11/2017] [Indexed: 02/01/2023]
Abstract
The amyloid cascade hypothesis of Alzheimer's disease (AD) proposes amyloid- β (Aβ) is a chief pathological element of dementia. AD therapies have targeted monomeric and oligomeric Aβ 1-40 and 1-42 peptides. However, alternative APP proteolytic processing produces a complex roster of Aβ species. In addition, Aβ peptides are subject to extensive posttranslational modification (PTM). We propose that amplified production of some APP/Aβ species, perhaps exacerbated by differential gene expression and reduced peptide degradation, creates a diverse spectrum of modified species which disrupt brain homeostasis and accelerate AD neurodegeneration. We surveyed the literature to catalog Aβ PTM including species with isoAsp at positions 7 and 23 which may phenocopy the Tottori and Iowa Aβ mutations that result in early onset AD. We speculate that accumulation of these alterations induce changes in secondary and tertiary structure of Aβ that favor increased toxicity, and seeding and propagation in sporadic AD. Additionally, amyloid-β peptides with a pyroglutamate modification at position 3 and oxidation of Met35 make up a substantial portion of sporadic AD amyloid deposits. The intrinsic physical properties of these species, including resistance to degradation, an enhanced aggregation rate, increased neurotoxicity, and association with behavioral deficits, suggest their emergence is linked to dementia. The generation of specific 3D-molecular conformations of Aβ impart unique biophysical properties and a capacity to seed the prion-like global transmission of amyloid through the brain. The accumulation of rogue Aβ ultimately contributes to the destruction of vascular walls, neurons and glial cells culminating in dementia. A systematic examination of Aβ PTM and the analysis of the toxicity that they induced may help create essential biomarkers to more precisely stage AD pathology, design countermeasures and gauge the impacts of interventions.
Collapse
Affiliation(s)
- Alex E Roher
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Division of Clinical Education, Midwestern University, Glendale, AZ 85308, USA.
| | - Tyler A Kokjohn
- Department of Microbiology, Midwestern University, Glendale, AZ 85308, USA
| | - Steven G Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, Los Angeles CA 90095-1569, USA
| | - Michael R Sierks
- Department of Chemical Engineering, Arizona State University, Tempe, AZ 85287-6106, USA
| | - Chera L Maarouf
- Laboratory of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Geidy E Serrano
- Laboratory of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Marwan S Sabbagh
- Alzheimer's and Memory Disorders Division, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Thomas G Beach
- Laboratory of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| |
Collapse
|
19
|
Maternal alterations in the proteome of the medial prefrontal cortex in rat. J Proteomics 2016; 153:65-77. [PMID: 27233742 DOI: 10.1016/j.jprot.2016.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/19/2016] [Accepted: 05/10/2016] [Indexed: 12/14/2022]
Abstract
Proteomic differences between rat dams and control mothers deprived of their pups immediately after delivery were investigated in the medial prefrontal cortex (mPFC). A 2-D DIGE minimal dye technique combined with LC-MS/MS identified 32 different proteins that showed significant changes in expression in the mPFC, of which, 25 were upregulated and 7 were downregulated in dams. The identity of one significantly increased protein, the small heat-shock protein alpha-crystallin B chain (Cryab), was confirmed via Western blot analysis. Alpha-crystallin B chain was distributed in scattered cells in the mPFC, as demonstrated by immunohistochemistry. Furthermore, it was found to be localized in parvalbumin-containing neurons using double labeling. The elevation of its mRNA level in rat dams was also demonstrated via RT-PCR. The functional classification of the altered proteins was conducted using the UniProt and Gene Ontology protein databases. The identified proteins predominantly participate in synaptic transport and plasticity, neuron development, oxidative stress and apoptosis, and cytoskeleton organization. A common regulator and target analysis of these proteins determined using the Elsevier Pathway Studio Platform suggests that protein level changes associated with pup nursing are driven by growth factors and cytokines, while the MAP kinase pathway was identified as a common target. A high proportion of the proteins that were found to be altered in the mPFC are associated with depression. BIOLOGICAL SIGNIFICANCE The behavior and emotional state of females change robustly when they become mothers. The brain, which governs these changes, may also undergo molecular alterations in mothers. As no proteomics approaches have been applied regarding maternal changes in the brain, we addressed this issue in the mPFC as this brain area is the uppermost cortical center of maternal control and the associated mood changes. The high number of protein-level alterations found between mothers taking care of their litter and those without pups indicates that pup nursing is associated with cortical protein-level changes. Alterations in proteins participating in synaptic transport, plasticity and neuron development suggest neuroplastic changes in the maternal brain. In turn, the relatively high number of altered proteins in the mPFC associated with depression suggests that the physiological effects of the protein-level alterations in the maternal mPFC could promote the incidence of postpartum depression. Cryab, a protein confirmed to be increased during maternal behaviors, was selectively found in parvalbumin cells, which, as fast-spiking interneurons, are associated with depression. The function of Cryab should be further investigated to establish whether it can be used to identify drug targets for future drug development.
Collapse
|
20
|
The chaperone αB-crystallin uses different interfaces to capture an amorphous and an amyloid client. Nat Struct Mol Biol 2015; 22:898-905. [PMID: 26458046 DOI: 10.1038/nsmb.3108] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 09/11/2015] [Indexed: 12/20/2022]
Abstract
Small heat-shock proteins, including αB-crystallin (αB), play an important part in protein homeostasis, because their ATP-independent chaperone activity inhibits uncontrolled protein aggregation. Mechanistic details of human αB, particularly in its client-bound state, have been elusive so far, owing to the high molecular weight and the heterogeneity of these complexes. Here we provide structural insights into this highly dynamic assembly and show, by using state-of-the-art NMR spectroscopy, that the αB complex is assembled from asymmetric building blocks. Interaction studies demonstrated that the fibril-forming Alzheimer's disease Aβ1-40 peptide preferentially binds to a hydrophobic edge of the central β-sandwich of αB. In contrast, the amorphously aggregating client lysozyme is captured by the partially disordered N-terminal domain of αB. We suggest that αB uses its inherent structural plasticity to expose distinct binding interfaces and thus interact with a wide range of structurally variable clients.
Collapse
|
21
|
Bakthisaran R, Akula KK, Tangirala R, Rao CM. Phosphorylation of αB-crystallin: Role in stress, aging and patho-physiological conditions. Biochim Biophys Acta Gen Subj 2015; 1860:167-82. [PMID: 26415747 DOI: 10.1016/j.bbagen.2015.09.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND αB-crystallin, once thought to be a lenticular protein, is ubiquitous and has critical roles in several cellular processes that are modulated by phosphorylation. Serine residues 19, 45 and 59 of αB-crystallin undergo phosphorylation. Phosphorylation of S45 is mediated by p44/42 MAP kinase, whereas S59 phosphorylation is mediated by MAPKAP kinase-2. Pathway involved in S19 phosphorylation is not known. SCOPE OF REVIEW The review highlights the role of phosphorylation in (i) oligomeric structure, stability and chaperone activity, (ii) cellular processes such as apoptosis, myogenic differentiation, cell cycle regulation and angiogenesis, and (iii) aging, stress, cardiomyopathy-causing αB-crystallin mutants, and in other diseases. MAJOR CONCLUSIONS Depending on the context and extent of phosphorylation, αB-crystallin seems to confer beneficial or deleterious effects. Phosphorylation alters structure, stability, size distribution and dynamics of the oligomeric assembly, thus modulating chaperone activity and various cellular processes. Phosphorylated αB-crystallin has a tendency to partition to the cytoskeleton and hence to the insoluble fraction. Low levels of phosphorylation appear to be protective, while hyperphosphorylation has negative implications. Mutations in αB-crystallin, such as R120G, Q151X and 464delCT, associated with inherited myofibrillar myopathy lead to hyperphosphorylation and intracellular inclusions. An ongoing study in our laboratory with phosphorylation-mimicking mutants indicates that phosphorylation of R120GαB-crystallin increases its propensity to aggregate. GENERAL SIGNIFICANCE Phosphorylation of αB-crystallin has dual role that manifests either beneficial or deleterious consequences depending on the extent of phosphorylation and interaction with cytoskeleton. Considering that disease-causing mutants of αB-crystallin are hyperphosphorylated, moderation of phosphorylation may be a useful strategy in disease management. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Raman Bakthisaran
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Kranthi Kiran Akula
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ramakrishna Tangirala
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ch Mohan Rao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India.
| |
Collapse
|
22
|
Anbarasu K, Sivakumar J. Multidimensional significance of crystallin protein-protein interactions and their implications in various human diseases. Biochim Biophys Acta Gen Subj 2015; 1860:222-33. [PMID: 26365509 DOI: 10.1016/j.bbagen.2015.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 08/28/2015] [Accepted: 09/08/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Crystallins are the important structural and functional proteins in the eye lens responsible for refractive index. Post-translational modifications (PTMs) and mutations are major causative factors that affect crystallin structural conformation and functional characteristics thus playing a vital role in the etiology of cataractogenesis. SCOPE OF REVIEW The significance of crystallin protein-protein interactions (PPIs) in the lens and non-lenticular tissues is summarized. MAJOR CONCLUSIONS Aberrancy of PPIs between crystallin, its associated protein and metal ions has been accomplished in various human diseases including cataract. A detailed account on multidimensional structural and functional significance of crystallin PPI in humans must be brought into limelight, in order to understand the biochemical and molecular basis augmenting the aberrancies of such interaction. In this scenario, the present review is focused to shed light on studies which will aid to expand our present understanding on disease pathogenesis related to loss of PPI thereby paving the way for putative future therapeutic targets to curb such diseases. GENERAL SIGNIFICANCE The interactions with α-crystallins always aid to protect their structural and functional characteristics. The up-regulation of αB-crystallin in the non-lenticular tissues always decodes as biomarker for various stress related disorders. For better understanding and treatment of various diseases, PPI studies provide overall outline about the structural and functional characteristics of the proteins. This information not only helps to find out the route of cataractogenesis but also aid to identify potential molecules to inhibit/prevent the further development of such complicated phenomenon. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Kumarasamy Anbarasu
- Department of Marine Biotechnology, Bharathidasan University, Tiruchirapalli 620024, Tamil Nadu, India.
| | - Jeyarajan Sivakumar
- Department of Marine Biotechnology, Bharathidasan University, Tiruchirapalli 620024, Tamil Nadu, India
| |
Collapse
|
23
|
Biswas A, Karmakar S, Chowdhury A, Das KP. Interaction of α-crystallin with some small molecules and its effect on its structure and function. Biochim Biophys Acta Gen Subj 2015; 1860:211-21. [PMID: 26073614 DOI: 10.1016/j.bbagen.2015.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/23/2015] [Accepted: 06/09/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND α-Crystallin acts like a molecular chaperone by interacting with its substrate proteins and thus prevents their aggregation. It also interacts with various kinds of small molecules that affect its structure and function. SCOPE OF REVIEW In this article we will present a review of work done with respect to the interaction of ATP, peptide generated from lens crystallin and other proteins and some bivalent metal ions with α-crystallin and discuss the role of these interactions on its structure and function and cataract formation. We will also discuss the interaction of some hydrophobic fluorescence probes and surface active agents with α-crystallin. MAJOR CONCLUSIONS Small molecule interaction controls the structure and function of α-crystallin. ATP and Zn+2 stabilize its structure and enhance chaperone function. Therefore the depletion of these small molecules can be detrimental to maintenance of lens transparency. However, the accumulation of small peptides due to protease activity in the lens can also be harmful as the interaction of these peptides with α-crystallin and other crystallin proteins in the lens promotes aggregation and loss of lens transparency. The use of hydrophobic probe has led to a wealth of information regarding the location of substrate binding site and nature of chaperone-substrate interaction. Interaction of surface active agents with α-crystallin has helped us to understand the structural stability and oligomeric dissociation in α-crystallin. GENERAL SIGNIFICANCE These interactions are very helpful in understanding the mechanistic details of the structural changes and chaperone function of α-crystallin. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- A Biswas
- Protein Chemistry Laboratory, Department of Chemistry, Bose Institute, 93/1 A.P.C. Road, Kolkata 700 009, India.
| | - S Karmakar
- Protein Chemistry Laboratory, Department of Chemistry, Bose Institute, 93/1 A.P.C. Road, Kolkata 700 009, India.
| | - A Chowdhury
- Protein Chemistry Laboratory, Department of Chemistry, Bose Institute, 93/1 A.P.C. Road, Kolkata 700 009, India.
| | - K P Das
- Protein Chemistry Laboratory, Department of Chemistry, Bose Institute, 93/1 A.P.C. Road, Kolkata 700 009, India.
| |
Collapse
|
24
|
Burmann BM, Hiller S. Chaperones and chaperone-substrate complexes: Dynamic playgrounds for NMR spectroscopists. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 86-87:41-64. [PMID: 25919198 DOI: 10.1016/j.pnmrs.2015.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 05/20/2023]
Abstract
The majority of proteins depend on a well-defined three-dimensional structure to obtain their functionality. In the cellular environment, the process of protein folding is guided by molecular chaperones to avoid misfolding, aggregation, and the generation of toxic species. To this end, living cells contain complex networks of molecular chaperones, which interact with substrate polypeptides by a multitude of different functionalities: transport them towards a target location, help them fold, unfold misfolded species, resolve aggregates, or deliver them towards a proteolysis machinery. Despite the availability of high-resolution crystal structures of many important chaperones in their substrate-free apo forms, structural information about how substrates are bound by chaperones and how they are protected from misfolding and aggregation is very sparse. This lack of information arises from the highly dynamic nature of chaperone-substrate complexes, which so far has largely hindered their crystallization. This highly dynamic nature makes chaperone-substrate complexes good targets for NMR spectroscopy. Here, we review the results achieved by NMR spectroscopy to understand chaperone function in general and details of chaperone-substrate interactions in particular. We assess the information content and applicability of different NMR techniques for the characterization of chaperones and chaperone-substrate complexes. Finally, we highlight three recent studies, which have provided structural descriptions of chaperone-substrate complexes at atomic resolution.
Collapse
Affiliation(s)
- Björn M Burmann
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| |
Collapse
|
25
|
Bakthisaran R, Tangirala R, Rao CM. Small heat shock proteins: Role in cellular functions and pathology. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:291-319. [PMID: 25556000 DOI: 10.1016/j.bbapap.2014.12.019] [Citation(s) in RCA: 312] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 01/18/2023]
Abstract
Small heat shock proteins (sHsps) are conserved across species and are important in stress tolerance. Many sHsps exhibit chaperone-like activity in preventing aggregation of target proteins, keeping them in a folding-competent state and refolding them by themselves or in concert with other ATP-dependent chaperones. Mutations in human sHsps result in myopathies, neuropathies and cataract. Their expression is modulated in diseases such as Alzheimer's, Parkinson's and cancer. Their ability to bind Cu2+, and suppress generation of reactive oxygen species (ROS) may have implications in Cu2+-homeostasis and neurodegenerative diseases. Circulating αB-crystallin and Hsp27 in the plasma may exhibit immunomodulatory and anti-inflammatory functions. αB-crystallin and Hsp20 exhitbit anti-platelet aggregation: these beneficial effects indicate their use as potential therapeutic agents. sHsps have roles in differentiation, proteasomal degradation, autophagy and development. sHsps exhibit a robust anti-apoptotic property, involving several stages of mitochondrial-mediated, extrinsic apoptotic as well as pro-survival pathways. Dynamic N- and C-termini and oligomeric assemblies of αB-crystallin and Hsp27 are important factors for their functions. We propose a "dynamic partitioning hypothesis" for the promiscuous interactions and pleotropic functions exhibited by sHsps. Stress tolerance and anti-apoptotic properties of sHsps have both beneficial and deleterious consequences in human health and diseases. Conditional and targeted modulation of their expression and/or activity could be used as strategies in treating several human disorders. The review attempts to provide a critical overview of sHsps and their divergent roles in cellular processes particularly in the context of human health and disease.
Collapse
Affiliation(s)
- Raman Bakthisaran
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ramakrishna Tangirala
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ch Mohan Rao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India.
| |
Collapse
|
26
|
Interaction of amyloid inhibitor proteins with amyloid beta peptides: insight from molecular dynamics simulations. PLoS One 2014; 9:e113041. [PMID: 25422897 PMCID: PMC4244084 DOI: 10.1371/journal.pone.0113041] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/18/2014] [Indexed: 11/22/2022] Open
Abstract
Knowledge of the detailed mechanism by which proteins such as human αB- crystallin and human lysozyme inhibit amyloid beta (Aβ) peptide aggregation is crucial for designing treatment for Alzheimer's disease. Thus, unconstrained, atomistic molecular dynamics simulations in explicit solvent have been performed to characterize the Aβ17–42 assembly in presence of the αB-crystallin core domain and of lysozyme. Simulations reveal that both inhibitor proteins compete with inter-peptide interaction by binding to the peptides during the early stage of aggregation, which is consistent with their inhibitory action reported in experiments. However, the Aβ binding dynamics appear different for each inhibitor. The binding between crystallin and the peptide monomer, dominated by electrostatics, is relatively weak and transient due to the heterogeneous amino acid distribution of the inhibitor surface. The crystallin-bound Aβ oligomers are relatively long-lived, as they form more extensive contact surface with the inhibitor protein. In contrast, a high local density of arginines from lysozyme allows strong binding with Aβ peptide monomers, resulting in stable complexes. Our findings not only illustrate, in atomic detail, how the amyloid inhibitory mechanism of human αB-crystallin, a natural chaperone, is different from that of human lysozyme, but also may aid de novo design of amyloid inhibitors.
Collapse
|
27
|
Assarsson A, Hellstrand E, Cabaleiro-Lago C, Linse S. Charge dependent retardation of amyloid β aggregation by hydrophilic proteins. ACS Chem Neurosci 2014; 5:266-74. [PMID: 24475785 DOI: 10.1021/cn400124r] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aggregation of amyloid β peptides (Aβ) into amyloid fibrils is implicated in the pathology of Alzheimer's disease. In light of the increasing number of proteins reported to retard Aβ fibril formation, we investigated the influence of small hydrophilic model proteins of different charge on Aβ aggregation kinetics and their interaction with Aβ. We followed the amyloid fibril formation of Aβ40 and Aβ42 using thioflavin T fluorescence in the presence of six charge variants of calbindin D9k and single-chain monellin. The formation of fibrils was verified with transmission electron microscopy. We observe retardation of the aggregation process from proteins with net charge +8, +2, -2, and -4, whereas no effect is observed for proteins with net charge of -6 and -8. The single-chain monellin mutant with the highest net charge, scMN+8, has the largest retarding effect on the amyloid fibril formation process, which is noticeably delayed at as low as a 0.01:1 scMN+8 to Aβ40 molar ratio. scMN+8 is also the mutant with the fastest association to Aβ40 as detected by surface plasmon resonance, although all retarding variants of calbindin D9k and single-chain monellin bind to Aβ40.
Collapse
Affiliation(s)
- Anna Assarsson
- Divisions
of †Biochemistry and
Structural Biology and ‡Biophysical Chemistry, Lund University, P.O. Box 124, SE 221 00 Lund, Sweden
| | - Erik Hellstrand
- Divisions
of †Biochemistry and
Structural Biology and ‡Biophysical Chemistry, Lund University, P.O. Box 124, SE 221 00 Lund, Sweden
| | - Celia Cabaleiro-Lago
- Divisions
of †Biochemistry and
Structural Biology and ‡Biophysical Chemistry, Lund University, P.O. Box 124, SE 221 00 Lund, Sweden
| | - Sara Linse
- Divisions
of †Biochemistry and
Structural Biology and ‡Biophysical Chemistry, Lund University, P.O. Box 124, SE 221 00 Lund, Sweden
| |
Collapse
|
28
|
The structured core domain of αB-crystallin can prevent amyloid fibrillation and associated toxicity. Proc Natl Acad Sci U S A 2014; 111:E1562-70. [PMID: 24711386 DOI: 10.1073/pnas.1322673111] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mammalian small heat-shock proteins (sHSPs) are molecular chaperones that form polydisperse and dynamic complexes with target proteins, serving as a first line of defense in preventing their aggregation into either amorphous deposits or amyloid fibrils. Their apparently broad target specificity makes sHSPs attractive for investigating ways to tackle disorders of protein aggregation. The two most abundant sHSPs in human tissue are αB-crystallin (ABC) and HSP27; here we present high-resolution structures of their core domains (cABC, cHSP27), each in complex with a segment of their respective C-terminal regions. We find that both truncated proteins dimerize, and although this interface is labile in the case of cABC, in cHSP27 the dimer can be cross-linked by an intermonomer disulfide linkage. Using cHSP27 as a template, we have designed an equivalently locked cABC to enable us to investigate the functional role played by oligomerization, disordered N and C termini, subunit exchange, and variable dimer interfaces in ABC. We have assayed the ability of the different forms of ABC to prevent protein aggregation in vitro. Remarkably, we find that cABC has chaperone activity comparable to that of the full-length protein, even when monomer dissociation is restricted through disulfide linkage. Furthermore, cABC is a potent inhibitor of amyloid fibril formation and, by slowing the rate of its aggregation, effectively reduces the toxicity of amyloid-β peptide to cells. Overall we present a small chaperone unit together with its atomic coordinates that potentially enables the rational design of more effective chaperones and amyloid inhibitors.
Collapse
|
29
|
Non-invasive infra-red therapy (1072 nm) reduces β-amyloid protein levels in the brain of an Alzheimer's disease mouse model, TASTPM. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 123:13-22. [PMID: 23603448 DOI: 10.1016/j.jphotobiol.2013.02.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/07/2013] [Accepted: 02/25/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent neurodegenerative disease and common cause of dementias in the Western world. This study investigated the expression profile of heat-shock proteins (HSPs) involved in maintaining healthy neurons in the TASTPM AD mouse model, and whether chronic treatment with 1072 nm infra-red (IR1072) modified the expression profiles of HSPs and amyloidopathy in female TASTPM mice. METHODOLOGY/PRINCIPAL FINDINGS Quantitative immunoblotting and immunohistochemistry were used to examine the expression of proteins such as HSPs, phosphorylated tau (tau-P), amyloid precursor protein (APP), β-amyloid1-40 (Aβ), and Aβ1-42. TASTPM mice at 3, 7 and 12 months were investigated as well as female TASTPM mice which had undergone a chronic, 5 month, IR1072 treatment. During the first 12 months of age, a critical period of AD progression, reduced HSP40 and HSP105 were observed. αB-crystallin, Aβ1-42 and tau-P increased over this period, particularly between 3 and 7 months. Chronic IR1072 treatment of female TASTPM mice elicited significant increases in HSP60, 70 and 105 and phosphorylated-HSP27 (P-HSP27) (50-139%), together with a concomitant profound decrease in αB-crystallin, APP, tau-P, Aβ1-40 and Aβ1-42 (43-81%) protein levels at 7 months of age. Furthermore, IR1072 treatment elicited a modest, but significant, reduction in Aβ1-42 plaques in the cerebral cortex. CONCLUSIONS/SIGNIFICANT FINDINGS IR1072 treatment provides a novel non-invasive and safe way to upregulate a panel of stress response proteins in the brain, known to both reduce protein aggregation and neuronal apoptosis. This approach recently entered clinical trials for AD in the USA, and may provide a novel disease modifying therapy for a range of neuropathologies.
Collapse
|
30
|
Study of αB-crystallin expression in Gerbil BCAO model of transient global cerebral ischemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:945071. [PMID: 23097682 PMCID: PMC3477566 DOI: 10.1155/2012/945071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 12/29/2022]
Abstract
αB-crystallin (α-BC), the fifth member of mammalian small heat shock protein family (HspB5), is known to be expressed in many tissues and has a distinctive interaction with cytoskeleton components. In this study, we investigated that α-BC and microtubule-associated protein-2 (MAP-2), a neuron-specific cytoskeleton protein, were coexpressed in neurons of Gerbil cortex, while in subcortex Gerbil brains, we found that several MAP-2-negative glia cells also express α-BC. When subjected to 10-minute bilateral carotid artery occlusion (BCAO), an increment was observed in α-BC-positive cells after 6-hour reperfusion and peaked at around 7 days after. In the same circumstances, the number and the staining concentration of MAP-2 positive neurons significantly decreased immediately after 6-hour reperfusion, followed by a slow recovery, which is consistent with the increase of α-BC. Our results suggested that α-BC plays an important role in brain ischemia, providing the early protection of neurons by giving intracellular supports through the maintenance of cytoskeleton and extracellular supports through the protection of glia cells.
Collapse
|
31
|
Kannan R, Sreekumar PG, Hinton DR. Novel roles for α-crystallins in retinal function and disease. Prog Retin Eye Res 2012; 31:576-604. [PMID: 22721717 DOI: 10.1016/j.preteyeres.2012.06.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 05/31/2012] [Accepted: 06/04/2012] [Indexed: 01/18/2023]
Abstract
α-Crystallins are key members of the superfamily of small heat shock proteins that have been studied in detail in the ocular lens. Recently, novel functions for α-crystallins have been identified in the retina and in the retinal pigmented epithelium (RPE). αB-Crystallin has been localized to multiple compartments and organelles including mitochondria, golgi apparatus, endoplasmic reticulum and nucleus. α-Crystallins are regulated by oxidative and endoplasmic reticulum stress, and inhibit apoptosis-induced cell death. α-Crystallins interact with a large number of proteins that include other crystallins, and apoptotic, cytoskeletal, inflammatory, signaling, angiogenic, and growth factor molecules. Studies with RPE from αB-crystallin deficient mice have shown that αB-crystallin supports retinal and choroidal angiogenesis through its interaction with vascular endothelial growth factor. αB-Crystallin has also been shown to have novel functions in the extracellular space. In RPE, αB-crystallin is released from the apical surface in exosomes where it accumulates in the interphotoreceptor matrix and may function to protect neighboring cells. In other systems administration of exogenous recombinant αB-crystallin has been shown to be anti-inflammatory. Another newly described function of αB-crystallin is its ability to inhibit β-amyloid fibril formation. α-Crystallin minichaperone peptides have been identified that elicit anti-apoptotic function in addition to being efficient chaperones. Generation of liposomal particles and other modes of nanoencapsulation of these minipeptides could offer great therapeutic advantage in ocular delivery for a wide variety of retinal degenerative, inflammatory and vascular diseases including age-related macular degeneration and diabetic retinopathy.
Collapse
Affiliation(s)
- Ram Kannan
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, CA 90033, United States
| | | | | |
Collapse
|
32
|
Phosphorylation-dependent subcellular localization of the small heat shock proteins HspB1/Hsp25 and HspB5/αB-crystallin in cultured hippocampal neurons. Histochem Cell Biol 2012; 138:407-18. [DOI: 10.1007/s00418-012-0964-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2012] [Indexed: 12/26/2022]
|
33
|
Ryan TM, Friedhuber A, Lind M, Howlett GJ, Masters C, Roberts BR. Small amphipathic molecules modulate secondary structure and amyloid fibril-forming kinetics of Alzheimer disease peptide Aβ(1-42). J Biol Chem 2012; 287:16947-54. [PMID: 22461629 DOI: 10.1074/jbc.m111.321778] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Amyloid fibril formation is associated with a number of debilitating systemic and neurodegenerative diseases. One of the most prominent is Alzheimer disease in which aggregation and deposition of the Aβ peptide occur. Aβ is widely considered to mediate the extensive neuronal loss observed in this disease through the formation of soluble oligomeric species, with the final fibrillar end product of the aggregation process being relatively inert. Factors that influence the aggregation of these amyloid-forming proteins are therefore very important. We have screened a library of 96 amphipathic molecules for effects on Aβ(1-42) aggregation and self-association. We find, using thioflavin T fluorescence and electron microscopy assays, that 30 of the molecules inhibit the aggregation process, whereas 36 activate fibril formation. Several activators and inhibitors were subjected to further analysis using analytical ultracentrifugation and circular dichroism. Activators typically display a 1:10 peptide:detergent stoichiometry for maximal activation, whereas the inhibitors are effective at a 1:1 stoichiometry. Analytical ultracentrifugation and circular dichroism experiments show that activators promote a mixture of unfolded and β-sheet structures and rapidly form large aggregates, whereas inhibitors induce α-helical structures that form stable dimeric/trimeric oligomers. The results suggest that Aβ(1-42) contains at least one small molecule binding site, which modulates the secondary structure and aggregation processes. Further studies of the binding of these compounds to Aβ may provide insight for developing therapeutic strategies aimed at stabilizing Aβ in a favorable conformation.
Collapse
Affiliation(s)
- Timothy M Ryan
- Mental Health Research Institute, the University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
34
|
Shammas SL, Waudby CA, Wang S, Buell AK, Knowles TPJ, Ecroyd H, Welland ME, Carver JA, Dobson CM, Meehan S. Binding of the molecular chaperone αB-crystallin to Aβ amyloid fibrils inhibits fibril elongation. Biophys J 2012; 101:1681-9. [PMID: 21961594 DOI: 10.1016/j.bpj.2011.07.056] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 07/20/2011] [Accepted: 07/25/2011] [Indexed: 11/24/2022] Open
Abstract
The molecular chaperone αB-crystallin is a small heat-shock protein that is upregulated in response to a multitude of stress stimuli, and is found colocalized with Aβ amyloid fibrils in the extracellular plaques that are characteristic of Alzheimer's disease. We investigated whether this archetypical small heat-shock protein has the ability to interact with Aβ fibrils in vitro. We find that αB-crystallin binds to wild-type Aβ(42) fibrils with micromolar affinity, and also binds to fibrils formed from the E22G Arctic mutation of Aβ(42). Immunoelectron microscopy confirms that binding occurs along the entire length and ends of the fibrils. Investigations into the effect of αB-crystallin on the seeded growth of Aβ fibrils, both in solution and on the surface of a quartz crystal microbalance biosensor, reveal that the binding of αB-crystallin to seed fibrils strongly inhibits their elongation. Because the lag phase in sigmoidal fibril assembly kinetics is dominated by elongation and fragmentation rates, the chaperone mechanism identified here represents a highly effective means to inhibit fibril proliferation. Together with previous observations of αB-crystallin interaction with α-synuclein and insulin fibrils, the results suggest that this mechanism is a generic means of providing molecular chaperone protection against amyloid fibril formation.
Collapse
Affiliation(s)
- Sarah L Shammas
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mainz A, Bardiaux B, Kuppler F, Multhaup G, Felli IC, Pierattelli R, Reif B. Structural and mechanistic implications of metal binding in the small heat-shock protein αB-crystallin. J Biol Chem 2012; 287:1128-38. [PMID: 22090033 PMCID: PMC3256888 DOI: 10.1074/jbc.m111.309047] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/08/2011] [Indexed: 12/20/2022] Open
Abstract
The human small heat-shock protein αB-crystallin (αB) rescues misfolded proteins from irreversible aggregation during cellular stress. Binding of Cu(II) was shown to modulate the oligomeric architecture and the chaperone activity of αB. However, the mechanistic basis of this stimulation is so far not understood. We provide here first structural insights into this Cu(II)-mediated modulation of chaperone function using NMR spectroscopy and other biophysical approaches. We show that the α-crystallin domain is the elementary Cu(II)-binding unit specifically coordinating one Cu(II) ion with picomolar binding affinity. Putative Cu(II) ligands are His(83), His(104), His(111), and Asp(109) at the dimer interface. These loop residues are conserved among different metazoans, but also for human αA-crystallin, HSP20, and HSP27. The involvement of Asp(109) has direct implications for dimer stability, because this residue forms a salt bridge with the disease-related Arg(120) of the neighboring monomer. Furthermore, we observe structural reorganization of strands β2-β3 triggered by Cu(II) binding. This N-terminal region is known to mediate both the intermolecular arrangement in αB oligomers and the binding of client proteins. In the presence of Cu(II), the size and the heterogeneity of αB multimers are increased. At the same time, Cu(II) increases the chaperone activity of αB toward the lens-specific protein β(L)-crystallin. We therefore suggest that Cu(II) binding unblocks potential client binding sites and alters quaternary dynamics of both the dimeric building block as well as the higher order assemblies of αB.
Collapse
Affiliation(s)
- Andi Mainz
- From the Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, Berlin-Buch 13125, Germany
- Helmholtz-Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstrasse 1, Neuherberg 85764, Germany
| | - Benjamin Bardiaux
- From the Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, Berlin-Buch 13125, Germany
| | - Frank Kuppler
- the Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, Berlin 14195, Germany
| | - Gerd Multhaup
- the Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, Berlin 14195, Germany
| | - Isabella C. Felli
- the Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, Sesto Fiorentino 50019, Italy, and
| | - Roberta Pierattelli
- the Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, Sesto Fiorentino 50019, Italy, and
| | - Bernd Reif
- From the Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, Berlin-Buch 13125, Germany
- Helmholtz-Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstrasse 1, Neuherberg 85764, Germany
- the Center for Integrated Protein Science Munich, Department of Chemie, Technische Universität München, Lichtenbergstrasse 4, Garching 85747, Germany
| |
Collapse
|
36
|
Hilton GR, Lioe H, Stengel F, Baldwin AJ, Benesch JLP. Small heat-shock proteins: paramedics of the cell. Top Curr Chem (Cham) 2012; 328:69-98. [PMID: 22576357 DOI: 10.1007/128_2012_324] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The small heat-shock proteins (sHSPs) comprise a family of molecular chaperones which are widespread but poorly understood. Despite considerable effort, comparatively few high-resolution structures have been determined for the sHSPs, a likely consequence of their tendency to populate ensembles of inter-converting conformational and oligomeric states at equilibrium. This dynamic structure appears to underpin the sHSPs' ability to bind and sequester target proteins rapidly, and renders them the first line of defence against protein aggregation during disease and cellular stress. Here we describe recent studies on the sHSPs, with a particular focus on those which have provided insight into the structure and dynamics of these proteins. The combined literature reveals a picture of a remarkable family of molecular chaperones whose thermodynamic and kinetic properties are exquisitely balanced to allow functional regulation by subtle changes in cellular conditions.
Collapse
|
37
|
Dasari M, Espargaro A, Sabate R, Lopez del Amo JM, Fink U, Grelle G, Bieschke J, Ventura S, Reif B. Bacterial Inclusion Bodies of Alzheimer's Disease β-Amyloid Peptides Can Be Employed To Study Native-Like Aggregation Intermediate States. Chembiochem 2011; 12:407-23. [DOI: 10.1002/cbic.201000602] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Indexed: 01/22/2023]
|
38
|
Ninkovic J, Pinto L, Petricca S, Lepier A, Sun J, Rieger MA, Schroeder T, Cvekl A, Favor J, Götz M. The transcription factor Pax6 regulates survival of dopaminergic olfactory bulb neurons via crystallin αA. Neuron 2011; 68:682-94. [PMID: 21092858 DOI: 10.1016/j.neuron.2010.09.030] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2010] [Indexed: 10/18/2022]
Abstract
Most neurons in the adult mammalian brain survive for the entire life of an individual. However, it is not known which transcriptional pathways regulate this survival in a healthy brain. Here, we identify a pathway regulating neuronal survival in a highly subtype-specific manner. We show that the transcription factor Pax6 expressed in dopaminergic neurons of the olfactory bulb regulates the survival of these neurons by directly controlling the expression of crystallin αA (CryαA), which blocks apoptosis by inhibition of procaspase-3 activation. Re-expression of CryαA fully rescues survival of Pax6-deficient dopaminergic interneurons in vivo and knockdown of CryαA by shRNA in wild-type mice reduces the number of dopaminergic OB interneurons. Strikingly, Pax6 utilizes different DNA-binding domains for its well-known role in fate specification and this role of regulating the survival of specific neuronal subtypes in the mature, healthy brain.
Collapse
Affiliation(s)
- Jovica Ninkovic
- Helmholtz Zentrum München, Institute of Stem Cell Research, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Waudby CA, Knowles TPJ, Devlin GL, Skepper JN, Ecroyd H, Carver JA, Welland ME, Christodoulou J, Dobson CM, Meehan S. The interaction of alphaB-crystallin with mature alpha-synuclein amyloid fibrils inhibits their elongation. Biophys J 2010; 98:843-51. [PMID: 20197038 PMCID: PMC2830463 DOI: 10.1016/j.bpj.2009.10.056] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 09/30/2009] [Accepted: 10/01/2009] [Indexed: 12/22/2022] Open
Abstract
αB-Crystallin is a small heat-shock protein (sHsp) that is colocalized with α-synuclein (αSyn) in Lewy bodies—the pathological hallmarks of Parkinson's disease—and is an inhibitor of αSyn amyloid fibril formation in an ATP-independent manner in vitro. We have investigated the mechanism underlying the inhibitory action of sHsps, and here we establish, by means of a variety of biophysical techniques including immunogold labeling and nuclear magnetic resonance spectroscopy, that αB-crystallin interacts with αSyn, binding along the length of mature amyloid fibrils. By measurement of seeded fibril elongation kinetics, both in solution and on a surface using a quartz crystal microbalance, this binding is shown to strongly inhibit further growth of the fibrils. The binding is also demonstrated to shift the monomer-fibril equilibrium in favor of dissociation. We believe that this mechanism, by which a sHsp interacts with mature amyloid fibrils, could represent an additional and potentially generic means by which at least some chaperones protect against amyloid aggregation and limit the onset of misfolding diseases.
Collapse
|
40
|
Jin H, Randazzo J, Zhang P, Kador PF. Multifunctional antioxidants for the treatment of age-related diseases. J Med Chem 2010; 53:1117-27. [PMID: 20078105 PMCID: PMC2826224 DOI: 10.1021/jm901381j] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Analogues of N,N-dimethyl-4-(pyrimidin-2-yl)piperazine-1-sulfonamide possessing a free radical scavenger group (FRS), chelating groups (CHL), or both (FRS + CHL) have been synthesized. Electrospray ionization mass spectrometry studies indicate that select members of this series bind ions in the relative order of Cu(1+) = Cu(2+) > Fe(2+) = Fe(3+) > Zn(2+) with no binding of Ca(2+) or Mg(2+) observed. In vitro evaluation of these compounds in human lens epithelial, human retinal pigmented epithelial, and human hippocampal astrocyte cell lines indicates that all analogues possessing the FRS group as well as the water-soluble vitamin E analogue 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid protect these cells against decreased cell viability and glutathione levels induced by hydrogen peroxide. In addition, those compounds possessing CHL groups also protected these cells against hydroxyl radicals generated by the Fenton reaction. These compounds are good candidates for the preventive treatment of cataract, age-related macular degeneration (AMD), and Alzheimer's dementia (AD).
Collapse
Affiliation(s)
- Hongxia Jin
- College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198
| | - James Randazzo
- College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198
| | - Peng Zhang
- College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198
| | - Peter F. Kador
- College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
41
|
Mainz A, Jehle S, van Rossum BJ, Oschkinat H, Reif B. Large Protein Complexes with Extreme Rotational Correlation Times Investigated in Solution by Magic-Angle-Spinning NMR Spectroscopy. J Am Chem Soc 2009; 131:15968-9. [DOI: 10.1021/ja904733v] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andi Mainz
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Roessle-Strasse 10, 13125 Berlin, Germany, and Charité Universitätsmedizin, 10115 Berlin, Germany
| | - Stefan Jehle
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Roessle-Strasse 10, 13125 Berlin, Germany, and Charité Universitätsmedizin, 10115 Berlin, Germany
| | - Barth J. van Rossum
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Roessle-Strasse 10, 13125 Berlin, Germany, and Charité Universitätsmedizin, 10115 Berlin, Germany
| | - Hartmut Oschkinat
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Roessle-Strasse 10, 13125 Berlin, Germany, and Charité Universitätsmedizin, 10115 Berlin, Germany
| | - Bernd Reif
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Roessle-Strasse 10, 13125 Berlin, Germany, and Charité Universitätsmedizin, 10115 Berlin, Germany
| |
Collapse
|
42
|
Graw J. Genetics of crystallins: Cataract and beyond. Exp Eye Res 2009; 88:173-89. [DOI: 10.1016/j.exer.2008.10.011] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 10/10/2008] [Accepted: 10/14/2008] [Indexed: 01/10/2023]
|
43
|
Interactive sequences in the molecular chaperone, human alphaB crystallin modulate the fibrillation of amyloidogenic proteins. Int J Biochem Cell Biol 2007; 40:954-67. [PMID: 18162431 DOI: 10.1016/j.biocel.2007.10.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 10/18/2007] [Accepted: 10/26/2007] [Indexed: 02/06/2023]
Abstract
Multiple interactive domains are involved in the activity of the stress protein, alphaB crystallin that protects against the unfolding, aggregation, and toxicity of amyloidogenic proteins. Six peptides corresponding to the interactive sequences 41STSLSPFYLRPPSFLRAP58, 73DRFSVNLDVKHFS85, 101HGKHEERQDE110, 113FISREFHR120, 131LTITSSLSSDGV142, and 156ERTIPITRE164 in human alphaB crystallin were synthesized and evaluated in Thioflavin T fluorescence assays for their effects on the modulation of fibrillation of four disease-related amyloidogenic proteins: amyloid-beta, alpha-synuclein, transthyretin, and beta2-microglobulin. The 73DRFSVNLDVKHFS85 and 101HGKHEERQDE110 peptides in the conserved alpha crystallin core domain of alphaB crystallin were the most effective fibril inhibitors. 73DRFSVNLDVKHFS85 completely inhibited alpha-synuclein fibrillation and reduced the fibrillation of amyloid-beta, transthyretin, and beta2-microglobulin by >50%. 101HGKHEERQDE110 completely inhibited amyloid-beta fibrillation and reduced the fibrillation of alpha-synuclein, transthyretin, and beta2-microglobulin by >50%. The peptides FSVN, NLDV, HGKH, and HEER, which are synthetic fragments of 73DRFSVNLDVKHFS85 and 101HGKHEERQDE110, inhibited fibrillation of all four amyloidogenic proteins by >75%. In contrast, the peptides FISREFHR, ERTIPITRE, DRFS, KHFS, and EERQ were the strongest promoters of fibrillation. Molecular modeling of the interactions between transthyretin and beta2-microglobulin and the synthetic bioactive peptides determined that residues Phe-75, Ser-76, Val-77, Asn-78, Leu-79, and Asp-80 in 73DRFSVNLDVKHFS85 and residues His-101, Lys-103, His-104, Glu-105, and Arg-107 in 101HGKHEERQDE110 interact with exposed residues in the beta strands, F and D of transthyretin and beta2-microglobulin, respectively, to modulate fibrillation. This is the first characterization of specific bioactive peptides synthesized on the basis of interactive domains in the small heat shock protein, alphaB crystallin that protect against the fibrillation of amyloidogenic proteins.
Collapse
|
44
|
Coi A, Bianucci AM, Bonomi F, Rasmussen P, Mura GM, Ganadu ML. Structural perturbation of alphaB-crystallin by zinc and temperature related to its chaperone-like activity. Int J Biol Macromol 2007; 42:229-34. [PMID: 18048095 DOI: 10.1016/j.ijbiomac.2007.10.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 09/14/2007] [Accepted: 10/12/2007] [Indexed: 11/18/2022]
Abstract
alphaB-crystallin is a small heat shock protein that shows chaperone-like activity, as it protects the aggregation of denatured proteins. In this work, the possible relationships between structural characteristics and the biological activity of alphaB-crystallin were investigated on the native protein and on the protein undergoing the separate effects of metal ligation and temperature. The chaperone-like activity of alphaB-crystallin increased in the presence of zinc and when temperature was increased. By using fluorescent probes to monitor hydrophobic surfaces on alphaB-crystallin, it was found that exposed hydrophobic patches on the protein surface increased significantly both in the presence of zinc and when the temperature was raised from 25 to 37 degrees C. The zinc-induced increased exposure of lipophilic residues is in agreement with theoretical calculations performed on 3D-models of monomeric alphaB-crystallin, and may be significant to its increased biological activity.
Collapse
Affiliation(s)
- Alessio Coi
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| | | | | | | | | | | |
Collapse
|
45
|
Mulligan-Tuttle A, Heikkila JJ. Expression of the small heat shock protein gene, hsp30, in Rana catesbeiana fibroblasts. Comp Biochem Physiol A Mol Integr Physiol 2007; 148:308-16. [PMID: 17540592 DOI: 10.1016/j.cbpa.2007.04.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 04/25/2007] [Accepted: 04/25/2007] [Indexed: 11/29/2022]
Abstract
In the present study, we examined the expression of the Rana catesbeiana small heat shock protein gene, hsp30, in an FT fibroblast cell line. Northern and western blot analyses revealed that hsp30 mRNA or HSP30 protein was not present constitutively but was strongly induced at a heat shock temperature of 35 degrees C. However, treatment of FT cells with sodium arsenite at concentrations that induced hsp gene expression in other amphibian systems caused cell death. Non-lethal concentrations of sodium arsenite (10 microM) induced only minimal accumulation of hsp30 mRNA or protein after 12 h. Immunocytochemical analyses employing laser scanning confocal microscopy detected the presence of heat-inducible HSP30, in a granular or punctate pattern. HSP30 was enriched in the nucleus with more diffuse localization in the cytoplasm. The nuclear localization of HSP30 was more prominent with continuous heat shock. These heat treatments did not alter FT cell shape or disrupt actin cytoskeletal organization. Also, HSP30 did not co-localize with the actin cytoskeleton.
Collapse
|