1
|
Lu Y, Walji T, Ravaux B, Pandey P, Yang C, Li B, Luvsanjav D, Lam KH, Zhang R, Luo Z, Zhou C, Habela CW, Snapper SB, Li R, Goldhamer DJ, Schmidtke DW, Pan D, Svitkina TM, Chen EH. Spatiotemporal coordination of actin regulators generates invasive protrusions in cell-cell fusion. Nat Cell Biol 2024:10.1038/s41556-024-01541-5. [PMID: 39487253 DOI: 10.1038/s41556-024-01541-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/11/2024] [Indexed: 11/04/2024]
Abstract
Invasive membrane protrusions play a central role in a variety of cellular processes. Unlike filopodia, invasive protrusions are mechanically stiff and propelled by branched actin polymerization. However, how branched actin filaments are organized to create finger-like invasive protrusions is unclear. Here, by examining the mammalian fusogenic synapse, where invasive protrusions are generated to promote cell membrane juxtaposition and fusion, we have uncovered the mechanism underlying invasive protrusion formation. We show that two nucleation-promoting factors for the Arp2/3 complex, WAVE and N-WASP, exhibit different localization patterns in the protrusions. Whereas WAVE is closely associated with the plasma membrane at the leading edge of the protrusive structures, N-WASP is enriched with WIP along the actin bundles in the shafts of the protrusions. During protrusion initiation and growth, the Arp2/3 complex nucleates branched actin filaments to generate low-density actin clouds in which the large GTPase dynamin organizes the new branched actin filaments into bundles, followed by actin-bundle stabilization by WIP, the latter functioning as an actin-bundling protein. Disruption of any of these components results in defective protrusions and failed myoblast fusion in cultured cells and mouse embryos. Together, our study has revealed the intricate spatiotemporal coordination between two nucleation-promoting factors and two actin-bundling proteins in building invasive protrusions at the mammalian fusogenic synapse and has general implications in understanding invasive protrusion formation in cellular processes beyond cell-cell fusion.
Collapse
Affiliation(s)
- Yue Lu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tezin Walji
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin Ravaux
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Pratima Pandey
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Changsong Yang
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Bing Li
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Delgermaa Luvsanjav
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kevin H Lam
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Ruihui Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhou Luo
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chuanli Zhou
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christa W Habela
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Scott B Snapper
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Rong Li
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - David J Goldhamer
- Department of Molecular and Cell Biology, University of Connecticut Stem Cell Institute, Storrs, CT, USA
| | - David W Schmidtke
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth H Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Xue S, Benvie AM, Blum JE, Kolba NJ, Cosgrove BD, Thalacker-Mercer A, Berry DC. Suppressing PDGFRβ Signaling Enhances Myocyte Fusion to Promote Skeletal Muscle Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618247. [PMID: 39464006 PMCID: PMC11507758 DOI: 10.1101/2024.10.15.618247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Muscle cell fusion is critical for forming and maintaining multinucleated myotubes during skeletal muscle development and regeneration. However, the molecular mechanisms directing cell-cell fusion are not fully understood. Here, we identify platelet-derived growth factor receptor beta (PDGFRβ) signaling as a key modulator of myocyte fusion in adult muscle cells. Our findings demonstrate that genetic deletion of Pdgfrβ enhances muscle regeneration and increases myofiber size, whereas PDGFRβ activation impairs muscle repair. Inhibition of PDGFRβ activity promotes myonuclear accretion in both mouse and human myotubes, whereas PDGFRβ activation stalls myotube development by preventing cell spreading to limit fusion potential. Transcriptomics analysis show that PDGFRβ signaling cooperates with TGFβ signaling to direct myocyte size and fusion. Mechanistically, PDGFRβ signaling requires STAT1 activation, and blocking STAT1 phosphorylation enhances myofiber repair and size during regeneration. Collectively, PDGFRβ signaling acts as a regenerative checkpoint and represents a potential clinical target to rapidly boost skeletal muscle repair.
Collapse
Affiliation(s)
- Siwen Xue
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
| | - Abigail M Benvie
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
| | - Jamie E Blum
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
- Current address: Department of Chemical Engineering; Stanford University; Stanford, CA
| | - Nikolai J Kolba
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
| | | | - Anna Thalacker-Mercer
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
- Department of Cell, Development and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Daniel C Berry
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
- Corresponding author
| |
Collapse
|
3
|
Kushwaha N, Dwivedi A, Tiwari S, Mishra P, Verma SK. Comprehensive analytics for virus-cell and cell-cell multinucleation system. Biochem Biophys Res Commun 2024; 726:150281. [PMID: 38909532 DOI: 10.1016/j.bbrc.2024.150281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Cell-fusion mediated generation of multinucleated syncytia represent critical feature during viral infection and in development. Efficiency of syncytia formation is usually illustrated as fusion efficiency under given condition by quantifying total number of nuclei in syncytia normalized to total number of nuclei (both within syncytia and unfused cell nuclei) in unit field of view. However heterogeneity in multinucleated syncytia sizes poses challenge in quantification of cell-fusion multinucleation under diverse conditions. Taking in-vitro SARS-CoV-2 spike-protein variants mediated virus-cell fusion model and placenta trophoblast syncytialization as cell-cell fusion model; herein we emphasize wide application of simple unbiased detailed measure of virus-cell and cell-cell multinucleation using experiential cumulative distribution function (CDF) and fusion number events (FNE) approaches illustrating comprehensive metrics for syncytia interpretation.
Collapse
Affiliation(s)
- Nisha Kushwaha
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Aditi Dwivedi
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Swasti Tiwari
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Prabhaker Mishra
- Department of Biostatistics and Health Informatics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Santosh Kumar Verma
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India.
| |
Collapse
|
4
|
Blasco S, Sukeník L, Vácha R. Nanoparticle induced fusion of lipid membranes. NANOSCALE 2024; 16:10221-10229. [PMID: 38679949 PMCID: PMC11138393 DOI: 10.1039/d4nr00591k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Membrane fusion is crucial for infection of enveloped viruses, cellular transport, and drug delivery via liposomes. Nanoparticles can serve as fusogenic agents facilitating such membrane fusion for direct transmembrane transport. However, the underlying mechanisms of nanoparticle-induced fusion and the ideal properties of such nanoparticles remain largely unknown. Here, we used molecular dynamics simulations to investigate the efficacy of spheroidal nanoparticles with different size, prolateness, and ligand interaction strengths to enhance fusion between vesicles. By systematically varying nanoparticle properties, we identified how each parameter affects the fusion process and determined the optimal parameter range that promotes fusion. These findings provide valuable insights for the design and optimization of fusogenic nanoparticles with potential biotechnological and biomedical applications.
Collapse
Affiliation(s)
- Sofía Blasco
- CEITEC - Central European Institute of Technology, Kamenice 5, 625 00 Brno, Czech Republic.
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Lukáš Sukeník
- CEITEC - Central European Institute of Technology, Kamenice 5, 625 00 Brno, Czech Republic.
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Robert Vácha
- CEITEC - Central European Institute of Technology, Kamenice 5, 625 00 Brno, Czech Republic.
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| |
Collapse
|
5
|
Funk OH, Levy DL, Fay DS. Epidermal cell fusion promotes the transition from an embryonic to a larval transcriptome in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595354. [PMID: 38826300 PMCID: PMC11142173 DOI: 10.1101/2024.05.22.595354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Cell fusion is a fundamental process in the development of multicellular organisms, yet its impact on gene regulation, particularly during crucial developmental stages, remains poorly understood. The Caenorhabditis elegans epidermis comprises 8-10 syncytial cells, with the largest integrating 139 individual nuclei through cell-cell fusion governed by the fusogenic protein EFF-1. To explore the effects of cell fusion on developmental progression and associated gene expression changes, we conducted transcriptomic analyses of eff-1 fusion-deficient mutants. Our RNAseq findings showed widespread transcriptomic changes that were enriched for epidermal genes and key molecular pathways involved in epidermal function during larval development. Subsequent single-molecule fluorescence in situ hybridization validated the altered expression of mRNA transcripts, confirming quantifiable changes in gene expression in the absence of embryonic epidermal fusion. These results underscore the significance of cell-cell fusion in shaping transcriptional programs during development and raise questions regarding the precise identities and specialized functions of different subclasses of nuclei within developing syncytial cells and tissues.
Collapse
|
6
|
Rey-Barroso J, Dufrançais O, Vérollet C. Tunneling Nanotubes in Myeloid Cells: Perspectives for Health and Infectious Diseases. Results Probl Cell Differ 2024; 73:419-434. [PMID: 39242388 DOI: 10.1007/978-3-031-62036-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Tunneling nanotubes (TNTs) are cellular connections, which represent a novel route for cell-to-cell communication. Strong evidence points to a role for TNTs in the intercellular transfer of signals, molecules, organelles, and pathogens, involving them in many cellular functions. In myeloid cells (e.g., monocytes/macrophages, dendritic cells, and osteoclasts), intercellular communication via TNT contributes to their differentiation and immune functions, by favoring material and pathogen transfer, as well as cell fusion. This chapter addresses the complexity of the definition and characterization of TNTs in myeloid cells, the different processes involved in their formation, their existence in vivo, and finally their function(s) in health and infectious diseases, with the example of HIV-1 infection.
Collapse
Affiliation(s)
- Javier Rey-Barroso
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Ophélie Dufrançais
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Christel Vérollet
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France.
- International Research Laboratory (IRP) CNRS "IM-TB/HIV", Toulouse, France.
- International Research Laboratory (IRP) CNRS "IM-TB/HIV", Buenos Aires, Argentina.
| |
Collapse
|
7
|
Hou J, Liu J, Huang Z, Wang Y, Yao H, Hu Z, Shi C, Xu J, Wang Q. Structure and function of the membrane microdomains in osteoclasts. Bone Res 2023; 11:61. [PMID: 37989999 PMCID: PMC10663511 DOI: 10.1038/s41413-023-00294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 11/23/2023] Open
Abstract
The cell membrane structure is closely related to the occurrence and progression of many metabolic bone diseases observed in the clinic and is an important target to the development of therapeutic strategies for these diseases. Strong experimental evidence supports the existence of membrane microdomains in osteoclasts (OCs). However, the potential membrane microdomains and the crucial mechanisms underlying their roles in OCs have not been fully characterized. Membrane microdomain components, such as scaffolding proteins and the actin cytoskeleton, as well as the roles of individual membrane proteins, need to be elucidated. In this review, we discuss the compositions and critical functions of membrane microdomains that determine the biological behavior of OCs through the three main stages of the OC life cycle.
Collapse
Affiliation(s)
- Jialong Hou
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhixian Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yining Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hanbing Yao
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhenxin Hu
- Department of Spine Surgery, Peking University Fourth School of Clinical Medicine, Beijing, China
| | - Chengge Shi
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Qingqing Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
8
|
Herianto S, Chien PJ, Ho JAA, Tu HL. Liposome-based artificial cells: From gene expression to reconstitution of cellular functions and phenotypes. BIOMATERIALS ADVANCES 2022; 142:213156. [PMID: 36302330 DOI: 10.1016/j.bioadv.2022.213156] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Bottom-up approaches in creating artificial cells that can mimic natural cells have significant implications for both basic research and translational application. Among various artificial cell models, liposome is one of the most sophisticated systems. By encapsulating proteins and associated biomolecules, they can functionally reconstitute foundational features of biological cells, such as the ability to divide, communicate, and undergo shape deformation. Yet constructing liposome artificial cells from the genetic level, which is central to generate self-sustained systems remains highly challenging. Indeed, many studies have successfully established the expression of gene-coded proteins inside liposomes. Further, recent endeavors to build a direct integration of gene-expressed proteins for reconstituting molecular functions and phenotypes in liposomes have also significantly increased. Thus, this review presents the development of liposome-based artificial cells to demonstrate the process of gene-expressed proteins and their reconstitution to perform desired molecular and cell-like functions. The molecular and cellular phenotypes discussed here include the self-production of membrane phospholipids, division, shape deformation, self-DNA/RNA replication, fusion, and intercellular communication. Together, this review gives a comprehensive overview of gene-expressing liposomes that can stimulate further research of this technology and achieve artificial cells with superior properties in the future.
Collapse
Affiliation(s)
- Samuel Herianto
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan; Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Po-Jen Chien
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Ja-An Annie Ho
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan; BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Hsiung-Lin Tu
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
9
|
Zhao Z, Zhang J, Yang Z, Zhao Q. Biodegradation of HA and β-TCP Ceramics Regulated by T-Cells. Pharmaceutics 2022; 14:pharmaceutics14091962. [PMID: 36145710 PMCID: PMC9502083 DOI: 10.3390/pharmaceutics14091962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
Biodegradability is one of the most important properties of implantable bone biomaterials, which is directly related to material bioactivity and the osteogenic effect. How foreign body giant cells (FBGC) involved in the biodegradation of bone biomaterials are regulated by the immune system is poorly understood. Hence, this study found that β-tricalcium phosphate (β-TCP) induced more FBGCs formation in the microenvironment (p = 0.0061) accompanied by more TNFα (p = 0.0014), IFNγ (p = 0.0024), and T-cells (p = 0.0029) than hydroxyapatite (HA), resulting in better biodegradability. The final use of T-cell depletion in mice confirmed that T-cell-mediated immune responses play a decisive role in the formation of FBGCs and promote bioceramic biodegradation. This study reveals the biological mechanism of in vivo biodegradation of implantable bone tissue engineering materials from the perspective of material-immune system interaction, which complements the mechanism of T-cells’ adaptive immunity in bone immune regulation and can be used as a theoretical basis for rational optimization of implantable material properties.
Collapse
Affiliation(s)
- Zifan Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jing Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zaibo Yang
- Department of Stomatology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, China
- Correspondence: (Z.Y.); (Q.Z.)
| | - Qin Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Correspondence: (Z.Y.); (Q.Z.)
| |
Collapse
|
10
|
Kim S, Kim K. Lipid-mediated ex vivo cell surface engineering for augmented cellular functionalities. BIOMATERIALS ADVANCES 2022; 140:213059. [PMID: 35961186 DOI: 10.1016/j.bioadv.2022.213059] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/23/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Once administrated, intercellular adhesion to recognize and/or arrest target cells is essential for specific treatments, especially for cancer or tumor. However, immune cells administrated into the tumor-microenvironment could lose their intrinsic functionalities such as target recognition ability, resulting in an ineffective cancer immunotherapy. Various manipulation techniques for decorating functional moieties onto cell surface and enhancing target recognition have been developed. A hydrophobic interaction-mediated ex-vivo cell surface engineering using lipid-based biomaterials could be a state-of-the-art engineering technique that could achieve high-efficiency cell surface modification by a single method without disturbance of intrinsic characteristics of cells. In this regard, this review provides design principles for the development of lipid-based biomaterials with a linear structure of lipid, polyethylene glycol, and functional group, strategies for the synthesis process, and their practical applications in biomedical engineering. Especially, we provide new insights into the development of a novel surface coating techniques for natural killer (NK) cells with engineering decoration of cancer targeting moieties on their cell surfaces. Among immune cells, NK cells are interesting cell population for substituting T cells because of their excellent safety and independent anticancer efficacy. Thus, optimal strategies to select cancer-type-specific targeting moieties and present them onto the surface of immune cells (especially, NK cells) using lipid-based biomaterials could provide additional tools to capture cancer cells for developing novel immune cell therapy products. Enhanced anticancer efficacies by surface-engineered NK cells have been demonstrated both in vitro and in vivo. Therefore, it could be speculated that recent progresses in cell surface modification technology via lipid-based biomaterials could strengthen immune surveillance and immune synapses for utilization in a next-generation cancer immunotherapy, beyond currently available genetic engineering tool such as chimeric antigen receptor-mediated immune cell modulation.
Collapse
Affiliation(s)
- Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Shitut S, Shen MJ, Claushuis B, Derks RJE, Giera M, Rozen D, Claessen D, Kros A. Generating Heterokaryotic Cells via Bacterial Cell-Cell Fusion. Microbiol Spectr 2022; 10:e0169322. [PMID: 35862998 PMCID: PMC9430406 DOI: 10.1128/spectrum.01693-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022] Open
Abstract
Fusion of cells is an important and common biological process that leads to the mixing of cellular contents and the formation of multinuclear cells. Cell fusion occurs when distinct membranes are brought into proximity of one another and merge to become one. Fusion holds promise for biotechnological innovations, for instance, for the discovery of urgently needed new antibiotics. Here, we used antibiotic-producing bacteria that can proliferate without their cell wall as a model to investigate cell-cell fusion. We found that fusion between genetically distinct cells yields heterokaryons that are viable, contain multiple selection markers, and show increased antimicrobial activity. The rate of fusion induced using physical and chemical methods was dependent on membrane fluidity, which is related to lipid composition as a function of cellular age. Finally, by using an innovative system of synthetic membrane-associated lipopeptides, we achieved targeted fusion between distinctly marked cells to further enhance fusion efficiency. These results provide a molecular handle to understand and control cell-cell fusion, which can be used in the future for the discovery of new drugs. IMPORTANCE Cell-cell fusion is instrumental in introducing different sets of genes in the same environment, which subsequently leads to diversity. There is need for new protocols to fuse cells of different types together for biotechnological applications like drug discovery. We present here wall-deficient cells as a platform for the same. We identify the fluidity of the membrane as an important characteristic for the process of fusion. We demonstrate a cell-specific approach for fusion using synthetically designed peptides yielding cells with modified antibiotic production profiles. Overall, wall-deficient cells can be a chassis for innovative metabolite production by providing an alternative method for cell-cell fusion.
Collapse
Affiliation(s)
- Shraddha Shitut
- Origins Centre, Groningen, the Netherlands
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Meng-Jie Shen
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Bart Claushuis
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Rico J. E. Derks
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Daniel Rozen
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Dennis Claessen
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Alexander Kros
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| |
Collapse
|
12
|
Luo Z, Shi J, Pandey P, Ruan ZR, Sevdali M, Bu Y, Lu Y, Du S, Chen EH. The cellular architecture and molecular determinants of the zebrafish fusogenic synapse. Dev Cell 2022; 57:1582-1597.e6. [PMID: 35709765 PMCID: PMC10180866 DOI: 10.1016/j.devcel.2022.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 04/04/2022] [Accepted: 05/20/2022] [Indexed: 11/03/2022]
Abstract
Myoblast fusion is an indispensable process in skeletal muscle development and regeneration. Studies in Drosophila led to the discovery of the asymmetric fusogenic synapse, in which one cell invades its fusion partner with actin-propelled membrane protrusions to promote fusion. However, the timing and sites of vertebrate myoblast fusion remain elusive. Here, we show that fusion between zebrafish fast muscle cells is mediated by an F-actin-enriched invasive structure. Two cell adhesion molecules, Jam2a and Jam3b, are associated with the actin structure, with Jam2a being the major organizer. The Arp2/3 actin nucleation-promoting factors, WAVE and WASP-but not the bipartite fusogenic proteins, Myomaker or Myomixer-promote the formation of the invasive structure. Moreover, the convergence of fusogen-containing microdomains and the invasive protrusions is a prerequisite for cell membrane fusion. Thus, our study provides unprecedented insights into the cellular architecture and molecular determinants of the asymmetric fusogenic synapse in an intact vertebrate animal.
Collapse
Affiliation(s)
- Zhou Luo
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jun Shi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Pratima Pandey
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhi-Rong Ruan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Maria Sevdali
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ye Bu
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yue Lu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Elizabeth H Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
13
|
Kostow N, Welch MD. Plasma membrane protrusions mediate host cell-cell fusion induced by Burkholderia thailandensis. Mol Biol Cell 2022; 33:ar70. [PMID: 35594178 DOI: 10.1091/mbc.e22-02-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cell-cell fusion is important for biological processes including fertilization, development, immunity, and microbial pathogenesis. Bacteria in the pseudomallei group of the Burkholderia species, including B. thailandensis, spread between host cells by inducing cell-cell fusion. Previous work showed that B. thailandensis-induced cell-cell fusion requires intracellular bacterial motility and a bacterial protein secretion apparatus called the type VI secretion system-5 (T6SS-5), including the T6SS-5 protein VgrG5. However, the cellular-level mechanism of and T6SS-5 proteins important for bacteria-induced cell-cell fusion remained incompletely described. Using live-cell imaging, we found bacteria used actin-based motility to push on the host cell plasma membrane to form plasma membrane protrusions that extended into neighboring cells. Then, membrane fusion occurred within membrane protrusions either proximal to the bacterium at the tip or elsewhere within protrusions. Expression of VgrG5 by bacteria within membrane protrusions was required to promote cell-cell fusion. Furthermore, a second predicted T6SS-5 protein, TagD5, was also required for cell-cell fusion. In the absence of VgrG5 or TagD5, bacteria in plasma membrane protrusions were engulfed into neighboring cells. Our results suggest that the T6SS-5 effectors VgrG5 and TagD5 are secreted within membrane protrusions and act locally to promote membrane fusion.
Collapse
Affiliation(s)
- Nora Kostow
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Matthew D Welch
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
14
|
Martin E, Suzanne M. Functions of Arp2/3 Complex in the Dynamics of Epithelial Tissues. Front Cell Dev Biol 2022; 10:886288. [PMID: 35557951 PMCID: PMC9089454 DOI: 10.3389/fcell.2022.886288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelia are sheets of cells that communicate and coordinate their behavior in order to ensure their barrier function. Among the plethora of proteins involved in epithelial dynamics, actin nucleators play an essential role. The branched actin nucleation complex Arp2/3 has numerous functions, such as the regulation of cell-cell adhesion, intracellular trafficking, the formation of protrusions, that have been well described at the level of individual cells. Here, we chose to focus on its role in epithelial tissue, which is rising attention in recent works. We discuss how the cellular activities of the Arp2/3 complex drive epithelial dynamics and/or tissue morphogenesis. In the first part, we examined how this complex influences cell-cell cooperation at local scale in processes such as cell-cell fusion or cell corpses engulfment. In the second part, we summarized recent papers dealing with the impact of the Arp2/3 complex at larger scale, focusing on different morphogenetic events, including cell intercalation, epithelial tissue closure and epithelial folding. Altogether, this review highlights the central role of Arp2/3 in a diversity of epithelial tissue reorganization.
Collapse
Affiliation(s)
- Emmanuel Martin
- Molecular, Cellular and Developmental Biology (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Toulouse, France.,FR3743 Centre de Biologie Intégrative (CBI), Toulouse, France
| | - Magali Suzanne
- Molecular, Cellular and Developmental Biology (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Toulouse, France.,FR3743 Centre de Biologie Intégrative (CBI), Toulouse, France
| |
Collapse
|
15
|
Jiang Y, Ji JY. Progerin-Induced Impairment in Wound Healing and Proliferation in Vascular Endothelial Cells. FRONTIERS IN AGING 2022; 3:844885. [PMID: 35821855 PMCID: PMC9261432 DOI: 10.3389/fragi.2022.844885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/27/2022] [Indexed: 11/29/2022]
Abstract
Progerin as a mutated isoform of lamin A protein was first known to induce premature atherosclerosis progression in patients with Hutchinson-Gilford progeria syndrome (HGPS), and its role in provoking an inflammatory response in vascular cells and accelerating cell senescence has been investigated recently. However, how progerin triggers endothelial dysfunction that often occurs at the early stage of atherosclerosis in a mechanical environment has not been studied intensively. Here, we generated a stable endothelial cell line that expressed progerin and examined its effects on endothelial wound repair under laminar flow. We found decreased wound healing rate in progerin-expressing ECs under higher shear stress compared with those under low shear. Furthermore, the decreased wound recovery could be due to reduced number of cells at late mitosis, suggesting potential interference by progerin with endothelial proliferation. These findings provided insights into how progerin affects endothelial mechanotransduction and may contribute to the disruption of endothelial integrity in HGPS vasculature, as we continue to examine the mechanistic effect of progerin in shear-induced endothelial functions.
Collapse
|
16
|
Afify SM, Hassan G, Ishii H, Monzur S, Nawara HM, Osman A, Abu Quora HA, Sheta M, Zahra MH, Seno A, Seno M. Functional and Molecular Characters of Cancer Stem Cells Through Development to Establishment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1393:83-101. [PMID: 36587303 DOI: 10.1007/978-3-031-12974-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cancer stem cells (CSCs) are small subpopulation sharing similar properties like normal stem such as self-renewal and differentiation potential to direct tumor growth. Last few years, scientists considered CSCs as the cause of phenotypic heterogeneity in diverse cancer types. Also, CSCs contribute to cancer metastasis and recurrence. The cellular and molecular regulators influence on the CSCs' phenotype changing their behaviors in different stages of cancer progression. CSC markers play significance roles in cancer diagnosis and characterization. We delineate the cross-talks between CSCs and the tumor microenvironment that supports their intrinsic properties including survival, stemness, quiescence and their cellular and molecular adaptation. An insight into the markers of CSCs specific to organs is described.
Collapse
Affiliation(s)
- Said M Afify
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
- Faculty of Science, Division of Biochemistry, Chemistry Department, Menoufia University, Shebin El Koum, 32511, Egypt
| | - Ghmkin Hassan
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
- Faculty of Pharmacy, Department of Microbiology and Biochemistry, Damascus University, Damascus, 10769, Syria
| | - Hiroko Ishii
- GSP Enterprise, Inc, 1-4-38 12F Minato-Machi, Naniwaku, Osaka, 556-0017, Japan
| | - Sadia Monzur
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Hend M Nawara
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Amira Osman
- Faculty of Medicine, Department of Histology, Kafr Elsheikh University, Kafr Elsheikh, 33511, Egypt
| | - Hagar A Abu Quora
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
- Faculty of Science, Cytology, Histology and Histochemistry, Zoology Department, Menoufia University, Menoufia, 32511, Egypt
| | - Mona Sheta
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
- Department of Cancer Biology, National Cancer Institute, Cairo University, Giza, Egypt
| | - Maram H Zahra
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Akimasa Seno
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Masaharu Seno
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
17
|
Batishchev OV. Physico-Chemical Mechanisms of the Functioning of Membrane-Active Proteins of Enveloped Viruses. BIOCHEMISTRY (MOSCOW) SUPPLEMENT. SERIES A, MEMBRANE AND CELL BIOLOGY 2022; 16:247-260. [PMCID: PMC9734521 DOI: 10.1134/s1990747822050038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/14/2022]
Abstract
Over the past few years, the attention of the whole world has been riveted to the emergence of new dangerous strains of viruses, among which a special place is occupied by coronaviruses that have overcome the interspecies barrier in the past 20 years: SARS viruses (SARS), Middle East respiratory syndrome (MERS), as well as a new coronavirus infection (SARS-CoV-2), which caused the largest pandemic since the Spanish flu in 1918. Coronaviruses are members of a class of enveloped viruses that have a lipoprotein envelope. This class also includes such serious pathogens as human immunodeficiency virus (HIV), hepatitis, Ebola virus, influenza, etc. Despite significant differences in the clinical picture of the course of disease caused by enveloped viruses, they themselves have a number of characteristic features, which determine their commonality. Regardless of the way of penetration into the cell—by endocytosis or direct fusion with the cell membrane—enveloped viruses are characterized by the following stages of interaction with the target cell: binding to receptors on the cell surface, interaction of the surface glycoproteins of the virus with the membrane structures of the infected cell, fusion of the lipid envelope of the virion with plasma or endosomal membrane, destruction of the protein capsid and its dissociation from the viral nucleoprotein. Subsequently, within the infected cell, the newly synthesized viral proteins must self-assemble on various membrane structures to form a progeny virion. Thus, both the initial stages of viral infection and the assembly and release of new viral particles are associated with the activity of viral proteins in relation to the cell membrane and its organelles. This review is devoted to the analysis of physicochemical mechanisms of functioning of the main structural proteins of a number of enveloped viruses in order to identify possible strategies for the membrane activity of such proteins at various stages of viral infection of the cell.
Collapse
Affiliation(s)
- O. V. Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
18
|
Hall AE, Lisci M, Rose MD. Differential Requirement for the Cell Wall Integrity Sensor Wsc1p in Diploids Versus Haploids. J Fungi (Basel) 2021; 7:jof7121049. [PMID: 34947031 PMCID: PMC8703914 DOI: 10.3390/jof7121049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 11/16/2022] Open
Abstract
The primary role of the Cell Wall Integrity Pathway (CWI) in Saccharomyces cerevisiae is monitoring the state of the cell wall in response to general life cycle stresses (growth and mating) and imposed stresses (temperature changes and chemicals). Of the five mechanosensor proteins monitoring cell wall stress, Wsc1p and Mid2p are the most important. We find that WSC1 has a stringent requirement in zygotes and diploids, unlike haploids, and differing from MID2's role in shmoos. Diploids lacking WSC1 die frequently, independent of mating type. Death is due to loss of cell wall and plasma membrane integrity, which is suppressed by osmotic support. Overexpression of several CWI pathway components suppress wsc1∆ zygotic death, including WSC2, WSC3, and BEM2, as well as the Rho-GAPS, BEM3 and RGD2. Microscopic observations and suppression by BEM2 and BEM3 suggest that wsc1∆ zygotes die during bud emergence. Downstream in the CWI pathway, overexpression of a hyperactive protein kinase C (Pkc1p-R398P) causes growth arrest, and blocks the pheromone response. With moderate levels of Pkc1p-R398P, cells form zygotes and the wsc1∆ defect is suppressed. This work highlights functional differences in the requirement for Wsc1p in diploids Versus haploids and between Mid2p and Wsc1p during mating.
Collapse
Affiliation(s)
- Allison E. Hall
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; (A.E.H.); (M.L.)
- Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York, NY 10016, USA
| | - Miriam Lisci
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; (A.E.H.); (M.L.)
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Mark D. Rose
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; (A.E.H.); (M.L.)
- Department of Biology, Georgetown University, Washington, DC 20057, USA
- Correspondence:
| |
Collapse
|
19
|
|
20
|
Tang J, Frascaroli G, Zhou X, Knickmann J, Brune W. Cell Fusion and Syncytium Formation in Betaherpesvirus Infection. Viruses 2021; 13:v13101973. [PMID: 34696402 PMCID: PMC8537622 DOI: 10.3390/v13101973] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
Cell–cell fusion is a fundamental and complex process that occurs during reproduction, organ and tissue growth, cancer metastasis, immune response, and infection. All enveloped viruses express one or more proteins that drive the fusion of the viral envelope with cellular membranes. The same proteins can mediate the fusion of the plasma membranes of adjacent cells, leading to the formation of multinucleated syncytia. While cell–cell fusion triggered by alpha- and gammaherpesviruses is well-studied, much less is known about the fusogenic potential of betaherpesviruses such as human cytomegalovirus (HCMV) and human herpesviruses 6 and 7 (HHV-6 and HHV-7). These are slow-growing viruses that are highly prevalent in the human population and associated with several diseases, particularly in individuals with an immature or impaired immune system such as fetuses and transplant recipients. While HHV-6 and HHV-7 are strictly lymphotropic, HCMV infects a very broad range of cell types including epithelial, endothelial, mesenchymal, and myeloid cells. Syncytia have been observed occasionally for all three betaherpesviruses, both during in vitro and in vivo infection. Since cell–cell fusion may allow efficient spread to neighboring cells without exposure to neutralizing antibodies and other host immune factors, viral-induced syncytia may be important for viral dissemination, long-term persistence, and pathogenicity. In this review, we provide an overview of the viral and cellular factors and mechanisms identified so far in the process of cell–cell fusion induced by betaherpesviruses and discuss the possible consequences for cellular dysfunction and pathogenesis.
Collapse
Affiliation(s)
- Jiajia Tang
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (J.T.); (G.F.); (X.Z.); (J.K.)
- Center for Single-Cell Omics, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Giada Frascaroli
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (J.T.); (G.F.); (X.Z.); (J.K.)
| | - Xuan Zhou
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (J.T.); (G.F.); (X.Z.); (J.K.)
| | - Jan Knickmann
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (J.T.); (G.F.); (X.Z.); (J.K.)
| | - Wolfram Brune
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (J.T.); (G.F.); (X.Z.); (J.K.)
- Correspondence:
| |
Collapse
|
21
|
Zhang J, Qiao Q, Xu H, Zhou R, Liu X. Human cell polyploidization: The good and the evil. Semin Cancer Biol 2021; 81:54-63. [PMID: 33839294 DOI: 10.1016/j.semcancer.2021.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023]
Abstract
Therapeutic resistance represents a major cause of death for most lethal cancers. However, the underlying mechanisms of such resistance have remained unclear. The polyploid cells are due to an increase in DNA content, commonly associated with cell enlargement. In human, they play a variety of roles in physiology and pathologic conditions and perform the specialized functions during development, inflammation, and cancer. Recent work shows that cancer cells can be induced into polyploid giant cancer cells (PGCCs) that leads to reprogramming of surviving cancer cells to acquire resistance. In this article, we will review the polyploidy involved in development and inflammation, and the process of PGCCs formation and propagation that benefits to cell survival. We will discuss the potential opportunities in fighting resistant cancers. The increased knowledge of PGCCs will offer a completely new paradigm to explore the therapeutic intervention for lethal cancers.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Qing Qiao
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Hong Xu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Ru Zhou
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xinzhe Liu
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
22
|
PDLIM5 Affects Chicken Skeletal Muscle Satellite Cell Proliferation and Differentiation via the p38-MAPK Pathway. Animals (Basel) 2021; 11:ani11041016. [PMID: 33916517 PMCID: PMC8065989 DOI: 10.3390/ani11041016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary PDZ and LIM domain 5 (PDLIM5) can increase C2C12 cell differentiation; however, the role of PDLIM5 in chicken skeletal muscle satellite cells (SMSCs) is unclear. In this study, the effect of PDLIM5 was verified on SMSCs in vitro, and then the molecular mechanism was determined by transcriptome sequencing. We demonstrated that PDLIM5 can positively affect chicken SMSC proliferation and differentiation via the p38-MAPK (mitogen activated kinase-like protein) pathway. These results indicate that PDLIM5 may be involved in chicken skeletal muscle growth and development. Abstract Skeletal muscle satellite cell growth and development is a complicated process driven by multiple genes. The PDZ and LIM domain 5 (PDLIM5) gene has been proven to function in C2C12 myoblast differentiation and is involved in the regulation of skeletal muscle development. The role of PDLIM5 in chicken skeletal muscle satellite cells, however, is unclear. In this study, in order to determine whether the PDLIM5 gene has a function in chicken skeletal muscle satellite cells, we examined the changes in proliferation and differentiation of chicken skeletal muscle satellite cells (SMSCs) after interfering and overexpressing PDLIM5 in cells. In addition, the molecular pathways of the PDLIM5 gene regulating SMSC proliferation and differentiation were analyzed by transcriptome sequencing. Our results show that PDLIM5 can promote the proliferation and differentiation of SMSCs; furthermore, through transcriptome sequencing, it can be found that the differential genes are enriched in the MAPK signaling pathway after knocking down PDLIM5. Finally, it was verified that PDLIM5 played an active role in the proliferation and differentiation of chicken SMSCs by activating the p38-MAPK signaling pathway. These results indicate that PDLIM5 may be involved in the growth and development of chicken skeletal muscle.
Collapse
|
23
|
Cell-cell fusions and cell-in-cell phenomena in healthy cells and cancer: Lessons from protists and invertebrates. Semin Cancer Biol 2021; 81:96-105. [PMID: 33713795 DOI: 10.1016/j.semcancer.2021.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 02/08/2023]
Abstract
Herein we analyze two special routes of the multinucleated cells' formation - the fusion of mononuclear cells and the formation of cell-in-cell structures - in the healthy tissues and in tumorigenesis. There are many theories of tumorigenesis based on the phenomenon of emergence of the hybrid cancer cells. We consider the phenomena, which are rarely mentioned in those theories: namely, cellularization of syncytium or coenocytes, and the reversible or irreversible somatogamy. The latter includes the short-term and the long-term vegetative (somatic) cells' fusions in the life cycles of unicellular organisms. The somatogamy and multinuclearity have repeatedly and independently emerged in various groups of unicellular eukaryotes. These phenomena are among dominant survival and biodiversity sustaining strategies in protists and we admit that they can likely play an analogous role in cancer cells.
Collapse
|
24
|
Yang BA, Westerhof TM, Sabin K, Merajver SD, Aguilar CA. Engineered Tools to Study Intercellular Communication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002825. [PMID: 33552865 PMCID: PMC7856891 DOI: 10.1002/advs.202002825] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/10/2020] [Indexed: 05/08/2023]
Abstract
All multicellular organisms rely on intercellular communication networks to coordinate physiological functions. As members of a dynamic social network, each cell receives, processes, and redistributes biological information to define and maintain tissue homeostasis. Uncovering the molecular programs underlying these processes is critical for prevention of disease and aging and development of therapeutics. The study of intercellular communication requires techniques that reduce the scale and complexity of in vivo biological networks while resolving the molecular heterogeneity in "omic" layers that contribute to cell state and function. Recent advances in microengineering and high-throughput genomics offer unprecedented spatiotemporal control over cellular interactions and the ability to study intercellular communication in a high-throughput and mechanistic manner. Herein, this review discusses how salient engineered approaches and sequencing techniques can be applied to understand collective cell behavior and tissue functions.
Collapse
Affiliation(s)
- Benjamin A. Yang
- Department of Biomedical Engineering and Biointerfaces Institute2800 Plymouth Road, North Campus Research ComplexAnn ArborMIA10‐183USA
| | - Trisha M. Westerhof
- Department of Biomedical Engineering and Biointerfaces Institute2800 Plymouth Road, North Campus Research ComplexAnn ArborMIA10‐183USA
- Department of Internal MedicineDivision of Hematology/Oncology and Rogel Cancer Center1500 East Medical Center Drive, Rogel Cancer CenterAnn ArborMI7314USA
| | - Kaitlyn Sabin
- Department of Biomedical Engineering and Biointerfaces Institute2800 Plymouth Road, North Campus Research ComplexAnn ArborMIA10‐183USA
| | - Sofia D. Merajver
- Department of Internal MedicineDivision of Hematology/Oncology and Rogel Cancer Center1500 East Medical Center Drive, Rogel Cancer CenterAnn ArborMI7314USA
| | - Carlos A. Aguilar
- Department of Biomedical Engineering and Biointerfaces Institute2800 Plymouth Road, North Campus Research ComplexAnn ArborMIA10‐183USA
- Program in Cellular and Molecular Biology2800 Plymouth Road, North Campus Research ComplexAnn ArborMIA10‐183USA
| |
Collapse
|
25
|
Buonvino S, Melino S. New Consensus pattern in Spike CoV-2: potential implications in coagulation process and cell-cell fusion. Cell Death Discov 2020; 6:134. [PMID: 33262894 PMCID: PMC7691694 DOI: 10.1038/s41420-020-00372-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/28/2022] Open
Abstract
Coagulopathy and syncytial formation are relevant effects of the SARS-CoV-2 infection, but the underlying molecular mechanisms triggering these processes are not fully elucidated. Here, we identified a potential consensus pattern in the Spike S glycoprotein present within the cytoplasmic domain; this consensus pattern was detected in only 79 out of 561,000 proteins (UniProt bank). Interestingly, the pattern was present in both human and bat the coronaviruses S proteins, in many proteins involved in coagulation process, cell-cell interaction, protein aggregation and regulation of cell fate, such as von Willebrand factor, coagulation factor X, fibronectin and Notch, characterized by the presence of the cysteine-rich EGF-like domain. This finding may suggest functional similarities between the matched proteins and the CoV-2 S protein, implying a new possible involvement of the S protein in the molecular mechanism that leads to the coagulopathy and cell fusion in COVID-19 disease.
Collapse
Affiliation(s)
- Silvia Buonvino
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Sonia Melino
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
26
|
Katayama T, Bayram Ö, Mo T, Karahoda B, Valerius O, Takemoto D, Braus GH, Kitamoto K, Maruyama JI. Novel Fus3- and Ste12-interacting protein FsiA activates cell fusion-related genes in both Ste12-dependent and -independent manners in Ascomycete filamentous fungi. Mol Microbiol 2020; 115:723-738. [PMID: 33155715 DOI: 10.1111/mmi.14639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 01/01/2023]
Abstract
Filamentous fungal cells, unlike yeasts, fuse during vegetative growth. The orthologs of mitogen-activated protein (MAP) kinase Fus3 and transcription factor Ste12 are commonly involved in the regulation of cell fusion. However, the specific regulatory mechanisms underlying cell fusion in filamentous fungi have not been revealed. In the present study, we identified the novel protein FsiA as an AoFus3- and AoSte12-interacting protein in the filamentous fungus Aspergillus oryzae. The expression of AonosA and cell fusion-related genes decreased upon fsiA deletion and increased with fsiA overexpression, indicating that FsiA is a positive regulator of cell fusion. In addition, the induction of cell fusion-related genes by fsiA overexpression was also observed in the Aoste12 deletion mutant, indicating that FsiA can induce the cell fusion-related genes in an AoSte12-independent manner. Surprisingly, the fsiA and Aoste12 double deletion mutant exhibited higher cell fusion efficiency and increased mRNA levels of the cell fusion-related genes as compared to the fsiA single deletion mutant, which revealed that AoSte12 represses the cell fusion-related genes in the fsiA deletion mutant. Taken together, our data demonstrate that FsiA activates the cell fusion-related genes by suppressing the negative function of AoSte12 as well as by an AoSte12-independent mechanism.
Collapse
Affiliation(s)
- Takuya Katayama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Özgür Bayram
- Biology Department, Maynooth University, Maynooth, Ireland
| | - Taoning Mo
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
| | - Betim Karahoda
- Biology Department, Maynooth University, Maynooth, Ireland
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, and Göttingen Center for Molecular Biosciences (GZMB), Georg-August University, Göttingen, Germany
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, and Göttingen Center for Molecular Biosciences (GZMB), Georg-August University, Göttingen, Germany
| | - Katsuhiko Kitamoto
- Pharmaceutical Medical Business Sciences, Nihon Pharmaceutical University, Tokyo, Japan
| | - Jun-Ichi Maruyama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
27
|
Gga-miR-3525 Targets PDLIM3 through the MAPK Signaling Pathway to Regulate the Proliferation and Differentiation of Skeletal Muscle Satellite Cells. Int J Mol Sci 2020; 21:ijms21155573. [PMID: 32759823 PMCID: PMC7432556 DOI: 10.3390/ijms21155573] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/24/2020] [Accepted: 07/31/2020] [Indexed: 01/02/2023] Open
Abstract
MicroRNAs (miRNAs) are evolutionarily conserved, small noncoding RNAs that post-transcriptionally regulate expression of their target genes. Emerging evidence demonstrates that miRNAs are important regulators in the development of skeletal muscle satellite cells (SMSCs). Our previous research showed that gga-miR-3525 is differentially expressed in breast muscle of broilers (high growth rate) and layers (low growth rate). In this study, we report a new role for gga-miR-3525 as a myogenic miRNA that regulates skeletal muscle development in chickens. Exogenous increases in the expression of gga-miR-3525 significantly inhibited proliferation and differentiation of SMSCs, whereas the opposite effects were observed in gga-miR-3525 knockdown SMSCs. We confirmed that PDLIM3 (PDZ and LIM domain 3) is a target gene of gga-miR-3525 that can promote proliferation and differentiation of SMSCs. We found that PDLIM3 overexpression elevated the abundance of phosphorylated (p-)p38 protein but that the gga-miR-3525 mimic and p38-MAPK inhibitor (SB203580) weakened the activation of p-p38. Furthermore, treatment with SB203580 reduced the promoting effect of PDLIM3 on SMSC proliferation and differentiation. Overall, our results indicate that gga-miR-3525 regulates the proliferation and differentiation of SMSCs by targeting PDLIM3 via the p38/MAPK signaling pathway in chickens.
Collapse
|
28
|
Zhang LN, Zhang DD, Yang L, Gu YX, Zuo QP, Wang HY, Xu J, Liu DX. Roles of cell fusion between mesenchymal stromal/stem cells and malignant cells in tumor growth and metastasis. FEBS J 2020; 288:1447-1456. [PMID: 33070450 DOI: 10.1111/febs.15483] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/21/2020] [Accepted: 07/08/2020] [Indexed: 01/02/2023]
Abstract
Invasion and metastasis are the basic characteristics and important markers of malignant tumors, which are also the main cause of death in cancer patients. Epithelial-mesenchymal transition (EMT) is recognized as the first step of tumor invasion and metastasis. Many studies have demonstrated that cell fusion is a common phenomenon and plays a critical role in cancer development and progression. At present, cancer stem cell fusion has been considered as a new mechanism of cancer metastasis. Mesenchymal stromal/stem cell (MSC) is a kind of adult stem cells with high self-renewal ability and multidifferentiation potential, which is used as a very promising fusogenic candidate in the tumor microenvironment and has a crucial role in cancer progression. Many research results have shown that MSCs are involved in the regulation of tumor growth and metastasis through cell fusion. However, the role of cell fusion between MSCs and malignant cells in tumor growth and metastasis is still controversial. Several studies have demonstrated that MSCs can enhance malignant characteristics, promoting tumor growth and metastasis by fusing with malignant cells, while other conflicting reports believe that MSCs can reduce tumorigenicity upon fusion with malignant cells. In this review, we summarize the recent research on cell fusion events between MSCs and malignant cells in tumor growth and metastasis. The elucidation of the molecular mechanisms between MSC fusion and tumor metastasis may provide an effective strategy for tumor biotherapy.
Collapse
Affiliation(s)
- Li-Na Zhang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Di-Di Zhang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Lei Yang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Yu-Xuan Gu
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Qiu-Ping Zuo
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Hao-Yi Wang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Jia Xu
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Dian-Xin Liu
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| |
Collapse
|
29
|
Balabiyev A, Podolnikova NP, Mursalimov A, Lowry D, Newbern JM, Roberson RW, Ugarova TP. Transition of podosomes into zipper-like structures in macrophage-derived multinucleated giant cells. Mol Biol Cell 2020; 31:2002-2020. [PMID: 32579434 PMCID: PMC7543064 DOI: 10.1091/mbc.e19-12-0707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Macrophage fusion resulting in the formation of multinucleated giant cells (MGCs) is a multistage process that requires many adhesion-dependent steps and involves the rearrangement of the actin cytoskeleton. The diversity of actin-based structures and their role in macrophage fusion is poorly understood. In this study, we revealed hitherto unrecognized actin-based zipper-like structures (ZLSs) that arise between MGCs formed on the surface of implanted biomaterials. We established an in vitro model for the induction of these structures in mouse macrophages undergoing IL-4–mediated fusion. Using this model, we show that over time MGCs develop cell–cell contacts containing ZLSs. Live-cell imaging using macrophages isolated from mRFP- or eGFP-LifeAct mice demonstrated that ZLSs are dynamic formations undergoing continuous assembly and disassembly and that podosomes are precursors of these structures. Immunostaining experiments showed that vinculin, talin, integrin αMβ2, and other components of podosomes are present in ZLSs. Macrophages deficient in WASp or Cdc42, two key molecules involved in actin core organization in podosomes, as well as cells treated with the inhibitors of the Arp2/3 complex, failed to form ZLSs. Furthermore, E-cadherin and nectin-2 were found between adjoining membranes, suggesting that the transition of podosomes into ZLSs is induced by bridging plasma membranes by junctional proteins.
Collapse
Affiliation(s)
- Arnat Balabiyev
- School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | | | - Aibek Mursalimov
- School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | - David Lowry
- Eyring Materials Center, Arizona State University, Tempe, AZ 85287
| | - Jason M Newbern
- School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | | | | |
Collapse
|
30
|
Fang J, Liu R, Chen S, Liu Q, Cai H, Lin Y, Chen Z, Chen Z. Tuning the immune reaction to manipulate the cell-mediated degradation of a collagen barrier membrane. Acta Biomater 2020; 109:95-108. [PMID: 32268238 DOI: 10.1016/j.actbio.2020.03.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/08/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023]
Abstract
In order to elicit a desired barrier function in guided bone regeneration (GBR) or guided tissue regeneration (GTR), a barrier membrane has to maintain its integrity for a certain period of time to guarantee the regeneration of target tissue. Due to the complexity and variety of clinical conditions, the healing time required for tissue regeneration varies from one case to another, which implies the need for tailoring the barrier membranes to diverse conditions via manipulating their degradation property. As a "non-self" biomaterial, a barrier membrane will inevitably trigger host-membrane immune response after implantation, which entails the activation of phagocytic cells. In the degradation process of a barrier membrane, the cell-mediated degradation may play a more vital role than enzymatic and physicochemical dissolution; however, limited studies have been carried out on this topic. In this context, we investigated the cell-mediated degradation and illustrated the possible key cells and mediators for immunomodulation via in vivo and in vitro studies. We discovered that IL-13, a key cytokine mainly released by T helper 2 cells (Th2), induced the formation of foreign body giant cells (FBGCs), thus resulting in membrane degradation. Neutralizing IL-13 could suppress membrane degradation and formation of FBGC. The contributions of this study are (1) unveiling the immune mechanisms underlying the cell-mediated collagen membrane degradation; (2) allowing the formation of an "immunodegradation" strategy to develop an "immune-smart" barrier membrane to manipulate its degradation; (3) providing the key regulatory immune cells and cytokines for the immunomodulation target in collagen membrane degradation. STATEMENT OF SIGNIFICANCE: The significance of this research includes.
Collapse
|
31
|
Akimov SA, Molotkovsky RJ, Kuzmin PI, Galimzyanov TR, Batishchev OV. Continuum Models of Membrane Fusion: Evolution of the Theory. Int J Mol Sci 2020; 21:E3875. [PMID: 32485905 PMCID: PMC7312925 DOI: 10.3390/ijms21113875] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/24/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
Starting from fertilization, through tissue growth, hormone secretion, synaptic transmission, and sometimes morbid events of carcinogenesis and viral infections, membrane fusion regulates the whole life of high organisms. Despite that, a lot of fusion processes still lack well-established models and even a list of main actors. A merger of membranes requires their topological rearrangements controlled by elastic properties of a lipid bilayer. That is why continuum models based on theories of membrane elasticity are actively applied for the construction of physical models of membrane fusion. Started from the view on the membrane as a structureless film with postulated geometry of fusion intermediates, they developed along with experimental and computational techniques to a powerful tool for prediction of the whole process with molecular accuracy. In the present review, focusing on fusion processes occurring in eukaryotic cells, we scrutinize the history of these models, their evolution and complication, as well as open questions and remaining theoretical problems. We show that modern approaches in this field allow continuum models of membrane fusion to stand shoulder to shoulder with molecular dynamics simulations, and provide the deepest understanding of this process in multiple biological systems.
Collapse
Affiliation(s)
- Sergey A. Akimov
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia; (R.J.M.); (P.I.K.); (T.R.G.); (O.V.B.)
| | | | | | | | | |
Collapse
|
32
|
Yeast Flocculin: Methods for Quantitative Analysis of Flocculation in Yeast Cells. Methods Mol Biol 2020. [PMID: 32306350 DOI: 10.1007/978-1-0716-0430-4_42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Flocculation, the clump forming property of yeast, has long been appreciated in breweries and utilized as an off-cost method to enable the reuse of yeast cells. Members of the flocculin protein family were identified as the adherent proteins on the cell surface responsible for flocculation, and their properties have been investigated. Crystal structures of the adhesion domain of flocculins revealed their unique mode of ligand binding where a calcium ion is located in the middle of the interface between flocculin and the interacting sugar. Here we describe the most commonly used flocculation assay. The method is simple and easy, yet it is the most direct and reliable assay to evaluate the flocculation cellular phenotype.
Collapse
|
33
|
Sandi-Monroy NL, Musanovic S, Zhu D, Eibner K, Reeka N, Koglin J, Bundschu K, Gagsteiger F. Blastulation of a zygote to a hatched blastocyst without any clear cell division: an observational finding in a time-lapse system after in vitro fertilization. J Assist Reprod Genet 2020; 37:693-697. [PMID: 32026203 PMCID: PMC7125290 DOI: 10.1007/s10815-020-01704-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/27/2020] [Indexed: 11/30/2022] Open
Abstract
PURPOSE To describe an interesting not previously described morphokinetic finding. METHODS Retrospective case report of a couple undergoing controlled ovarian stimulation (COS) followed by in vitro fertilization and blastocyst transfer. RESULTS We identified a unique finding of blastulation of a fertilized human zygote after conventional in vitro fertilization. The fertilized zygote did not show any clear cytokinesis until approximately 107 h post insemination, when it started dividing into a blastocyst. By 113 h post insemination, inner cell mass and trophectoderm cells could be clearly distinguished and the blastocyst was completely hatched by 136 h post insemination. CONCLUSION Time-lapse systems offer more detailed observations of embryonic development. Here, we report an atypical development of an embryo that was not described previously. We hope to become an insightful discussion among peers and incentive the publication of such findings in the future.
Collapse
Affiliation(s)
- N L Sandi-Monroy
- IVF Laboratory, Kinderwunsch-MVZ Ulm GmbH, Einsteinstrasse 59, 89077, Ulm, Germany.
- NextClinics International GmbH, 86482, Aystetten, Germany.
| | - S Musanovic
- IVF Laboratory, Kinderwunsch-MVZ Ulm GmbH, Einsteinstrasse 59, 89077, Ulm, Germany
- NextClinics International GmbH, 86482, Aystetten, Germany
| | - D Zhu
- IVF Laboratory, Kinderwunsch-MVZ Ulm GmbH, Einsteinstrasse 59, 89077, Ulm, Germany
- NextClinics International GmbH, 86482, Aystetten, Germany
| | - K Eibner
- NextClinics International GmbH, 86482, Aystetten, Germany
- Medical Department, Kinderwunsch-MVZ Ulm GmbH, Einsteinstrasse 59, 89077, Ulm, Germany
| | - N Reeka
- NextClinics International GmbH, 86482, Aystetten, Germany
- Medical Department, Kinderwunsch-MVZ Ulm GmbH, Einsteinstrasse 59, 89077, Ulm, Germany
| | - J Koglin
- NextClinics International GmbH, 86482, Aystetten, Germany
- Medical Department, Kinderwunsch-MVZ Ulm GmbH, Einsteinstrasse 59, 89077, Ulm, Germany
| | - K Bundschu
- Medical Department, Kinderwunsch-MVZ Ulm GmbH, Einsteinstrasse 59, 89077, Ulm, Germany
- Frauenheilkunde und Geburtshilfe, Universitätsklinikum Ulm, Prittwitzstrasse 43, 89075, Ulm, Germany
| | - F Gagsteiger
- NextClinics International GmbH, 86482, Aystetten, Germany
- Medical Department, Kinderwunsch-MVZ Ulm GmbH, Einsteinstrasse 59, 89077, Ulm, Germany
| |
Collapse
|
34
|
Yin L, Hu P, Shi X, Qian W, Zhau HE, Pandol SJ, Lewis MS, Chung LWK, Wang R. Cancer cell's neuroendocrine feature can be acquired through cell-cell fusion during cancer-neural stem cell interaction. Sci Rep 2020; 10:1216. [PMID: 31988304 PMCID: PMC6985266 DOI: 10.1038/s41598-020-58118-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/10/2020] [Indexed: 02/04/2023] Open
Abstract
Advanced and therapy-resistant prostate tumors often display neural or neuroendocrine behavior. We assessed the consequences of prostate cancer cell interaction with neural cells, which are rich in the human prostate and resident of the prostate tumor. In 3-dimensional co-culture with neurospheres, red fluorescent human LNCaP cells formed agglomerates on the neurosphere surface. Upon induced neural differentiation, some red fluorescent cells showed morphology of fully differentiated neural cells, indicating fusion between the cancer and neural stem cells. These fusion hybrids survived for extended times in a quiescent state. A few eventually restarted cell division and propagated to form derivative hybrid progenies. Clones of the hybrid progenies were highly heterogeneous; most had lost prostatic and epithelial markers while some had acquired neural marker expression. These results indicate that cancer cells can fuse with bystander neural cells in the tumor microenvironment; and cancer cell fusion is a direct route to tumor cell heterogeneity.
Collapse
Affiliation(s)
- Liyuan Yin
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Uro-Oncology Research, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Peizhen Hu
- Uro-Oncology Research, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xianping Shi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Weiping Qian
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Haiyen E Zhau
- Uro-Oncology Research, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephen J Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael S Lewis
- Department of Pathology, Greater Los Angeles Veterans Affairs Health System, Los Angeles, CA, USA
| | - Leland W K Chung
- Uro-Oncology Research, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ruoxiang Wang
- Uro-Oncology Research, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Pathology, Greater Los Angeles Veterans Affairs Health System, Los Angeles, CA, USA.
| |
Collapse
|
35
|
Coudert AE, Redelsperger F, Chabbi-Achengli Y, Vernochet C, Marty C, Decrouy X, Heidmann T, de Vernejoul MC, Dupressoir A. Role of the captured retroviral envelope syncytin-B gene in the fusion of osteoclast and giant cell precursors and in bone resorption, analyzed ex vivo and in vivo in syncytin-B knockout mice. Bone Rep 2019; 11:100214. [PMID: 31360740 PMCID: PMC6637224 DOI: 10.1016/j.bonr.2019.100214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/09/2019] [Indexed: 12/23/2022] Open
Abstract
Syncytin-A and -B are envelope genes of retroviral origin that have been captured in evolution for a role in placentation. They trigger cell-cell fusion and were shown to be essential for the formation of the syncytiotrophoblast layer during mouse placenta formation. Syncytin-A and -B expression has been described in other tissues and their highly fusogenic properties suggested that they might be involved in the fusion of other cell types. Here, taking advantage of mice knocked out for syncytin-B, SynB-/- mice, we investigated the potential role of syncytin-B in the fusion of cells from the monocyte/macrophage lineage into multinucleated osteoclasts (OCs) -in bone- or multinucleated giant cells -in soft tissues. In ex vivo experiments, a significant reduction in fusion index and in the number of multinucleated OCs and giant cells was observed as soon as Day3 in SynB-/- as compared to wild-type cell cultures. Interestingly, the number of nuclei per multinucleated OC or giant cell remained unchanged. These results, together with the demonstration that syncytin-B expression is maximal in the first 2 days of OC differentiation, argue for syncytin-B playing a role in the fusion of OC and giant cell mononucleated precursors, at initial stages. Finally, ex vivo, the observed reduction in multinucleated OC number had no impact on the expression of OC differentiation markers, and a dentin resorption assay did not evidence any difference in the osteoclastic resorption activity, suggesting that syncytin-B is not required for OC activity. In vivo, syncytin-B was found to be expressed in the periosteum of embryos at embryonic day 16.5, where TRAP-positive cells were observed. Yet, in adults, no significant reduction in OC number or alteration in bone phenotype was observed in SynB-/- mice. In addition, SynB-/- mice did not show any change in the number of foreign body giant cells (FBGCs) that formed in response to implantation of foreign material, as compared to wild-type mice. Altogether the results suggest that in addition to its essential role in placenta formation, syncytin-B plays a role in OCs and macrophage fusion; yet it is not essential in vivo for OC and FBGC formation, or maintenance of bone homeostasis, at least under the conditions tested.
Collapse
Affiliation(s)
- Amélie E Coudert
- BIOSCAR, Unité Mixte de Recherche 1132, Institut National de la Santé et de la Recherche Médicale, Hôpital Lariboisière, Paris 75010, France.,Laboratoire de Physiopathologie Orale Moléculaire, INSERM U1138, Centre de recherche des Cordeliers, UFR d'Odontologie Garancire, Université Paris Diderot, Paris 75006, France
| | - François Redelsperger
- Unité Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, Unité Mixte de Recherche 9196, Centre National de la Recherche Scientifique, Gustave Roussy, Villejuif, 94805, and Université Paris-Sud, Orsay, 91405, France
| | - Yasmine Chabbi-Achengli
- BIOSCAR, Unité Mixte de Recherche 1132, Institut National de la Santé et de la Recherche Médicale, Hôpital Lariboisière, Paris 75010, France
| | - Cécile Vernochet
- Unité Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, Unité Mixte de Recherche 9196, Centre National de la Recherche Scientifique, Gustave Roussy, Villejuif, 94805, and Université Paris-Sud, Orsay, 91405, France
| | - Caroline Marty
- BIOSCAR, Unité Mixte de Recherche 1132, Institut National de la Santé et de la Recherche Médicale, Hôpital Lariboisière, Paris 75010, France
| | - Xavier Decrouy
- Inserm, U955, Plateforme d'imagerie, Créteil, 9400, France and Université Paris Est, Faculté de médecine, Créteil, 94000, France
| | - Thierry Heidmann
- Unité Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, Unité Mixte de Recherche 9196, Centre National de la Recherche Scientifique, Gustave Roussy, Villejuif, 94805, and Université Paris-Sud, Orsay, 91405, France
| | - Marie-Christine de Vernejoul
- BIOSCAR, Unité Mixte de Recherche 1132, Institut National de la Santé et de la Recherche Médicale, Hôpital Lariboisière, Paris 75010, France
| | - Anne Dupressoir
- Unité Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, Unité Mixte de Recherche 9196, Centre National de la Recherche Scientifique, Gustave Roussy, Villejuif, 94805, and Université Paris-Sud, Orsay, 91405, France
| |
Collapse
|
36
|
MiR-34b-5p Mediates the Proliferation and Differentiation of Myoblasts by Targeting IGFBP2. Cells 2019; 8:cells8040360. [PMID: 30999686 PMCID: PMC6523632 DOI: 10.3390/cells8040360] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/11/2019] [Accepted: 04/14/2019] [Indexed: 12/12/2022] Open
Abstract
As key post-transcriptional regulators, microRNAs (miRNAs) play an indispensable role in skeletal muscle development. Our previous study suggested that miR-34b-5p and IGFBP2 could have a potential role in skeletal muscle growth. Our goal in this study is to explore the function and regulatory mechanism of miR-34b-5p and IGFBP2 in myogenesis. In this study, the dual-luciferase reporter assay and Western blot analysis showed that IGFBP2 is a direct target of miR-34b-5p. Flow cytometric analysis and EdU assay showed that miR-34b-5p could repress the cell cycle progression of myoblasts, and miR-34b-5p could promote the formation of myotubes by promoting the expression of MyHC. On the contrary, the overexpression of IGFBP2 significantly facilitated the proliferation of myoblasts and hampered the formation of myotubes. Together, our results indicate that miR-34b-5p could mediate the proliferation and differentiation of myoblasts by targeting IGFBP2.
Collapse
|
37
|
Podolnikova NP, Hlavackova M, Wu Y, Yakubenko VP, Faust J, Balabiyev A, Wang X, Ugarova TP. Interaction between the integrin Mac-1 and signal regulatory protein α (SIRPα) mediates fusion in heterologous cells. J Biol Chem 2019; 294:7833-7849. [PMID: 30910815 DOI: 10.1074/jbc.ra118.006314] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/15/2019] [Indexed: 12/11/2022] Open
Abstract
Macrophage fusion leading to the formation of multinucleated giant cells is a hallmark of chronic inflammation. Several membrane proteins have been implicated in mediating cell-cell attachment during fusion, but their binding partners remain unknown. Recently, we demonstrated that interleukin-4 (IL-4)-induced fusion of mouse macrophages depends on the integrin macrophage antigen 1 (Mac-1). Surprisingly, the genetic deficiency of intercellular adhesion molecule 1 (ICAM-1), an established ligand of Mac-1, did not impair macrophage fusion, suggesting the involvement of other counter-receptors. Here, using various approaches, including signal regulatory protein α (SIRPα) knockdown, recombinant proteins, adhesion and fusion assays, biolayer interferometry, and peptide libraries, we show that SIRPα, which, similar to ICAM-1, belongs to the Ig superfamily and has previously been implicated in cell fusion, interacts with Mac-1. The following results support the conclusion that SIRPα is a ligand of Mac-1: (a) recombinant ectodomain of SIRPα supports adhesion of Mac-1-expressing cells; (b) Mac-1-SIRPα interaction is mediated through the ligand-binding αMI-domain of Mac-1; (c) recognition of SIRPα by the αMI-domain conforms to general principles governing binding of Mac-1 to many of its ligands; (d) SIRPα reportedly binds CD47; however, anti-CD47 function-blocking mAb produced only a limited inhibition of macrophage adhesion to SIRPα; and (e) co-culturing of SIRPα- and Mac-1-expressing HEK293 cells resulted in the formation of multinucleated cells. Taken together, these results identify SIRPα as a counter-receptor for Mac-1 and suggest that the Mac-1-SIRPα interaction may be involved in macrophage fusion.
Collapse
Affiliation(s)
- Nataly P Podolnikova
- From the Center for Metabolic and Vascular Biology, School of Life Sciences, and
| | - Marketa Hlavackova
- From the Center for Metabolic and Vascular Biology, School of Life Sciences, and
| | - Yifei Wu
- From the Center for Metabolic and Vascular Biology, School of Life Sciences, and
| | - Valentin P Yakubenko
- the College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614
| | - James Faust
- From the Center for Metabolic and Vascular Biology, School of Life Sciences, and
| | - Arnat Balabiyev
- From the Center for Metabolic and Vascular Biology, School of Life Sciences, and
| | - Xu Wang
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287 and
| | - Tatiana P Ugarova
- From the Center for Metabolic and Vascular Biology, School of Life Sciences, and
| |
Collapse
|
38
|
Chuang MC, Lin SS, Ohniwa RL, Lee GH, Su YA, Chang YC, Tang MJ, Liu YW. Tks5 and Dynamin-2 enhance actin bundle rigidity in invadosomes to promote myoblast fusion. J Cell Biol 2019; 218:1670-1685. [PMID: 30894403 PMCID: PMC6504888 DOI: 10.1083/jcb.201809161] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/22/2019] [Accepted: 03/04/2019] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle development requires the cell-cell fusion of differentiated myoblasts to form muscle fibers. The actin cytoskeleton is known to be the main driving force for myoblast fusion; however, how actin is organized to direct intercellular fusion remains unclear. Here we show that an actin- and dynamin-2-enriched protrusive structure, the invadosome, is required for the fusion process of myogenesis. Upon differentiation, myoblasts acquire the ability to form invadosomes through isoform switching of a critical invadosome scaffold protein, Tks5. Tks5 directly interacts with and recruits dynamin-2 to the invadosome and regulates its assembly around actin filaments to strengthen the stiffness of dynamin-actin bundles and invadosomes. These findings provide a mechanistic framework for the acquisition of myogenic fusion machinery during myogenesis and reveal a novel structural function for Tks5 and dynamin-2 in organizing actin filaments in the invadosome to drive membrane fusion.
Collapse
Affiliation(s)
- Mei-Chun Chuang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shan-Shan Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ryosuke L Ohniwa
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Center for Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Gang-Hui Lee
- International Center of Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - You-An Su
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Chen Chang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Jer Tang
- International Center of Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan.,Department of Physiology, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Wen Liu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan .,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
39
|
Luo B, Tian L, Chen N, Ramakrishna S, Thakor N, Yang IH. Electrospun nanofibers facilitate better alignment, differentiation, and long-term culture in an in vitro model of the neuromuscular junction (NMJ). Biomater Sci 2019; 6:3262-3272. [PMID: 30402630 DOI: 10.1039/c8bm00720a] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The neuromuscular junction (NMJ) is a specialized synapse between motor neurons and the muscle fibers they innervate. Due to the complexity of various signalling molecules and pathways, in vivo NMJs are difficult to study. Therefore, in vitro motor neuron-muscle co-culture plays a pivotal role in studying the mechanisms of NMJ formation associated with neurodegenerative diseases. There is a growing need to develop novel methodologies that can be used to develop long-term cultures of NMJs. To date, there have been few studies on NMJ development and long-term maintenance of the system, which is also the main challenge for the current in vitro models of NMJs. In this study, we demonstrate a long-term co-culture system of primary embryonic motor neurons from Sprague-Dawley rats and C2C12 cells on both random and aligned electrospun polylactic acid (PLA) nanofibrous scaffolds. This is the first study to explore the role of electrospun nanofibers in the long-term maintenance of NMJs. PLA nanofibrous scaffolds provide better contact guidance for C2C12 cells aligning along the fibers, thus guiding myotube formation. We can only maintain the co-culture system on a conventional glass substrate for 2 weeks, whilst 55% and 70% of the cells still survived on random and aligned PLA substrates after 7 weeks. Our nanofiber-based long-term co-culture system is used as an important tool for the fundamental research of NMJs.
Collapse
Affiliation(s)
- Baiwen Luo
- Singapore Institute for Neurotechnology, National University of Singapore, 28 Medical Drive, #05-COR, Singapore 119077. inhong.yang.@ku.ac.ae
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Whole-genome and centrosome duplication as a consequence of cytokinesis failure can drive tumorigenesis in experimental model systems. However, whether cytokinesis failure is in fact an important cause of human cancers has remained unclear. In this Review, we summarize evidence that whole-genome-doubling events are frequently observed in human cancers and discuss the contribution that cytokinesis defects can make to tumorigenesis. We provide an overview of the potential causes of cytokinesis failure and discuss how tetraploid cells that are generated through cytokinesis defects are used in cancer as a transitory state on the route to aneuploidy. Finally, we discuss how cytokinesis defects can facilitate genetic diversification within the tumour to promote cancer development and could constitute the path of least resistance in tumour evolution.
Collapse
Affiliation(s)
- Susanne M A Lens
- Oncode Institute, Utrecht, Netherlands.
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.
| | - René H Medema
- Oncode Institute, Utrecht, Netherlands.
- Division of Cell Biology and Cancer Genomics Center, The Netherlands Cancer Institute, Amsterdam, Netherlands.
| |
Collapse
|
41
|
Liu Y, Fan X, Wang R, Lu X, Dang YL, Wang H, Lin HY, Zhu C, Ge H, Cross JC, Wang H. Single-cell RNA-seq reveals the diversity of trophoblast subtypes and patterns of differentiation in the human placenta. Cell Res 2018; 28:819-832. [PMID: 30042384 PMCID: PMC6082907 DOI: 10.1038/s41422-018-0066-y] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/13/2018] [Accepted: 06/20/2018] [Indexed: 12/12/2022] Open
Abstract
The placenta is crucial for a successful pregnancy and the health of both the fetus and the pregnant woman. However, how the human trophoblast lineage is regulated, including the categorization of the placental cell subtypes is poorly understood. Here we performed single-cell RNA sequencing (RNA-seq) on sorted placental cells from first- and second-trimester human placentas. New subtypes of cells of the known cytotrophoblast cells (CTBs), extravillous trophoblast cells (EVTs), Hofbauer cells, and mesenchymal stromal cells were identified and cell-type-specific gene signatures were defined. Functionally, this study revealed many previously unknown functions of the human placenta. Notably, 102 polypeptide hormone genes were found to be expressed by various subtypes of placental cells, which suggests a complex and significant role of these hormones in regulating fetal growth and adaptations of maternal physiology to pregnancy. These results document human placental trophoblast differentiation at single-cell resolution and thus advance our understanding of human placentation during the early stage of pregnancy.
Collapse
Affiliation(s)
- Yawei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Xiaoying Fan
- Biomedical Pioneering Innovation Center, College of Life Science, Peking University, 100871, Beijing, China
| | - Rui Wang
- Biomedical Pioneering Innovation Center, College of Life Science, Peking University, 100871, Beijing, China
| | - Xiaoyin Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.,Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yan-Li Dang
- Department of Obstetrics and Gynecology, The 306th Hospital of PLA, 100101, Beijing, China
| | - Huiying Wang
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital, 100038, Beijing, China
| | - Hai-Yan Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Cheng Zhu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Hao Ge
- Biomedical Pioneering Innovation Center, College of Life Science, Peking University, 100871, Beijing, China
| | - James C Cross
- Departments of Biochemistry and Molecular Biology, Comparative Biology and Experimental Medicine, Obstetrics and Gynecology, and Medical Genetics, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
42
|
Li B, Yu F, Wu F, Wang K, Lou F, Zhang D, Liao X, Yin B, Wang C, Ye L. Visual Osteoclast Fusion via A Fluorescence Method. Sci Rep 2018; 8:10184. [PMID: 29977065 PMCID: PMC6033910 DOI: 10.1038/s41598-018-28205-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/13/2018] [Indexed: 02/05/2023] Open
Abstract
Osteoclasts are multinucleated giant cells. Fusion is an essential element in the formation of osteoclasts. However, the exact cellular events and mechanisms remain largely unknown because of limited and insufficient methods for observing fusion process. In this work, a fluorescence reporter strategy was established to monitor osteoclast fusion. After fusing with cells expressing Cre recombinase, those cells with double fluorescence switch its expression from red to green fluorescent protein. The effect of RANKL and PTH on osteoclast fusion were both quantitatively and visually detected utilizing this strategy. Furthermore, a combination of this strategy with a technique of fluorescence-activated cell sorting revealed two different populations of fused osteoclasts, tdTomato+ GFP+ cells (TG cells) and GFP+ cells (G cells). The results argue for the potential of combining this technique with other bio-technologies to gain more information about osteoclast fusion. Overall, these data demonstrated that this visual fluorescence switch strategy is useful for further analysis of osteoclast fusion mechanisms.
Collapse
Affiliation(s)
- Boer Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Fanzi Wu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ke Wang
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, 75246, TX, USA
| | - Feng Lou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xueyang Liao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bei Yin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
43
|
Gardner JM, Abrams CF. Lipid flip-flop vs. lateral diffusion in the relaxation of hemifusion diaphragms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1452-1459. [DOI: 10.1016/j.bbamem.2018.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/29/2018] [Accepted: 04/17/2018] [Indexed: 10/17/2022]
|
44
|
Gardner JM, Abrams CF. Rate of hemifusion diaphragm dissipation and ability to form three-junction bound HD determined by lipid composition. J Chem Phys 2018; 147:134903. [PMID: 28987088 DOI: 10.1063/1.4994320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Though the hemifusion diaphragm (HD) is widely accepted as an intermediate in bilayer membrane fusion, lipid contributions toward HD stability and dynamics are still not fully understood. In this paper, we study large, binary, protein-free HD systems at varying compositions of negative intrinsic curvature (NIC) lipids using molecular dynamics (MD) simulations of a solvent-free coarse-grained lipid model. Under MD, initially created HDs are found to relax to three major end states depending on the composition and lipid intrinsic curvature. Low compositions of NIC lipids or weak intrinsic curvature result in double-bilayer end states, and moderate compositions of moderate to strong NIC lipids result in metastable fusion pores. Importantly, high compositions of moderate NIC lipids result in a metastable HD that persists beyond μs time scales. NIC lipids stabilize the HD by filling the junction core around the HD. Sorting of NIC lipids toward the three-junction region occurs in fused-endpoint systems, but no significant sorting was seen in systems that end in a double bilayer indicating that high line tension at the triple junction drives HD dissipation faster than sorting can enrich that junction enough to lower that line tension. The appearance of three end states dependent on the NIC lipid composition highlights the necessity of NIC lipids for non-leaky fusion.
Collapse
Affiliation(s)
- Jasmine M Gardner
- Department of Chemical and Biological Engineering, Drexel University, 3141 Chestnut St., Philadelphia, Pennsylvania 19104, USA
| | - Cameron F Abrams
- Department of Chemical and Biological Engineering, Drexel University, 3141 Chestnut St., Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
45
|
Pereira M, Petretto E, Gordon S, Bassett JHD, Williams GR, Behmoaras J. Common signalling pathways in macrophage and osteoclast multinucleation. J Cell Sci 2018; 131:131/11/jcs216267. [PMID: 29871956 DOI: 10.1242/jcs.216267] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Macrophage cell fusion and multinucleation are fundamental processes in the formation of multinucleated giant cells (MGCs) in chronic inflammatory disease and osteoclasts in the regulation of bone mass. However, this basic cell phenomenon is poorly understood despite its pathophysiological relevance. Granulomas containing multinucleated giant cells are seen in a wide variety of complex inflammatory disorders, as well as in infectious diseases. Dysregulation of osteoclastic bone resorption underlies the pathogenesis of osteoporosis and malignant osteolytic bone disease. Recent reports have shown that the formation of multinucleated giant cells and osteoclast fusion display a common molecular signature, suggesting shared genetic determinants. In this Review, we describe the background of cell-cell fusion and the similar origin of macrophages and osteoclasts. We specifically focus on the common pathways involved in osteoclast and MGC fusion. We also highlight potential approaches that could help to unravel the core mechanisms underlying bone and granulomatous disorders in humans.
Collapse
Affiliation(s)
- Marie Pereira
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK
| | - Enrico Petretto
- Duke-NUS Medical School, Singapore 169857, Republic of Singapore
| | - Siamon Gordon
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City 33302, Taiwan.,Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Jacques Behmoaras
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK
| |
Collapse
|
46
|
Wang Y, Galli M, Shade Silver A, Lee W, Song Y, Mei Y, Bachus C, Glogauer M, McCulloch CA. IL1β and TNFα promote RANKL-dependent adseverin expression and osteoclastogenesis. J Cell Sci 2018; 131:jcs.213967. [PMID: 29724913 DOI: 10.1242/jcs.213967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/23/2018] [Indexed: 12/20/2022] Open
Abstract
Adseverin is an actin-binding protein involved in osteoclastogenesis, but its role in inflammation-induced bone loss is not well-defined. Here, we examined whether IL1β and TNFα regulate adseverin expression to control osteoclastogenesis in mouse primary monocytes and RAW264.7 cells. Adseverin was colocalized with subcortical actin filaments and was enriched in the fusopods of fusing cells. In precursor cells, adseverin overexpression boosted the formation of RANKL-induced multinucleated cells. Both IL1β and TNFα enhanced RANKL-dependent TRAcP activity by 1.6-fold and multinucleated cell formation (cells with ≥3 nuclei) by 2.6- and 3.3-fold, respectively. However, IL1β and TNFα did not enhance osteoclast formation in adseverin-knockdown cells. RANKL-dependent adseverin expression in bone marrow cells was increased by both IL1β (5.4-fold) and TNFα (3.3-fold). Luciferase assays demonstrated that this expression involved transcriptional regulation of the adseverin promoter. Activation of the promoter was restricted to a 1118 bp sequence containing an NF-κB binding site, upstream of the transcription start site. TNFα also promoted RANKL-induced osteoclast precursor cell migration. We conclude that IL1β and TNFα enhance RANKL-dependent expression of adseverin, which contributes to fusion processes in osteoclastogenesis.
Collapse
Affiliation(s)
- Yongqiang Wang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Matthew Galli
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Alexandra Shade Silver
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Wilson Lee
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Yushan Song
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Yixue Mei
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Carly Bachus
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Michael Glogauer
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Christopher A McCulloch
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| |
Collapse
|
47
|
Akimov SA, Polynkin MA, Jiménez-Munguía I, Pavlov KV, Batishchev OV. Phosphatidylcholine Membrane Fusion Is pH-Dependent. Int J Mol Sci 2018; 19:ijms19051358. [PMID: 29751591 PMCID: PMC5983597 DOI: 10.3390/ijms19051358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Membrane fusion mediates multiple vital processes in cell life. Specialized proteins mediate the fusion process, and a substantial part of their energy is used for topological rearrangement of the membrane lipid matrix. Therefore, the elastic parameters of lipid bilayers are of crucial importance for fusion processes and for determination of the energy barriers that have to be crossed for the process to take place. In the case of fusion of enveloped viruses (e.g., influenza) with endosomal membrane, the interacting membranes are in an acidic environment, which can affect the membrane’s mechanical properties. This factor is often neglected in the analysis of virus-induced membrane fusion. In the present work, we demonstrate that even for membranes composed of zwitterionic lipids, changes of the environmental pH in the physiologically relevant range of 4.0 to 7.5 can affect the rate of the membrane fusion notably. Using a continual model, we demonstrated that the key factor defining the height of the energy barrier is the spontaneous curvature of the lipid monolayer. Changes of this parameter are likely to be caused by rearrangements of the polar part of lipid molecules in response to changes of the pH of the aqueous solution bathing the membrane.
Collapse
Affiliation(s)
- Sergey A Akimov
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia.
- Department of Theoretical Physics and Quantum Technologies, National University of Science and Technology "MISiS", 4 Leninskiy Prospekt, 119049 Moscow, Russia.
| | - Michael A Polynkin
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia.
| | - Irene Jiménez-Munguía
- Department of Engineering of Technological Equipment, National University of Science and Technology "MISiS", 4 Leninskiy Prospekt, 119049 Moscow, Russia.
| | - Konstantin V Pavlov
- Laboratory of Electrophysiology, Federal Clinical Center of Physical-Chemical Medicine of FMBA, 1a Malaya Pirogovskaya Street, 119435 Moscow, Russia.
| | - Oleg V Batishchev
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia.
- Department of Physics of Living Systems, Moscow Institute of Physics and Technology (State University), 9 Institutskiy Lane, 141700 Dolgoprudniy Moscow Region, Russia.
| |
Collapse
|
48
|
Curto MÁ, Moro S, Yanguas F, Gutiérrez-González C, Valdivieso MH. The ancient claudin Dni2 facilitates yeast cell fusion by compartmentalizing Dni1 into a membrane subdomain. Cell Mol Life Sci 2018; 75:1687-1706. [PMID: 29134248 PMCID: PMC11105288 DOI: 10.1007/s00018-017-2709-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 10/10/2017] [Accepted: 11/03/2017] [Indexed: 12/20/2022]
Abstract
Dni1 and Dni2 facilitate cell fusion during mating. Here, we show that these proteins are interdependent for their localization in a plasma membrane subdomain, which we have termed the mating fusion domain. Dni1 compartmentation in the domain is required for cell fusion. The contribution of actin, sterol-dependent membrane organization, and Dni2 to this compartmentation was analysed, and the results showed that Dni2 plays the most relevant role in the process. In turn, the Dni2 exit from the endoplasmic reticulum depends on Dni1. These proteins share the presence of a cysteine motif in their first extracellular loop related to the claudin GLWxxC(8-10 aa)C signature motif. Structure-function analyses show that mutating each Dni1 conserved cysteine has mild effects, and that only simultaneous elimination of several cysteines leads to a mating defect. On the contrary, eliminating each single cysteine and the C-terminal tail in Dni2 abrogates Dni1 compartmentation and cell fusion. Sequence alignments show that claudin trans-membrane helixes bear small-XXX-small motifs at conserved positions. The fourth Dni2 trans-membrane helix tends to form homo-oligomers in Escherichia plasma membrane, and two concatenated small-XXX-small motifs are required for efficient oligomerization and for Dni2 export from the yeast endoplasmic reticulum. Together, our results strongly suggest that Dni2 is an ancient claudin that blocks Dni1 diffusion from the intercellular region where two plasma membranes are in close proximity, and that this function is required for Dni1 to facilitate cell fusion.
Collapse
Affiliation(s)
- M-Ángeles Curto
- Departamento de Microbiología y Genética, Universidad de Salamanca, Calle Zacarías González 2, Lab P1.1, Edificio IBFG, 37007, Salamanca, Spain
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Calle Zacarías González 2, 37007, Salamanca, Spain
| | - Sandra Moro
- Departamento de Microbiología y Genética, Universidad de Salamanca, Calle Zacarías González 2, Lab P1.1, Edificio IBFG, 37007, Salamanca, Spain
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Calle Zacarías González 2, 37007, Salamanca, Spain
| | - Francisco Yanguas
- Departamento de Microbiología y Genética, Universidad de Salamanca, Calle Zacarías González 2, Lab P1.1, Edificio IBFG, 37007, Salamanca, Spain
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Calle Zacarías González 2, 37007, Salamanca, Spain
| | - Carmen Gutiérrez-González
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Calle Zacarías González 2, 37007, Salamanca, Spain
| | - M-Henar Valdivieso
- Departamento de Microbiología y Genética, Universidad de Salamanca, Calle Zacarías González 2, Lab P1.1, Edificio IBFG, 37007, Salamanca, Spain.
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Calle Zacarías González 2, 37007, Salamanca, Spain.
| |
Collapse
|
49
|
Wood FC, Heidari A, Tekle YI. Genetic Evidence for Sexuality in Cochliopodium (Amoebozoa). J Hered 2018; 108:769-779. [PMID: 29036297 PMCID: PMC5892394 DOI: 10.1093/jhered/esx078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 09/18/2017] [Indexed: 12/18/2022] Open
Abstract
Microbial eukaryotes, including amoeboids, display diverse and complex life cycles that may or may not involve sexual reproduction. A recent comprehensive gene inventory study concluded that the Amoebozoa are ancestrally sexual. However, the detection of sex genes in some lineages known for their potentially sexual life cycle was very low. Particularly, the genus Cochliopodium, known to undergo a process of cell fusion, karyogamy, and subsequent fission previously described as parasexual, had no meiosis genes detected. This is likely due to low data representation, given the extensive nuclear fusion observed in the genus. In this study, we generate large amounts of transcriptome data for 2 species of Cochliopodium, known for their high frequency of cellular and nuclear fusion, in order to study the genetic basis of the complex life cycle observed in the genus. We inventory 60 sex-related genes, including 11 meiosis-specific genes, and 31 genes involved in fusion and karyogamy. We find a much higher detection of sex-related genes, including 5 meiosis-specific genes not previously detected in Cochliopodium, in this large transcriptome data. The expressed genes form a near-complete recombination machinery, indicating that Cochliopodium is an actively recombining sexual lineage. We also find 9 fusion-related genes in Cochliopodium, although no conserved fusion-specific genes were detected in the transcriptomes. Cochliopodium thus likely uses lineage specific genes for the fusion and depolyploidization processes. Our results demonstrate that Cochliopodium possess the genetic toolkit for recombination, while the mechanism involving fusion and genome reduction remains to be elucidated.
Collapse
Affiliation(s)
- Fiona C Wood
- Department of Biology, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA 30314
| | - Alireza Heidari
- Department of Biology, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA 30314
| | - Yonas I Tekle
- Department of Biology, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA 30314
| |
Collapse
|
50
|
|