1
|
Xue Y, Yang F, He Y, Wang F, Xia D, Liu Y. Multifunctional Hydrogel with Photothermal ROS Scavenging and Antibacterial Activity Accelerates Diabetic Wound Healing. Adv Healthc Mater 2025:e2402236. [PMID: 39780538 DOI: 10.1002/adhm.202402236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/15/2024] [Indexed: 01/11/2025]
Abstract
Poor diabetic wound healing poses a critical threat to human health. Excessive oxidative stress and increased susceptibility to bacterial infection are key issues that impede diabetic wound healing. Cerium oxide nanoparticles (CeO2 NPs) have attracted increasing attention because of their unique antioxidant and antimicrobial properties. Here, this work designs a near-infrared (NIR) light-responsive gelatin methacryloyl (GelMA)/CeO2/polydopamine (PDA) hydrogel with antibacterial and antioxidant effects. The hydrogel exhibits a stable, efficient, and controllable photothermal conversion capacity under NIR stimulation. The hydrogel can be used to construct a local microenvironment conducive to chronic diabetic wound healing. Significant antibacterial effects of the NIR-responsive GelMA/CeO2/PDA hydrogel on both Escherichia coli (E.coli) and methicillin-resistant Staphylococcus aureus (MRSA) are demonstrated by counting colony-forming units (CFUs) and in bacterial live/dead staining experiments. The strong antioxidant activity of hydrogels is demonstrated by measuring the level of reactive oxygen species (ROS). The effect of the NIR-responsive GelMA/CeO2/PDA hydrogel in terms of promoting diabetic wound healing is validated in full-thickness cutaneous wounds of diabetic rat models. Additionally, this work describes the mechanism by which the NIR-responsive GelMA/CeO2/PDA hydrogel promotes diabetic wound healing; the hydrogel inhibits the interleukin (IL)-17 signaling pathway. This NIR-responsive, multifunctional hydrogel dressing provides a targeted approach to diabetic wound healing.
Collapse
Affiliation(s)
- Yijia Xue
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Fan Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Yunjiao He
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Feilong Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Dandan Xia
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| |
Collapse
|
2
|
Gao Y, Gong B, Chen Z, Song J, Xu N, Weng Z. Damage-Associated Molecular Patterns, a Class of Potential Psoriasis Drug Targets. Int J Mol Sci 2024; 25:771. [PMID: 38255845 PMCID: PMC10815563 DOI: 10.3390/ijms25020771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Psoriasis is a chronic skin disorder that involves both innate and adaptive immune responses in its pathogenesis. Local tissue damage is a hallmark feature of psoriasis and other autoimmune diseases. In psoriasis, damage-associated molecular patterns (DAMPs) released by damaged local tissue act as danger signals and trigger inflammatory responses by recruiting and activating immune cells. They also stimulate the release of pro-inflammatory cytokines and chemokines, which exacerbate the inflammatory response and contribute to disease progression. Recent studies have highlighted the role of DAMPs as key regulators of immune responses involved in the initiation and maintenance of psoriatic inflammation. This review summarizes the current understanding of the immune mechanism of psoriasis, focusing on several important DAMPs and their mechanisms of action. We also discussed the potential of DAMPs as diagnostic and therapeutic targets for psoriasis, offering new insights into the development of more effective treatments for this challenging skin disease.
Collapse
Affiliation(s)
| | | | | | | | - Na Xu
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Y.G.); (B.G.); (Z.C.); (J.S.)
| | - Zhuangfeng Weng
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Y.G.); (B.G.); (Z.C.); (J.S.)
| |
Collapse
|
3
|
Liu K, Zhao D, Zhao H, Yu Y, Yang M, Ma M, Zhang C, Guan F, Yao M. Mild hyperthermia-assisted chitosan hydrogel with photothermal antibacterial property and CAT-like activity for infected wound healing. Int J Biol Macromol 2024; 254:128027. [PMID: 37952801 DOI: 10.1016/j.ijbiomac.2023.128027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Infected wounds pose a serious threat to public health and pose a significant challenge and financial burden worldwide. The treatment of infected wounds is now an urgent problem to be solved. Herein, mild hyperthermia-assisted hydrogels composed of carboxymethyl chitosan (CMCs), oxidized dextran (Odex), epigallocatechin gallate (EGCG) and PtNPs@PVP (CAT-like nanoenzymes) were proposed for the repair of infected wounds. The incorporation of PtNPs@PVP nanoenzymes give the hydrogels excellent photothermal property and CAT-like activity. When the temperature is maintained at 42-45 °C under 808 nm near infrared (NIR) exposure, the CMCs/Odex/EGCG/Nanoenzymes (COEN2) hydrogel demonstrated highly enhanced antibacterial ability (95.9 % in vivo), hydrogen peroxide (H2O2) scavenging ratio (85.1 % in vitro) and oxygen supply (20.7 mg/L in vitro). Furthermore, this mild-heat stimulation also promoted angiogenesis in the damaged skin area. Overall, this multifunctional hydrogel with antibacterial, antioxidant, oxygen supply, hemostasis, and angiogenesis capabilities has shown great promise in the repair of infected wounds. This study establishes the paradigm of enhanced infected wound healing by mild hyperthermia-assisted H2O2 scavenging, oxygen supplemental, and photothermal antibacterial hydrogels.
Collapse
Affiliation(s)
- Kaiyue Liu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Donghui Zhao
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Hua Zhao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Yachao Yu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Mengyu Yang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Mengwen Ma
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Chen Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China.
| | - Minghao Yao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China.
| |
Collapse
|
4
|
Czaja AJ. Introducing Molecular Chaperones into the Causality and Prospective Management of Autoimmune Hepatitis. Dig Dis Sci 2023; 68:4098-4116. [PMID: 37755606 PMCID: PMC10570239 DOI: 10.1007/s10620-023-08118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
Molecular chaperones influence the immunogenicity of peptides and the activation of effector T cells, and their pathogenic roles in autoimmune hepatitis are unclear. Heat shock proteins are pivotal in the processing and presentation of peptides that activate CD8+ T cells. They can also induce regulatory B and T cells and promote immune tolerance. Tapasin and the transporter associated with antigen processing-binding protein influence the editing and loading of high-affinity peptides for presentation by class I molecules of the major histocompatibility complex. Their over-expression could enhance the autoimmune response, and their deficiency could weaken it. The lysosome-associated membrane protein-2a isoform in conjunction with heat shock cognate 70 supports the importation of cytosolic proteins into lysosomes. Chaperone-mediated autophagy can then process the peptides for activation of CD4+ T cells. Over-expression of autophagy in T cells may also eliminate negative regulators of their activity. The human leukocyte antigen B-associated transcript three facilitates the expression of class II peptide receptors, inhibits T cell apoptosis, prevents T cell exhaustion, and sustains the immune response. Immunization with heat shock proteins has induced immune tolerance in experimental models and humans with autoimmune disease by inducing regulatory T cells. Therapeutic manipulation of other molecular chaperones may promote T cell exhaustion and induce tolerogenic dendritic cells. In conclusion, molecular chaperones constitute an under-evaluated family of ancillary proteins that could affect the occurrence, severity, and outcome of autoimmune hepatitis. Clarification of their contributions to the immune mechanisms and clinical activity of autoimmune hepatitis could have therapeutic implications.
Collapse
Affiliation(s)
- Albert J Czaja
- Mayo Clinic College of Medicine and Science, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
5
|
Tukaj S, Sitko K. Heat Shock Protein 90 (Hsp90) and Hsp70 as Potential Therapeutic Targets in Autoimmune Skin Diseases. Biomolecules 2022; 12:biom12081153. [PMID: 36009046 PMCID: PMC9405624 DOI: 10.3390/biom12081153] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 12/22/2022] Open
Abstract
Over a hundred different autoimmune diseases have been described to date, which can affect every organ in the body, including the largest one, the skin. In fact, up to one-fifth of the world's population suffers from chronic, noninfectious inflammatory skin diseases, the development of which is significantly influenced by an autoimmune response. One of the hallmarks of autoimmune diseases is the loss of immune tolerance, which leads to the formation of autoreactive lymphocytes or autoantibodies and, consequently, to chronic inflammation and tissue damage. The treatment of autoimmune skin diseases mainly focuses on immunosuppression (using, e.g., corticosteroids) but almost never leads to the development of permanent mechanisms of immune tolerance. In addition, current therapies and their long-term administration may cause serious adverse effects. Hence, safer and more effective therapies that bring sustained balance between pro- and anti-inflammatory responses are still desired. Both intra- and extracellular heat shock proteins (Hsps), specifically well-characterized inducible Hsp90 and Hsp70 chaperones, have been highlighted as therapeutic targets for autoimmune diseases. This review presents preclinical data on the involvement of Hsp90 and Hsp70 in modulating the immune response, specifically in the context of the treatment of selected autoimmune skin diseases with emphasis on autoimmune bullous skin diseases and psoriasis.
Collapse
|
6
|
Qi X, Tong X, You S, Mao R, Cai E, Pan W, Zhang C, Hu R, Shen J. Mild Hyperthermia-Assisted ROS Scavenging Hydrogels Achieve Diabetic Wound Healing. ACS Macro Lett 2022; 11:861-867. [PMID: 35759676 DOI: 10.1021/acsmacrolett.2c00290] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Excessive reactive oxygen species (ROS) production induces oxidative damage to biomolecules, which can lead to the development of chronic diseases. Biocompatible hydrogel antioxidants composed of natural materials, such as polysaccharides and polyphenols, are of significant option for ROS scavenging. However, rapidly achieving hydrogel antioxidants with convenient, economical, safe, and efficient features remains challenging. Herein, facile synthesis of a physically cross-linked polyphenol/polysaccharide hydrogel by introducing tannic acid microsize particles (TAMP) into a cationic guar gum (CG) matrix is reported. Combining antioxidant/photothermal properties of TAMP and mechanical support from injectable CG, the formulated TAMP/CG is explored for treating diabetic wounds. Both in vitro and in vivo assays verify that TAMP/CG can protect the cells from ROS-induced oxidative damage, which can also be strengthened by the local photothermal heating (42 °C) triggered by near-infrared light. Overall, this study establishes the paradigm of enhanced diabetic wound healing by mild hyperthermia-assisted ROS scavenging hydrogels.
Collapse
Affiliation(s)
- Xiaoliang Qi
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xianqin Tong
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Shengye You
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ruiting Mao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Erya Cai
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Wenhao Pan
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chenhao Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Rongdang Hu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China
| |
Collapse
|
7
|
Rajabi F, Abdollahimajd F, Jabalameli N, Nassiri Kashani M, Firooz A. The Immunogenetics of Alopecia areata. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:19-59. [DOI: 10.1007/978-3-030-92616-8_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Novoselova EG, Glushkova OV, Khrenov MO, Lunin SM, Novoselova TV, Parfenuyk SB. Role of Innate Immunity and Oxidative Stress in the Development of Type 1 Diabetes Mellitus. Peroxiredoxin 6 as a New Anti-Diabetic Agent. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1579-1589. [PMID: 34937537 DOI: 10.1134/s0006297921120075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The review discusses information on the development of type 1 diabetes mellitus (T1D) as a systemic autoimmune and inflammatory disease. Focus of the review is on the role of innate immune system, including activation of some signaling cascades, cytokine response, and activity of the Toll-like receptors in the development of T1D. Dysfunction of innate immunity is the cause of the attack of pancreatic beta cells by the host T-lymphocytes, which leads to the death of pancreatic beta cells that produce insulin. Lack of insulin causes hyperglycemia and the need for lifelong injections of insulin in patients with T1D, which, nevertheless, does not exclude damage to many organs and tissues, given particular vulnerability of the blood vessels under conditions of hyperglycemia. The review discusses the role of oxidative stress as a factor that plays a major role in damage of vascular system and pancreatic tissue during the development of T1D. Considering high sensitivity of pancreatic beta cells to the action of reactive oxygen species (ROS), the possibility of using antioxidants for reducing the level of pathological consequences in the course of T1D development is discussed. New information on anti-diabetic activity of the exogenous antioxidant enzyme peroxiredoxin 6, which is capable of penetrating cells, activating insulin production in beta cells, reducing ROS levels, as well as decreasing activation of some signaling cascades, production of pro-inflammatory cytokines, and expression of Toll-like receptors in beta cells and in immune cells during T1D development is discussed.
Collapse
Affiliation(s)
- Elena G Novoselova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Olga V Glushkova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Maxim O Khrenov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Sergey M Lunin
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Tatyana V Novoselova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Svetlana B Parfenuyk
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
9
|
Yang Y, Xia J, Yang Z, Wu G, Yang J. The abnormal level of HSP70 is related to Treg/Th17 imbalance in PCOS patients. J Ovarian Res 2021; 14:155. [PMID: 34781996 PMCID: PMC8591891 DOI: 10.1186/s13048-021-00867-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/19/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a disease with chronic nonspecific low-grade inflammation. The imbalance of immune cells exists in PCOS. Several studies have found that heat shock protein 70 (HSP70) may be involved in the immunological pathogenesis of PCOS, but the relationship between HSP70 and Regulatory T cell (Treg)/T helper cell 17(Th17) ratio remains unclear. This study aims to explore the correlation between HSP70 and Treg/Th17 ratio and to provide evidence for the role of HSP70 in the immunological etiology of PCOS. RESULTS There was no significant difference in age and body mass index (BMI) between the two groups. The concentrations of basal estradiol (E2), basal follicle-stimulating hormone (FSH) did not show a significant difference between the two groups. The concentrations of basal luteinizing hormone (LH) (P < 0.01), testosterone (T) (P < 0.01), glucose (P < 0.001) and insulin (P < 0.001) in PCOS patients were significantly higher than those in the control group. The protein levels of HSP70 were significantly higher in serum in the PCOS group (P < 0.001). The percentage of Treg cells was significantly lower (P < 0.01), while the percentage of the Th17 cells of the PCOS group was significantly higher than that of the control group (P < 0.05). The ratio of Treg/Th17 in the PCOS group was significantly lower (P < 0.001). The concentrations of Interleukin (IL)-6, IL-17, and IL-23 were significantly higher, while the levels of IL-10 and Transforming growth factor-β (TGF-β) were significantly lower in the PCOS group (P < 0.001). Spearman rank correlation analysis showed a strong negative correlation of serum HSP70 levels with Treg/Th17 ratio, IL-10, and TGF-β levels. In contrast, HSP70 levels were significantly positively correlated with IL-6, IL-17, IL-23, LH, insulin, and glucose levels. CONCLUSION The abnormal level of HSP70 is correlated with Treg/Th17 imbalance and corresponding cytokines, which indicates that HSP70 may play an important role in PCOS immunologic pathogenesis.
Collapse
Affiliation(s)
- Yiqing Yang
- Reproductive Medical Centre, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Clinical Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, People's Republic of China
| | - Jing Xia
- Reproductive Medical Centre, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Clinical Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, People's Republic of China
| | - Zhe Yang
- Reproductive Medical Centre, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Clinical Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, People's Republic of China
| | - Gengxiang Wu
- Reproductive Medical Centre, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China. .,Hubei Clinical Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, People's Republic of China.
| | - Jing Yang
- Reproductive Medical Centre, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China. .,Hubei Clinical Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
10
|
Abstract
Chronic cardiovascular diseases are associated with inflammatory responses within the blood vessels and end organs. The origin of this inflammation has not been certain, and neither is its relationship to disease clear. There is a need to determine whether this association is causal or coincidental to the processes leading to cardiovascular disease. These processes are themselves complex: many cardiovascular diseases arise in conjunction with the presence of sustained elevation of blood pressure. Inflammatory processes have been linked to hypertension, and causality has been suggested. Evidence of causality poses the difficult challenge of linking the integrated and multifaceted biology of blood pressure regulation with vascular function and complex elements of immune system function. These include both, innate and adaptive immunity, as well as interactions between the host immune system and the omnipresent microorganisms that are encountered in the environment and that colonize and exist in commensal relationship with the host. Progress has been made in this task and has drawn on experimental approaches in animals, much of which have focused on hypertension occurring with prolonged infusion of angiotensin II. These laboratory studies are complemented by studies that seek to inform disease mechanism by examining the genomic basis of heritable disease susceptibility in human populations. In this realm too, evidence has emerged that implicates genetic variation affecting immunity in disease pathogenesis. In this article, we survey the genetic and genomic evidence linking high blood pressure and its end-organ injuries to immune system function and examine evidence that genomic factors can influence disease risk. © 2021 American Physiological Society. Compr Physiol 11:1-22, 2021.
Collapse
Affiliation(s)
- Isha S Dhande
- Center for Human Genetics, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Peter A Doris
- Center for Human Genetics, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
11
|
Araki Y, Ida Y, Nonaka M, Yoshizaki Y, Fujii A, Nagano M, Kanouchi H. The Induction of Heat Shock Protein 70 after Oral Administration of Concentrated Brewed Rice Vinegar Kurozu in Mice. J Nutr Sci Vitaminol (Tokyo) 2021; 66:478-480. [PMID: 33132352 DOI: 10.3177/jnsv.66.478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Heat shock protein 70 (HSP70) is induced by various stresses. Since HSP70 has a protein refolding activity and an anti-inflammatory activity, the HSP70 induction will help cells from harmful acute stresses. Feeding a diet containing concentrated brewed rice vinegar Kurozu (CK) diet for 5 wk resulted in an increase of HSP70 in the brains of mice. In the present study, we evaluated whether oral feeding of 25 μL CK induces HSP70 mRNA in brain and other tissues. HSP70 mRNA was significantly increased in the esophagus, small intestine, liver, and brown adipose tissue within 1 h after the oral administration of CK. A weaker induction of HSP70 mRNA was demonstrated in the stomach, large intestine, and brain. HSP70 mRNA induction returned to basal levels within 3 h after feeding. We doubted that the induction of HSP70 mRNA was caused by manual restraint of the mice during CK administration. Manual restraint of the mice did not influence HSP70 mRNA expression in intestine 1 h after these treatments. Our results suggest that transient HSP70 mRNA induction by oral feeding of CK was not caused by retention stress. There are some compounds in CK that increase HSP70 mRNA in various tissues.
Collapse
Affiliation(s)
- Yuri Araki
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University
| | - Yuta Ida
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University
| | - Miwa Nonaka
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University
| | - Yumiko Yoshizaki
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University
| | | | | | | |
Collapse
|
12
|
Khan AU, Khan A, Khan A, Shal B, Aziz A, Ahmed MN, Islam SU, Ali H, Shehzad A, Khan S. Inhibition of NF-κB signaling and HSP70/HSP90 proteins by newly synthesized hydrazide derivatives in arthritis model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1497-1519. [PMID: 33713158 DOI: 10.1007/s00210-021-02075-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 03/01/2021] [Indexed: 01/02/2023]
Abstract
In the current study, the N-benzylidene-4-((2-hydroxynaphthalene-1-yl) diazenyl) hydrazides (NCHDH and NTHDH) were evaluated against the Carrageenan- and CFA-induced models. During the preliminary investigation, the NCHDH and NTHDH treatment showed marked anti-inflammatory and analgesic activity against the Carrageenan-induced acute model. Once the anti-inflammatory activity was established against acute Carrageenan model, the NCHDH and NTHDH were evaluated against the chronic CFA-induced arthritis model. The NCHDH and NTHDH treatment markedly attenuated the inflammatory and analgesic parameters compared to CFA-treated group. Furthermore, the increase in the oxidative stress and attenuation of antioxidant enzymes has been reported following CFA administration. However, NCHDH and NTHDH treatment significantly induced the antioxidants and attenuated the oxidative stress markers. The CFA administration showed marked tailing of DNA; however, the NCHDH- and NTHDH-treated group preserved DNA integrity. Furthermore, the histological studies showed marked alteration in the CFA-treated group; however, the NCHDH and NTHDH treatment markedly improved the histological features. The Western blot, immunohistology, and ELISA assay revealed marked increase in the Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), Jun N-terminal Kinase (JNK), TNF-α, and COX-2 levels; however, the NCHDH and NTHDH attenuated their expressions significantly. Similarly, the NCHDH and NTHDH significantly induced the mRNA expression levels of heat shock proteins. The computational analysis showed significant binding interaction with various protein targets via multiple hydrogens, and hydrophobic bonds. The in vivo pharmacokinetic study was also performed to assess the various pharmacokinetic parameters. In conclusion, the NCHDH and NTHDH treatment showed significant anti-arthritic activity against Carrageenan and CFA models.
Collapse
Affiliation(s)
- Ashraf Ullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Amna Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abdul Aziz
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Pakistan
| | - Muhammad Naeem Ahmed
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Pakistan
| | - Salman Ul Islam
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Hussain Ali
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Adeeb Shehzad
- Department of Biomedical Engineering & Sciences, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences & Technology (NUST), Islamabad, Pakistan
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
13
|
Tukaj S, Mantej J, Sobala M, Potrykus K, Sitko K. Autologous extracellular Hsp70 exerts a dual role in rheumatoid arthritis. Cell Stress Chaperones 2020; 25:1105-1110. [PMID: 32358783 PMCID: PMC7591667 DOI: 10.1007/s12192-020-01114-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 01/22/2023] Open
Abstract
Extracellular heat shock proteins (Hsp) influence the adaptive immune response and may ameliorate pathogenesis of autoimmune diseases. While some preclinical observations suggest that highly conserved bacterial and/or murine Hsp70 peptides have potential utility in treatment of rheumatoid arthritis (RA) via induction of T regulatory cells (Treg), the role of extracellular inducible human Hsp70 in adaptive immune processes requires further investigation. The present study evaluated Hsp70 influence on inflammatory cytokine-mediated modulation of T cell immunophenotype in ways that influence RA onset and severity. Initial experiments in the present investigation revealed that serum levels of Hsp70 are approximately 2-fold higher in RA patients versus healthy control subjects. To explore the effect of extracellular Hsp70 on key processes underlying the adaptive immune system, the effects of a highly pure, substrate-, and endotoxin-free human Hsp70 on polarization of the T helper cell subpopulations, including CD4+IL-17+ (Th17), CD4+FoxP3+ (Treg), CD4+IFN-γ+ (Th1), and CD4+IL-4+ (Th2), were studied in naïve human peripheral blood mononuclear cell (PBMC) cultures stimulated with anti-CD3/28 mAb. Major findings included an observation that while Hsp70 treatment increased Th17 frequencies and Th17/Treg ratio, the frequency of Th1 cells and the Th1/Th2 ratio were significantly decreased in the Hsp70-treated PBMC cultures. Moreover, data shown here provides preliminary suggestion that major contributing Hsp70-mediated immunomodulation includes interleukin 6 (IL-6) influence on Th17/Treg and Th1/Th2, since expression of this inflammatory cytokine is enhanced by in vitro Hsp70 treatment. These results are nevertheless preliminary and require further investigation to validate the above model.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Jagoda Mantej
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Michał Sobala
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Potrykus
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Krzysztof Sitko
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|
14
|
Tukaj S. Heat Shock Protein 70 as a Double Agent Acting Inside and Outside the Cell: Insights into Autoimmunity. Int J Mol Sci 2020; 21:ijms21155298. [PMID: 32722570 PMCID: PMC7432326 DOI: 10.3390/ijms21155298] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Heat shock proteins (Hsp) are a diverse group of constitutive and/or stress-induced molecules that are categorized into several classes on the basis of their molecular weight. Mammalian Hsp have been mostly regarded as intracellular chaperones that mediate a range of essential cellular functions, including proper folding of newly synthesized polypeptides, refolding of denatured proteins, protein transport, and stabilization of native proteins' structures. The well-characterized and highly evolutionarily conserved, stress-inducible 70-kDa heat shock protein (Hsp70), is a key molecular chaperone that is overexpressed in the cell in response to stress of various origin. Hsp70 exhibits an immunosuppressive activity via, e.g., downregulation of the nuclear factor-kappa B (NF-κB) activation, and pharmacological induction of Hsp70 can ameliorate the autoimmune arthritis development in animal models. Moreover, Hsp70 might be passively or actively released from the necrotic or stressed cells, respectively. Highly immunogenic extracellular Hsp70 has been reported to impact both the innate and adaptive immune responses, and to be implicated in the autoimmune reaction. In addition, preclinical studies revealed that immunization with highly conserved Hsp70 peptides could be regarded as a potential treatment target for autoimmune arthritis, such as the rheumatoid arthritis, via induction of antigen-specific regulatory T helper cells (also called Treg). Here, a dual role of the intra- and extracellular Hsp70 is presented in the context of the autoimmune reaction.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| |
Collapse
|
15
|
Novoselova EG, Glushkova OV, Khrenov MO, Parfenyuk SB, Lunin SM, Novoselova TV, Fesenko EE. Participation of Hsp70 and Hsp90α Heat Shock Proteins in Stress Response in the Course of Type 1 Diabetes Mellitus. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2020; 493:124-127. [PMID: 32894426 DOI: 10.1134/s0012496620040079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
The role of two heat shock proteins, Hsp70 and Hsp90α, on stress response in mice with severe diabetes mellitus induced by a high dose of alloxan (500 mg/kg body weight), as well as in RIN-m5F β cells cultured in the presence of cytokines (IL-1 and TNF-α) was studied. Our results showed that severe type 1 diabetes mellitus (T1D) caused a higher expression of Hsp90α, but not Hsp70. Moreover, injections of the peroxiredoxin 6 antioxidant enzyme (PRDX6) did not affect the expression of these chaperones. Conversely, pro-inflammatory cytokines added to β-cells caused a significant increase in the expression of Hsp90α and, substantially, Hsp70. Moreover, cells cultivated in the presence of PRDX6 were more susceptible to the cytokine effect. Thus, in the course of severe alloxan-induced T1D, no protective role of the heat shock proteins, was revealed, and their expression level was not increased by PRDX6. At the same time the protective potential of these proteins was shown in vitro with the use of RIN-m5F β cells. Thus, the system of heat shock proteins was unable to prevent the devastating effects of severe T1D accompanied by high animal mortality.
Collapse
Affiliation(s)
- E G Novoselova
- Institute of Cell Biophysics, Russian Academy of Sciences, Moscow, Russia.
| | - O V Glushkova
- Institute of Cell Biophysics, Russian Academy of Sciences, Moscow, Russia
| | - M O Khrenov
- Institute of Cell Biophysics, Russian Academy of Sciences, Moscow, Russia
| | - S B Parfenyuk
- Institute of Cell Biophysics, Russian Academy of Sciences, Moscow, Russia
| | - S M Lunin
- Institute of Cell Biophysics, Russian Academy of Sciences, Moscow, Russia
| | - T V Novoselova
- Institute of Cell Biophysics, Russian Academy of Sciences, Moscow, Russia
| | - E E Fesenko
- Institute of Cell Biophysics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
16
|
Lettini G, Pietrafesa M, Lepore S, Maddalena F, Crispo F, Sgambato A, Esposito F, Landriscina M. Heat shock proteins in thyroid malignancies: Potential therapeutic targets for poorly-differentiated and anaplastic tumours? Mol Cell Endocrinol 2020; 502:110676. [PMID: 31812782 DOI: 10.1016/j.mce.2019.110676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/31/2022]
Abstract
Thyroid cancer is the most common endocrine malignancy, with well-differentiated subtypes characterized by an excellent prognosis due to their optimal sensitivity to standard therapies whereas poorly differentiated and anaplastic tumours by chemo/radio-resistance and unfavourable outcome. Heat Shock Proteins (HSPs) are molecular chaperones overexpressed in thyroid malignancies and involved in crucial functions responsible for thyroid carcinogenesis, as protection from apoptosis, drug resistance and cell migration. Thus, HSPs inhibitors have been proposed as novel therapeutic agents in thyroid cancer to revert molecular mechanisms of tumour progression. In this review, we report an overview on the biological role of HSPs, and specifically HSP90s, in thyroid cancer and their potential involvement as biomarkers. We discuss the rationale to evaluate HSPs inhibitors as innovative anticancer agents in specific subtypes of thyroid cancer characterized by poor response to therapies with the objective to target single family chaperones to reduce, simultaneously, the expression/stability of multiple client proteins.
Collapse
Affiliation(s)
- Giacomo Lettini
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Michele Pietrafesa
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Silvia Lepore
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Francesca Maddalena
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Fabiana Crispo
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Alessandro Sgambato
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Napoli Federico II, Naples, Italy.
| | - Matteo Landriscina
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy; Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| |
Collapse
|
17
|
Sandner G, Mueller AS, Zhou X, Stadlbauer V, Schwarzinger B, Schwarzinger C, Wenzel U, Maenner K, van der Klis JD, Hirtenlehner S, Aumiller T, Weghuber J. Ginseng Extract Ameliorates the Negative Physiological Effects of Heat Stress by Supporting Heat Shock Response and Improving Intestinal Barrier Integrity: Evidence from Studies with Heat-Stressed Caco-2 Cells, C. elegans and Growing Broilers. Molecules 2020; 25:E835. [PMID: 32075045 PMCID: PMC7070719 DOI: 10.3390/molecules25040835] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/15/2022] Open
Abstract
Climatic changes and heat stress have become a great challenge in the livestock industry, negatively affecting, in particular, poultry feed intake and intestinal barrier malfunction. Recently, phytogenic feed additives were applied to reduce heat stress effects on animal farming. Here, we investigated the effects of ginseng extract using various in vitro and in vivo experiments. Quantitative real-time PCR, transepithelial electrical resistance measurements and survival assays under heat stress conditions were carried out in various model systems, including Caco-2 cells, Caenorhabditis elegans and jejunum samples of broilers. Under heat stress conditions, ginseng treatment lowered the expression of HSPA1A (Caco-2) and the heat shock protein genes hsp-1 and hsp-16.2 (both in C. elegans), while all three of the tested genes encoding tight junction proteins, CLDN3, OCLN and CLDN1 (Caco-2), were upregulated. In addition, we observed prolonged survival under heat stress in Caenorhabditis elegans, and a better performance of growing ginseng-fed broilers by the increased gene expression of selected heat shock and tight junction proteins. The presence of ginseng extract resulted in a reduced decrease in transepithelial resistance under heat shock conditions. Finally, LC-MS analysis was performed to quantitate the most prominent ginsenosides in the extract used for this study, being Re, Rg1, Rc, Rb2 and Rd. In conclusion, ginseng extract was found to be a suitable feed additive in animal nutrition to reduce the negative physiological effects caused by heat stress.
Collapse
Affiliation(s)
- Georg Sandner
- School of Engineering and Environmental Sciences, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, Wels 4600, Austria; (G.S.); (V.S.); (B.S.)
| | - Andreas S. Mueller
- Delacon Biotechnik GmbH, Weissenwolffstraße 14, Steyregg 4221, Austria; (X.Z.); (J.D.v.d.K.); (S.H.); (T.A.)
| | - Xiaodan Zhou
- Delacon Biotechnik GmbH, Weissenwolffstraße 14, Steyregg 4221, Austria; (X.Z.); (J.D.v.d.K.); (S.H.); (T.A.)
| | - Verena Stadlbauer
- School of Engineering and Environmental Sciences, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, Wels 4600, Austria; (G.S.); (V.S.); (B.S.)
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1C, Tulln 3430, Austria
| | - Bettina Schwarzinger
- School of Engineering and Environmental Sciences, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, Wels 4600, Austria; (G.S.); (V.S.); (B.S.)
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1C, Tulln 3430, Austria
- Johannes Kepler University, Institute for Chemical Technology of Organic Materials, Linz, Austria 4040;
| | - Clemens Schwarzinger
- Johannes Kepler University, Institute for Chemical Technology of Organic Materials, Linz, Austria 4040;
| | - Uwe Wenzel
- Molecular Nutrition Research, Interdisciplinary Research Centre, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany;
| | - Klaus Maenner
- Institute of Animal Nutrition of Free University Berlin, Königin-Luise-Str.49, 14195 Berlin, Germany;
| | - Jan Dirk van der Klis
- Delacon Biotechnik GmbH, Weissenwolffstraße 14, Steyregg 4221, Austria; (X.Z.); (J.D.v.d.K.); (S.H.); (T.A.)
| | - Stefan Hirtenlehner
- Delacon Biotechnik GmbH, Weissenwolffstraße 14, Steyregg 4221, Austria; (X.Z.); (J.D.v.d.K.); (S.H.); (T.A.)
| | - Tobias Aumiller
- Delacon Biotechnik GmbH, Weissenwolffstraße 14, Steyregg 4221, Austria; (X.Z.); (J.D.v.d.K.); (S.H.); (T.A.)
| | - Julian Weghuber
- School of Engineering and Environmental Sciences, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, Wels 4600, Austria; (G.S.); (V.S.); (B.S.)
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1C, Tulln 3430, Austria
| |
Collapse
|
18
|
Bai H, Ukita H, Kawahara M, Mitani T, Furukawa E, Yanagawa Y, Yabuuchi N, Kim H, Takahashi M. Effect of summer heat stress on gene expression in bovine uterine endometrial tissues. Anim Sci J 2020; 91:e13474. [PMID: 33159383 DOI: 10.1111/asj.13474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/18/2020] [Accepted: 09/30/2020] [Indexed: 12/20/2022]
Abstract
Heat stress negatively affects reproductive functions in cows. Increased temperature disturbs fetal development in utero. However, the effect of heat stress on uterine endometrial tissues has not been fully examined. Using qPCR analysis, we measured the mRNA expression of various molecular markers in uterine endometrial tissue of dairy cows from Hokkaido, Japan, in winter and summer. Markers examined were heat shock proteins (HSPs), antioxidant enzymes (catalase, copper/zinc superoxide dismutase, manganese superoxide dismutase, and glutathione peroxidase 4), inflammatory cytokines, and interferon stimulated genes. Our results showed heat stress, body and milk temperatures were higher during summer than during winter. Expression levels of HSP27, HSP60, and HSP90 mRNA, and of catalase and copper/zinc superoxide dismutase mRNA were lower in summer than in winter. Tumor necrosis factor alpha expression was higher in summer than in winter. In conclusion, summer heat stress may reduce the expression of HSPs, affecting the levels of inflammatory cytokines in bovine uterine endometrial tissue.
Collapse
Affiliation(s)
- Hanako Bai
- Laboratory of Animal Breeding and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Haruka Ukita
- Laboratory of Animal Breeding and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Manabu Kawahara
- Laboratory of Animal Breeding and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Tomohiro Mitani
- Field Science Center for Norther Biosphere, Hokkaido University, Sapporo, Japan
| | - Eri Furukawa
- Laboratory of Theriogenology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yojiro Yanagawa
- Laboratory of Theriogenology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | - Masashi Takahashi
- Laboratory of Animal Breeding and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- Global Station for Food, Land and Water Resources, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| |
Collapse
|
19
|
Calcium Fluxes in Work-Related Muscle Disorder: Implications from a Rat Model. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5040818. [PMID: 31662979 PMCID: PMC6791278 DOI: 10.1155/2019/5040818] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 01/16/2023]
Abstract
Introduction Ca2+ regulatory excitation-contraction coupling properties are key topics of interest in the development of work-related muscle myalgia and may constitute an underlying cause of muscle pain and loss of force generating capacity. Method A well-established rat model of high repetition high force (HRHF) work was used to investigate if such exposure leads to an increase in cytosolic Ca2+ concentration ([Ca2+]i) and changes in sarcoplasmic reticulum (SR) vesicle Ca2+ uptake and release rates. Result Six weeks exposure of rats to HRHF increased indicators of fatigue, pain behaviors, and [Ca2+]i, the latter implied by around 50-100% increases in pCam, as well as in the Ca2+ handling proteins RyR1 and Casq1 accompanied by an ∼10% increased SR Ca2+ uptake rate in extensor and flexor muscles compared to those of control rats. This demonstrated a work-related altered myocellular Ca2+ regulation, SR Ca2+ handling, and SR protein expression. Discussion These disturbances may mirror intracellular changes in early stages of human work-related myalgic muscle. Increased uptake of Ca2+ into the SR may reflect an early adaptation to avoid a sustained detrimental increase in [Ca2+]i similar to the previous findings of deteriorated Ca2+ regulation and impaired function in fatigued human muscle.
Collapse
|
20
|
Vulczak A, Catalão CHR, Freitas LAPD, Rocha MJA. HSP-Target of Therapeutic Agents in Sepsis Treatment. Int J Mol Sci 2019; 20:ijms20174255. [PMID: 31480313 PMCID: PMC6747181 DOI: 10.3390/ijms20174255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/28/2022] Open
Abstract
Sepsis is a syndrome characterized by a dysregulated inflammatory response, cellular stress, and organ injury. Sepsis is the main cause of death in intensive care units worldwide, creating need for research and new therapeutic strategies. Heat shock protein (HSP) analyses have recently been developed in the context of sepsis. HSPs have a cytoprotection role in stress conditions, signal to immune cells, and activate the inflammatory response. Hence, HSP analyses have become an important focus in sepsis research, including the investigation of HSPs targeted by therapeutic agents used in sepsis treatment. Many therapeutic agents have been tested, and their HSP modulation showed promising results. Nonetheless, the heterogeneity in experimental designs and the diversity in therapeutic agents used make it difficult to understand their efficacy in sepsis treatment. Therefore, future investigations should include the analysis of parameters related to the early and late immune response in sepsis, HSP localization (intra or extracellular), and time to the onset of treatment after sepsis. They also should consider the differences in experimental sepsis models. In this review, we present the main results of studies on therapeutic agents in targeting HSPs in sepsis treatment. We also discuss limitations and possibilities for future investigations regarding HSP modulators.
Collapse
Affiliation(s)
- Anderson Vulczak
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP 14040-904, Brazil
| | - Carlos Henrique Rocha Catalão
- Department of Neurosciences and Behavioral Sciences of Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP 14040-900, Brazil
| | - Luiz Alexandre Pedro de Freitas
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Maria José Alves Rocha
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP 14040-904, Brazil.
| |
Collapse
|
21
|
Lettini G, Lepore S, Crispo F, Sisinni L, Esposito F, Landriscina M. Heat shock proteins in cancer stem cell maintenance: A potential therapeutic target? Histol Histopathol 2019; 35:25-37. [PMID: 31322279 DOI: 10.14670/hh-18-153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs) are a subpopulation of tumor cells with unlimited self-renewal capability, multilineage differentiation potential and long-term tumor repopulation capacity. CSCs reside in anatomically distinct regions within the tumor microenvironment, called niches, and this favors the maintenance of CSC properties and preserves their phenotypic plasticity. Indeed, CSCs are characterized by a flexible state based on their capacity to interconvert between a differentiated and a stem-like phenotype, and this depends on the activation of adaptive mechanisms in response to different environmental conditions. Heat Shock Proteins (HSPs) are molecular chaperones, upregulated upon cell exposure to several stress conditions and are responsible for normal maturation, localization and activity of intra and extracellular proteins. Noteworthy, HSPs play a central role in several cellular processes involved in tumor initiation and progression (i.e. cell viability, resistance to apoptosis, stress conditions and drug therapy, EMT, bioenergetics, invasiveness, metastasis formation) and, thus, are widely considered potential molecular targets. Furthermore, much evidence suggests a key regulatory function for HSPs in CSC maintenance and their upregulation has been proposed as a mechanism used by CSCs to adapt to unfavorable environmental conditions, such as nutrient deprivation, hypoxia, inflammation. This review discusses the relevance of HSPs in CSC biology, highlighting their role as novel potential molecular targets to develop anticancer strategies aimed at CSC targeting.
Collapse
Affiliation(s)
- Giacomo Lettini
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Silvia Lepore
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Fabiana Crispo
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Lorenza Sisinni
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| | - Matteo Landriscina
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy.,Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| |
Collapse
|
22
|
Tukaj S, Kaminski M. Heat shock proteins in the therapy of autoimmune diseases: too simple to be true? Cell Stress Chaperones 2019; 24:475-479. [PMID: 31073900 PMCID: PMC6527538 DOI: 10.1007/s12192-019-01000-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/07/2019] [Accepted: 04/23/2019] [Indexed: 12/30/2022] Open
Abstract
Autoimmune diseases are characterized by the loss of immune tolerance to self-antigens which leads to an excessive immune responses and chronic inflammation. Although much progress has been made in revealing key players in pathophysiology of various autoimmune diseases, their therapy remains challenging and consists of conventional immunosuppressive treatments, including corticosteroids and more advanced biological therapies which are targeted at molecules involved in maintaining chronic inflammation. These therapies are focused on suppressing inflammation; nevertheless, a permanent balance between protective and pathogenic immune responses is not achieved. In addition, most of currently available therapies for autoimmune diseases induce severe side effects. Consequently, more effective and safer therapies are still required to control autoimmunity. Stress-induced cell protecting heat shock proteins (HSP) have been considered as a potential treatment targets for autoimmune diseases. HSP, predominantly intracellular components, might be released from bacteria or mammalian tissues and activate immune response. This activation may lead to either production of (auto)antibodies against HSP and/or induction of immune regulatory mechanisms, including expansion of desired T regulatory (Treg) cells. Because inadequate frequency or activity of Treg is a characteristic feature of autoimmune diseases, targeting this cell population is an important focus of immunotherapy approaches in autoimmunity.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Maciej Kaminski
- Department of Anaesthesiology and Intensive Therapy, University Clinical Centre, Gdańsk, Poland
| |
Collapse
|
23
|
Banerjee S, Ghosh S, Sinha K, Chowdhury S, Sil PC. Sulphur dioxide ameliorates colitis related pathophysiology and inflammation. Toxicology 2018; 412:63-78. [PMID: 30503585 DOI: 10.1016/j.tox.2018.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 11/13/2018] [Accepted: 11/28/2018] [Indexed: 01/06/2023]
Abstract
Colitis is an inflammatory disease of the gastrointestinal tract. Inflammation, oxidative stress and cell death constitute the backbone of colitis. Most of the drugs prescribed for inflammatory bowel disease (IBD) have various side effects. In this scenario, we would like to determine the therapeutic role sulphur dioxide, a gaso-transmitter produced through the metabolism of cysteine in colitis. Colitis was induced through intrarectal administration of 2,4,6-trinitrobenzenesulfonic acid (TNBS) in male Wistar rats. Rats were administered with 0.9% saline containing Na2SO3 and NaHSO3 (3:1 ratio; i.e., 0.54 mmol/kg and 0.18 mmol/kg body weight) orally 1 h after colitis induction followed by the administration of the same solution after each 12 h for 72 h. TNBS administration resulted in increased oxidative stress, NF-ĸ B and inflammasome activation, ER stress and autophagy. Moreover, TNBS administration also resulted in activation of p53 and apoptosis. SO2 reversed all these alterations and ameliorated colitis in rats. Administration of an inhibitor of endogenous SO2 production along with TNBS exacerbated colitis. Results suggest that down-regulation of SO2 / glutamate oxaloacetate transaminase pathway is involved in IBD. The protective role of SO2 in colitis is attributed to its anti-inflammatory and anti-oxidant nature. Down-regulation of SO2/glutamate oxaloacetate transaminase pathway is involved in IBD. Since SO2 is not toxic at low concentration and endogenously produced, it may be used with prescribed drugs for synergistic effect after intensive research. Our result demonstrated the therapeutic role of SO2 in colitis for the first time.
Collapse
Affiliation(s)
- Sharmistha Banerjee
- Division of Molecular Medicine, Bose Institute P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Sumit Ghosh
- Division of Molecular Medicine, Bose Institute P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Krishnendu Sinha
- Department of Zoology, Jhargram Raj college, Jhargram 721507, India
| | - Sayantani Chowdhury
- Division of Molecular Medicine, Bose Institute P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute P-1/12, CIT Scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
24
|
Yargic MP, Torgutalp S, Akin S, Babayeva N, Torgutalp M, Demirel HA. Acute long-distance trail running increases serum IL-6, IL-15, and Hsp72 levels. Appl Physiol Nutr Metab 2018; 44:627-631. [PMID: 30365907 DOI: 10.1139/apnm-2018-0520] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Interleukin-6 (IL-6), IL-15, and heat shock protein 72 (Hsp72) are molecules that have significant metabolic effects on glucose and fat metabolism and a cell's stress response. The aim of this study is to determine serum levels of these molecules in runners after a long-distance trail run. Serum IL-15 levels after such endurance events have not been investigated yet. Blood samples were collected from 37 athletes (11 female, 26 male) before and after a 35-km trail run, with a total climb of 940 m. Serum was obtained from the samples, and IL-6, IL-15, and Hsp72 levels were measured from using the sandwich ELISA method. The athletes completed the race in 308.3 ± 37.4 min on average. After the race, the mean serum IL-6, IL-15, and Hsp72 concentrations increased 13.2-fold, 2.22-fold, and 1.6-fold, respectively (p < 0.001, p < 0.001, and p = 0.039, respectively). This is the first study to demonstrate the increase in serum IL-15 levels following an acute endurance exercise. In addition to IL-15, we report that IL-6 and soluble Hsp72 levels also increased significantly following a 35-km trail run. Since these molecules are involved in regulating glucose and fat metabolism, significant increases of IL-6, IL-15, and soluble Hsp72 may have health benefits that may be associated with long-distance trail runs, which are becoming more popular worldwide.
Collapse
Affiliation(s)
- Melda Pelin Yargic
- a Department of Sports Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Seyma Torgutalp
- a Department of Sports Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Senay Akin
- b Division of Exercise and Sport Physiology, Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Naila Babayeva
- a Department of Sports Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Murat Torgutalp
- c Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Haydar Ali Demirel
- a Department of Sports Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey.,b Division of Exercise and Sport Physiology, Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| |
Collapse
|
25
|
van Eden W. Immune tolerance therapies for autoimmune diseases based on heat shock protein T-cell epitopes. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0531. [PMID: 29203716 DOI: 10.1098/rstb.2016.0531] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2017] [Indexed: 12/11/2022] Open
Abstract
Experimental models of autoimmune diseases have revealed the disease protective role of heat shock proteins (HSPs). Both the administration of exogenous extracellular, mostly recombinant, HSP and the experimental co-induction of endogenous intracellular HSP in models have been shown to lead to production of disease protective regulatory T cells (Tregs). Similar to HSP taken up from extracellular bodily fluids, due to stress-related autophagy upregulated HSP also from intracellular sources is a major provider for the major histocompatibility class II (MHCII) ligandome; therefore, both extracellular and intracellular HSP can be prominent targets of Treg. The development of therapeutic peptide vaccines for the restoration of immune tolerance in inflammatory diseases is an area of intensive research. In this area, HSPs are a target for tolerance-inducing T-cell therapy, because of their wide expression in inflamed tissues. In humans, in whom the actual disease trigger is frequently unknown, HSP peptides offer chances for tolerance-promoting interventions through induction of HSP-specific Treg. Recently, we have shown the ability of a bacterial HSP70-derived peptide, HSP70-B29, to induce HSP-specific Tregs that suppressed arthritis by cross-recognition of their mammalian HSP70 homologues, abundantly present in the MHCII ligandome of stressed mouse and human antigen-presenting cells in inflamed tissues.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'.
Collapse
Affiliation(s)
- Willem van Eden
- Department of Infectious Diseases and Immunology, Utrecht University, Yalelaan 1, 3584CL Utrecht, The Netherlands
| |
Collapse
|
26
|
Zhang N, Li W, Fu B. Vaccines against Trichinella spiralis: Progress, challenges and future prospects. Transbound Emerg Dis 2018; 65:1447-1458. [PMID: 29873198 DOI: 10.1111/tbed.12917] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/06/2018] [Accepted: 05/08/2018] [Indexed: 01/14/2023]
Abstract
Trichinella spiralis, the causative agent of trichinellosis, is able to infect a wide range of carnivores and omnivores including human beings. In the past 30 years, a mass of vaccination efforts has been performed to control T. spiralis infection with the purpose of reduction in worm fecundity or decrease in muscle larval and adult burdens. Here, we summarize the development of veterinary vaccines against T. spiralis infection. During recent years, increasing numbers of new vaccine candidates have been developed on the protective immunity against T. spiralis infection in murine model. The vaccine candidates were not only selected from excretory-secretory (ES) antigens, but also from the recombinant functional proteins, such as proteases and some other antigens participated in T. spiralis intracellular processes. However, immunization with a single antigen generally revealed lower protective effects against T. spiralis infection in mice compared to that with the inactivated whole worms or crude extraction and ES productions. Future study of T. spiralis vaccines should focus on evaluation of the protective efficacy of antigens and/or ligands delivered by nanoparticles that could elicit Th2-type immune response on experimental pigs.
Collapse
Affiliation(s)
- Nianzhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wenhui Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Baoquan Fu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, China
| |
Collapse
|
27
|
van Eden W, Jansen MAA, Ludwig I, van Kooten P, van der Zee R, Broere F. The Enigma of Heat Shock Proteins in Immune Tolerance. Front Immunol 2017; 8:1599. [PMID: 29209330 PMCID: PMC5702443 DOI: 10.3389/fimmu.2017.01599] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/06/2017] [Indexed: 01/22/2023] Open
Abstract
The fundamental problem of autoimmune diseases is the failure of the immune system to downregulate its own potentially dangerous cells, which leads to destruction of tissue expressing the relevant autoantigens. Current immunosuppressive therapies offer relief but fail to restore the basic condition of self-tolerance. They do not induce long-term physiological regulation resulting in medication-free disease remissions. Heat shock proteins (HSPs) have shown to possess the capacity of inducing lasting protective immune responses in models of experimental autoimmune diseases. Especially mycobacterial HSP60 and HSP70 were shown to induce disease inhibitory IL-10-producing regulatory T cells in many different models. This in itself may seem enigmatic, since based on earlier studies, HSPs were also coined sometimes as pro-inflammatory damage-associated molecular patterns. First clinical trials with HSPs in rheumatoid arthritis and type I diabetes have also indicated their potential to restore tolerance in autoimmune diseases. Data obtained from the models have suggested three aspects of HSP as being critical for this tolerance promoting potential: 1. evolutionary conservation, 2. most frequent cytosolic/nuclear MHC class II natural ligand source, and 3. upregulation under (inflammatory) stress. The combination of these three aspects, which are each relatively unique for HSP, may provide an explanation for the enigmatic immune tolerance promoting potential of HSP.
Collapse
Affiliation(s)
- Willem van Eden
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine (FVM), Utrecht University, Utrecht, Netherlands
| | - Manon A A Jansen
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine (FVM), Utrecht University, Utrecht, Netherlands
| | - Irene Ludwig
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine (FVM), Utrecht University, Utrecht, Netherlands
| | - Peter van Kooten
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine (FVM), Utrecht University, Utrecht, Netherlands
| | - Ruurd van der Zee
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine (FVM), Utrecht University, Utrecht, Netherlands
| | - Femke Broere
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine (FVM), Utrecht University, Utrecht, Netherlands
| |
Collapse
|
28
|
Barbera Betancourt A, Lyu Q, Broere F, Sijts A, Rutten VPMG, van Eden W. T Cell-Mediated Chronic Inflammatory Diseases Are Candidates for Therapeutic Tolerance Induction with Heat Shock Proteins. Front Immunol 2017; 8:1408. [PMID: 29123529 PMCID: PMC5662553 DOI: 10.3389/fimmu.2017.01408] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/11/2017] [Indexed: 12/21/2022] Open
Abstract
Failing immunological tolerance for critical self-antigens is the problem underlying most chronic inflammatory diseases of humans. Despite the success of novel immunosuppressive biological drugs, the so-called biologics, in the treatment of diseases such rheumatoid arthritis (RA) and type 1 diabetes, none of these approaches does lead to a permanent state of medicine free disease remission. Therefore, there is a need for therapies that restore physiological mechanisms of self-tolerance. Heat shock proteins (HSPs) have shown disease suppressive activities in many models of experimental autoimmune diseases through the induction of regulatory T cells (Tregs). Also in first clinical trials with HSP-based peptides in RA and diabetes, the induction of Tregs was noted. Due to their exceptionally high degree of evolutionary conservation, HSP protein sequences (peptides) are shared between the microbiota-associated bacterial species and the self-HSP in the tissues. Therefore, Treg mechanisms, such as those induced and maintained by gut mucosal tolerance for the microbiota, can play a role by targeting the more conserved HSP peptide sequences in the inflamed tissues. In addition, the stress upregulated presence of HSP in these tissues may well assist the targeting of the HSP induced Treg specifically to the sites of inflammation.
Collapse
Affiliation(s)
- Ariana Barbera Betancourt
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands
| | - Qingkang Lyu
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands
| | - Femke Broere
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands
| | - Alice Sijts
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands
| | - Victor P M G Rutten
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands
| | - Willem van Eden
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
29
|
Lipoic Acid Exerts Antioxidant and Anti-inflammatory Effects in Response to Heat Shock in C2C12 Myotubes. Inflammation 2017; 39:1160-8. [PMID: 27086282 DOI: 10.1007/s10753-016-0350-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This study explored that lipoic acid treatment for 24 h significantly upregulated and promoted heat shock-induced catalase expression and downregulated GPx1 messenger RNA (mRNA) expression, indicating that lipoic acid exhibits antioxidant activity in the decomposition of hydrogen peroxide by upregulating catalase expression. Moreover, lipoic acid treatment for 3 h increased and promoted heat shock-induced interleukin (IL)-6 mRNA and protein levels and that for 24 h downregulated IL-6 mRNA expression, suggesting a dual effect of lipoic acid on IL-6 regulation. Lipoic acid alone failed to increase or reduce tumor necrosis factor (TNF)-α mRNA and protein levels, whereas heat shock alone downregulated TNF-α mRNA and protein expression. These data suggest that lipoic acid does not have a proinflammatory role and that heat shock acts as an anti-inflammatory agent by downregulating TNF-α expression in C2C12 myotubes. Moreover, lipoic acid or heat shock alone upregulated the IL-6 receptor (IL-6R-α) and glycoprotein 130 (gp130) mRNA expression followed by IL-6 expression; these data indicate that the regulation of lipoic acid or heat shock is mediated by IL-6R signaling, thus suggesting that C2C12 myotubes possesses a mechanism for regulating IL-6R and gp130 expression following lipoic acid treatment or heat shock.
Collapse
|
30
|
Spierings J, van Eden W. Heat shock proteins and their immunomodulatory role in inflammatory arthritis. Rheumatology (Oxford) 2016; 56:198-208. [PMID: 27411479 DOI: 10.1093/rheumatology/kew266] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 05/24/2016] [Indexed: 11/14/2022] Open
Abstract
Autoimmune diseases, including inflammatory arthritis, are characterized by a loss of self-tolerance, leading to an excessive immune responses and subsequent ongoing inflammation. Current therapies are focused on dampening this inflammation, but a permanent state of tolerance is seldom achieved. Therefore, novel therapies that restore and maintain tolerance are needed. Tregs could be a potential target to achieve permanent immunotolerance. Activation of Tregs can be accomplished when they recognize and bind their specific antigens. HSPs are proteins present in all cells and are upregulated during inflammation. These proteins are immunogenic and can be recognized by Tregs. Several studies in animal models and in human clinical trials have shown the immunoregulatory effects of HSPs and their protective effects in inflammatory arthritis. In this review, an overview is presented of the immunomodulatory effects of several members of the HSP family in general and in inflammatory arthritis. These effects can be attributed to the activation of Tregs through cellular interactions within the immune system. The effect of HSP-specific therapies in patients with inflammatory arthritis should be explored further, especially with regard to long-term efficacy and safety and their use in combination with current therapeutic approaches.
Collapse
Affiliation(s)
- Julia Spierings
- Department of Rheumatology, Maastricht University Medical Center, Maastricht
| | - Willem van Eden
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
31
|
Guisasola MC. Proteínas de choque térmico en la cardioprotección del consumo moderado regular de alcohol. Med Clin (Barc) 2016; 146:292-300. [DOI: 10.1016/j.medcli.2015.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/11/2015] [Accepted: 12/17/2015] [Indexed: 12/15/2022]
|
32
|
Tukaj S, Węgrzyn G. Anti-Hsp90 therapy in autoimmune and inflammatory diseases: a review of preclinical studies. Cell Stress Chaperones 2016; 21:213-8. [PMID: 26786410 PMCID: PMC4786535 DOI: 10.1007/s12192-016-0670-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 12/13/2022] Open
Abstract
Heat shock protein 90 (Hsp90), a 90-kDa molecular chaperone, is responsible for biological activities of key signaling molecules (clients) such as protein kinases, ubiquitin ligases, steroid receptors, cell cycle regulators, and transcription factors regulating various cellular processes, including growth, survival, differentiation, and apoptosis. Because Hsp90 is also involved in stabilization of oncogenic 'client' proteins, its specific chaperone activity blockers are currently being tested as anticancer agents in advanced clinical trials. Recent in vitro and in vivo studies have shown that Hsp90 is also involved in activation of innate and adaptive cells of the immune system. For these reasons, pharmacological inhibition of Hsp90 has been evaluated in murine models of autoimmune and inflammatory diseases. This mini-review summarizes current knowledge of the effects of Hsp90 inhibitors on autoimmune and inflammatory diseases' features and is based solely on preclinical studies.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|
33
|
Frara N, Abdelmagid SM, Tytell M, Amin M, Popoff SN, Safadi FF, Barbe MF. Growth and repair factors, osteoactivin, matrix metalloproteinase and heat shock protein 72, increase with resolution of inflammation in musculotendinous tissues in a rat model of repetitive grasping. BMC Musculoskelet Disord 2016; 17:34. [PMID: 26781840 PMCID: PMC4717665 DOI: 10.1186/s12891-016-0892-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 01/13/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Expression of the growth factor osteoactivin (OA) increases during tissue degeneration and regeneration, fracture repair and after denervation-induced disuse atrophy, concomitant with increased matrix metalloproteinases (MMPs). However, OA's expression with repetitive overuse injuries is unknown. The aim of this study was to evaluate: 1) OA expression in an operant rat model of repetitive overuse; 2) expression of MMPs; 3) inflammatory cytokines indicative of injury or inflammation; and 4) the inducible form of heat shock protein 70 (HSPA1A/HSP72) as the latter is known to increase during metabolic stress and to be involved in cellular repair. Young adult female rats performed a high repetition negligible force (HRNF) food retrieval task for up to 6 weeks and were compared to control rats. METHODS Flexor digitorum muscles and tendons were collected from 22 young adult female rats performing a HRNF reaching task for 3 to 6 weeks, and 12 food restricted control (FRC) rats. OA mRNA levels were assessed by quantitative polymerase chain reaction (qPCR). OA, MMP-1, -2, -3, and -13 and HSP72 protein expression was assayed using Western blotting. Immunohistochemistry and image analysis was used to evaluate OA and HSP72 expression. ELISA was performed for HSP72 and inflammatory cytokines. RESULTS Flexor digitorum muscles and tendons from 6-week HRNF rats showed increased OA mRNA and protein expression compared to FRC rats. MMP-1, -2 and -3 progressively increased in muscles whereas MMP-1 and -3 increased in tendons with HRNF task performance. HSP72 increased in 6-week HRNF muscles and tendons, compared to controls, and co-localized with OA in the myofiber sarcolemma. IL-1alpha and beta increased transiently in tendons or muscles in HRNF week 3 before resolving in week 6. CONCLUSION The simultaneous increases of OA with factors involved in tissue repair (MMPs and HSP72) supports a role of OA in tissue regeneration after repetitive overuse.
Collapse
Affiliation(s)
- Nagat Frara
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Samir M Abdelmagid
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Michael Tytell
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Mamta Amin
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Steven N Popoff
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Fayez F Safadi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH, USA
| | - Mary F Barbe
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
34
|
Guisasola MC, Ortiz A, Chana F, Alonso B, Vaquero J. Early inflammatory response in polytraumatized patients: Cytokines and heat shock proteins. A pilot study. Orthop Traumatol Surg Res 2015; 101:607-11. [PMID: 26068807 DOI: 10.1016/j.otsr.2015.03.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 11/25/2014] [Accepted: 03/02/2015] [Indexed: 02/02/2023]
Abstract
INTRODUCTION In the initial phases after polytrauma there is an hyperinflammatory state that sometimes leads to multiple organ dysfunction syndrome (MODS) and death, and that appears to be responsible for posttraumatic immunosuppression; among the trigger endogenous stimuli, heat shock proteins (HSPs) have been proposed. The objectives of this study were to analyze if some inflammatory mediators can be considered prognostic biomarkers of outcome, and the possible role of HSPA1A in posttraumatic immunosuppression. HYPOTHESIS Cytokines and HSPs could be early prognostic biomarkers of inflammatory and immune response in polytrauma patients. MATERIALS AND METHODS A prospective observational descriptive pilot study was carried out, evaluating the early inflammatory and stress response of 18 polytraumatized patients (ISS>16) on hospital admission, at 12hours, 24hours, and 48hours posttrauma. Variable means were compared using non-parametric tests; qualitative and quantitative variables were analyzed using a Spearman's correlation test. RESULTS Seven patients met criteria for MODS. Statistically significant changes were recorded in leukocyte count, C-reactive-protein (CRP), IL-6, TNF-α, and IL-1ß concentrations. HSPA1A levels were significantly higher immediately after the accident followed by gradual lowering. Anti-Hsp70 antibodies showed a significant reduction in all the studied time-points. MODS did not influence either plasma levels of leukocytes, fibrinogen, RCP or anti-Hsp70, but patients with MODS had higher plasma levels of IL-6 and TNF-α and a slower decrease of HSPA1A concentrations. DISCUSSION The higher serum concentrations of TNF-α and IL-6 found in patients with MODS, suggests a possible role as potential early predictive markers for systemic inflammatory response and clinical complications. The higher levels of HSPA1A in patients with MODS, allows proposing HSPA1A as a useful prognostic trauma biomarker early after severe injury and to consider a "damage control surgery". The significant reduction in the levels of anti-Hsp70 antibodies could reflect a part of posttraumatic immunosuppression and hydrocortisone treatment might be suggested. LEVEL III case-control study.
Collapse
Affiliation(s)
- M C Guisasola
- Medicina y Cirugía Experimental, Hospital General Universitario "Gregorio Marañón", Dr. Esquerdo 46, 28007 Madrid, Spain; Facultad de Medicina, UCM, Madrid, Spain.
| | - A Ortiz
- Cirugía Ortopédica y Traumatología, Hospital General Universitario "Gregorio Marañón", Madrid, Spain
| | - F Chana
- Cirugía Ortopédica y Traumatología, Hospital General Universitario "Gregorio Marañón", Madrid, Spain; Facultad de Medicina, UCM, Madrid, Spain
| | - B Alonso
- Cirugía Ortopédica y Traumatología, Hospital General Universitario "Gregorio Marañón", Madrid, Spain
| | - J Vaquero
- Cirugía Ortopédica y Traumatología, Hospital General Universitario "Gregorio Marañón", Madrid, Spain; Facultad de Medicina, UCM, Madrid, Spain
| |
Collapse
|
35
|
Yang JI, Kong TW, Kim HS, Kim HY. The Proteomic Analysis of Human Placenta with Pre-eclampsia and Normal Pregnancy. J Korean Med Sci 2015; 30:770-8. [PMID: 26028931 PMCID: PMC4444479 DOI: 10.3346/jkms.2015.30.6.770] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/03/2015] [Indexed: 01/27/2023] Open
Abstract
Preeclampsia is one of the most important and complexed disorders for women's health. Searching for novel proteins as biomarkers to reveal pathogenesis, proteomic approaches using 2DE has become a valuable tool to understanding of preeclampsia. To analyze the proteomic profiling of preclamptic placenta compared to that of normal pregnancy for better understanding of pathogenesis in preeclampsia, placentas from each group were handled by use of proteomics approach using 2DE combined with MALDI-TOF-MS. The 20 spots of showing differences were analysed and identified. Among differentially expressed protein spots Hsp 27 and Hsp 70 were selected for validation using Western blot analysis. In preeclamptic placenta 9 differentially expressed proteins were down-regulated with Hsp 70, serum albumin crystal structure chain A, lamin B2, cytokeratin 18, actin cytoplasmic, alpha fibrinogen precursor, septin 2, dihydrolipoamide branched chain transacylase E2 and firbrinogen beta chain. The 11 up-regulated proteins were fibrinogen gamma, cardiac muscle alpha actin proprotein, cytokeratin 8, calumenin, fibrinogen fragment D, F-actin capping protein alpha-1 subunit, Hsp 27, Hsp 40, annexin A4, enoyl-CoA delta isomerase and programmed cell death protein 6. The western blot analysis for validation also showed significant up-regulation of Hsp 27 and down-regulation of Hsp 70 in the placental tissues with preeclmaptic pregnancies. This proteomic profiling of placenta using 2DE in preeclampsia successfully identifies various proteins involved in apoptosis, mitochondrial dysfunction, as well as three Hsps with altered expression, which might play a important role for the understanding of pathogenesis in preeclampsia.
Collapse
Affiliation(s)
- Jeong In Yang
- Department of Obstetrics and Gynecology, Ajou University Medical School, Suwon, Korea
| | - Tae Wook Kong
- Department of Obstetrics and Gynecology, Ajou University Medical School, Suwon, Korea
| | - Haeng Soo Kim
- Department of Obstetrics and Gynecology, Ajou University Medical School, Suwon, Korea
| | - Ho Yeon Kim
- Department of Obstetrics and Gynecology, Kangdong Sacred Heart Hospital, Hallym University Medical School, Seoul, Korea
| |
Collapse
|
36
|
Roveri A, Zaccarin M, Pagetta A, Tramentozzi E, Finotti P. Proteomic Investigation on Grp94-IgG Complexes Circulating in Plasma of Type 1 Diabetic Subjects. J Diabetes Res 2015; 2015:815839. [PMID: 26167512 PMCID: PMC4475746 DOI: 10.1155/2015/815839] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 05/21/2015] [Indexed: 12/26/2022] Open
Abstract
The glucose-regulated protein94 (Grp94) has been found in complexes with IgG in plasma of Type 1 (T1) diabetic subjects; however, the pathogenetic meaning of Grp94-IgG complexes has not yet been elucidated. To shed light on the nature and structure of these complexes in vivo, we conducted a proteomic analysis on plasma of both T1 diabetic subjects and healthy control subjects. IgG purified from plasma was submitted to 2D PAGE followed by Western blotting and mass analysis. Grp94 was detected in plasma of all diabetic but not control subjects and found linked with its N-terminus to the IgG heavy chain. Mass analysis of heavy chain of IgG that binds Grp94 also in vitro, forming stable complexes with characteristics similar to those of native ones, permitted identifying CH2 and CH3 regions as those involved in binding Grp94. At the electron microscopy, IgG from diabetic plasma appeared as fibrils of various lengthes and dimensions, suggestive of elevated aggregating tendency conferred to IgG by Grp94. The nonimmune nature of complexes turned out to be responsible for the particular stability and structure adopted by complexes in plasma of diabetic subjects. Results are of relevance to understanding the pathogenetic mechanisms underlying diabetes and its complications.
Collapse
Affiliation(s)
- Antonella Roveri
- Department of Molecular Medicine, Section of Biological Chemistry, University of Padua, Via G. Colombo 3, 35131 Padua, Italy
| | - Mattia Zaccarin
- Department of Molecular Medicine, Section of Biological Chemistry, University of Padua, Via G. Colombo 3, 35131 Padua, Italy
| | - Andrea Pagetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo E. Meneghetti 2, 35131 Padua, Italy
| | - Elisa Tramentozzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo E. Meneghetti 2, 35131 Padua, Italy
| | - Paola Finotti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo E. Meneghetti 2, 35131 Padua, Italy
- *Paola Finotti:
| |
Collapse
|
37
|
Cell death-associated molecular-pattern molecules: inflammatory signaling and control. Mediators Inflamm 2014; 2014:821043. [PMID: 25140116 PMCID: PMC4130149 DOI: 10.1155/2014/821043] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/09/2014] [Indexed: 12/27/2022] Open
Abstract
Apoptosis, necroptosis, and pyroptosis are different cellular death programs characterized in organs and tissues as consequence of microbes infection, cell stress, injury, and chemotherapeutics exposure. Dying and death cells release a variety of self-proteins and bioactive chemicals originated from cytosol, nucleus, endoplasmic reticulum, and mitochondria. These endogenous factors are named cell death-associated molecular-pattern (CDAMP), damage-associated molecular-pattern (DAMP) molecules, and alarmins. Some of them cooperate or act as important initial or delayed inflammatory mediators upon binding to diverse membrane and cytosolic receptors coupled to signaling pathways for the activation of the inflammasome platforms and NF-κB multiprotein complexes. Current studies show that the nonprotein thiols and thiol-regulating enzymes as well as highly diffusible prooxidant reactive oxygen and nitrogen species released together in extracellular inflammatory milieu play essential role in controlling pro- and anti-inflammatory activities of CDAMP/DAMP and alarmins. Here, we provide an overview of these emerging concepts and mechanisms of triggering and maintenance of tissue inflammation under massive death of cells.
Collapse
|
38
|
Moosavi SJ, Habibian M, Peeri M, Azarbayjani MA, Nabavi SM, Nabavi SF, Sureda A. Protective effect ofFerula gummosahydroalcoholic extract against nitric oxide deficiency-induced oxidative stress and inflammation in rats renal tissues. Clin Exp Hypertens 2014; 37:136-41. [PMID: 24786685 DOI: 10.3109/10641963.2014.913609] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
39
|
Dolasik I, Birtas Atesoglu E, Tarkun P, Mehtap O, Keski H, Dogru A, Hacihanefioglu A. Decreased serum heat shock protein 60 levels in newly diagnosed immune thrombocytopenia patients. Platelets 2014; 26:220-3. [DOI: 10.3109/09537104.2014.898746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Structural insights into complexes of glucose-regulated Protein94 (Grp94) with human immunoglobulin G. relevance for Grp94-IgG complexes that form in vivo in pathological conditions. PLoS One 2014; 9:e86198. [PMID: 24489700 PMCID: PMC3904872 DOI: 10.1371/journal.pone.0086198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/04/2013] [Indexed: 01/17/2023] Open
Abstract
While the mechanism by which Grp94 displays its chaperone function with client peptides in the cell has been elucidated extensively, much less is known about the nature and properties of how Grp94 can engage binding to proteins once it is exposed on the cell surface or liberated in the extra-cellular milieu, as occurs in pathological conditions. In this work, we wanted to investigate the molecular aspects and structural characteristics of complexes that Grp94 forms with human IgG, posing the attention on the influence that glycosylation of Grp94 might have on the binding capacity to IgG, and on the identification of sites involved in the binding. To this aim, we employed both native, fully glycosylated and partially glycosylated Grp94, and recombinant, non-glycosylated Grp94, as well as IgG subunits, in different experimental conditions, including the physiological setting of human plasma. Regardless of the species and type, Grp94 engages a similar, highly specific and stable binding with IgG that involves sites located in the N-terminal domain of Grp94 and the hinge region of whole IgG. Grp94 does not form stable complex with Fab, F(ab)2 or Fc. Glycosylation turns out to be an obstacle to the Grp94 binding to IgG, although this negative effect can be counteracted by ATP and spontaneously also disappears in time in a physiological setting of incubation. ATP does not affect at all the binding capacity of non-glycosylated Grp94. However, complexes that native, partially glycosylated Grp94 forms with IgG in the presence of ATP show strikingly different characteristics with respect to those formed in absence of ATP. Results have relevance for the mechanism regulating the formation of stable Grp94-IgG complexes in vivo, in the pathological conditions associated with the extra-cellular location of Grp94.
Collapse
|
41
|
De novo assembly of the sea cucumber Apostichopus japonicus hemocytes transcriptome to identify miRNA targets associated with skin ulceration syndrome. PLoS One 2013; 8:e73506. [PMID: 24069201 PMCID: PMC3772007 DOI: 10.1371/journal.pone.0073506] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 07/19/2013] [Indexed: 11/21/2022] Open
Abstract
Background Denovo transcriptome sequencing is a robust method of predicting miRNA target genes, especially samples without reference genomes. Differentially expressed miRNAs have been previously identified in hemocytes collected from healthy skin and from skin affected by skin ulceration syndrome (SUS) in Apostichopusjaponicus. Target identification for these differentially expressed miRNAs is a major challenge for this non-model organism. Methodology/Principal Findings To thoroughly understand the function of miRNAs, a normalized cDNA library was sequenced with the Illumina Hiseq2000 technology. A total of 91,098,474 clean reads corresponding to 251,148 unigenes, each with an average length of 494bp, were obtained. Blastx analysis against a nonredundant (nr) NCBI protein database revealed that in this set, 52,680 unigenes coded for 3,893 annotated proteins. Two digital gene expression (DGE) libraries from healthy and SUS samples showed that 4,858 of the unigenes were expressed at significantly different levels; 2,163 were significantly up-regulated, while 2,695 were significantly down-regulated. The computational prediction of miRNA targets from these differentially expressed genes identified 732 unigenes as the targets of 57 conserved and 8 putative novel miRNA families, including spu-miRNA-31 and spu-miRNA-2008. Conclusion This study demonstrates the feasibility of identifying miRNA targets by transcriptome analysis. The DGE assembly data represent a substantial increase in the genomic resources available for this species and will provide insights into the gene expression profile analysis and the miRNAs function annotations of further studies.
Collapse
|
42
|
Kotlarz A, Tukaj S, Krzewski K, Brycka E, Lipinska B. Human Hsp40 proteins, DNAJA1 and DNAJA2, as potential targets of the immune response triggered by bacterial DnaJ in rheumatoid arthritis. Cell Stress Chaperones 2013; 18:653-9. [PMID: 23408083 PMCID: PMC3745263 DOI: 10.1007/s12192-013-0407-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/23/2013] [Accepted: 01/24/2013] [Indexed: 01/22/2023] Open
Abstract
Hsp40 proteins of bacterial and human origin are suspected to be involved in the pathogenesis of rheumatoid arthritis (RA). It has been shown that sera of RA patients contain increased levels of antibodies directed to bacterial and human Hsp40s. The aim of this work was to explore immunological similarities between the bacterial (DnaJ) and human (DNAJA1 and DNAJA2) Hsp40 proteins in relation to their possible involvement in the RA. Using polyclonal antibodies directed against a full-length DnaJ or its domains, against DNAJA1 and DNAJA2, as well as monoclonal anti-DnaJ antibodies, we found immunological similarities between the bacterial and human Hsp40s. Both ELISA and Western blotting showed that these similarities were not restricted to the conserved J domains but were also present in the C-terminal variable regions. We also found a positive correlation between the levels of the anti-DnaJ and anti-DNAJA1 antibodies in the sera of RA patients. This finding supports the molecular mimicry hypothesis that human Hsp40 could be the targets of antibodies originally directed against bacterial DnaJ in RA.
Collapse
Affiliation(s)
- Agnieszka Kotlarz
- Department of Biochemistry, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Stefan Tukaj
- Department of Plant Physiology and Biotechnology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Konrad Krzewski
- Department of Biochemistry, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD USA
| | - Elzbieta Brycka
- Department of Molecular Virology, University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Barbara Lipinska
- Department of Biochemistry, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
43
|
McCarty MF, Al-Harbi SA. Vaccination with heat-shocked mononuclear cells as a strategy for treating neurodegenerative disorders driven by microglial inflammation. Med Hypotheses 2013; 81:773-6. [PMID: 23968572 DOI: 10.1016/j.mehy.2013.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/29/2013] [Accepted: 08/04/2013] [Indexed: 11/26/2022]
Abstract
Naturally occurring T regulatory cells targeting epitopes derived from various heat shock proteins escape thymic negative selection and can be activated by vaccination with heat shock proteins; hence, vaccination with such proteins has exerted favorable effects on rodent models of autoimmune disorders. A more elegant way to achieve such vaccination, first evaluated clinically by Al-Harbi in the early 1990s, is to subject mononuclear cells to survivable heat shock ex vivo, incubate them at physiological temperature for a further 24-48 h, and then inject them subcutaneously; anecdotally, beneficial effects were observed with this strategy in a wide range of autoimmune and inflammatory conditions. There is growing evidence that M1-activated microglia play a primary or secondary role in the pathogenesis of numerous neurodegenerative diseases, as well as in major depression. T regulatory cells, by polarizing microglial toward a reparative M2 phenotype, have the potential to aid control of such disorders. It would be appropriate to test the heat-shocked mononuclear cell vaccination strategy in animal models of neurodegeneration and major depression, and to evaluate this approach clinically if such studies yield encouraging results.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity, 7831 Rush Rose Drive, Apt. 316, Carlsbad, California 92009, United States.
| | | |
Collapse
|
44
|
The heat-shock protein-70-induced renoprotective effect is partially mediated by CD4+ CD25+ Foxp3 + regulatory T cells in ischemia/reperfusion-induced acute kidney injury. Kidney Int 2013; 85:62-71. [PMID: 23884338 DOI: 10.1038/ki.2013.277] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 05/03/2013] [Accepted: 05/16/2013] [Indexed: 12/22/2022]
Abstract
Recent reports suggest the presence of heat-shock protein (HSP)-reactive T cells with a regulatory phenotype in various inflammatory diseases. To test whether HSP exerts renoprotective effects through regulatory T cells (Tregs), ischemia/reperfusion injury was done with or without heat preconditioning in mice. Splenocytes from heat-preconditioned mice had Treg expansion and a reduced proliferative response upon mitogenic stimulus. T cells from heat-preconditioned mice failed to reconstitute postischemic injury when adoptively transferred to T cell-deficient nu/nu mice in contrast to those from control mice. Tregs were also increased in heat-preconditioned ischemic kidneys. Depleting Tregs before heat preconditioning abolished the renoprotective effect, while adoptive transfer of these cells back into Treg-depleted mice partially restored the beneficial effect of heat preconditioning. Inhibition of HSP70 by quercetin suppressed Treg expansion, as well as renoprotective effects. Transferring Tregs in quercetin-treated heat-preconditioned mice partially restored the beneficial effect of heat preconditioning. The specificity of immune cell HSP70 in renoprotection was confirmed by partial restoration of kidney injury when T cells from HSP70-deficient heat preconditioned mice were adoptively transferred to nu/nu mice. Thus, the renoprotective effect of HSP70 may be partially mediated by a direct immunomodulatory effect through Tregs. Better understanding of immunomodulatory mechanisms of various stress proteins might facilitate discovery of new preventive strategies in acute kidney injury.
Collapse
|
45
|
Characterization of heat shock protein 70 gene fromHaemonchus contortusand its expression and promoter analysis inCaenorhabditis elegans. Parasitology 2013; 140:683-94. [DOI: 10.1017/s0031182012002168] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SUMMARYHaemonchus contortusinfections in small ruminants are of major economic importance worldwide. Heat shock proteins (HSPs) are a family of molecular chaperones that play important roles in the process of invasion and survival of nematodes. Although HSP70 has been identified in several parasitic nematodes, little is known of its distribution and function inHaemonchus contortus. The aims of this study were to characterize HSP70 fromHaemonchus contortus(designed as Hc-hsp70), express Hc-hsp70 and analyse the promoter activity inCaenorhabditis elegans. Bioinformatic analysis revealed that the open reading frame of the Hc-hsp70 cDNA encodes a 646-amino acid peptide, which is highly conserved in comparison to HSP70 in other nematodes. Phylogenetic analysis indicated thatH. contortusis closely related toCaenorhabditis. The 5′-flanking region promoted green fluorescence protein (GFP) expression in the intestine in all larval stages and adult with 2 expression patterns inC. elegans. Expression of Hc-hsp70 mRNA transcripts inC. elegansincreased following 2, 4, 6 h of heat shock and peaked at 4 h. However, its expression induced down-regulation ofhsp-1ofC. elegans. These results suggest that theH. contortushsp70 might have a similar function to that ofC. elegans hsp-1.
Collapse
|
46
|
Impact of exercise and metabolic disorders on heat shock proteins and vascular inflammation. Autoimmune Dis 2012; 2012:836519. [PMID: 23304460 PMCID: PMC3533452 DOI: 10.1155/2012/836519] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 09/20/2012] [Accepted: 11/06/2012] [Indexed: 12/27/2022] Open
Abstract
Heat shock proteins (Hsp) play critical roles in the body's self-defense under a variety of stresses, including heat shock, oxidative stress, radiation, and wounds, through the regulation of folding and functions of relevant cellular proteins. Exercise increases the levels of Hsp through elevated temperature, hormones, calcium fluxes, reactive oxygen species (ROS), or mechanical deformation of tissues. Isotonic contractions and endurance- type activities tend to increase Hsp60 and Hsp70. Eccentric muscle contractions lead to phosphorylation and translocation of Hsp25/27. Exercise-induced transient increases of Hsp inhibit the generation of inflammatory mediators and vascular inflammation. Metabolic disorders (hyperglycemia and dyslipidemia) are associated with type 1 diabetes (an autoimmune disease), type 2 diabetes (the common type of diabetes usually associated with obesity), and atherosclerotic cardiovascular disease. Metabolic disorders activate HSF/Hsp pathway, which was associated with oxidative stress, increased generation of inflammatory mediators, vascular inflammation, and cell injury. Knock down of heat shock factor-1 (HSF1) reduced the activation of key inflammatory mediators in vascular cells. Accumulating lines of evidence suggest that the activation of HSF/Hsp induced by exercise or metabolic disorders may play a dual role in inflammation. The benefits of exercise on inflammation and metabolism depend on the type, intensity, and duration of physical activity.
Collapse
|
47
|
Wang D, Lu L, Tian Y, Li J, Shen J, Tao Z, Li G, Xu N. Molecular cloning, characterization and expression patterns of heat shock protein 60 (HSP60) in the laying duck (Anas platyrhynchos). CANADIAN JOURNAL OF ANIMAL SCIENCE 2012. [DOI: 10.4141/cjas2012-023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Wang, D., Lu, L., Tian, Y., Li, J., Shen, J., Tao, Z., Li, G. and Xu, N. 2012. Molecular cloning, characterization and expression patterns of heat shock protein 60 (HSP60) in the laying duck (Anas platyrhynchos). Can. J. Anim. Sci. 92: 425–432. In the present study, we cloned and characterized the HSP60 cDNA from Anas platyrhyncho (designated as ApHSP60) using a combination of homology and rapid amplification of cDNA ends (RACE). The full-length of ApHSP60 is 2027 bp in length, with an open reading frame of 1707 bp encoding a putative protein of 569 amino acids. Comparison of amino acid sequences of HSP60 revealed ApHSP60 is highly conserved, especially in the domains of classical HSP60 family signatures. ApHSP60 transcripts were at low expression levels throughout embryo development. ApHSP60 transcripts were constitutively expressed in all tested tissues of untreated laying duck, with a maximum level in the liver. Fluorescent real-time quantitative reverse transcription-polymerase chain reaction was applied to determine ApHSP60 expression after exposure to different thermal shocks. Under long term treatment with both 30°C and 35°C, ApHSP60 transcripts in heart and liver were significantly up-regulated. Otherwise, ApHSP60 transcripts were remarkably down-regulated in heart and liver under acute challenge with 40°C (a fatal temperature for laying duck). A time-dependent expression pattern of ApHSP60 was found in the recovery period after heat shock reaction. ApHSP60 expression levels in liver and heart were immediately up-regulated to the maximum at 1 h post-challenge, and then decreased to pre-challenge levels by 2 h and 3 h post-challenge, respectively. These results suggest that mRNA expression of the ApHSP60 gene is constitutive and inducible. Meanwhile, it plays an important role in response to heat stressors.
Collapse
Affiliation(s)
- Deqian Wang
- College of Animal Sciences, Zhejiang University, 258 Kaixuan Road, Hangzhou, Zhejiang 310029, China
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
| | - Yong Tian
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
| | - Jinjun Li
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
| | - Junda Shen
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
| | - Zhengrong Tao
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
| | - Guoqing Li
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
| | - Ningying Xu
- College of Animal Sciences, Zhejiang University, 258 Kaixuan Road, Hangzhou, Zhejiang 310029, China
| |
Collapse
|
48
|
Park JM, Je JH, Wu WH, Jee HJ, Lee SK, Lee MG. Attenuation of contact hypersensitivity by cell-permeable heat shock protein 70 in BALB/c mouse model. Exp Dermatol 2012; 21:969-71. [DOI: 10.1111/exd.12044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2012] [Indexed: 10/27/2022]
Affiliation(s)
- Jin Mo Park
- Department of Dermatology and Cutaneous Biology Research Institute; Severance Hospital, Yonsei University College of Medicine; Seoul; Korea
| | - Jeong Hwan Je
- Department of Dermatology and Cutaneous Biology Research Institute; Severance Hospital, Yonsei University College of Medicine; Seoul; Korea
| | - Wen Hao Wu
- Department of Dermatology and Cutaneous Biology Research Institute; Severance Hospital, Yonsei University College of Medicine; Seoul; Korea
| | - Hyun Joong Jee
- Department of Dermatology and Cutaneous Biology Research Institute; Severance Hospital, Yonsei University College of Medicine; Seoul; Korea
| | - Sang-Kyou Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Translational Research Center for Protein Function Control; Yonsei University; Seoul; Korea
| | - Min-Geol Lee
- Department of Dermatology and Cutaneous Biology Research Institute; Severance Hospital, Yonsei University College of Medicine; Seoul; Korea
| |
Collapse
|
49
|
Keijzer C, Wieten L, van Herwijnen M, van der Zee R, Van Eden W, Broere F. Heat shock proteins are therapeutic targets in autoimmune diseases and other chronic inflammatory conditions. Expert Opin Ther Targets 2012; 16:849-57. [PMID: 22793002 DOI: 10.1517/14728222.2012.706605] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Exploitation of antigen-specific regulatory T cells (Tregs) as critical regulators in the control of chronic inflammatory diseases is hampered by the obscure nature of most disease-relevant autoantigens. Heat shock proteins (Hsp) are possible targets for Tregs due to their enhanced expression in inflamed (stressed) tissues and there is evidence that Hsp can induce anti-inflammatory immunoregulatory T-cell responses. AREAS COVERED Recent publications showing that exogenous administration of stress proteins has induced immunoregulation in various models of inflammatory disease have also been shown to be effective in first clinical trials in humans. Now, in the light of a growing interest in T-cell regulation, it is of interest to further explore the mechanisms through which Hsp can be utilized to trigger immunoregulatory pathways, capable of suppressing such a wide and diversified spectrum of inflammatory diseases. EXPERT OPINION Therapeutic approaches via exploitation of antigen-specific Tregs will benefit from tailor-made combination therapies. Combining current therapeutic approaches with Hsp-specific therapies thereby enhancing natural immune regulation might expedite the entry of antigen-specific regulatory T cells into the therapeutic arsenal of the anti-inflammatory therapeutics.
Collapse
Affiliation(s)
- Chantal Keijzer
- University Utrecht, Faculty Veterinary Medicine, Department Infectious Diseases and Immunology, Yalelaan, Netherlands
| | | | | | | | | | | |
Collapse
|
50
|
Luan YY, Yao YM, Sheng ZY. Update on the immunological pathway of negative regulation in acute insults and sepsis. J Interferon Cytokine Res 2012; 32:288-98. [PMID: 22509978 PMCID: PMC3390969 DOI: 10.1089/jir.2011.0117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 01/16/2012] [Indexed: 12/20/2022] Open
Abstract
Sepsis with subsequent multiple organ dysfunction is a distinctly systemic inflammatory response to concealed or known infection and is a leading cause of death in intensive care units. In the initial stage of sepsis, a phase of immune activation can be evident, but a marked apoptosis-induced depletion of lymphocytes and a nonspecific anergy of immune function after severe trauma and burns might be responsible for the increased susceptibility of the host to subsequent septic complications. Recent studies indicated that negative regulation of immune function plays a pivotal role in the maintenance of peripheral homeostasis and regulation of immune responses; therefore, an understanding of the basic pathways might give rise to novel insights into the mechanisms of sepsis and immune homeostasis. This review is an attempt to provide a summary of the different pathways of negative regulation that are involved in the pathogenesis of sepsis, secondary to acute insults.
Collapse
Affiliation(s)
- Ying-yi Luan
- Department of Microbiology and Immunology, Burns Institute, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, People's Republic of China
| | | | | |
Collapse
|