1
|
Sandei I, Gaule T, Batchelor M, Paci E, Kim YY, Kulak AN, Tomlinson DC, Meldrum FC. Phage display identifies Affimer proteins that direct calcium carbonate polymorph formation. Biomater Sci 2024; 12:5215-5224. [PMID: 39206560 PMCID: PMC11358866 DOI: 10.1039/d4bm00165f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
A key factor in biomineralization is the use of organic molecules to direct the formation of inorganic materials. However, identification of molecules that can selectively produce the calcium carbonate polymorphs calcite or aragonite has proven extremely challenging. Here, we use a phage display approach to identify proteins - rather than the short peptides typically identified using this method - that can direct calcium carbonate formation. A 1.3 × 1010 library of Affimer proteins was displayed on modified M13 phage, where an Affimer is a ≈13 kDa protein scaffold that displays two variable regions of 9-13 residues. The phage displaying the Affimer library were then screened in binding assays against calcite and aragonite at pH 7.4, and four different strongly-binding proteins were identified. The two aragonite-binding proteins generated aragonite when calcium and magnesium ions were present at a 1 : 1 ratio, while the calcite-binding proteins produce magnesium-calcite under the same conditions. Calcite alone formed in the presence of all four proteins in the absence of magnesium ions. In combination with molecular dynamics simulations to evaluate the conformations of the proteins in solution, this work demonstrates the importance of conformation in polymorph control, and highlights the importance of magnesium ions, which are abundant in seawater, to reduce the energetic barriers associated with aragonite formation.
Collapse
Affiliation(s)
- Ilaria Sandei
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.
| | - Thembaninkosi Gaule
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Matthew Batchelor
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Emanuele Paci
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Yi-Yeoun Kim
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.
| | | | - Darren C Tomlinson
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Fiona C Meldrum
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
2
|
Jin C, Wei F, Zhang J, Tan X, Fan T, Luo W, Li J. HcN57, A Novel Unusual Acidic Silk-Like Matrix Protein from Hyriopsis cumingii, Participates in Framework Construction and Nacre Nucleation During Nacreous Layer Formation. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:716-731. [PMID: 38896299 DOI: 10.1007/s10126-024-10339-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
In the classic molecular model of nacreous layer formation, unusual acidic matrix proteins rich in aspartic acid (Asp) residues are essential for nacre nucleation due to their great affinity for binding calcium. However, the acidic matrix proteins discovered in the nacreous layer so far have been weakly acidic with a high proportion of glutamate. In the present study, several silk-like matrix proteins, including the novel matrix protein HcN57, were identified in the ethylenediaminetetraacetic acid-soluble extracts of the nacreous layer of Hyriopsis cumingii. HcN57 is a highly repetitive protein that consists of a high proportion of alanine (Ala, 34.4%), glycine (Gly, 22.5%), and serine (Ser, 11.4%). It forms poly Ala blocks, GlynX repeats, an Ala-Gly repeat, and a Ser-Ala-rich region, exhibiting significant similarity to silk proteins found in spider species. The expression of HcN57 was specifically located in the dorsal epithelial cells of the mantle pallium and mantle center. Notably, expression of HcN57 was relatively high during nacreous layer regeneration and pearl nacre deposition, suggesting HcN57 is a silk matrix protein in the nacreous layer. Importantly, HcN57 also contains a certain content of Asp residues, making it an unusual acidic matrix protein present in the nacreous layer. These Asp residues are mainly distributed in three large hydrophilic acidic regions, which showed inhibitory activity against aragonite deposition and morphological regulation of calcite in vitro. Moreover, HcN57-dsRNA injection resulted in failure of nacre nucleation in vivo. Taken together, our results show that HcN57 is a bifunctional silk protein with poly Ala blocks and Gly-rich regions that serve as space fillers within the chitinous framework to prevent crystallization at unnecessary nucleation sites and Asp-rich regions that create a calcium ion supersaturated microenvironment for nucleation in the center of nacre tablets. These observations contribute to a better understanding of the mechanism by which silk proteins regulate framework construction and nacre nucleation during nacreous layer formation.
Collapse
Affiliation(s)
- Can Jin
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, China
| | - Fangmengjie Wei
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, China
| | - Jiayi Zhang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, China
| | - Xiaoyang Tan
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, China
| | - Taixia Fan
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, China
| | - Wen Luo
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China.
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China.
- Shanghai Collaborative Innovation Center of Aquatic Animal Breeding and Green Aquaculture, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
3
|
Li Z, Yang M, Zhou C, Shi P, Hu P, Liang B, Jiang Q, Zhang L, Liu X, Lai C, Zhang T, Song H. Deciphering the molecular toolkit: regulatory elements governing shell biomineralization in marine molluscs. Integr Zool 2024. [PMID: 39030865 DOI: 10.1111/1749-4877.12876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
The intricate process of shell biomineralization in marine molluscs is governed by a complex interplay of regulatory elements, encompassing secretomes, transporters, and noncoding RNA. This review delves into recent advancements in understanding these regulatory mechanisms, emphasizing their significance in elucidating the functions and evolutionary dynamics of the molluscan shell biomineralization process. Central to this intricate orchestration are secretomes with diverse functional domains, selectively exported to the extrapallial space, which directly regulate crystal growth and morphology. Transporters are crucial for substrate transportation in the calcification and maintenance of cellular homeostasis. Beyond proteins and transporters, noncoding RNA molecules are integral components influencing shell biomineralization. This review underscores the nonnegligible roles played by these genetic elements at the molecular level. To comprehend the complexity of biomineralization in mollusc, we explore the origin and evolutionary history of regulatory elements, primarily secretomes. While some elements have recently evolved, others are ancient genes that have been co-opted into the biomineralization toolkit. These elements undergo structural and functional evolution through rapidly evolving repetitive low-complexity domains and domain gain/loss/rearrangements, ultimately shaping a distinctive set of secretomes characterized by both conserved features and evolutionary innovations. This comprehensive review enhances our understanding of molluscan biomineralization at the molecular and genetic levels.
Collapse
Affiliation(s)
- Zhuoqing Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meijie Yang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cong Zhou
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pu Shi
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pengpeng Hu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bin Liang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingtian Jiang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Lili Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiaoyan Liu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Agricultural University, Qingdao, China
| | - Changping Lai
- Lianyungang Blue Carbon Marine Technology Co., Lianyungang, China
| | - Tao Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Song
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Kato Y, Ha W, Zheng Z, Negishi L, Kawano J, Kurita Y, Kurumizaka H, Suzuki M. Tropomyosin induces the synthesis of magnesian calcite in sea urchin spines. J Struct Biol 2024; 216:108074. [PMID: 38432597 DOI: 10.1016/j.jsb.2024.108074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/09/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Calcium carbonate is present in many biominerals, including in the exoskeletons of crustaceans and shells of mollusks. High Mg-containing calcium carbonate was synthesized by high temperatures, high pressures or high molecular organic matter. For example, biogenic high Mg-containing calcite is synthesized under strictly controlled Mg concentration at ambient temperature and pressure. The spines of sea urchins consist of calcite, which contain a high percentage of magnesium. In this study, we investigated the factors that increase the magnesium content in calcite from the spines of the sea urchin, Heliocidaris crassispina. X-ray diffraction and inductively coupled plasma mass spectrometry analyses showed that sea urchin spines contain about 4.8% Mg. The organic matrix extracted from the H. crassispina spines induced the crystallization of amorphous phase and synthesis of magnesium-containing calcite, while amorphous was synthesized without SUE (sea urchin extract). In addition, aragonite was synthesized by SUE treated with protease-K. HC tropomyosin was specifically incorporated into Mg precipitates. Recombinant HC-tropomyosin induced calcite contained 0.1-2.5% Mg synthesis. Western blotting of sea urchin spine extracts confirmed that HC tropomyosin was present in the purple sea urchin spines at a protein weight ratio of 1.5%. These results show that HC tropomyosin is one factor that increases the magnesium concentration in the calcite of H. crassispina spines.
Collapse
Affiliation(s)
- Yugo Kato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Woosuk Ha
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Zehua Zheng
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Lumi Negishi
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Jun Kawano
- Department of Earth and Planetary Sciences, Faculty of Science, Hokkaido University, N10 W8, Kita-ku, Sapporo 060-0810, Japan
| | - Yoshihisa Kurita
- Graduate School of Agricultural Science, Kyushu University, 4-46-24 Tsuyazaki, Fukutsu-shi, Fukuoka 811-3304, Japan
| | - Hitoshi Kurumizaka
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
5
|
Hanif MA, Han JD, Kim SC, Hossen S, Kho KH. EF-Hand-Binding Secreted Protein Hdh-SMP5 Regulates Shell Biomineralization and Responses to Stress in Pacific Abalone, Haliotis discus hannai. Curr Issues Mol Biol 2023; 45:10079-10096. [PMID: 38132475 PMCID: PMC10741955 DOI: 10.3390/cimb45120629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
The development of a shell is a complex calcium metabolic process involving shell matrix proteins (SMPs). In this study, we describe the isolation, characterization, and expression of SMP5 and investigate its potential regulatory role in the shell biomineralization of Pacific abalone Haliotis discus hannai. The full-length Hdh-SMP5 cDNA contains 685 bp and encodes a polypeptide of 134 amino acids. Structurally, the Hdh-SMP5 protein belongs to the EF-hand-binding superfamily, which possesses three EF-hand Ca2+-binding regions and is rich in aspartic acid. The distinct clustering patterns in the phylogenetic tree indicate that the amino acid composition and structure of this protein may vary among different SMPs. During early development, significantly higher expression was observed in the trochophore and veliger stages. Hdh-SMP5 was also upregulated during shell biomineralization in Pacific abalone. Long periods of starvation cause Hdh-SMP5 expression to decrease. Furthermore, Hdh-SMP5 expression was observed to be significantly higher under thermal stress at temperatures of 15, 30, and 25 °C for durations of 6 h, 12 h, and 48 h, respectively. Our study is the first to characterize Hdh-SMP5 comprehensively and analyze its expression to elucidate its dynamic roles in ontogenetic development, shell biomineralization, and the response to starvation and thermal stress.
Collapse
Affiliation(s)
- Md Abu Hanif
- Department of Fisheries Science, Chonnam National University, Yeosu 59626, Republic of Korea; (M.A.H.); (S.H.)
| | - Ji Do Han
- South Sea Fisheries Research Institute, National Institute of Fisheries Science, Yeosu 59780, Republic of Korea; (J.D.H.); (S.C.K.)
| | - Soo Cheol Kim
- South Sea Fisheries Research Institute, National Institute of Fisheries Science, Yeosu 59780, Republic of Korea; (J.D.H.); (S.C.K.)
| | - Shaharior Hossen
- Department of Fisheries Science, Chonnam National University, Yeosu 59626, Republic of Korea; (M.A.H.); (S.H.)
| | - Kang Hee Kho
- Department of Fisheries Science, Chonnam National University, Yeosu 59626, Republic of Korea; (M.A.H.); (S.H.)
| |
Collapse
|
6
|
Mahadevan G, Brahma RK, Kini RM, Valiyaveettil S. Purification of Intramineral Peptides from Cuttlebones and In Vitro Activity in CaCO 3 Biomineralization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7249-7257. [PMID: 37201193 DOI: 10.1021/acs.langmuir.2c03433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Living organisms develop functional hard structures such as teeth, bones, and shells from calcium salts through mineralization for managing vital functions to sustain life. However, the exact mechanism or role of biomolecules such as proteins and peptides in the biomineralization process to form defect-free hierarchical structures in nature is poorly understood. In this study, we have extracted, purified, and characterized five major peptides (CBP1-CBP5) from the soluble organic materials (SOMs) of cuttlefish bone (CB) and used for the in vitro mineralization of calcium carbonate crystals. The SOMs induced nucleation of the calcite phase at low concentrations and the vaterite phase at high concentrations. The purified peptides nucleated calcite crystals and enhanced aggregation under laboratory conditions. Among five peptides, only CBP2 and CBP3 showed concentration-dependent nucleation, aggregation, and morphological changes of the calcite crystals within 12 h. Circular dichroism studies showed that the peptides CBP2 and CBP3 are in alpha helix and β-sheet conformation, respectively, in solution. CBP1 and CBP4 and CBP5 are in random coil and β-sheet conformation, respectively. In addition, the peptides showed different sizes in solution in the absence (∼27 nm, low aggregation) and presence (∼118 nm, high aggregation) of calcium ions. Aragonite crystals with needle-type morphologies were nucleated in the presence of Mg2+ ions in solution. Overall, exploring the activities of such intramineral peptides from CB help to unravel the mechanism of calcium salt deposition in nature.
Collapse
Affiliation(s)
- Gomathi Mahadevan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Rajeev Kungur Brahma
- Department of Biological Sciences, 14 science drive 4, National University of Singapore, Singapore 117543, Singapore
| | - R Manjunatha Kini
- Department of Biological Sciences, 14 science drive 4, National University of Singapore, Singapore 117543, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Suresh Valiyaveettil
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
7
|
Liu H, Liu C, Huang J. Characterization of the shell proteins in two freshwater snails Pomacea canaliculata and Cipangopaludina chinensis. Int J Biol Macromol 2023; 242:124524. [PMID: 37100317 DOI: 10.1016/j.ijbiomac.2023.124524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/07/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023]
Abstract
Uncovering the molecular mechanism of shell formation not only reveals the evolution of molluscs but also lay a foundation for shell-inspired biomaterial synthesis. Shell proteins are the key macromolecules of the organic matrices that guide the calcium carbonate deposition during shell mineralization and have thus been intensively studied. However, previous studies on shell biomineralization have mainly focused on marine species. In this study, we compared the microstructure and shell proteins in the apple snail Pomacea canaliculata which is an alien species that has invaded Asia, and a freshwater snail Cipangopaludina chinensis which is native to China. The results showed that although the shell microstructures were similar in these two snails, the shell matrix in C. chinensis contained more polysaccharides. Moreover, the compositions of shell proteins were quite different. While the shared 12 shell proteins (including PcSP6/CcSP9, Calmodulin-A, and proline-rich protein) were supposed to play key roles in shell formation, the differential proteins were mainly immune components. The presence of chitin in both shell matrices and the chitin-binding domains containing PcSP6/CcSP9 underpinned the relevance of chitin as a major fraction in gastropods. Interestingly, carbonic anhydrase was absent in both snail shells, suggesting that freshwater Gastropods might have unique pathways to regulate the calcification process. Our study suggested that shell mineralization might be very different in freshwater and marine molluscs, and therefore, the field should pay more attention to the freshwater species to achieve a more comprehensive insight into biomineralization.
Collapse
Affiliation(s)
- Huan Liu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Chuang Liu
- College of Oceanography, Hohai University, Xikang Road, Nanjing, Jiangsu 210098, China
| | - Jingliang Huang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China.
| |
Collapse
|
8
|
Direct control of shell regeneration by the mantle tissue in the pearl oyster Pinctada fucata. J Struct Biol 2023; 215:107956. [PMID: 36934975 DOI: 10.1016/j.jsb.2023.107956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/12/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023]
Abstract
Molluscs rapidly repair the damaged shells to prevent further injury, which is vital for their survival after physical or biological aggression. However, it remains unclear how this process is precisely controlled. In this study, we applied scanning electronic microscopy and histochemical analysis to examine the detailed shell regeneration process in the pearl oyster Pinctada fucata. It was found that the shell damage caused the mantle tissue to retract, which resulted in relocation of the partitioned mantle zones with respect to their correspondingly secreting shell layers. As a result, the relocated mantle tissue dramatically altered the shell morphology by initiating de novo precipitation of prismatic layers on the former nacreous layers, leading to the formation of sandwich-like "prism-nacre-prism-nacre" structure. Real-time PCR revealed the up-regulation of the shell matrix protein genes, which was confirmed by the thermal gravimetric analysis of the newly formed shell. The increased matrix secretion might have led to the change of CaCO3 precipitation dynamics which altered the mineral morphology and promoted shell formation. Taken together, our study revealed the close relationship between the physiological activities of the mantle tissue and the morphological change of the regenerated shells.
Collapse
|
9
|
Tarczewska A, Bielak K, Zoglowek A, Sołtys K, Dobryszycki P, Ożyhar A, Różycka M. The Role of Intrinsically Disordered Proteins in Liquid–Liquid Phase Separation during Calcium Carbonate Biomineralization. Biomolecules 2022; 12:biom12091266. [PMID: 36139105 PMCID: PMC9496343 DOI: 10.3390/biom12091266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Some animal organs contain mineralized tissues. These so-called hard tissues are mostly deposits of calcium salts, usually in the form of calcium phosphate or calcium carbonate. Examples of this include fish otoliths and mammalian otoconia, which are found in the inner ear, and they are an essential part of the sensory system that maintains body balance. The composition of ear stones is quite well known, but the role of individual components in the nucleation and growth of these biominerals is enigmatic. It is sure that intrinsically disordered proteins (IDPs) play an important role in this aspect. They have an impact on the shape and size of otoliths. It seems probable that IDPs, with their inherent ability to phase separate, also play a role in nucleation processes. This review discusses the major theories on the mechanisms of biomineral nucleation with a focus on the importance of protein-driven liquid–liquid phase separation (LLPS). It also presents the current understanding of the role of IDPs in the formation of calcium carbonate biominerals and predicts their potential ability to drive LLPS.
Collapse
|
10
|
Luo W, Jiang R, Ren G, Jin C. Hic12, a novel acidic matrix protein promotes the transformation of calcite into vaterite in Hyriopsis cumingii. Comp Biochem Physiol B Biochem Mol Biol 2022; 261:110755. [PMID: 35580805 DOI: 10.1016/j.cbpb.2022.110755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/27/2022]
Abstract
Shell acidic matrix proteins are widely considered to be essential for shell formation given their low affinity and high loading for calcium ion. In the present study, a novel matrix protein, hic12, was isolated from the mantle of Hyriopsis cumingii. High expression in tissue and positive signals with in situ hybridization were detected in the mantle center and mantle pallium, indicating that hic12 mainly participated in the biomineralization of the shell nacreous layer. The expression pattern of hic12 in the pearl sac during early pearl formation indicated that it was involved in pearl biomineralization. Moreover, the recombinant protein, rGST-Hic12, was successfully expressed and purified. The addition of rGST-Hic12 could accelerate the calcium carbonate deposition rate, change the morphology of crystals, and promote the conversion of calcite to vaterite. These results may provide new insights into the molecular mechanisms of aragonite mollusk shell formation.
Collapse
Affiliation(s)
- Wen Luo
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China
| | - Rui Jiang
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China
| | - Gang Ren
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China
| | - Can Jin
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China.
| |
Collapse
|
11
|
Shimizu K, Takeuchi T, Negishi L, Kurumizaka H, Kuriyama I, Endo K, Suzuki M. Evolution of EGF-like and Zona pellucida domains containing shell matrix proteins in mollusks. Mol Biol Evol 2022; 39:6633355. [PMID: 35796746 PMCID: PMC9290575 DOI: 10.1093/molbev/msac148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several types of shell matrix proteins (SMPs) have been identified in molluskan shells. Their diversity is the consequence of various molecular processes, including domain shuffling and gene duplication. However, the evolutionary origin of most SMPs remains unclear. In this study, we investigated the evolutionary process EGF-like and zona pellucida (ZP) domains containing SMPs. Two types of the proteins (EGF-like protein (EGFL) and EGF-like and ZP domains containing protein (EGFZP)) were found in the pearl oyster, Pinctada fucata. In contrast, only EGFZP was identified in the gastropods. Phylogenetic analysis and genomic arrangement studies showed that EGFL and EGFZP formed a clade in bivalves, and their encoding genes were localized in tandem repeats on the same scaffold. In P. fucata, EGFL genes were expressed in the outer part of mantle epithelial cells are related to the calcitic shell formation. However, in both P. fucata and the limpet Nipponacmea fuscoviridis, EGFZP genes were expressed in the inner part of the mantle epithelial cells are related to aragonitic shell formation. Furthermore, our analysis showed that in P. fucata, the ZP domain interacts with eight SMPs that have various functions in the nacreous shell mineralization. The data suggest that the ZP domain can interact with other SMPs, and EGFL evolution in pterimorph bivalves represents an example of neo-functionalization that involves the acquisition of a novel protein through gene duplication.
Collapse
Affiliation(s)
- Keisuke Shimizu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Takeshi Takeuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Lumi Negishi
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Hitoshi Kurumizaka
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Isao Kuriyama
- Mie Prefecture Fisheries Research Institute, 3564-3 Hamajima, Hamajima-cho, Shima-city, Mie 517-0404, Japan
| | - Kazuyoshi Endo
- Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| |
Collapse
|
12
|
Sato K, Setiamarga DHE, Yonemitsu H, Higuchi K. Microstructural and Genetic Insights Into the Formation of the “Winter Diffusion Layer” in Japanese Pearl Oyster Pinctada fucata and Its Relation to Environmental Temperature Changes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.794287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phenotypic plasticity in molluscan shell microstructures may be related to environmental changes. The “winter diffusion layer,” a shell microstructure of the Japanese pearl oyster Pinctada fucata, is an example of this phenomenon. In this study, we used P. fucata specimens with shared genetic background to evaluate the seasonal plasticity of shell microstructures, at molecular level. To detect the seasonal changes in shell microstructure and mineral composition, shells of multiple individuals were periodically collected and analyzed using scanning electron microscopy and Raman spectrophotometry. Our observations of the winter diffusion layer revealed that this irregular shell layer, located between the outer and middle shell layers, had a sphenoid shape in radial section. This distinct shape might be caused by the internal extension of the outer shell layer resulting from growth halts. The winter diffusion layer could be distinguished from the calcitic outer shell layer by its aragonitic components and microstructures. Moreover, the components of the winter diffusion layer were irregular simple prismatic (the outer and inner sublayers) and homogeneous structures (the middle sublayer). This irregular formation occurred until April, when the animals resumed their “normal” shell formation after hibernation. To check for a correlation between gene expression and the changes in microstructures, we conducted qPCR of seven major biomineralization-related shell matrix protein-coding genes (aspein, prismalin-14, msi7, msi60, nacrein, n16, and n19) in the shell-forming mantle tissue. Tissue samples were collected from the mantle edge (tissue secreting the outer shell layer) and mantle pallium (where the middle shell layer is constructed) of the same individuals used for microstructural observation and mineral identification that were collected in January (winter growth break period), April (irregular shell formation period), and August (normal shell formation period). Statistically significant differences in gene expression levels were observed between mantle edge and mantle pallium, but no seasonal differences were detected in the seasonal expression patterns of these genes. These results suggest that the formation of the irregular shell layer in P. fucata is caused by a currently unknown genetic mechanism unrelated to the genes targeted in the present study. Further studies using big data (transcriptomics and manipulation of gene expression) are required to answer the questions herein raised. Nevertheless, the results herein presented are essential to unravel the intriguing mystery of the formation of the winter diffusion layer, which may allow us to understand how marine mollusks adapt or acclimate to climate changes.
Collapse
|
13
|
Han Z, Jiang T, Xie L, Zhang R. Microplastics impact shell and pearl biomineralization of the pearl oyster Pinctada fucata. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118522. [PMID: 34793903 DOI: 10.1016/j.envpol.2021.118522] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Microplastics are extremely widespread aquatic pollutants that severely detriment marine life. In this study, the influence of microplastics on biomineralization was investigated. For the first time, multiple forms and types of microplastics were detected and isolated from the shells and pearls of Pinctada fucata. According to the present study, the abundance of microplastics in shells and pearls was estimated at 1.95 ± 1.43 items/g and 0.53 ± 0.37 items/g respectively. Interestingly, microplastics were less abundant in high-quality round pearls. Microplastics may hinder the growth of calcite and aragonite crystals, which are crucial components required for shell formation. During the process of biomineralization microplastics became embedded in shells, suggesting the existence of a novel pathway by which microplastics accumulate in bivalves. After a 96-h exposure to microplastics, the expression level of typical biomineralization-related genes increased, including amorphous calcium carbonate binding protein (ACCBP) gene which experienced a significant increase. ACCBP promotes the formation of amorphous calcium carbonate (ACC), which is the pivotal precursor of shell formation-related biominerals. ACCBP is highly expressed during the developmental stage of juvenile oysters and the shell-damage repair process. The increased expression of ACCBP suggests biomineralization is enhanced as a result of microplastics exposure. These results provide important evidence that microplastics exposure may impact the appearance of biominerals and the expression of biomineralization-related genes, posing a new potential threat to aquatic organisms.
Collapse
Affiliation(s)
- Zaiming Han
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, PR China
| | - Taifeng Jiang
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, PR China
| | - Liping Xie
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, PR China
| | - Rongqing Zhang
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, PR China; Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, PR China.
| |
Collapse
|
14
|
Song N, Li J, Li B, Pan E, Gao J, Ma Y. In vitro crystallization of calcium carbonate mediated by proteins extracted from P. placenta shells. CrystEngComm 2022. [DOI: 10.1039/d2ce00692h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ASM extracted from the shells of P. placenta can stabilize ACC and inhibit secondary nucleation for 10 hours, and an explosive secondary nucleation and quick crystal growth from 50 nm to 10 μm can be finished on the shell surface in one hour.
Collapse
Affiliation(s)
- Ningjing Song
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiangfeng Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Baosheng Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ercai Pan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Juan Gao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yurong Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
15
|
Huang J, Liu Y, Liu C, Xie L, Zhang R. Heterogeneous distribution of shell matrix proteins in the pearl oyster prismatic layer. Int J Biol Macromol 2021; 189:641-648. [PMID: 34425123 DOI: 10.1016/j.ijbiomac.2021.08.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/26/2022]
Abstract
Shell formation in molluscan bivalves is regulated by organic matrices composed of biological macromolecules, but how these macromolecules assemble in vitro remains elusive. Prismatic layer in the pearl oyster Pinctada fucata consists of polygonal prisms enveloped by thick organic matrices. In this study, we found that the organic matrices were heterogeneously distributed, with highly acidic fractions (EDTA-soluble and EDTA-insoluble) embedded inside the prism columns, while basic EDTA-insoluble faction as inter-column framework enveloping the prisms. The intra-column matrix was enriched in aspartic acid whereas the inter-column matrix was enriched in glycine, tyrosine and phenylalanine. Moreover, the intra-column matrix contained sulfo group further contributing to its acidic property. Proteomics data showed that the intra-column proteins mainly consisted of acidic proteins, while some typical matrix proteins were absent. The absent matrix proteins such as shematrin family and KRMP family were highly basic and contained aromatic amino acids, suggesting that electric charge and hydrophobic effect might play a role in the matrix heterogeneity. Interestingly, chitin metabolism related proteins were abundant in the inter-column matrix, which may be involved in reconstructing the prism organic matrix. Overall, our study suggests that each single prism grew in an enclosed organic envelope and the organic matrix undergoes rearrangement, thus leading to the peculiar growth of the prismatic layer.
Collapse
Affiliation(s)
- Jingliang Huang
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yangjia Liu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chuang Liu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Liping Xie
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rongqing Zhang
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314000, China.
| |
Collapse
|
16
|
Takeuchi T, Fujie M, Koyanagi R, Plasseraud L, Ziegler-Devin I, Brosse N, Broussard C, Satoh N, Marin F. The 'Shellome' of the Crocus Clam Tridacna crocea Emphasizes Essential Components of Mollusk Shell Biomineralization. Front Genet 2021; 12:674539. [PMID: 34168677 PMCID: PMC8217771 DOI: 10.3389/fgene.2021.674539] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/13/2021] [Indexed: 01/31/2023] Open
Abstract
Molluscan shells are among the most fascinating research objects because of their diverse morphologies and textures. The formation of these delicate biomineralized structures is a matrix-mediated process. A question that arises is what are the essential components required to build these exoskeletons. In order to understand the molecular mechanisms of molluscan shell formation, it is crucial to identify organic macromolecules in different shells from diverse taxa. In the case of bivalves, however, taxon sampling in previous shell proteomics studies are focused predominantly on representatives of the class Pteriomorphia such as pearl oysters, edible oysters and mussels. In this study, we have characterized the shell organic matrix from the crocus clam, Tridacna crocea, (Heterodonta) using various biochemical techniques, including SDS-PAGE, FT-IR, monosaccharide analysis, and enzyme-linked lectin assay (ELLA). Furthermore, we have identified a number of shell matrix proteins (SMPs) using a comprehensive proteomics approach combined to RNA-seq. The biochemical studies confirmed the presence of proteins, polysaccharides, and sulfates in the T. crocea shell organic matrix. Proteomics analysis revealed that the majority of the T. crocea SMPs are novel and dissimilar to known SMPs identified from the other bivalve species. Meanwhile, the SMP repertoire of the crocus clam also includes proteins with conserved functional domains such as chitin-binding domain, VWA domain, and protease inhibitor domain. We also identified BMSP (Blue Mussel Shell Protein, originally reported from Mytilus), which is widely distributed among molluscan shell matrix proteins. Tridacna SMPs also include low-complexity regions (LCRs) that are absent in the other molluscan genomes, indicating that these genes may have evolved in specific lineage. These results highlight the diversity of the organic molecules – in particular proteins – that are essential for molluscan shell formation.
Collapse
Affiliation(s)
- Takeshi Takeuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Manabu Fujie
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Ryo Koyanagi
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Laurent Plasseraud
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, Faculté des Sciences Mirande, Université de Bourgogne - Franche-Comté (UBFC), Dijon, France
| | - Isabelle Ziegler-Devin
- LERMAB, Faculté des Sciences et Technologies - Campus Aiguillettes, Université de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Nicolas Brosse
- LERMAB, Faculté des Sciences et Technologies - Campus Aiguillettes, Université de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Cédric Broussard
- 3P5 Proteomic Platform, Cochin Institute, University of Paris, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Frédéric Marin
- UMR CNRS 6282 Biogéosciences, Bâtiment des Sciences Gabriel, Université de Bourgogne - Franche-Comté (UBFC), Dijon, France
| |
Collapse
|
17
|
Huang J, Jiang T, Liu C, Liu Y, Zheng G, Wang H, Zhang G, Xie L, Zhang R. Transition from horizontal expansion to vertical growth in the oyster prismatic layer. Biochem Biophys Res Commun 2021; 563:47-53. [PMID: 34058474 DOI: 10.1016/j.bbrc.2021.05.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/19/2021] [Indexed: 12/01/2022]
Abstract
Biomimetic materials inspired by biominerals have substantial applications in various fields. The prismatic layer of bivalve molluscs has extraordinary flexibility compared to inorganic CaCO3. Previous studies showed that in the early stage, minerals expanded horizontally and formed prism domains as a Voronoi division, while the evolution of the mature prisms were thermodynamically driven, which was similar to grain growth. However, it was unclear how the two processes were correlated during shell formation. In this study, we used scanning electronic microscopy and laser confocal scanning microscopy to look into the microstructure of the columnar prismatic layer in the pearl oyster Pinctada fucata. The Dirichlet centers of the growing domains in mature prisms were calculated, and the corresponding Voronoi division was reconstructed. It was found that the domain pattern did not fit the Voronoi division, indicating the driving forces of the mature prisms evolution and the initiation stage were different. During the transition from horizontal expansion to vertical growth, the minerals broke through the inner periostracum and squeezed out the organic materials to the inter-prism space. Re-arrangement of the organic framework pattern was driven by elastic relaxation at the vertices, indicating the transition process was thermodynamically driven. Our study provided insights into shell growth in bivalves and pave the way to synthesize three-dimensional material biomimetically.
Collapse
Affiliation(s)
- Jingliang Huang
- Protein Science Laboratory of the Ministry of Education, School of Life Science, Tsinghua University, Beijing, 100084, China
| | - Taifeng Jiang
- Protein Science Laboratory of the Ministry of Education, School of Life Science, Tsinghua University, Beijing, 100084, China
| | - Chuang Liu
- Protein Science Laboratory of the Ministry of Education, School of Life Science, Tsinghua University, Beijing, 100084, China
| | - Yangjia Liu
- Protein Science Laboratory of the Ministry of Education, School of Life Science, Tsinghua University, Beijing, 100084, China
| | - Guilan Zheng
- Protein Science Laboratory of the Ministry of Education, School of Life Science, Tsinghua University, Beijing, 100084, China
| | - Hongzhong Wang
- Protein Science Laboratory of the Ministry of Education, School of Life Science, Tsinghua University, Beijing, 100084, China
| | - Guiyou Zhang
- Protein Science Laboratory of the Ministry of Education, School of Life Science, Tsinghua University, Beijing, 100084, China
| | - Liping Xie
- Protein Science Laboratory of the Ministry of Education, School of Life Science, Tsinghua University, Beijing, 100084, China
| | - Rongqing Zhang
- Protein Science Laboratory of the Ministry of Education, School of Life Science, Tsinghua University, Beijing, 100084, China; Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang Province, 314006, China.
| |
Collapse
|
18
|
Ji Y, Yang X, Yang D, Zhang R. PU14, a Novel Matrix Protein, Participates in Pearl Oyster, Pinctada Fucata, Shell Formation. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:189-200. [PMID: 33689053 PMCID: PMC8032588 DOI: 10.1007/s10126-020-10014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Biomineralization is a widespread biological process, involved in the formation of shells, teeth, and bones. Shell matrix proteins have been widely studied for their importance during shell formation. In 2015, our group identified 72 unique shell matrix proteins in Pinctada fucata, among which PU14 is a matrix protein detected in the soluble fraction that solely exists in the prismatic layer. However, the function of PU14 is still unclear. In this study, the full-length cDNA sequence of PU14 was obtained and functional analyses of PU14 protein during shell formation were performed. The deduced protein has a molecular mass of 77.8 kDa and an isoelectric point of 11.34. The primary protein structure contains Gln-rich and random repeat units, which are typical characteristics of matrix protein and indicate its potential function during shell formation. In vivo and in vitro experiments indicated PU14 has prismatic layer functions during shell formation. The tissue expression patterns showed that PU14 was mainly expressed in the mantle tissue, which is consistent with prismatic layer formation. Notching experiments suggested that PU14 responded to repair and regenerate the injured shell. After inhibiting gene expression by injecting PU14-specific double-stranded RNA, the inner surface of the prismatic layer changed significantly and became rougher. Further, in vitro experiments showed that recombinant protein rPU14 impacted calcite crystal morphology. Taken together, characterization and functional analyses of a novel matrix protein, PU14, provide new insights about basic matrix proteins and their functions during shell formation.
Collapse
Affiliation(s)
- Yinghui Ji
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xue Yang
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dong Yang
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Rongqing Zhang
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Zhe Jiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing, 314006, China.
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China.
| |
Collapse
|
19
|
Le Roy N, Ganot P, Aranda M, Allemand D, Tambutté S. The skeletome of the red coral Corallium rubrum indicates an independent evolution of biomineralization process in octocorals. BMC Ecol Evol 2021; 21:1. [PMID: 33514311 PMCID: PMC7853314 DOI: 10.1186/s12862-020-01734-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 12/13/2020] [Indexed: 12/16/2022] Open
Abstract
Background The process of calcium carbonate biomineralization has arisen multiple times during metazoan evolution. In the phylum Cnidaria, biomineralization has mostly been studied in the subclass Hexacorallia (i.e. stony corals) in comparison to the subclass Octocorallia (i.e. red corals); the two diverged approximately 600 million years ago. The precious Mediterranean red coral, Corallium rubrum, is an octocorallian species, which produces two distinct high-magnesium calcite biominerals, the axial skeleton and the sclerites. In order to gain insight into the red coral biomineralization process and cnidarian biomineralization evolution, we studied the protein repertoire forming the organic matrix (OM) of its two biominerals. Results We combined High-Resolution Mass Spectrometry and transcriptome analysis to study the OM composition of the axial skeleton and the sclerites. We identified a total of 102 OM proteins, 52 are found in the two red coral biominerals with scleritin being the most abundant protein in each fraction. Contrary to reef building corals, the red coral organic matrix possesses a large number of collagen-like proteins. Agrin-like glycoproteins and proteins with sugar-binding domains are also predominant. Twenty-seven and 23 proteins were uniquely assigned to the axial skeleton and the sclerites, respectively. The inferred regulatory function of these OM proteins suggests that the difference between the two biominerals is due to the modeling of the matrix network, rather than the presence of specific structural components. At least one OM component could have been horizontally transferred from prokaryotes early during Octocorallia evolution. Conclusion Our results suggest that calcification of the red coral axial skeleton likely represents a secondary calcification of an ancestral gorgonian horny axis. In addition, the comparison with stony coral skeletomes highlighted the low proportion of similar proteins between the biomineral OMs of hexacorallian and octocorallian corals, suggesting an independent acquisition of calcification in anthozoans.
Collapse
Affiliation(s)
- Nathalie Le Roy
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC, 98000, Monaco. .,BOA UMR83, INRAe Centre Val de Loire, 37380, Nouzilly, France.
| | - Philippe Ganot
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC, 98000, Monaco
| | - Manuel Aranda
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Denis Allemand
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC, 98000, Monaco
| | - Sylvie Tambutté
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC, 98000, Monaco
| |
Collapse
|
20
|
Shimizu K, Kintsu H, Awaji M, Matumoto T, Suzuki M. Evolution of Biomineralization Genes in the Prismatic Layer of the Pen Shell Atrina pectinata. J Mol Evol 2020; 88:742-758. [PMID: 33236260 DOI: 10.1007/s00239-020-09977-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/18/2020] [Indexed: 11/29/2022]
Abstract
Molluscan shells are composed of calcium carbonates, with small amounts of extracellular matrices secreted from mantle epithelial cells. Many types of shell matrix proteins (SMPs) have been identified from molluscan shells or mantle cells. The pen shell Atrina pectinata (Pinnidae) has two different shell microstructures, the nacreous and prismatic layers. Nacreous and prismatic layer-specific matrix proteins have been reported in Pteriidae bivalves, but remain unclear in Pinnidae. We performed transcriptome analysis using the mantle cells of A. pectinata to screen the candidate transcripts involved in its prismatic layer formation. We found Asprich and nine highly conserved prismatic layer-specific SMPs encoding transcript in P. fucata, P. margaritifera, and P. maxima (Tyrosinase, Chitinase, EGF-like proteins, Fibronectin, valine-rich proteins, and prismatic uncharacterized shell protein 2 [PUSP2]) using molecular phylogenetic analysis or multiple alignment. We confirmed these genes were expressed in the epithelial cells of the mantle edge (outer surface of the outer fold) and the mantle pallium. Phylogenetic character mapping of these SMPs was used to infer a possible evolutionary scenario of them in Pteriomorphia. EGF-like proteins, Fibronectin, and valine-rich proteins encoding genes each evolved in the linage leading to four Pteriomorphia (Mytilidae, Pinnidae, Ostreidae, and Pteriidae), PUSP2 evolved in the linage leading to three Pteriomorphia families (Pinnidae, Ostreidae, and Pteriidae), and chitinase was independently evolved as SMPs in Mytilidae and in other Pteriomorphia (Pinnidae, Ostreidae, and Pteriidae). Our results provide a new dataset for A. pectinata SMP annotation, and a basis for understanding the evolution of prismatic layer formation in bivalves.
Collapse
Affiliation(s)
- Keisuke Shimizu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Hiroyuki Kintsu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan.,Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Masahiko Awaji
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 422-1 Nakatsuhama, Minami-Ise, Watarai, Mie, 516-0193, Japan
| | - Toshie Matumoto
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 422-1 Nakatsuhama, Minami-Ise, Watarai, Mie, 516-0193, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan.
| |
Collapse
|
21
|
Blay C, Planes S, Ky CL. Crossing Phenotype Heritability and Candidate Gene Expression in Grafted Black-Lipped Pearl Oyster Pinctada margaritifera, an Animal Chimera. J Hered 2019; 109:510-519. [PMID: 29584922 DOI: 10.1093/jhered/esy015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/23/2018] [Indexed: 12/13/2022] Open
Abstract
Grafting mantle tissue of a donor pearl oyster into the gonad of a recipient oyster results in the formation of a chimera, the pearl sac. The phenotypic variations of this chimera are hypothesized to be the result of interactions between the donor and recipient genomes. In this study, the heritability of phenotypic variation and its association with gene expression were investigated for the first time during Pinctada margaritifera pearl production. Genetic variance was evaluated at different levels, 1) before the graft operation (expression in graft tissue), 2) after grafting (pearl sac tissue expression in chimera), and 3) on the product of the graft (pearl phenotype traits) based on controlled biparental crosses and the F1 generation. Donor-related genetic parameter estimates clearly demonstrate heritability for nacre weight and thickness, darkness and color, and surface defects and grade, which signifies a genetic basis in the donor oyster. In graft relative gene expression, the value of heritability was superior to 0.20 in for almost all genes; whereas in pearl sac, heritability estimates were low (h2 < 0.10; except for CALC1 and Aspein). Pearl sac expression seems to be more influenced by residual variance than the graft, which can be explained by environmental effects that influence pearls sac gene expression and act as a recipient additive genetic component. The interactions between donor and recipient are very complex, and further research is required to understand the role of the recipient oysters on pearl phenotypic and gene expression variances.
Collapse
Affiliation(s)
- Carole Blay
- Ifremer, UMR EIO 241, Labex Corail, Centre du Pacifique, Taravao, Tahiti, Polynésie Française.,PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Labex Corail, Université de Perpignan, 52 Avenue Paul Alduy, Perpignan Cedex, France
| | - Serge Planes
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Labex Corail, Université de Perpignan, 52 Avenue Paul Alduy, Perpignan Cedex, France
| | - Chin-Long Ky
- Ifremer, UMR EIO 241, Labex Corail, Centre du Pacifique, Taravao, Tahiti, Polynésie Française
| |
Collapse
|
22
|
Jaramillo-Martínez S, Vargas-Requena C, Rodríguez-Gónzalez C, Hernández-Santoyo A, Olivas-Armendáriz I. Effect of extrapallial protein of Mytilus californianus on the process of in vitro biomineralization of chitosan scaffolds. Heliyon 2019; 5:e02252. [PMID: 31497665 PMCID: PMC6722255 DOI: 10.1016/j.heliyon.2019.e02252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/04/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022] Open
Abstract
Biomineralization is the process by which diverse organisms have the capacity to create heterogeneous accumulations, derived from organic and inorganic compounds that induce the process of mineral formation. An example of this can be seen an extrapallial protein (EP) of Mytilus californianus, which is responsible for carrying out the biomineralization process. In order to determine their ability to perform the biomineralization process, EP protein was absorbed and mixed in chitosan scaffolds which were tested in simulated physiological fluid. The materials were analyzed by FTIR spectroscopy, field emission scanning electron microscopy-energy-dispersive electron X-ray spectroscopy andX-ray diffraction. Results confirmed that the EP protein stimulates the rapid growth of biological apatite on the chitosan scaffolds. The mixing method favored more the apatite growth as well as the formation of second nucleation sites than the immersion method.
Collapse
Affiliation(s)
- S Jaramillo-Martínez
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente del PRONAF y Estocolmo, C.P.32320, Cd. Juárez, Chihuahua, Mexico
| | - C Vargas-Requena
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente del PRONAF y Estocolmo, C.P.32320, Cd. Juárez, Chihuahua, Mexico
| | - C Rodríguez-Gónzalez
- Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro #610 norte, Col. Partido Romero, C.P.32320, Cd. Juárez, Chihuahua, Mexico
| | - A Hernández-Santoyo
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - I Olivas-Armendáriz
- Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro #610 norte, Col. Partido Romero, C.P.32320, Cd. Juárez, Chihuahua, Mexico
| |
Collapse
|
23
|
Rivera-Perez C, Magallanes-Dominguez C, Dominguez-Beltran RV, Ojeda-Ramirez de Areyano JJ, Hernandez-Saavedra NY. Biochemical and molecular characterization of N66 from the shell of Pinctada mazatlanica. PeerJ 2019; 7:e7212. [PMID: 31293836 PMCID: PMC6599672 DOI: 10.7717/peerj.7212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/30/2019] [Indexed: 11/20/2022] Open
Abstract
Mollusk shell mineralization is a tightly controlled process made by shell matrix proteins (SMPs). However, the study of SMPs has been limited to a few model species. In this study, the N66 mRNA of the pearl oyster Pinctada mazatlanica was cloned and functionally characterized. The full sequence of the N66 mRNA comprises 1,766 base pairs, and encodes one N66 protein. A sequence analysis revealed that N66 contained two carbonic anhydrase (CA) domains, a NG domain and several glycosylation sites. The sequence showed similarity to the CA VII but also with its homolog protein nacrein. The native N66 protein was isolated from the shell and identified by mass spectrometry, the peptide sequence matched to the nucleotide sequence obtained. Native N66 is a glycoprotein with a molecular mass of 60-66 kDa which displays CA activity and calcium carbonate precipitation ability in presence of different salts. Also, a recombinant form of N66 was produced in Escherichia coli, and functionally characterized. The recombinant N66 displayed higher CA activity and crystallization capability than the native N66, suggesting that the lack of posttranslational modifications in the recombinant N66 might modulate its activity.
Collapse
Affiliation(s)
- Crisalejandra Rivera-Perez
- Department of Fisheries Ecology, CONACyT-Centro de Investigaciones Biologicas del Noroeste (CIBNOR), La Paz, Baja California Sur, Mexico
| | - Catalina Magallanes-Dominguez
- Department of Fisheries Ecology, Molecular Genetics Laboratory, Centro de Investigaciones Biologicas del Noroeste (CIBNOR), La Paz, Baja California Sur, Mexico
| | | | - Josafat Jehu Ojeda-Ramirez de Areyano
- Department of Fisheries Ecology, Molecular Genetics Laboratory, Centro de Investigaciones Biologicas del Noroeste (CIBNOR), La Paz, Baja California Sur, Mexico
| | - Norma Y. Hernandez-Saavedra
- Department of Fisheries Ecology, Molecular Genetics Laboratory, Centro de Investigaciones Biologicas del Noroeste (CIBNOR), La Paz, Baja California Sur, Mexico
| |
Collapse
|
24
|
Zhao R, Takeuchi T, Luo YJ, Ishikawa A, Kobayashi T, Koyanagi R, Villar-Briones A, Yamada L, Sawada H, Iwanaga S, Nagai K, Satoh N, Endo K. Dual Gene Repertoires for Larval and Adult Shells Reveal Molecules Essential for Molluscan Shell Formation. Mol Biol Evol 2019; 35:2751-2761. [PMID: 30169718 PMCID: PMC6231486 DOI: 10.1093/molbev/msy172] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Molluscan shells, mainly composed of calcium carbonate, also contain organic components such as proteins and polysaccharides. Shell organic matrices construct frameworks of shell structures and regulate crystallization processes during shell formation. To date, a number of shell matrix proteins (SMPs) have been identified, and their functions in shell formation have been studied. However, previous studies focused only on SMPs extracted from adult shells, secreted after metamorphosis. Using proteomic analyses combined with genomic and transcriptomic analyses, we have identified 31 SMPs from larval shells of the pearl oyster, Pinctada fucata, and 111 from the Pacific oyster, Crassostrea gigas. Larval SMPs are almost entirely different from those of adults in both species. RNA-seq data also confirm that gene expression profiles for larval and adult shell formation are nearly completely different. Therefore, bivalves have two repertoires of SMP genes to construct larval and adult shells. Despite considerable differences in larval and adult SMPs, some functional domains are shared by both SMP repertoires. Conserved domains include von Willebrand factor type A (VWA), chitin-binding (CB), carbonic anhydrase (CA), and acidic domains. These conserved domains are thought to play crucial roles in shell formation. Furthermore, a comprehensive survey of animal genomes revealed that the CA and VWA-CB domain-containing protein families expanded in molluscs after their separation from other Lophotrochozoan linages such as the Brachiopoda. After gene expansion, some family members were co-opted for molluscan SMPs that may have triggered to develop mineralized shells from ancestral, nonmineralized chitinous exoskeletons.
Collapse
Affiliation(s)
- Ran Zhao
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takeshi Takeuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Yi-Jyun Luo
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA
| | - Akito Ishikawa
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tatsushi Kobayashi
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryo Koyanagi
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Alejandro Villar-Briones
- Instrumental Analysis Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Lixy Yamada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, Japan
| | - Hitoshi Sawada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, Japan
| | | | - Kiyohito Nagai
- Pearl Research Institute, Mikimoto CO., LTD, Shima, Mie, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Kazuyoshi Endo
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
25
|
Yang D, Yan Y, Yang X, Liu J, Zheng G, Xie L, Zhang R. A basic protein, N25, from a mollusk modifies calcium carbonate morphology and shell biomineralization. J Biol Chem 2019; 294:8371-8383. [PMID: 30967473 DOI: 10.1074/jbc.ra118.007338] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/18/2019] [Indexed: 11/06/2022] Open
Abstract
Biomineralization is a widespread biological process in the formation of shells, teeth, or bones. Matrix proteins in biominerals have been widely investigated for their roles in directing biomineralization processes such as crystal morphologies, polymorphs, and orientations. Here, we characterized a basic matrix protein, named mantle protein N25 (N25), identified previously in the Akoya pearl oyster (Pinctada fucata). Unlike some known acidic matrix proteins containing Asp or Glu as possible Ca2+-binding residues, we found that N25 is rich in Pro (12.4%), Ser (12.8%), and Lys (8.8%), suggesting it may perform a different function. We used the recombinant protein purified by refolding from inclusion bodies in a Ca(HCO3)2 supersaturation system and found that it specifically affects calcite morphologies. An X-ray powder diffraction (XRD) assay revealed that N25 could help delay the transformation of vaterites (a metastable calcium carbonate polymorph) to calcite. We also used fluorescence super-resolution imaging to map the distribution of N25 in CaCO3 crystals and transfected a recombinant N25-EGFP vector into HEK-293T cells to mimic the native process in which N25 is secreted by mantle epithelial cells and integrated into mineral structures. Our observations suggest N25 specifically affects crystal morphologies and provide evidence that basic proteins lacking acidic groups can also direct biomineralization. We propose that the attachment of N25 to specific sites on CaCO3 crystals may inhibit some crystal polymorphs or morphological transformation.
Collapse
Affiliation(s)
- Dong Yang
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yi Yan
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xue Yang
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jun Liu
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guilan Zheng
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Liping Xie
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Rongqing Zhang
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang Province 314006, China.
| |
Collapse
|
26
|
Mariom, Take S, Igarashi Y, Yoshitake K, Asakawa S, Maeyama K, Nagai K, Watabe S, Kinoshita S. Gene expression profiles at different stages for formation of pearl sac and pearl in the pearl oyster Pinctada fucata. BMC Genomics 2019; 20:240. [PMID: 30909870 PMCID: PMC6434816 DOI: 10.1186/s12864-019-5579-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/01/2019] [Indexed: 12/12/2022] Open
Abstract
Background The most critical step in the pearl formation during aquaculture is issued to the proliferation and differentiation of outer epithelial cells of mantle graft into pearl sac. This pearl sac secretes various matrix proteins to produce pearls by a complex physiological process which has not been well-understood yet. Here, we aimed to unravel the genes involved in the development of pearl sac and pearl, and the sequential expression patterns of different shell matrix proteins secreted from the pearl sac during pearl formation by pearl oyster Pinctada fucata using high-throughput transcriptome profiling. Results Principal component analysis (PCA) showed clearly different gene expression profiles between earlier (before 1 week) and later stages (1 week to 3 months) of grafting. Immune-related genes were highly expressed between 0 h – 24 h (donor dependent) and 48 h – 1 w (host dependent), and in the course of wound healing process pearl sac was developed by two weeks of graft transplantation. Moreover, for the first time, we identified some stem cell marker genes including ABCG2, SOX2, MEF2A, HES1, MET, NRP1, ESR1, STAT6, PAX2, FZD1 and PROM1 that were expressed differentially during the formation of pearl sac. The expression profiling of 192 biomineralization-related genes demonstrated that most of the shell matrix proteins (SMPs) involved in prismatic layer formation were first up-regulated and then gradually down-regulated indicating their involvement in the development of pearl sac and the onset of pearl mineralization. Most of the nacreous layer forming SMPs were up-regulated at 2 weeks after the maturation of pearl sac. Nacrein, MSI7 and shematrin involved in both layer formation were highly expressed during 0 h – 24 h, down-regulated up to 1 week and then up-regulated again after accomplishment of pearl sac formation. Conclusions Using an RNA-seq approach we unraveled the expression pattern of the key genes involved in the development of pearl sac and pearl as a result of host immune response after grafting. These findings provide valuable information in understanding the molecular mechanism of pearl formation and immune response in P. fucata. Electronic supplementary material The online version of this article (10.1186/s12864-019-5579-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mariom
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan.,Department of Fisheries Biology and Genetics, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Saori Take
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Yoji Igarashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Kazutoshi Yoshitake
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Shuichi Asakawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Kaoru Maeyama
- Mikimoto Pharmaceutical CO., LTD, Kurose 1425, Ise, Mie, 516-8581, Japan
| | - Kiyohito Nagai
- Pearl Research Laboratory, K. MIKIMOTO & CO., LTD, Osaki Hazako 923, Hamajima, Shima, Mie, 517-0403, Japan
| | - Shugo Watabe
- School of Marine Biosciences, Kitasato University, Minami, Sagamihara, Kanagawa, 252-0313, Japan
| | - Shigeharu Kinoshita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan.
| |
Collapse
|
27
|
Kalka M, Markiewicz N, Ptak M, Sone ED, Ożyhar A, Dobryszycki P, Wojtas M. In vivo and in vitro analysis of starmaker activity in zebrafish otolith biomineralization. FASEB J 2019; 33:6877-6886. [PMID: 30840836 DOI: 10.1096/fj.201802268r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Otoliths are one of the biominerals whose formation is highly controlled by proteins. The first protein discovered to be involved in otolith biomineralization in zebrafish was starmaker (Stm). Previously, Stm was shown to be responsible for the preferential formation of aragonite, a polymorph of calcium carbonate, in otoliths. In this work, proteomic analysis of adult zebrafish otoliths was performed. Stm is the only highly phosphorylated protein found in our studies. Besides previously studied otolith proteins, we discovered several dozens of unknown proteins that reveal the likely mechanism of biomineralization. A comparison of aragonite and vaterite otoliths showed similarities in protein composition. We observed the presence of Stm in both types of otoliths. In vitro studies of 2 characteristic Stm fragments indicated that the DS-rich region has a special biomineralization activity, especially after phosphorylation.-Kalka, M., Markiewicz, N., Ptak, M., Sone, E. D., Ożyhar, A., Dobryszycki, P., Wojtas, M. In vivo and in vitro analysis of starmaker activity in zebrafish otolith biomineralization.
Collapse
Affiliation(s)
- Marta Kalka
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Natalia Markiewicz
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Maciej Ptak
- Division of Optical Spectroscopy, Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wrocław, Poland; and
| | - Eli D Sone
- Department of Materials Science and Engineering, Institute of Biomaterials and Biomedical Engineering, and.,Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Andrzej Ożyhar
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Piotr Dobryszycki
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Magdalena Wojtas
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland.,Department of Materials Science and Engineering, Institute of Biomaterials and Biomedical Engineering, and.,Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Le Luyer J, Auffret P, Quillien V, Leclerc N, Reisser C, Vidal-Dupiol J, Ky CL. Whole transcriptome sequencing and biomineralization gene architecture associated with cultured pearl quality traits in the pearl oyster, Pinctada margaritifera. BMC Genomics 2019; 20:111. [PMID: 30727965 PMCID: PMC6366105 DOI: 10.1186/s12864-019-5443-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/09/2019] [Indexed: 01/31/2023] Open
Abstract
Background Cultured pearls are unique gems produced by living organisms, mainly molluscs of the Pinctada genus, through the biomineralization properties of pearl sac tissue. Improvement of P. margaritifera pearl quality is one of the biggest challenges that Polynesian research has faced to date. To achieve this goal, a better understanding of the complex mechanisms related to nacre and pearl formation is essential and can now be approached through the use of massive parallel sequencing technologies. The aim of this study was to use RNA-seq to compare whole transcriptome expression of pearl sacs that had producing pearls with high and low quality. For this purpose, a comprehensive reference transcriptome of P. margaritifera was built based on multi-tissue sampling (mantle, gonad, whole animal), including different living stages (juvenile, adults) and phenotypes (colour morphotypes, sex). Results Strikingly, few genes were found to be up-regulated for high quality pearls (n = 16) compared to the up-regulated genes in low quality pearls (n = 246). Biomineralization genes up-regulated in low quality pearls were specific to prismatic and prism-nacre layers. Alternative splicing was further identified in several key biomineralization genes based on a recent P. margaritifera draft genome. Conclusion This study lifts the veil on the multi-level regulation of biomineralization genes associated with pearl quality determination. Electronic supplementary material The online version of this article (10.1186/s12864-019-5443-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J Le Luyer
- Ifremer, UMR 241 Ecosystèmes Insulaires Océaniens (EIO), Labex Corail, Centre Ifremer du Pacifique, BP 49, 98719, Tahiti, French Polynesia
| | - P Auffret
- Ifremer, UMR 241 Ecosystèmes Insulaires Océaniens (EIO), Labex Corail, Centre Ifremer du Pacifique, BP 49, 98719, Tahiti, French Polynesia
| | - V Quillien
- Ifremer, UMR 241 Ecosystèmes Insulaires Océaniens (EIO), Labex Corail, Centre Ifremer du Pacifique, BP 49, 98719, Tahiti, French Polynesia
| | - N Leclerc
- Ifremer, UMR 241 Ecosystèmes Insulaires Océaniens (EIO), Labex Corail, Centre Ifremer du Pacifique, BP 49, 98719, Tahiti, French Polynesia
| | - C Reisser
- Ifremer, UMR 241 Ecosystèmes Insulaires Océaniens (EIO), Labex Corail, Centre Ifremer du Pacifique, BP 49, 98719, Tahiti, French Polynesia
| | - J Vidal-Dupiol
- Ifremer, UMR 241 Ecosystèmes Insulaires Océaniens (EIO), Labex Corail, Centre Ifremer du Pacifique, BP 49, 98719, Tahiti, French Polynesia.,Ifremer, UMR 5244 Interactions Hôtes-Pathogènes-Environnements, Université de Montpellier, Place Eugène Bataillon CC 80, 34095, Montpellier, France
| | - C-L Ky
- Ifremer, UMR 241 Ecosystèmes Insulaires Océaniens (EIO), Labex Corail, Centre Ifremer du Pacifique, BP 49, 98719, Tahiti, French Polynesia.
| |
Collapse
|
29
|
Kong J, Liu C, Yang D, Yan Y, Chen Y, Liu Y, Zheng G, Xie L, Zhang R. A novel basic matrix protein of Pinctada fucata, PNU9, functions as inhibitor during crystallization of aragonite. CrystEngComm 2019. [DOI: 10.1039/c8ce02194e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The injection of dsRNA of PNU9 could lead to the overgrowth of nacreous lamellas and the matrix membrane.
Collapse
Affiliation(s)
- Jingjing Kong
- Protein Science Laboratory of the Ministry of Education
- School of Life Sciences
- Tsinghua University
- Beijing
- China
| | - Chuang Liu
- Protein Science Laboratory of the Ministry of Education
- School of Life Sciences
- Tsinghua University
- Beijing
- China
| | - Dong Yang
- Protein Science Laboratory of the Ministry of Education
- School of Life Sciences
- Tsinghua University
- Beijing
- China
| | - Yi Yan
- Protein Science Laboratory of the Ministry of Education
- School of Life Sciences
- Tsinghua University
- Beijing
- China
| | - Yan Chen
- Protein Science Laboratory of the Ministry of Education
- School of Life Sciences
- Tsinghua University
- Beijing
- China
| | - Yangjia Liu
- Protein Science Laboratory of the Ministry of Education
- School of Life Sciences
- Tsinghua University
- Beijing
- China
| | - Guilan Zheng
- Protein Science Laboratory of the Ministry of Education
- School of Life Sciences
- Tsinghua University
- Beijing
- China
| | - Liping Xie
- Protein Science Laboratory of the Ministry of Education
- School of Life Sciences
- Tsinghua University
- Beijing
- China
| | - Rongqing Zhang
- Protein Science Laboratory of the Ministry of Education
- School of Life Sciences
- Tsinghua University
- Beijing
- China
| |
Collapse
|
30
|
Chen Y, Gao J, Xie J, Liang J, Zheng G, Xie L, Zhang R. Transcriptional regulation of the matrix protein Shematrin-2 during shell formation in pearl oyster. J Biol Chem 2018; 293:17803-17816. [PMID: 30282805 DOI: 10.1074/jbc.ra118.005281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/21/2018] [Indexed: 01/17/2023] Open
Abstract
The molluscan shell is a fascinating biomineral consisting of a highly organized calcium carbonate composite. Biomineralization is elaborately controlled and involves several macromolecules, especially matrix proteins, but little is known about the regulatory mechanisms. The matrix protein Shematrin-2, expression of which peaks in the mantle tissues and in the shell components of the pearl oyster Pinctada fucata, has been suggested to be a key participant in biomineralization. Here, we expressed and purified Shematrin-2 from P. fucata and explored its function and transcriptional regulation. An in vitro functional assay revealed that Shematrin-2 binds the calcite, aragonite, and chitin components of the shell, decreases the rate of calcium carbonate deposition, and changes the morphology of the deposited crystal in the calcite crystallization system. Furthermore, we cloned the Shematrin-2 gene promoter, and analysis of its sequence revealed putative binding sites for the transcription factors CCAAT enhancer-binding proteins (Pf-C/EBPs) and nuclear factor-Y (NF-Y). Using transient co-transfection and reporter gene assays, we found that cloned and recombinantly expressed Pf-C/EBP-A and Pf-C/EBP-B greatly and dose-dependently up-regulate the promoter activity of the Shematrin-2 gene. Importantly, Pf-C/EBP-A and Pf-C/EBP-B knockdowns decreased Shematrin-2 gene expression and induced changes in the inner-surface structures in prismatic layers that were similar to those of antibody-based Shematrin-2 inhibition. Altogether, our data reveal that the transcription factors Pf-C/EBP-A and Pf-C/EBP-B up-regulate the expression of the matrix protein Shematrin-2 during shell formation in P. fucata, improving our understanding of the transcriptional regulation of molluscan shell development at the molecular level.
Collapse
Affiliation(s)
- Yan Chen
- From the Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084
| | - Jing Gao
- From the Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084
| | - Jun Xie
- From the Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084
| | - Jian Liang
- From the Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084
| | - Guilan Zheng
- From the Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084
| | - Liping Xie
- From the Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084.
| | - Rongqing Zhang
- From the Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084; Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, Zhejiang Province, China.
| |
Collapse
|
31
|
Kong J, Liu C, Wang T, Yang D, Yan Y, Chen Y, Liu Y, Huang J, Zheng G, Xie L, Zhang R. Cloning, characterization and functional analysis of an Alveoline-like protein in the shell of Pinctada fucata. Sci Rep 2018; 8:12258. [PMID: 30115934 PMCID: PMC6095885 DOI: 10.1038/s41598-018-29743-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/09/2018] [Indexed: 12/04/2022] Open
Abstract
Shell matrix proteins (SMPs) have important functions in biomineralization. In the past decades, the roles of SMPs were gradually revealed. In 2015, our group identified 72 unique SMPs in Pinctada fucata, among which Alveoline-like (Alv) protein was reported to have homologous genes in Pinctada maxima and Pinctada margaritifera. In this study, the full-length cDNA sequence of Alv and the functional analysis of Alv protein during shell formation were explored. The deduced protein (Alv), which has a molecular mass of 24.9 kDa and an isoelectric point of 11.34, was characterized, and the functional analyses was explored in vivo and in vitro. The Alv gene has high expression in mantle and could response to notching damage. The functional inhibition of Alv protein in vivo by injecting recombinant Alv (rAlv) antibodies destroyed prism structure but accelerated nacre growth. Western blot and immunofluorescence staining showed that native Alv exists in the EDTA-insoluble matrix of both prismatic and nacreous layers and has different distribution patterns in the inner or outer prismatic layer. Taken together, the characterization and functional analyses of matrix protein Alv could expand our understanding of basic matrix proteins and their functions during shell formation.
Collapse
Affiliation(s)
- Jingjing Kong
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuang Liu
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang Province, 314006, China
| | - Tianpeng Wang
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dong Yang
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yi Yan
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yan Chen
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yangjia Liu
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jingliang Huang
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guilan Zheng
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Liping Xie
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Rongqing Zhang
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang Province, 314006, China.
| |
Collapse
|
32
|
Blay C, Planes S, Ky CL. Cultured Pearl Surface Quality Profiling by the Shell Matrix Protein Gene Expression in the Biomineralised Pearl Sac Tissue of Pinctada margaritifera. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:490-501. [PMID: 29663093 DOI: 10.1007/s10126-018-9811-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Nucleated pearls are produced by molluscs of the Pinctada genus through the biomineralisation activity of the pearl sac tissue within the recipient oyster. The pearl sac originates from graft tissue taken from the donor oyster mantle and its functioning is crucial in determining key factors that impact pearl quality surface characteristics. The specific role of related gene regulation during gem biogenesis was unknown, so we analysed the expression profiles of eight genes encoding nacreous (PIF, MSI60, PERL1) or prismatic (SHEM5, PRISM, ASP, SHEM9) shell matrix proteins or both (CALC1) in the pearl sac (N = 211) of Pinctada margaritifera during pearl biogenesis. The pearls and pearl sacs analysed were from a uniform experimental graft with sequential harvests at 3, 6 and 9 months post-grafting. Quality traits of the corresponding pearls were recorded: surface defects, surface deposits and overall quality grade. Results showed that (1) the first 3 months of culture seem crucial for pearl quality surface determination and (2) all the genes (SHEM5, PRISM, ASP, SHEM9) encoding proteins related to calcite layer formation were over-expressed in the pearl sacs that produced low pearl surface quality. Multivariate regression tree building clearly identified three genes implicated in pearl surface quality, SHEM9, ASP and PIF. SHEM9 and ASP were clearly implicated in low pearl quality, whereas PIF was implicated in high quality. Results could be used as biomarkers for genetic improvement of P. margaritifera pearl quality and constitute a novel perspective to understanding the molecular mechanism of pearl formation.
Collapse
Affiliation(s)
- Carole Blay
- Ifremer, UMR EIO241, Labex Corail, Centre du Pacifique, BP 49, 98719, Taravao, Tahiti, French Polynesia
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France
- Laboratoire d'Excellence "CORAIL", Tahiti, French Polynesia
| | - Serge Planes
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France
- Laboratoire d'Excellence "CORAIL", Tahiti, French Polynesia
| | - Chin-Long Ky
- Ifremer, UMR EIO241, Labex Corail, Centre du Pacifique, BP 49, 98719, Taravao, Tahiti, French Polynesia.
- Laboratoire d'Excellence "CORAIL", Tahiti, French Polynesia.
| |
Collapse
|
33
|
Amyloid Assembly Endows Gad m 1 with Biomineralization Properties. Biomolecules 2018; 8:biom8010013. [PMID: 29558422 PMCID: PMC5871982 DOI: 10.3390/biom8010013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/02/2018] [Accepted: 03/16/2018] [Indexed: 12/16/2022] Open
Abstract
Acid proteins capable of nucleating Ca2+ and displaying aggregation capacity play key roles in the formation of calcium carbonate biominerals. The helix-loop helix EF-hands are the most common Ca2+-binding motifs in proteins. Calcium is bound by the loop region. These motifs are found in many proteins that are regulated by calcium. Gad m 1, an Atlantic cod β-parvalbumin isoform, is a monomeric EF-hand protein that acts as a Ca2+ buffer in fish muscle; the neutral and acid apo-forms of this protein can form amyloids. Since Ca2+-nucleating proteins have a propensity to form extended β-strand structures, we wondered whether amyloid assemblies of an EF-hand protein were able to influence calcium carbonate crystallization in vitro. Here, we used the Gad m 1 chain as a model to generate monomeric and amyloid assemblies and to analyze their effect on calcite formation in vitro. We found that only amyloid assemblies alter calcite morphology.
Collapse
|
34
|
Latchere O, Mehn V, Gaertner-Mazouni N, Le Moullac G, Fievet J, Belliard C, Cabral P, Saulnier D. Influence of water temperature and food on the last stages of cultured pearl mineralization from the black-lip pearl oyster Pinctada margaritifera. PLoS One 2018; 13:e0193863. [PMID: 29505601 PMCID: PMC5837120 DOI: 10.1371/journal.pone.0193863] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 02/19/2018] [Indexed: 11/18/2022] Open
Abstract
Environmental parameters, such as food level and water temperature, have been shown to be major factors influencing pearl oyster shell growth and molecular mechanisms involved in this biomineralization process. The present study investigates the effect of food level (i.e., microalgal concentration) and water temperature, in laboratory controlled conditions, on the last stages of pearl mineralization in order to assess their impact on pearl quality. To this end, grafted pearl oysters were fed at different levels of food and subjected to different water temperatures one month prior to harvest to evaluate the effect of these factors on 1) pearl and shell deposition rate, 2) expression of genes involved in biomineralization in pearl sacs, 3) nacre ultrastructure (tablet thickness and number of tablets deposited per day) and 4) pearl quality traits. Our results revealed that high water temperature stimulates both shell and pearl deposition rates. However, low water temperature led to thinner nacre tablets, a lower number of tablets deposited per day and impacted pearl quality with better luster and fewer defects. Conversely, the two tested food level had no significant effects on shell and pearl growth, pearl nacre ultrastructure or pearl quality. However, one gene, Aspein, was significantly downregulated in high food levels. These results will be helpful for the pearl industry. A wise strategy to increase pearl quality would be to rear pearl oysters at a high water temperature to increase pearl growth and consequently pearl size; and to harvest pearls after a period of low water temperature to enhance luster and to reduce the number of defects.
Collapse
Affiliation(s)
- Oïhana Latchere
- Ifremer, UMR 241 « Ecosystèmes Insulaires Océaniens », Labex Corail, Centre du Pacifique, Tahiti, French Polynesia
- Université de la Polynésie Française, UMR 241 « Ecosystèmes Insulaires Océaniens », Labex Corail, Faa’a, Tahiti, French Polynesia
| | - Vincent Mehn
- Ifremer, UMR 241 « Ecosystèmes Insulaires Océaniens », Labex Corail, Centre du Pacifique, Tahiti, French Polynesia
| | - Nabila Gaertner-Mazouni
- Université de la Polynésie Française, UMR 241 « Ecosystèmes Insulaires Océaniens », Labex Corail, Faa’a, Tahiti, French Polynesia
| | - Gilles Le Moullac
- Ifremer, UMR 241 « Ecosystèmes Insulaires Océaniens », Labex Corail, Centre du Pacifique, Tahiti, French Polynesia
| | - Julie Fievet
- Ifremer, UMR 241 « Ecosystèmes Insulaires Océaniens », Labex Corail, Centre du Pacifique, Tahiti, French Polynesia
| | - Corinne Belliard
- Ifremer, UMR 241 « Ecosystèmes Insulaires Océaniens », Labex Corail, Centre du Pacifique, Tahiti, French Polynesia
| | | | - Denis Saulnier
- Ifremer, UMR 241 « Ecosystèmes Insulaires Océaniens », Labex Corail, Centre du Pacifique, Tahiti, French Polynesia
| |
Collapse
|
35
|
Xiao Y, Xue Y, Gao F, Mosa A. Sorption of heavy metal ions onto crayfish shell biochar: Effect of pyrolysis temperature, pH and ionic strength. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.08.035] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Environmental and Genetic Determinants of Biofilm Formation in Paracoccus denitrificans. mSphere 2017; 2:mSphere00350-17. [PMID: 28904996 PMCID: PMC5588039 DOI: 10.1128/mspheredirect.00350-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/16/2017] [Indexed: 01/12/2023] Open
Abstract
The bacterium Paracoccus denitrificans is a model for the process of denitrification, by which nitrate is reduced to dinitrogen during anaerobic growth. Denitrification is important for soil fertility and greenhouse gas emission and in waste and water treatment processes. The ability of bacteria to grow as a biofilm attached to a solid surface is important in many different contexts. In this paper, we report that attached growth of P. denitrificans is stimulated by nitric oxide, an intermediate in the denitrification pathway. We also show that calcium ions stimulate attached growth, and we identify a large calcium binding protein that is required for growth on a polystyrene surface. We identify components of a signaling pathway through which nitric oxide may regulate biofilm formation. Our results point to an intimate link between metabolic processes and the ability of P. denitrificans to grow attached to a surface. The genome of the denitrifying bacterium Paracoccus denitrificans predicts the expression of a small heme-containing nitric oxide (NO) binding protein, H-NOX. The genome organization and prior work in other bacteria suggest that H-NOX interacts with a diguanylate cyclase that cyclizes GTP to make cyclic di-GMP (cdGMP). Since cdGMP frequently regulates attached growth as a biofilm, we first established conditions for biofilm development by P. denitrificans. We found that adhesion to a polystyrene surface is strongly stimulated by the addition of 10 mM Ca2+ to rich media. The genome encodes at least 11 repeats-in-toxin family proteins that are predicted to be secreted by the type I secretion system (TISS). We deleted the genes encoding the TISS and found that the mutant is almost completely deficient for attached growth. Adjacent to the TISS genes there is a potential open reading frame encoding a 2,211-residue protein with 891 Asp-Ala repeats. This protein is also predicted to bind calcium and to be a TISS substrate, and a mutant specifically lacking this protein is deficient in biofilm formation. By analysis of mutants and promoter reporter fusions, we show that biofilm formation is stimulated by NO generated endogenously by the respiratory reduction of nitrite. A mutant lacking both predicted diguanylate cyclases encoded in the genome overproduces biofilm, implying that cdGMP is a negative regulator of attached growth. Our data are consistent with a model in which there are H-NOX-dependent and -independent pathways by which NO stimulates biofilm formation. IMPORTANCE The bacterium Paracoccus denitrificans is a model for the process of denitrification, by which nitrate is reduced to dinitrogen during anaerobic growth. Denitrification is important for soil fertility and greenhouse gas emission and in waste and water treatment processes. The ability of bacteria to grow as a biofilm attached to a solid surface is important in many different contexts. In this paper, we report that attached growth of P. denitrificans is stimulated by nitric oxide, an intermediate in the denitrification pathway. We also show that calcium ions stimulate attached growth, and we identify a large calcium binding protein that is required for growth on a polystyrene surface. We identify components of a signaling pathway through which nitric oxide may regulate biofilm formation. Our results point to an intimate link between metabolic processes and the ability of P. denitrificans to grow attached to a surface.
Collapse
|
37
|
Liang J, Xie J, Gao J, Xu CQ, Yan Y, Jia GC, Xiang L, Xie LP, Zhang RQ. Identification and Characterization of the Lysine-Rich Matrix Protein Family in Pinctada fucata: Indicative of Roles in Shell Formation. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:645-658. [PMID: 27909912 DOI: 10.1007/s10126-016-9724-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/10/2016] [Indexed: 06/06/2023]
Abstract
Mantle can secret matrix proteins playing key roles in regulating the process of shell formation. The genes encoding lysine-rich matrix proteins (KRMPs) are one of the most highly expressed matrix genes in pearl oysters. However, the expression pattern of KRMPs is limited and the functions of them still remain unknown. In this study, we isolated and identified six new members of lysine-rich matrix proteins, rich in lysine, glycine and tyrosine, and all of them are basic matrix proteins. Combined with four members of the KRMPs previously reported, all these proteins can be divided into three subclasses according to the results of phylogenetic analyses: KRMP1-3 belong to subclass KPI, KRMP4-5 belong to KPII, and KRMP6-10 belong to KPIII. Three subcategories of lysine-rich matrix proteins are highly expressed in the D-phase, the larvae and adult mantle. Lysine-rich matrix proteins are involved in the shell repairing process and associated with the formation of the shell and pearl. What's more, they can cause abnormal shell growth after RNA interference. In detail, KPI subgroup was critical for the beginning formation of the prismatic layer; both KPII and KPIII subgroups participated in the formation of prismatic layer and nacreous layer. Compared with different temperatures and salinity stimulation treatments, the influence of changes in pH on KRMPs gene expression was the greatest. Recombinant KRMP7 significantly inhibited CaCO3 precipitation, changed the morphology of calcite, and inhibited the growth of aragonite in vitro. Our results are beneficial to understand the functions of the KRMP genes during shell formation.
Collapse
Affiliation(s)
- Jian Liang
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai Province, 810016, China
| | - Jun Xie
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jing Gao
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chao-Qun Xu
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yi Yan
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Gan-Chu Jia
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Liang Xiang
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Li-Ping Xie
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Protein Science Laboratory of the Ministry of Education, Tsinghua University, Beijing, 100084, China.
| | - Rong-Qing Zhang
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai Province, 810016, China.
- Protein Science Laboratory of the Ministry of Education, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
38
|
Zheng X, Xiang L, Liang J, Xie L, Zhang R. Pf-Sp8/9, a novel member of the specificity protein family in Pinctada fucata, potentially participates in biomineralization. J Struct Biol 2016; 196:119-126. [DOI: 10.1016/j.jsb.2016.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 02/07/2023]
|
39
|
Gao J, Chen Y, Yang Y, Liang J, Xie J, Liu J, Li S, Zheng G, Xie L, Zhang R. The transcription factor Pf-POU3F4 regulates expression of the matrix protein genes Aspein and Prismalin-14 in pearl oyster (Pinctada fucata). FEBS J 2016; 283:1962-78. [PMID: 26996995 DOI: 10.1111/febs.13716] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 03/02/2016] [Accepted: 03/15/2016] [Indexed: 12/17/2022]
Abstract
UNLABELLED Matrix proteins play key roles in shell formation in the pearl oyster, but little is known about how these proteins are regulated. Here, two POU domain family members, Pf-POU2F1 and Pf-POU3F4, were cloned and characterized. Functional domain analysis revealed that both them have conserved POUS and POUH domains; these domains are important for transcription factor function. The tissue distributions of Pf-POU2F1 and Pf-POU3F4 mRNAs in pearl oyster revealed different expression patterns, and the expression of Pf-POU3F4 mRNA was relatively high in the mantle. The promoters of the matrix protein genes Aspein and Prismalin-14 were cloned using genome-walking PCR. Relatively high transcriptional activities of these promoters were detected in HEK-293T cells. In transient co-transfection assays, Pf-POU3F4 greatly up-regulated the promoter activities of the Aspein and Prismalin-14 genes in a dose-dependent manner. Structural integrity of Pf-POU3F4 was essential for its activation function. One region of the Aspein gene promoter, -181 to -77 bp, and two binding sites in the Prismalin-14 gene promoter, -359 to -337 bp and -100 to -73 bp, were required for activation of Pf-POU3F4. An electrophoresis mobility shift assay demonstrated that Pf-POU3F4 directly bound these sites. Pf-POU3F4 knockdown led to a decrease in Aspein and Prismalin-14 gene expression. Furthermore, expression levels for the Pf-POU3F4 gene were similar to those of the Aspein and Prismalin-14 genes during five development stages. Taken together, these results suggest that the transcription factor Pf-POU3F4 regulates expression of the matrix protein genes Aspein and Prismalin-14 in pearl oyster. DATABASE The nucleotide sequence data of Pf-POU2F1 is available in the GenBank databases under the accession number KM588196. The nucleotide sequence data of Pf-POU3F4 is available in the GenBank databases under the accession number KM519606. The nucleotide sequence data of Aspein gene promoter is available in the GenBank databases under the accession number KM519607. The nucleotide sequence data of Prismalin-14 gene promoter is available in the GenBank databases under the accession number KM519601.
Collapse
Affiliation(s)
- Jing Gao
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Science, Tsinghua University, Beijing, China
| | - Yan Chen
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Science, Tsinghua University, Beijing, China
| | - Yi Yang
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Science, Tsinghua University, Beijing, China
| | - Jian Liang
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Science, Tsinghua University, Beijing, China
| | - Jun Xie
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Science, Tsinghua University, Beijing, China
| | - Jun Liu
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Science, Tsinghua University, Beijing, China
| | - Shiguo Li
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Science, Tsinghua University, Beijing, China
| | - Guilang Zheng
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Science, Tsinghua University, Beijing, China
| | - Liping Xie
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Science, Tsinghua University, Beijing, China
| | - Rongqing Zhang
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Science, Tsinghua University, Beijing, China
| |
Collapse
|
40
|
Natural Composite Systems for Bioinspired Materials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 940:143-166. [PMID: 27677512 DOI: 10.1007/978-3-319-39196-0_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
From a relatively limited selection of base materials, nature has steered the development of truly remarkable materials. The simplest and often overlooked organisms have demonstrated the ability to manufacture multi-faceted, molecular-level hierarchical structures that combine mechanical properties rarely seen in synthetic materials. Indeed, these natural composite systems, composed of an array of intricately arranged and functionally relevant organic and inorganic substances serve as inspiration for materials design. A better understanding of these composite systems, specifically at the interface of the hetero-assemblies, would encourage faster development of environmentally friendly "green" materials with molecular level specificities.
Collapse
|
41
|
In-depth proteomic analysis of shell matrix proteins of Pinctada fucata. Sci Rep 2015; 5:17269. [PMID: 26608573 PMCID: PMC4660305 DOI: 10.1038/srep17269] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/28/2015] [Indexed: 11/16/2022] Open
Abstract
The shells of pearl oysters, Pinctada fucata, are composed of calcite and aragonite and possess remarkable mechanical properties. These shells are formed under the regulation of macromolecules, especially shell matrix proteins (SMPs). Identification of diverse SMPs will lay a foundation for understanding biomineralization process. Here, we identified 72 unique SMPs using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of proteins extracted from the shells of P. fucata combined with a draft genome. Of 72 SMPs, 17 SMPs are related to both the prismatic and nacreous layers. Moreover, according to the diverse domains found in the SMPs, we hypothesize that in addition to controlling CaCO3 crystallization and crystal organization, these proteins may potentially regulate the extracellular microenvironment and communicate between cells and the extracellular matrix (ECM). Immunohistological localization techniques identify the SMPs in the mantle, shells and synthetic calcite. Together, these proteomic data increase the repertoires of the shell matrix proteins in P. fucata and suggest that shell formation in P. fucata may involve tight regulation of cellular activities and the extracellular microenvironment.
Collapse
|
42
|
Zheng X, Cheng M, Xiang L, Su J, Zhou Y, Xie L, Zhang R. Cloning and identification of a YY-1 homolog as a potential transcription factor from Pinctada fucata. Gene 2015; 572:108-115. [PMID: 26151893 DOI: 10.1016/j.gene.2015.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 05/22/2015] [Accepted: 07/01/2015] [Indexed: 01/02/2023]
Abstract
Biomineralization is an important and ubiquitous process in organisms. The shell formation of mollusks is a typical biomineral physical activity and is used as a canonical model in biomineralization research. Most recent studies focused on the identification of matrix proteins involved in shell formation; however, little is known about their transcriptional regulation mechanism, especially the transcription factors involved in shell formation. In this study, we identified a homolog of the YY-1 transcriptional factor from Pinctada fucata, named Pf-YY-1, and characterized its expression pattern and biological functions. Pf-YY-1 has a typical zinc finger motif highly similar to those in humans, mice, and other higher organisms, which indicated its DNA-binding capability and its function as a transcription factor. Pf-YY-1 is ubiquitously expressed in many tissues, but at a higher level in the mantle, which suggested a role in biomineralization. The expression pattern of Pf-YY-1 during pearl sac development was quite similar to, and was synchronized with, those of Prisilkin-39, ACCBP, and other genes involved in biomineralization, which also suggested its function in biomineralization.
Collapse
Affiliation(s)
- Xiangnan Zheng
- Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Minzhang Cheng
- Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Liang Xiang
- Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jingtan Su
- Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yujuan Zhou
- Chinese National Human Genome Center, Beijing 100084, China
| | - Liping Xie
- Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Protein Science Laboratory of the Ministry of Education, Tsinghua University, Beijing 100084, China.
| | - Rongqing Zhang
- Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Protein Science Laboratory of the Ministry of Education, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
43
|
The AP-1 transcription factor homolog Pf-AP-1 activates transcription of multiple biomineral proteins and potentially participates in Pinctada fucata biomineralization. Sci Rep 2015; 5:14408. [PMID: 26404494 PMCID: PMC4585884 DOI: 10.1038/srep14408] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/26/2015] [Indexed: 12/25/2022] Open
Abstract
Activator protein-1 (AP-1) is an important bZIP transcription factor that regulates a series of physiological processes by specifically activating transcription of several genes, and one of its well-chartered functions in mammals is participating in bone mineralization. We isolated and cloned the complete cDNA of a Jun/AP-1 homolog from Pinctada fucata and called it Pf-AP-1. Pf-AP-1 had a highly conserved bZIP region and phosphorylation sites compared with those from mammals. A tissue distribution analysis showed that Pf-AP-1 was ubiquitously expressed in P. fucata and the mRNA level of Pf-AP-1 is extremely high in mantle. Pf-AP-1 expression was positively associated with multiple biomineral proteins in the mantle. The luciferase reporter assay in a mammalian cell line showed that Pf-AP-1 significantly up-regulates the transcriptional activity of the promoters of KRMP, Pearlin, and Prisilkin39. Inhibiting the activity of Pf-AP-1 depressed the expression of multiple matrix proteins. Pf-AP-1 showed a unique expression pattern during shell regeneration and pearl sac development, which was similar to the pattern observed for biomineral proteins. These results suggest that the Pf-AP-1 AP-1 homolog is an important transcription factor that regulates transcription of several biomineral proteins simultaneously and plays a role in P. fucata biomineralization, particularly during pearl and shell formation.
Collapse
|
44
|
Dual Roles of the Lysine-Rich Matrix Protein (KRMP)-3 in Shell Formation of Pearl Oyster, Pinctada fucata. PLoS One 2015; 10:e0131868. [PMID: 26161976 PMCID: PMC4498902 DOI: 10.1371/journal.pone.0131868] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/08/2015] [Indexed: 11/19/2022] Open
Abstract
Matrix proteins play important roles in shell formation. Our group firstly isolated three cDNAs encoding lysine-rich matrix protein from Pinctada fucata in 2006. However, the functions of KRMPs are not fully understood. In addition, KRMPs contain two functional domains, the basic domain and the Gly/Tyr domain respectively. Based on the modular organization, the roles of their two domains were poorly characterized. Furthermore, KRMPs were then reported in other two species, P. maxima and P. margaritifera, which indicated that KRMPs might be very important for shell formation. In this study, the characterization and function of KRMP-3 and its two functional domains were studied in vitro through purification of recombinant glutathione S-transferase tagged KRMP-3 and two KRMP-3 deletion mutants. Western blot and immunofluorescence revealed that native KRMP-3 existed in the EDTA-insoluble matrix of the prismatic layer and was located in the organic sheet and the prismatic sheath. Recombinant KRMP-3 (rKRMP-3) bound tightly to chitin and this binding capacity was duo to the Gly/Tyr-rich region. rKRMP-3 inhibited the precipitation of CaCO3, affected the crystal morphology of calcite and inhibited the growth of aragonite in vitro, which was almost entirely attributed to the lysine-rich region. The results present direct evidence of the roles of KRMP-3 in shell biomineralization. The functional rBR region was found to participate in the growth control of crystals and the rGYR region was responsible to bind to chitin.
Collapse
|
45
|
Gilis M, Meibom A, Domart-Coulon I, Grauby O, Stolarski J, Baronnet A. Biomineralization in newly settled recruits of the scleractinian coral Pocillopora damicornis. J Morphol 2014; 275:1349-65. [PMID: 24966116 DOI: 10.1002/jmor.20307] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/26/2014] [Accepted: 06/03/2014] [Indexed: 01/26/2023]
Abstract
Calcium carbonate biomineralization of scleractinian coral recruits is fundamental to the construction of reefs and their survival under stress from global and local environmental change. Establishing a baseline for how normal, healthy coral recruits initiate skeletal formation is, therefore, warranted. Here, we present a thorough, multiscale, microscopic and spectroscopic investigation of skeletal elements deposited by Pocillopora damicornis recruits, from 12 h to 22 days after settlement in aquarium on a flat substrate. Six growth stages are defined, primarily based on appearance and morphology of successively deposited skeletal structures, with the following average formation time-scales: A (<24 h), B (24-36 h), C (36-48 h), D (48-72 h), E (72-96 h), and F (>10 days). Raman and energy dispersive X-ray spectroscopy indicate the presence of calcite among the earliest components of the basal plate, which consist of micrometer-sized, rod-shaped crystals with rhomboidal habit. All later CaCO3 skeletal structures are composed exclusively of aragonite. High-resolution scanning electron microscopy reveals that, externally, all CaCO3 deposits consist of <100 nm granular units. Fusiform, dumbbell-like, and semispherulitic structures, 25-35 µm in longest dimension, occur only during the earliest stages (Stages A-C), with morphologies similar to structures formed abiotically or induced by organics in in vitro carbonate crystallization experiments. All other skeletal structures of the basal plate are composed of vertically extending lamellar bundles of granules. From Stage D, straight fibrils, 40-45 nm in width and presumably of organic composition, form bridges between these aragonitic bundles emerging from the growing front of fusing skeletal structures. Our results show a clear evolution in the coral polyp biomineralization process as the carbonate structures develop toward those characterizing the adult skeleton.
Collapse
Affiliation(s)
- Melany Gilis
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1009, Lausanne, Switzerland; Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, CH-1009, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
46
|
Lopes A, Lopes-Lima M, Ferreira J, Araújo S, Hinzmann M, Oliveira J, Rocha A, Domingues B, Bobos I, Machado J. Biomineralization studies on cellulose membrane exposed to biological fluids of Anodonta cygnea. J Membr Biol 2014; 247:501-14. [PMID: 24710792 DOI: 10.1007/s00232-014-9660-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 03/17/2014] [Indexed: 11/28/2022]
Abstract
The present work proposes to analyse the results obtained under in vitro conditions where cellulose artificial membranes were incubated with biological fluids from the freshwater bivalve Anodonta cygnea. The membranes were mounted between two half 'Ussing chambers' with different composition solutions in order to simulate epithelial surfaces separating organic fluid compartments. The membrane surfaces were submitted to two synthetic calcium and phosphate solutions on opposite sides, at pH 6.0, 7.0 or 9.0 during a period of 6 hours. Additional assays were accomplished mixing these solutions with haemolymph or extrapallial fluid from A. cygnea, only on the calcium side. A selective ion movement, mainly dependent on the membrane pore size and/or cationic affinity, occurred with higher permeability for calcium ions to the opposite phosphate chamber supported by calcium diffusion forces across the cellulose membrane. In general, this promoted a more intense mineral precipitation on the phosphate membrane surface. A strong deposition of calcium phosphate mineral was observed at pH 9.0 as a primary layer with a homogeneous microstructure, being totally absent at pH 6.0. The membrane showed an additional crystal phase at pH 7.0 exhibiting a very particular hexagonal or cuttlebone shape, mainly on the phosphate surface. When organic fluids of A. cygnea were included, these crystal forms presented a high tendency to aggregate under rosaceous shapes, also predominantly in the phosphate side. The cellulose membrane was permeable to small organic molecules that diffused from the calcium towards the phosphate side. In the calcium side, very few similar crystals were observed. The presence of organic matrix from A. cygnea fluids induced a preliminary apatite-brushite crystal polymorphism. So, the present results suggest that cellulose membranes can be used as surrogates of biological epithelia with preferential ionic diffusion from the calcium to the phosphate side where the main mineral precipitation events occurred. Additionally, the organic fluids from freshwater bivalves should be also thoroughly researched in the applied biomedical field, as mineral nucleators and crystal modulators on biosynthetic systems.
Collapse
Affiliation(s)
- Anabela Lopes
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Laboratório de Fisiologia Aplicada, Rua de Jorge Viterbo Ferreira No. 228, 4050-313, Porto, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Malho JM, Heinonen H, Kontro I, Mushi NE, Serimaa R, Hentze HP, Linder MB, Szilvay GR. Formation of ceramophilic chitin and biohybrid materials enabled by a genetically engineered bifunctional protein. Chem Commun (Camb) 2014; 50:7348-51. [DOI: 10.1039/c4cc02170c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An engineered bifunctional protein from an oyster shell protein and a chitin-binding domain enables the formation of mineralized biohybrid materials.
Collapse
Affiliation(s)
| | | | - Inkeri Kontro
- University of Helsinki
- Department of Physics
- , Finland
| | - Ngesa E. Mushi
- Royal Institute of Technology
- Fibre and Polymer Technology
- SE-100 44 Stockholm, Sweden
| | - Ritva Serimaa
- University of Helsinki
- Department of Physics
- , Finland
| | | | - Markus B. Linder
- VTT Technical Research Centre of Finland
- , Finland
- Aalto University
- Department of Biotechnology and Chemical Technology
- 00076 Aalto, Finland
| | | |
Collapse
|
48
|
Tseng YH, Chevallard C, Dauphin Y, Guenoun P. CaCO3nanostructured crystals induced by nacreous organic extracts. CrystEngComm 2014. [DOI: 10.1039/c3ce41380b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Miyamoto H, Endo H, Hashimoto N, limura K, Isowa Y, Kinoshita S, Kotaki T, Masaoka T, Miki T, Nakayama S, Nogawa C, Notazawa A, Ohmori F, Sarashina I, Suzuki M, Takagi R, Takahashi J, Takeuchi T, Yokoo N, Satoh N, Toyohara H, Miyashita T, Wada H, Samata T, Endo K, Nagasawa H, Asakawa S, Watabe S. The Diversity of Shell Matrix Proteins: Genome-Wide Investigation of the Pearl Oyster, Pinctada fucata. Zoolog Sci 2013; 30:801-16. [DOI: 10.2108/zsj.30.801] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Hiroshi Miyamoto
- Department of Genetic Engineering, Faculty of Biology-Oriented Science and Technology, Kinki University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| | - Hirotoshi Endo
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Naoki Hashimoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kurin limura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yukinobu Isowa
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomohiro Kotaki
- Laboratory of Cell Biology, The Graduate School of Environmental Health Sciences, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Tetsuji Masaoka
- National Research Institute of Aquaculture, Fisheries Research Agency, 422-1, Hiruta, Tamaki, Mie 519-0423, Japan
| | - Takumi Miki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Seiji Nakayama
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Chihiro Nogawa
- Laboratory of Cell Biology, The Graduate School of Environmental Health Sciences, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Atsuto Notazawa
- Laboratory of Cell Biology, The Graduate School of Environmental Health Sciences, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Fumito Ohmori
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Isao Sarashina
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Michio Suzuki
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryousuke Takagi
- Department of Genetic Engineering, Faculty of Biology-Oriented Science and Technology, Kinki University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| | - Jun Takahashi
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takeshi Takeuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Naoki Yokoo
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nori Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Haruhiko Toyohara
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tomoyuki Miyashita
- Department of Genetic Engineering, Faculty of Biology-Oriented Science and Technology, Kinki University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| | - Hiroshi Wada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Tetsuro Samata
- Laboratory of Cell Biology, The Graduate School of Environmental Health Sciences, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Kazuyoshi Endo
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiromichi Nagasawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shugo Watabe
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
50
|
Setiamarga DHE, Shimizu K, Kuroda J, Inamura K, Sato K, Isowa Y, Ishikawa M, Maeda R, Nakano T, Yamakawa T, Hatori R, Ishio A, Kaneko K, Matsumoto K, Sarashina I, Teruya S, Zhao R, Satoh N, Sasaki T, Matsuno K, Endo K. An In-silico Genomic Survey to Annotate Genes Coding for Early Development-Relevant Signaling Molecules in the Pearl Oyster, Pinctada fucata. Zoolog Sci 2013; 30:877-88. [DOI: 10.2108/zsj.30.877] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Davin H. E. Setiamarga
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keisuke Shimizu
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Junpei Kuroda
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba Prefecture 278-8510, Japan
| | - Kengo Inamura
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kei Sato
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yukinobu Isowa
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Makiko Ishikawa
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Reo Maeda
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba Prefecture 278-8510, Japan
| | - Tomoyuki Nakano
- Seto Marine Biological Laboratory, Kyoto University, 459 Shirahama, Nishimuro, Wakayama Prefecture 649-2211, Japan
| | - Tomoko Yamakawa
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba Prefecture 278-8510, Japan
| | - Ryo Hatori
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba Prefecture 278-8510, Japan
| | - Akira Ishio
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba Prefecture 278-8510, Japan
| | - Kayo Kaneko
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba Prefecture 278-8510, Japan
| | - Kenjiroo Matsumoto
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba Prefecture 278-8510, Japan
| | - Isao Sarashina
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinnosuke Teruya
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ran Zhao
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nori Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Takenori Sasaki
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenji Matsuno
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba Prefecture 278-8510, Japan
| | - Kazuyoshi Endo
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|