1
|
Rötte M, Höhne MY, Klug D, Ramlow K, Zedler C, Lehne F, Schneider M, Bischoff MC, Bogdan S. CYRI controls epidermal wound closure and cohesion of invasive border cell cluster in Drosophila. J Cell Biol 2024; 223:e202310153. [PMID: 39453414 PMCID: PMC11519390 DOI: 10.1083/jcb.202310153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 07/19/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024] Open
Abstract
Cell motility is crucial for many biological processes including morphogenesis, wound healing, and cancer invasion. The WAVE regulatory complex (WRC) is a central Arp2/3 regulator driving cell motility downstream of activation by Rac GTPase. CYFIP-related Rac1 interactor (CYRI) proteins are thought to compete with WRC for interaction with Rac1 in a feedback loop regulating lamellipodia dynamics. However, the physiological role of CYRI proteins in vivo in healthy tissues is unclear. Here, we used Drosophila as a model system to study CYRI function at the cellular and organismal levels. We found that CYRI is not only a potent WRC regulator in single macrophages that controls lamellipodial spreading but also identified CYRI as a molecular brake on the Rac-WRC-Arp2/3 pathway to slow down epidermal wound healing. In addition, we found that CYRI limits invasive border cell migration by controlling cluster cohesion and migration. Thus, our data highlight CYRI as an important regulator of cellular and epithelial tissue dynamics conserved across species.
Collapse
Affiliation(s)
- Marvin Rötte
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Mila Y. Höhne
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Dennis Klug
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Kirsten Ramlow
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Caroline Zedler
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Franziska Lehne
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Meike Schneider
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Maik C. Bischoff
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Sven Bogdan
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
2
|
Chutoe C, Inson I, Krobthong S, Phueakphud N, Khunluck T, Wongtrakoongate P, Charoenphandhu N, Lertsuwan K. Combinatorial effects of cannabinoid receptor 1 and 2 agonists on characteristics and proteomic alteration in MDA-MB-231 breast cancer cells. PLoS One 2024; 19:e0312851. [PMID: 39527598 PMCID: PMC11554208 DOI: 10.1371/journal.pone.0312851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Breast cancer is the most common cancer diagnosed in women worldwide. However, the effective treatment for breast cancer progression is still being sought. The activation of cannabinoid receptor (CB) has been shown to negatively affect breast cancer cell survival. Our previous study also reported that breast cancer cells responded to various combinations of CB1 and CB2 agonists differently. Nonetheless, the mechanism underlying this effect and whether this phenomenon can be seen in other cancer characteristics remain unknown. Therefore, this study aims to further elucidate the effects of highly selective CB agonists and their combination on triple-negative breast cancer proliferation, cell cycle progression, invasion, lamellipodia formation as well as proteomic profile of MDA-MB-231 breast cancer cells. The presence of CB agonists, specifically a 2:1 (ACEA: GW405833) combination, prominently inhibited colony formation and induced the S-phase cell cycle arrest in MDA-MB-231 cells. Furthermore, cell invasion ability and lamellipodia formation of MDA-MB-231 were also attenuated by the exposure of CB agonists and their 2:1 combination ratio. Our proteomic analysis revealed proteomic profile alteration in MDA-MB-231 upon CB exposure that potentially led to breast cancer suppression, such as ZPR1/SHC1/MAPK-mediated cell proliferation and AXL/VAV2/RAC1-mediated cell motility pathways. Our findings showed that selective CB agonists and their combination suppressed breast cancer characteristics in MDA-MB-231 cells. The exposure of CB agonists also altered the proteomic profile of MDA-MB-231, which could lead to cell proliferation and motility suppression.
Collapse
Affiliation(s)
- Chartinun Chutoe
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ingon Inson
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sucheewin Krobthong
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nut Phueakphud
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tueanjai Khunluck
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Patompon Wongtrakoongate
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Kornkamon Lertsuwan
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Blasco Pedreros M, Salas N, Dos Santos Melo T, Miranda-Magalhães A, Almeida-Lima T, Pereira-Neves A, de Miguel N. Role of a novel uropod-like cell membrane protrusion in the pathogenesis of the parasite Trichomonas vaginalis. J Cell Sci 2024; 137:jcs262210. [PMID: 39129707 DOI: 10.1242/jcs.262210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024] Open
Abstract
Trichomonas vaginalis causes trichomoniasis, the most common non-viral sexually transmitted disease worldwide. As an extracellular parasite, adhesion to host cells is essential for the development of infection. During attachment, the parasite changes its tear ovoid shape to a flat ameboid form, expanding the contact surface and migrating through tissues. Here, we have identified a novel structure formed at the posterior pole of adherent parasite strains, resembling the previously described uropod, which appears to play a pivotal role as an anchor during the attachment process. Moreover, our research demonstrates that the overexpression of the tetraspanin T. vaginalis TSP5 protein (TvTSP5), which is localized on the cell surface of the parasite, notably enhances the formation of this posterior anchor structure in adherent strains. Finally, we demonstrate that parasites that overexpress TvTSP5 possess an increased ability to adhere to host cells, enhanced aggregation and reduced migration on agar plates. Overall, these findings unveil novel proteins and structures involved in the intricate mechanisms of T. vaginalis interactions with host cells.
Collapse
Affiliation(s)
- Manuela Blasco Pedreros
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Buenos Aires CP 7130, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús CP 1650, Argentina
| | - Nehuen Salas
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Buenos Aires CP 7130, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús CP 1650, Argentina
| | - Tuanne Dos Santos Melo
- Departamento de Microbiologia, Instituto Aggeu Magalhães, Fiocruz, Recife, Pernambuco CEP 50740-465, Brazil
| | - Abigail Miranda-Magalhães
- Departamento de Microbiologia, Instituto Aggeu Magalhães, Fiocruz, Recife, Pernambuco CEP 50740-465, Brazil
| | - Thainá Almeida-Lima
- Departamento de Microbiologia, Instituto Aggeu Magalhães, Fiocruz, Recife, Pernambuco CEP 50740-465, Brazil
| | - Antonio Pereira-Neves
- Departamento de Microbiologia, Instituto Aggeu Magalhães, Fiocruz, Recife, Pernambuco CEP 50740-465, Brazil
| | - Natalia de Miguel
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Buenos Aires CP 7130, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús CP 1650, Argentina
| |
Collapse
|
4
|
Sankhe CS, Sacco JL, Lawton J, Fair RA, Soares DVR, Aldahdooh MKR, Gomez ED, Gomez EW. Breast Cancer Cells Exhibit Mesenchymal-Epithelial Plasticity Following Dynamic Modulation of Matrix Stiffness. Adv Biol (Weinh) 2024; 8:e2400087. [PMID: 38977422 DOI: 10.1002/adbi.202400087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/31/2024] [Indexed: 07/10/2024]
Abstract
Mesenchymal-epithelial transition (MET) is essential for tissue and organ development and is thought to contribute to cancer by enabling the establishment of metastatic lesions. Despite its importance in both health and disease, there is a lack of in vitro platforms to study MET and little is known about the regulation of MET by mechanical cues. Here, hyaluronic acid-based hydrogels with dynamic and tunable stiffnesses mimicking that of normal and tumorigenic mammary tissue are synthesized. The platform is then utilized to examine the response of mammary epithelial cells and breast cancer cells to dynamic modulation of matrix stiffness. Gradual softening of the hydrogels reduces proliferation and increases apoptosis of breast cancer cells. Moreover, breast cancer cells exhibit temporal changes in cell morphology, cytoskeletal organization, and gene expression that are consistent with mesenchymal-epithelial plasticity as the stiffness of the matrix is reduced. A reduction in matrix stiffness attenuates the expression of integrin-linked kinase, and inhibition of integrin-linked kinase impacts proliferation, apoptosis, and gene expression in cells cultured on stiff and dynamic hydrogels. Overall, these findings reveal intermediate epithelial/mesenchymal states as cells move along a matrix stiffness-mediated MET trajectory and suggest an important role for matrix mechanics in regulating mesenchymal-epithelial plasticity.
Collapse
Affiliation(s)
- Chinmay S Sankhe
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jessica L Sacco
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jacob Lawton
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ryan A Fair
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | | | - Mohammed K R Aldahdooh
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Enrique D Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Esther W Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
5
|
Waddell A, Grbic N, Leibowitz K, Wyant WA, Choudhury S, Park K, Collard M, Cole PA, Alani RM. p300 KAT Regulates SOX10 Stability and Function in Human Melanoma. CANCER RESEARCH COMMUNICATIONS 2024; 4:1894-1907. [PMID: 38994683 PMCID: PMC11293458 DOI: 10.1158/2767-9764.crc-24-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/15/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024]
Abstract
SOX10 is a lineage-specific transcription factor critical for melanoma tumor growth; on the other hand, SOX10 loss-of-function drives the emergence of therapy-resistant, invasive melanoma phenotypes. A major challenge has been developing therapeutic strategies targeting SOX10's role in melanoma proliferation while preventing a concomitant increase in tumor cell invasion. In this study, we report that the lysine acetyltransferase (KAT) EP300 and SOX10 gene loci on chromosome 22 are frequently co-amplified in melanomas, including UV-associated and acral tumors. We further show that p300 KAT activity mediates SOX10 protein stability and that the p300 inhibitor A-485 downregulates SOX10 protein levels in melanoma cells via proteasome-mediated degradation. Additionally, A-485 potently inhibits proliferation of SOX10+ melanoma cells while decreasing invasion in AXLhigh/MITFlow melanoma cells through downregulation of metastasis-related genes. We conclude that the SOX10/p300 axis is critical to melanoma growth and invasion and that inhibition of p300 KAT activity through A-485 may be a worthwhile therapeutic approach for SOX10-reliant tumors. SIGNIFICANCE The p300 KAT inhibitor A-485 blocks SOX10-dependent proliferation and SOX10-independent invasion in hard-to-treat melanoma cells.
Collapse
Affiliation(s)
- Aaron Waddell
- Department of Dermatology, Boston University Aram V. Chobanian and Edward Avedisian School of Medicine, Boston, Massachusetts.
| | - Nicole Grbic
- Department of Dermatology, Boston University Aram V. Chobanian and Edward Avedisian School of Medicine, Boston, Massachusetts.
| | - Kassidy Leibowitz
- Department of Dermatology, Boston University Aram V. Chobanian and Edward Avedisian School of Medicine, Boston, Massachusetts.
| | - William Austin Wyant
- Department of Dermatology, Boston University Aram V. Chobanian and Edward Avedisian School of Medicine, Boston, Massachusetts.
| | - Sabah Choudhury
- Department of Dermatology, Boston University Aram V. Chobanian and Edward Avedisian School of Medicine, Boston, Massachusetts.
| | - Kihyun Park
- Department of Dermatology, Boston University Aram V. Chobanian and Edward Avedisian School of Medicine, Boston, Massachusetts.
| | - Marianne Collard
- Department of Dermatology, Boston University Aram V. Chobanian and Edward Avedisian School of Medicine, Boston, Massachusetts.
| | - Philip A. Cole
- Division of Genetics, Department of Medicine, Harvard Medical School and Brigham and Women’s Hospital, Boston, Massachusetts.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Brigham and Women’s Hospital, Boston, Massachusetts.
| | - Rhoda M. Alani
- Department of Dermatology, Boston University Aram V. Chobanian and Edward Avedisian School of Medicine, Boston, Massachusetts.
| |
Collapse
|
6
|
Yang S, Shi Z. Quantification of membrane geometry and protein sorting on cell membrane protrusions using fluorescence microscopy. Methods Enzymol 2024; 700:385-411. [PMID: 38971608 DOI: 10.1016/bs.mie.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Plasma membranes are flexible and can exhibit numerous shapes below the optical diffraction limit. The shape of cell periphery can either induce or be a product of local protein density changes, encoding numerous cellular functions. However, quantifying membrane curvature and the ensuing sorting of proteins in live cells remains technically demanding. Here, we demonstrate the use of simple widefield fluorescence microscopy to study the geometrical properties (i.e., radius, length, and number) of thin membrane protrusions. Importantly, the quantification of protrusion radius establishes a platform for studying the curvature preferences of membrane proteins.
Collapse
Affiliation(s)
- Shilong Yang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, United States
| | - Zheng Shi
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, United States.
| |
Collapse
|
7
|
Lamour G, Malo M, Crépin R, Pelta J, Labdi S, Campillo C. Dynamically Mapping the Topography and Stiffness of the Leading Edge of Migrating Cells Using AFM in Fast-QI Mode. ACS Biomater Sci Eng 2024; 10:1364-1378. [PMID: 38330438 DOI: 10.1021/acsbiomaterials.3c01254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Cell migration profoundly influences cellular function, often resulting in adverse effects in various pathologies including cancer metastasis. Directly assessing and quantifying the nanoscale dynamics of living cell structure and mechanics has remained a challenge. At the forefront of cell movement, the flat actin modules─the lamellipodium and the lamellum─interact to propel cell migration. The lamellipodium extends from the lamellum and undergoes rapid changes within seconds, making measurement of its stiffness a persistent hurdle. In this study, we introduce the fast-quantitative imaging (fast-QI) mode, demonstrating its capability to simultaneously map both the lamellipodium and the lamellum with enhanced spatiotemporal resolution compared with the classic quantitative imaging (QI) mode. Specifically, our findings reveal nanoscale stiffness gradients in the lamellipodium at the leading edge, where it appears to be slightly thinner and significantly softer than the lamellum. Additionally, we illustrate the fast-QI mode's accuracy in generating maps of height and effective stiffness through a streamlined and efficient processing of force-distance curves. These results underscore the potential of the fast-QI mode for investigating the role of motile cell structures in mechanosensing.
Collapse
Affiliation(s)
- Guillaume Lamour
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Michel Malo
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Raphaël Crépin
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Juan Pelta
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Sid Labdi
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Clément Campillo
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| |
Collapse
|
8
|
Waddell A, Grbic N, Leibowitz K, Wyant WA, Choudhury S, Park K, Collard M, Cole PA, Alani RM. p300 KAT regulates SOX10 stability and function in human melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.20.581224. [PMID: 38469149 PMCID: PMC10926666 DOI: 10.1101/2024.02.20.581224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
SOX10 is a lineage-specific transcription factor critical for melanoma tumor growth, while SOX10 loss-of-function drives the emergence of therapy-resistant, invasive melanoma phenotypes. A major challenge has been developing therapeutic strategies targeting SOX10's role in melanoma proliferation, while preventing a concomitant increase in tumor cell invasion. Here, we report that the lysine acetyltransferase (KAT) EP300 and SOX10 gene loci on Chromosome 22 are frequently co-amplified in melanomas, including UV-associated and acral tumors. We further show that p300 KAT activity mediates SOX10 protein stability and that the p300 inhibitor, A-485, downregulates SOX10 protein levels in melanoma cells via proteasome-mediated degradation. Additionally, A-485 potently inhibits proliferation of SOX10+ melanoma cells while decreasing invasion in AXLhigh/MITFlow melanoma cells through downregulation of metastasis-related genes. We conclude that the SOX10/p300 axis is critical to melanoma growth and invasion, and that inhibition of p300 KAT activity through A-485 may be a worthwhile therapeutic approach for SOX10-reliant tumors.
Collapse
Affiliation(s)
- Aaron Waddell
- Department of Dermatology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, 609 Albany Street, Boston, MA, USA 02118
| | - Nicole Grbic
- Department of Dermatology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, 609 Albany Street, Boston, MA, USA 02118
| | - Kassidy Leibowitz
- Department of Dermatology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, 609 Albany Street, Boston, MA, USA 02118
| | - W. Austin Wyant
- Department of Dermatology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, 609 Albany Street, Boston, MA, USA 02118
| | - Sabah Choudhury
- Department of Dermatology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, 609 Albany Street, Boston, MA, USA 02118
| | - Kihyun Park
- Department of Dermatology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, 609 Albany Street, Boston, MA, USA 02118
| | - Marianne Collard
- Department of Dermatology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, 609 Albany Street, Boston, MA, USA 02118
| | - Philip A. Cole
- Division of Genetics, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, 02115, USA
| | - Rhoda M. Alani
- Department of Dermatology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, 609 Albany Street, Boston, MA, USA 02118
| |
Collapse
|
9
|
Ramanjooloo A, Chummun Phul I, Goonoo N, Bhaw-Luximon A. Electrospun polydioxanone/fucoidan blend nanofibers loaded with anti-cancer precipitate from Jaspis diastra and paclitaxel: Physico-chemical characterization and in-vitro screening. Int J Biol Macromol 2024; 259:129218. [PMID: 38185297 DOI: 10.1016/j.ijbiomac.2024.129218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/17/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Nanofibers for drug delivery systems have gained much attention during the past years. This paper describes for the first time the loading of a bioactive precipitate (JAD) from the marine sponge Jaspis diastra in PDX and fucoidan-PDX. JAD was characterized by LC-MS/MS and the major component was jaspamide (1) with a purity of 62.66 %. The cytotoxicity of JAD was compared with paclitaxel (PTX). JAD and PTX displayed IC50 values of 1.10 ± 0.7 μg/mL and 0.21 ± 0.12 μg/mL on skin fibroblasts L929 cells whilst their IC50 values on uveal MP41 cancer cells, were 2.10 ± 0.55 μg/mL and 1.38 ± 0.68 μg/mL, respectively. JAD was found to be less cytotoxic to healthy fibroblasts compared to PTX. JAD and PTX loaded scaffolds showed sustained release over 96 h in physiological medium which is likely to reduce the secondary cytotoxic effect induced by JAD and PTX alone. The physico-chemical properties of the loaded and unloaded scaffolds together with their degradation and action on tumor microenvironment by using L929 and MP41 cells were investigated. JAD and PTX at a concentration of 0.5 % (drug/polymer, w/w) in the electrospun mats prevented growth and proliferation of L929 and MP41 cells. Co-culture of L929 and MP41 showed that the JAD and PTX loaded mats inhibited the growth of both cells and caused cell death.
Collapse
Affiliation(s)
- Avin Ramanjooloo
- Biomaterials, Drug Delivery & Nanotechnology Unit, Centre for Biomedical & Biomaterials Research, University of Mauritius, Réduit, Mauritius; Mauritius Oceanography Institute, Avenue des Anchois, Morcellement de Chazal, Albion, Mauritius
| | - Itisha Chummun Phul
- Biomaterials, Drug Delivery & Nanotechnology Unit, Centre for Biomedical & Biomaterials Research, University of Mauritius, Réduit, Mauritius
| | - Nowsheen Goonoo
- Biomaterials, Drug Delivery & Nanotechnology Unit, Centre for Biomedical & Biomaterials Research, University of Mauritius, Réduit, Mauritius
| | - Archana Bhaw-Luximon
- Biomaterials, Drug Delivery & Nanotechnology Unit, Centre for Biomedical & Biomaterials Research, University of Mauritius, Réduit, Mauritius.
| |
Collapse
|
10
|
Uehara M, Domoto T, Takenaka S, Takeuchi O, Shimasaki T, Miyashita T, Minamoto T. Glycogen synthase kinase 3β: the nexus of chemoresistance, invasive capacity, and cancer stemness in pancreatic cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:4. [PMID: 38318525 PMCID: PMC10838383 DOI: 10.20517/cdr.2023.84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/20/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
The treatment of pancreatic cancer remains a significant clinical challenge due to the limited number of patients eligible for curative (R0) surgery, failures in the clinical development of targeted and immune therapies, and the pervasive acquisition of chemotherapeutic resistance. Refractory pancreatic cancer is typified by high invasiveness and resistance to therapy, with both attributes related to tumor cell stemness. These malignant characteristics mutually enhance each other, leading to rapid cancer progression. Over the past two decades, numerous studies have produced evidence of the pivotal role of glycogen synthase kinase (GSK)3β in the progression of over 25 different cancer types, including pancreatic cancer. In this review, we synthesize the current knowledge on the pathological roles of aberrant GSK3β in supporting tumor cell proliferation and invasion, as well as its contribution to gemcitabine resistance in pancreatic cancer. Importantly, we discuss the central role of GSK3β as a molecular hub that mechanistically connects chemoresistance, tumor cell invasion, and stemness in pancreatic cancer. We also discuss the involvement of GSK3β in the formation of desmoplastic tumor stroma and in promoting anti-cancer immune evasion, both of which constitute major obstacles to successful cancer treatment. Overall, GSK3β has characteristics of a promising therapeutic target to overcome chemoresistance in pancreatic cancer.
Collapse
Affiliation(s)
- Masahiro Uehara
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Authors contributed equally
| | - Takahiro Domoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Authors contributed equally
| | - Satoshi Takenaka
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
- Department of Surgery, Toyama City Hospital, Toyama 939-8511, Japan
| | - Osamu Takeuchi
- Biomedical Laboratory, Department of Research, Kitasato University Kitasato Institute Hospital, Tokyo 108-8642, Japan
| | - Takeo Shimasaki
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Tomoharu Miyashita
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
- Department of Surgery, Toyama City Hospital, Toyama 939-8511, Japan
| | - Toshinari Minamoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
| |
Collapse
|
11
|
Sung Y, Gotina L, Kim KH, Lee JY, Shin S, Aziz H, Kang DM, Liu X, Hong NK, Lee HG, Lee JS, Ku H, Jeong C, Pae AN, Lim S, Chang YT, Kim YK. NeuM: A Neuron-Selective Probe Incorporates into Live Neuronal Membranes via Enhanced Clathrin-Mediated Endocytosis in Primary Neurons. Angew Chem Int Ed Engl 2024; 63:e202312942. [PMID: 38062619 DOI: 10.1002/anie.202312942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Indexed: 01/10/2024]
Abstract
The development of a small-molecule probe designed to selectively target neurons would enhance the exploration of intricate neuronal structures and functions. Among such probes, NeuO stands out as the pioneer and has gained significant traction in the field of research. Nevertheless, neither the mechanism behind neuron-selectivity nor the cellular localization has been determined. Here, we introduce NeuM, a derivative of NeuO, designed to target neuronal cell membranes. Furthermore, we elucidate the mechanism behind the selective neuronal membrane trafficking that distinguishes neurons. In an aqueous buffer, NeuM autonomously assembles into micellar structures, leading to the quenching of its fluorescence (Φ=0.001). Upon exposure to neurons, NeuM micelles were selectively internalized into neuronal endosomes via clathrin-mediated endocytosis. Through the endocytic recycling pathway, NeuM micelles integrate into neuronal membrane, dispersing fluorescent NeuM molecules in the membrane (Φ=0.61). Molecular dynamics simulations demonstrated that NeuM, in comparison to NeuO, possesses optimal lipophilicity and molecular length, facilitating its stable incorporation into phospholipid layers. The stable integration of NeuM within neuronal membrane allows the prolonged monitoring of neurons, as well as the visualization of intricate neuronal structures.
Collapse
Affiliation(s)
- Yoonsik Sung
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Lizaveta Gotina
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Kyu Hyeon Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Jung Yeol Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seulgi Shin
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hira Aziz
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Dong Min Kang
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Xiao Liu
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Na-Kyeong Hong
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hong-Guen Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jun-Seok Lee
- Department of Pharmacology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Hyeyeong Ku
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Cherlhyun Jeong
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Ae Nim Pae
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Sungsu Lim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Young-Tae Chang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yun Kyung Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| |
Collapse
|
12
|
Wu X, Li D, Chen Y, Wang L, Xu LY, Li EM, Dong G. Fascin - F-actin interaction studied by molecular dynamics simulation and protein network analysis. J Biomol Struct Dyn 2024; 42:435-444. [PMID: 37029713 DOI: 10.1080/07391102.2023.2199083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/14/2023] [Indexed: 04/09/2023]
Abstract
Actin bundles are an important component of cellular cytoskeleton and participate in the movement of cells. The formation of actin bundles requires the participation of many actin binding proteins (ABPs). Fascin is a member of ABPs, which plays a key role in bundling filamentous actin (F-actin) to bundles. However, the detailed interactions between fascin and F-actin are unclear. In this study, we construct an atomic-level structure of fascin - F-actin complex based on a rather poor cryo-EM data with resolution of 20 nm. We first optimized the geometries of the complex by molecular dynamics (MD) simulation and analyzed the binding site and pose of fascin which bundles two F-actin chains. Next, binding free energy of fascin was calculated by MM/GBSA method. Finally, protein structure network analysis (PSNs) was performed to analyze the key residues for fascin binding. Our results show that residues of K22, E27, E29, K41, K43, R110, R149, K358, R408 and K471 on fascin are important for its bundling, which are in good agreement with the experimental data. On the other hand, the consistent results indicate that the atomic-level model of fascin - F-actin complex is reliable. In short, this model can be used to understand the detailed interactions between fascin and F-actin, and to develop novel potential drugs targeting fascin.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiaodong Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
| | - Dajia Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
| | - Yang Chen
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
- Department of Pathology, The First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Liangdong Wang
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
| | - Li-Yan Xu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, PR China
- Cancer Research Center, Shantou University Medical College, Shantou, PR China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, PR China
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, PR China
| | - Geng Dong
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, PR China
- Medical Informatics Research Center, Shantou University Medical College, Shantou, PR China
| |
Collapse
|
13
|
Kapoor D, Sharma P, Saini A, Azhar E, Elste J, Kohlmeir EK, Shukla D, Tiwari V. Tunneling Nanotubes: The Cables for Viral Spread and Beyond. Results Probl Cell Differ 2024; 73:375-417. [PMID: 39242387 DOI: 10.1007/978-3-031-62036-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Multicellular organisms require cell-to-cell communication to maintain homeostasis and thrive. For cells to communicate, a network of filamentous, actin-rich tunneling nanotubes (TNTs) plays a pivotal role in facilitating efficient cell-to-cell communication by connecting the cytoplasm of adjacent or distant cells. Substantial documentation indicates that diverse cell types employ TNTs in a sophisticated and intricately organized fashion for both long and short-distance communication. Paradoxically, several pathogens, including viruses, exploit the structural integrity of TNTs to facilitate viral entry and rapid cell-to-cell spread. These pathogens utilize a "surfing" mechanism or intracellular transport along TNTs to bypass high-traffic cellular regions and evade immune surveillance and neutralization. Although TNTs are present across various cell types in healthy tissue, their magnitude is increased in the presence of viruses. This heightened induction significantly amplifies the role of TNTs in exacerbating disease manifestations, severity, and subsequent complications. Despite significant advancements in TNT research within the realm of infectious diseases, further studies are imperative to gain a precise understanding of TNTs' roles in diverse pathological conditions. Such investigations are essential for the development of novel therapeutic strategies aimed at leveraging TNT-associated mechanisms for clinical applications. In this chapter, we emphasize the significance of TNTs in the life cycle of viruses, showcasing the potential for a targeted approach to impede virus-host cell interactions during the initial stages of viral infections. This approach holds promise for intervention and prevention strategies.
Collapse
Affiliation(s)
- Divya Kapoor
- Department of Microbiology and Immunology, Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, USA
| | - Pankaj Sharma
- Department of Microbiology and Immunology, Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, USA
| | - Akash Saini
- Hinsdale Central High School, Hinsdale, IL, USA
| | - Eisa Azhar
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | - James Elste
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | | | - Deepak Shukla
- Department of Microbiology and Immunology, Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, USA
| | - Vaibhav Tiwari
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA.
| |
Collapse
|
14
|
Hou J, Liu J, Huang Z, Wang Y, Yao H, Hu Z, Shi C, Xu J, Wang Q. Structure and function of the membrane microdomains in osteoclasts. Bone Res 2023; 11:61. [PMID: 37989999 PMCID: PMC10663511 DOI: 10.1038/s41413-023-00294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 11/23/2023] Open
Abstract
The cell membrane structure is closely related to the occurrence and progression of many metabolic bone diseases observed in the clinic and is an important target to the development of therapeutic strategies for these diseases. Strong experimental evidence supports the existence of membrane microdomains in osteoclasts (OCs). However, the potential membrane microdomains and the crucial mechanisms underlying their roles in OCs have not been fully characterized. Membrane microdomain components, such as scaffolding proteins and the actin cytoskeleton, as well as the roles of individual membrane proteins, need to be elucidated. In this review, we discuss the compositions and critical functions of membrane microdomains that determine the biological behavior of OCs through the three main stages of the OC life cycle.
Collapse
Affiliation(s)
- Jialong Hou
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhixian Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yining Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hanbing Yao
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhenxin Hu
- Department of Spine Surgery, Peking University Fourth School of Clinical Medicine, Beijing, China
| | - Chengge Shi
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Qingqing Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
15
|
Ji C, Huang Y. Durotaxis and negative durotaxis: where should cells go? Commun Biol 2023; 6:1169. [PMID: 37973823 PMCID: PMC10654570 DOI: 10.1038/s42003-023-05554-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
Durotaxis and negative durotaxis are processes in which cell migration is directed by extracellular stiffness. Durotaxis is the tendency of cells to migrate toward stiffer areas, while negative durotaxis occurs when cells migrate toward regions with lower stiffness. The mechanisms of both processes are not yet fully understood. Additionally, the connection between durotaxis and negative durotaxis remains unclear. In this review, we compare the mechanisms underlying durotaxis and negative durotaxis, summarize the basic principles of both, discuss the possible reasons why some cell types exhibit durotaxis while others exhibit negative durotaxis, propose mechanisms of switching between these processes, and emphasize the challenges in the investigation of durotaxis and negative durotaxis.
Collapse
Affiliation(s)
- Congcong Ji
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yuxing Huang
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Peking University, Beijing, 100191, China.
| |
Collapse
|
16
|
Zhou M, Ma Y, Rock EC, Chiang CC, Luker KE, Luker GD, Chen YC. Microfluidic single-cell migration chip reveals insights into the impact of extracellular matrices on cell movement. LAB ON A CHIP 2023; 23:4619-4635. [PMID: 37750357 PMCID: PMC10615797 DOI: 10.1039/d3lc00651d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Cell migration is a complex process that plays a crucial role in normal physiology and pathologies such as cancer, autoimmune diseases, and mental disorders. Conventional cell migration assays face limitations in tracking a large number of individual migrating cells. To address this challenge, we have developed a high-throughput microfluidic cell migration chip, which seamlessly integrates robotic liquid handling and computer vision to swiftly monitor the movement of 3200 individual cells, providing unparalleled single-cell resolution for discerning distinct behaviors of the fast-moving cell population. This study focuses on the ECM's role in regulating cellular migration, utilizing this cutting-edge microfluidic technology to investigate the impact of ten different ECMs on triple-negative breast cancer cell lines. We found that collagen IV, collagen III, and collagen I coatings were the top enhancers of cell movement. Combining these ECMs increased cell motility, but the effect was sub-additive. Furthermore, we examined 87 compounds and found that while some compounds inhibited migration on all substrates, significantly distinct effects on differently coated substrates were observed, underscoring the importance of considering ECM coating. We also utilized cells expressing a fluorescent actin reporter and observed distinct actin structures in ECM-interacting cells. ScRNA-Seq analysis revealed that ECM coatings induced EMT and enhanced cell migration. Finally, we identified genes that were particularly up-regulated by collagen IV and the selective inhibitors successfully blocked cell migration on collagen IV. Overall, the study provides insights into the impact of various ECMs on cell migration and dynamics of cell movement with implications for developing therapeutic strategies to combat diseases related to cell motility.
Collapse
Affiliation(s)
- Mengli Zhou
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yushu Ma
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Edwin C Rock
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Chun-Cheng Chiang
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Kathryn E Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Gary D Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
- Department of Microbiology and Immunology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Blvd., Ann Arbor, MI 48109-2099, USA
| | - Yu-Chih Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
- CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
17
|
Sun KH, Lee MY, Jeon YJ. Inhibition of Phagocytosis by Silibinin in Mouse Macrophages. Curr Issues Mol Biol 2023; 45:8126-8137. [PMID: 37886956 PMCID: PMC10605117 DOI: 10.3390/cimb45100513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
This study investigated the effects of silibinin, derived from milk thistle (Silybum marianum), on lipopolysaccharide (LPS)-induced morphological changes in mouse macrophages. Silibinin was treated at various doses and time points to assess its effects on macrophage activation, including morphological changes and phagocytosis. Silibinin effectively inhibited LPS-induced pseudopodia formation and size increase, while unstimulated cells remained round. Silibinin's impact on phagocytosis was dose- and time-dependent, showing a decrease. We explored its mechanism of action on kinases using a MAPK array. Among the three MAPK family members tested, silibinin had a limited effect on JNK and p38 but significantly inhibited ERK1/2 and related RSK1/2. Silibinin also inhibited MKK6, AKT3, MSK2, p70S6K, and GSK-3β. These findings highlight silibinin's potent inhibitory effects on phagocytosis and morphological changes in macrophages. We suggest its potential as an anti-inflammatory agent due to its ability to target key inflammatory pathways involving ERK1/2 and related kinases. Overall, this study demonstrates the promising therapeutic properties of silibinin in modulating macrophage function and inflammation.
Collapse
Affiliation(s)
- Kyung-Hoon Sun
- Department of Emergency Medicine, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea;
| | - Min-Young Lee
- Department of Pharmacology, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea;
| | - Young-Jin Jeon
- Department of Pharmacology, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea;
| |
Collapse
|
18
|
Qiu Y, Wang H, Guo Q, Liu Y, He Y, Zhang G, Yang C, Du Y, Gao F. CD44s-activated tPA/LRP1-NFκB pathway drives lamellipodia outgrowth in luminal-type breast cancer cells. Front Cell Dev Biol 2023; 11:1224827. [PMID: 37842093 PMCID: PMC10569302 DOI: 10.3389/fcell.2023.1224827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
Some cancer cells migration and metastasis are characterized by the outgrowth of lamellipodia protrusions in which the underlying mechanism remains unclear. Evidence has confirmed that lamellipodia formation could be regulated by various adhesion molecules, such as CD44, and we previously reported that lamellipodia at the leading edge of luminal type breast cancer (BrCa) were enriched with high expression of CD44. In this study, we found that the overexpression of CD44s could promote lamellipodia formation in BrCa cells through inducing tissue type plasminogen activator (tPA) upregulation, which was achieved by PI3K/Akt signaling pathway activation. Moreover, we revealed that tPA could interact with LDL receptor related protein 1 (LRP1) to activate the downstream NFκB signaling pathway, which in turn facilitate lamellipodia formation. Notably, inhibition of the tPA/LRP1-NFkB signaling cascade could attenuate the CD44s-induced lamellipodia formation. Thus, our findings uncover a novel role of CD44s in driving lamellipodia outgrowth through tPA/LRP1-NFkB axis in luminal BrCa cells that may be helpful for seeking potential therapeutic targets.
Collapse
Affiliation(s)
- Yaqi Qiu
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Laboratory, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Laboratory, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Guo
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Liu
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiqing He
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoliang Zhang
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cuixia Yang
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Laboratory, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Du
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Gao
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Laboratory, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Das S, Ghosh A, Upadhyay P, Sarker S, Bhattacharjee M, Gupta P, Chattopadhyay S, Ghosh S, Dhar P, Adhikary A. A mechanistic insight into the potential anti-cancerous property of Nigella sativa on breast cancer through micro-RNA regulation: An in vitro & in vivo study. Fitoterapia 2023; 169:105601. [PMID: 37406886 DOI: 10.1016/j.fitote.2023.105601] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Cancer continues to threat mortal alongside scientific community with burgeoning grasp. Most efforts directed to tame Cancer such as radiotherapy or chemotherapy, all came at a cost of severe side effects. The plant derived bioactive compounds on the other hand carries an inevitable advantage of being safer, bioavailable & less toxic compared to contemporary chemotherapeutics. Our strategic approach employed solvent extraction of Black Seed Oil (BSO) to highlight the orchestrated use of its oil soluble phytochemicals - Thymoquinone, Carvacrol & Trans-Anethole when used in cohort. These anti-cancer agents in unbelievably modest amounts present in BSO shows better potential to delineate migratory properties in breast cancer cells as compared to when treated individually. BSO was also observed to have apoptotic calibre when investigated in MDA-MB-231 and MCF-7 cell lines. We performed chemical characterization of the individual phytochemical as well as the oil in-whole to demonstrate the bioactive oil-soluble entities present in whole extract. BSO was observed to have significant anti-cancerous properties in cumulative proportion that is reportedly higher than the individual three components. Besides, this study also reports micro-RNA regulation on BSO administration, thereby playing a pivotal role in breast cancer alleviation. Thus, synergistic action of the integrants serves better combat force against breast cancer in the form of whole extract, hence aiming at a more lucrative paradigm while significantly regulating microRNAs associated with breast cancer migration and apoptosis.
Collapse
Affiliation(s)
- Shaswati Das
- Centre for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector III, Salt Lake City, Kolkata 700106, India
| | - Avijit Ghosh
- Centre for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector III, Salt Lake City, Kolkata 700106, India
| | - Priyanka Upadhyay
- Centre for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector III, Salt Lake City, Kolkata 700106, India
| | - Sushmita Sarker
- Centre for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector III, Salt Lake City, Kolkata 700106, India
| | - Mousumi Bhattacharjee
- Centre for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector III, Salt Lake City, Kolkata 700106, India
| | - Payal Gupta
- Department of Physiology, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, WB, India
| | - Sreya Chattopadhyay
- Department of Physiology, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, WB, India
| | - Swatilekha Ghosh
- Amity Institute of Biotechnology, Amity University, Kolkata, Major Arterial Road (South-East), Action Area II, Newtown, Kolkata, West Bengal 700135, India
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition, Department of Home Science, University of Calcutta, 20, B Judges Court Road, Kolkata 700027 University, India
| | - Arghya Adhikary
- Department of Life science & Biotechnology, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata, West Bengal 700032, WB, India.
| |
Collapse
|
20
|
Sebastian S, Hoffmann MK, Howard D, Young C, Washington J, Unterweger H, Alexiou C, Turnbull T, D’Andrea R, Hoffmann P, Kempson I. Kinetic Effects of Transferrin-Conjugated Gold Nanoparticles on the Antioxidant Glutathione-Thioredoxin Pathway. Antioxidants (Basel) 2023; 12:1617. [PMID: 37627612 PMCID: PMC10451790 DOI: 10.3390/antiox12081617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Nanoparticle-based therapeutics are being clinically translated for treating cancer. Even when thought to be biocompatible, nanoparticles are being increasingly identified as altering cell regulation and homeostasis. Antioxidant pathways are important for maintaining cell redox homeostasis and play important roles by maintaining ROS levels within tolerable ranges. Here, we sought to understand how a model of a relatively inert nanoparticle without any therapeutic agent itself could antagonize a cancer cell lines' antioxidant mechanism. A label-free protein expression approach was used to assess the glutathione-thioredoxin antioxidative pathway in a prostate cancer cell line (PC-3) after exposure to gold nanoparticles conjugated with a targeting moiety (transferrin). The impact of the nanoparticles was also corroborated through morphological analysis with TEM and classification of pro-apoptotic cells by way of the sub-G0/G1 population via the cell cycle and annexin V apoptosis assay. After a two-hour exposure to nanoparticles, major proteins associated with the glutathione-thioredoxin antioxidant pathway were downregulated. However, this response was acute, and in terms of protein expression, cells quickly recovered within 24 h once nanoparticle exposure ceased. The impact on PRDX-family proteins appears as the most influential factor in how these nanoparticles induced an oxidative stress response in the PC-3 cells. An apparent adaptive response was observed if exposure to nanoparticles continued. Acute exposure was observed to have a detrimental effect on cell viability compared to continuously exposed cells. Nanoparticle effects on cell regulation likely provide a compounding therapeutic advantage under some circumstances, in addition to the action of any cytotoxic agents; however, any therapeutic advantage offered by nanoparticles themselves with regard to vulnerabilities specific to the glutathione-thioredoxin antioxidative pathway is highly temporal.
Collapse
Affiliation(s)
- Sonia Sebastian
- Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia; (S.S.); (D.H.); (T.T.)
- Clinical Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (M.K.H.); (C.Y.); (P.H.)
| | - Manuela Klingler Hoffmann
- Clinical Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (M.K.H.); (C.Y.); (P.H.)
- Mass Spectrometry & Proteomics Group, Clinical Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Douglas Howard
- Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia; (S.S.); (D.H.); (T.T.)
| | - Clifford Young
- Clinical Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (M.K.H.); (C.Y.); (P.H.)
- Mass Spectrometry & Proteomics Group, Clinical Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Jenni Washington
- Clinical Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (M.K.H.); (C.Y.); (P.H.)
- Mass Spectrometry & Proteomics Group, Clinical Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Harald Unterweger
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (H.U.); (C.A.)
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (H.U.); (C.A.)
| | - Tyron Turnbull
- Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia; (S.S.); (D.H.); (T.T.)
| | - Richard D’Andrea
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5000, Australia;
| | - Peter Hoffmann
- Clinical Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (M.K.H.); (C.Y.); (P.H.)
- Mass Spectrometry & Proteomics Group, Clinical Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Ivan Kempson
- Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia; (S.S.); (D.H.); (T.T.)
| |
Collapse
|
21
|
Lu C, Zhang X, Schardey J, Wirth U, Heinrich K, Massiminio L, Cavestro GM, Neumann J, Bazhin AV, Werner J, Kühn F. Molecular characteristics of microsatellite stable early-onset colorectal cancer as predictors of prognosis and immunotherapeutic response. NPJ Precis Oncol 2023; 7:63. [PMID: 37393364 DOI: 10.1038/s41698-023-00414-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/15/2023] [Indexed: 07/03/2023] Open
Abstract
The incidence of early-onset colorectal cancer (EO-CRC, in patients younger than 50) is increasing worldwide. The specific gene signatures in EO-CRC patients are largely unknown. Since EO-CRC with microsatellite instability is frequently associated with Lynch syndrome, we aimed to comprehensively characterize the tumor microenvironment (TME) and gene expression profiles of EO-CRC with microsatellite stable (MSS-EO-CRC). Here, we demonstrated that MSS-EO-CRC has a similar pattern of tumor-infiltrating immune cells, immunotherapeutic responses, consensus molecular subtypes, and prognosis as late-onset CRC with MSS (MSS-LO-CRC). 133 differential expressed genes were identified as unique gene signatures of MSS-EO-CRC. Moreover, we established a risk score, which was positively associated with PD-L1 expression and could reflect both the level of tumor-infiltrating immune cells and the prognosis of MSS-EO-CRC patients. Application of this score on the anti-PD-L1 treatment cohort demonstrated that the low-risk score group has significant therapeutic advantages and clinical benefits. In addition, candidate driver genes were identified in the different-sidedness of MSS-EO-CRC patients. Altogether, MSS-EO-CRC exhibits distinct molecular profiles that differ from MSS-LO-CRC even though they have a similar TME characterization and survival pattern. Our risk score appears to be robust enough to predict prognosis and immunotherapeutic response and therefore could help to optimize the treatment of MSS-EO-CRC.
Collapse
Affiliation(s)
- Can Lu
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377, Munich, Germany
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention (Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for CANCER & Cancer Center of Zhejiang University, Hangzhou, China
| | - Xiaopeng Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Cancer Center, Peking University Cancer Hospital and Institute, Beijing, China
- Institute of Laboratory Medicine, University Hospital of LMU Munich, Munich, Germany
| | - Josefine Schardey
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377, Munich, Germany
| | - Ulrich Wirth
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377, Munich, Germany
| | - Kathrin Heinrich
- Department of Medicine III, University Hospital, Ludwig-Maximilians-University Munich, 81377, Munich, Germany
| | - Luca Massiminio
- Experimental Gastroenterology Laboratory, Gastroenterology and Endoscopy Department, San Raffaele Scientific Institute, Milano, Italy
| | - Giulia Martina Cavestro
- Experimental Gastroenterology Laboratory, Gastroenterology and Endoscopy Department, San Raffaele Scientific Institute, Milano, Italy
| | - Jens Neumann
- Institute of Pathology, Medical Faculty, Ludwig-Maximilians-University Munich, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81377, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Partner Site Munich, Munich, Germany
| | - Alexandr V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81377, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Partner Site Munich, Munich, Germany
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81377, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Partner Site Munich, Munich, Germany
| | - Florian Kühn
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, 81377, Munich, Germany.
- Bavarian Cancer Research Center (BZKF), Partner Site Munich, Munich, Germany.
| |
Collapse
|
22
|
Liu L, Xu H, Shi Y, Cui J, Wu J, Li S. p53 regulates the effects of DAPT on Rac1 activation and migration of non-small-cell lung cancer cells. Heliyon 2023; 9:e14169. [PMID: 36923886 PMCID: PMC10009732 DOI: 10.1016/j.heliyon.2023.e14169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
The use of γ-secretase inhibitors to inhibit the activation of Notch receptors can effectively inhibit the malignant process of tumors. Here, we demonstrate that p53 can modulate the effect of DAPT (a γ-secretase inhibitor) on the activation of small GTPase Rac1, thereby affecting cell migration of non-small-cell lung cancer H1299 and A549 cells. After treatment with 20 μM DAPT, activation of Rac1 was increased in H1299 cells but not in A549 cells. We further found that the migration ability of H1299 cells was increased, whereas that of A549 cells was reduced. The effect of DAPT on H1299 migration was repressed by Rac1-T17N, a dominant inactivated mutant of Rac1. H1299 is a p53-deficient cell line. When p53 protein was overexpressed in H1299 cells with a pEGFP-p53 plasmid, DAPT treatment no longer activated Rac1 and increased migration ability. Moreover, DAPT promoted the migration of H1299 cells by increasing the activity of Rac1 through the non-canonical Notch pathway. Taken together, these results indicate that the expression of p53 protein in lung cancer cells regulates the effect of DAPT on cell migration by modulating the activation of Rac1, suggesting that p53 may affect the therapeutic effects of Notch inhibitors in lung cancer patients.
Collapse
Affiliation(s)
- Lei Liu
- Department of Physiology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Hong Xu
- Emergency Center, Xuzhou Tongshan District People's Hospital, No. 267 Huaihai West Road, Xuzhou, Jiangsu, 221006, China
| | - Yue Shi
- Department of Physiology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Jie Cui
- Department of Physiology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Jinxia Wu
- Department of Physiology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Shibao Li
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Xuzhou, Jiangsu, 221000, China
| |
Collapse
|
23
|
Frank D, Moussi CJ, Ulferts S, Lorenzen L, Schwan C, Grosse R. Vesicle-Associated Actin Assembly by Formins Promotes TGFβ-Induced ANGPTL4 Trafficking, Secretion and Cell Invasion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204896. [PMID: 36691769 PMCID: PMC10037683 DOI: 10.1002/advs.202204896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Vesicle trafficking has emerged as an important process driving tumor progression through various mechanisms. Transforming growth factor beta (TGFβ)-mediated secretion of Angiopoietin-like 4 (ANGPTL4) is important for cancer development. Here, Formin-like 2 (FMNL2) is identified to be necessary for ANGPTL4 trafficking and secretion in response to TGFβ. Protein kinase C (PKC)-dependent phosphorylation of FMNL2 downstream of TGFβ stimulation is required for cancer cell invasion as well as ANGPTL4 vesicle trafficking and secretion. Moreover, using super resolution microscopy, ANGPTL4 trafficking is actin-dependent with FMNL2 directly polymerizing actin at ANGPTL4-containing vesicles, which are associated with Rab8a and myosin Vb. This work uncovers a formin-controlled mechanism that transiently polymerizes actin directly at intracellular vesicles to facilitate their mobility. This mechanism may be important for the regulation of cancer cell metastasis and tumor progression.
Collapse
Affiliation(s)
- Dennis Frank
- Institute of Experimental and Clinical Pharmacology and ToxicologyMedical FacultyUniversity of Freiburg79104FreiburgGermany
| | - Christel Jessica Moussi
- Institute of Experimental and Clinical Pharmacology and ToxicologyMedical FacultyUniversity of Freiburg79104FreiburgGermany
- Deutsche Forschungsgemeinschaft Research Training GroupMembrane Plasticity in Tissue Development and RemodelingUniversity of Marburg35037MarburgGermany
| | - Svenja Ulferts
- Institute of Experimental and Clinical Pharmacology and ToxicologyMedical FacultyUniversity of Freiburg79104FreiburgGermany
| | - Lina Lorenzen
- Institute of Experimental and Clinical Pharmacology and ToxicologyMedical FacultyUniversity of Freiburg79104FreiburgGermany
| | - Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and ToxicologyMedical FacultyUniversity of Freiburg79104FreiburgGermany
| | - Robert Grosse
- Institute of Experimental and Clinical Pharmacology and ToxicologyMedical FacultyUniversity of Freiburg79104FreiburgGermany
- Centre for Integrative Biological Signalling Studies – CIBSS79104FreiburgGermany
| |
Collapse
|
24
|
Antimetastatic Properties of Prodigiosin and the BH3-Mimetic Obatoclax (GX15-070) in Melanoma. Pharmaceutics 2022; 15:pharmaceutics15010097. [PMID: 36678726 PMCID: PMC9862601 DOI: 10.3390/pharmaceutics15010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Metastasis is the primary cause of death in cancer patients. Many current chemotherapeutic agents only show cytotoxic, but not antimetastatic properties. This leads to a reduction in tumor size, but allows cancer cells to disseminate, which ultimately causes patient death. Therefore, novel anticancer compounds with both effects need to be developed. In this work, we analyze the antimetastatic properties of prodigiosin and obatoclax (GX15-070), anticancer drugs of the Prodiginines (PGs) family. We studied PGs' effects on cellular adhesion and morphology in the human primary and metastatic melanoma cell lines, SK-MEL-28 and SK-MEL-5, and in the murine melanoma cell line, B16F10A. Cell adhesion sharply decreased in the treated cells, and this was accompanied by a reduction in filopodia protrusions and a significant decrease in the number of focal-adhesion structures. Moreover, cell migration was assessed through the wound-healing assay and cell motility was severely inhibited after 24 h of treatment. To elucidate the molecular mechanisms involved, changes in metastasis-related genes were analyzed through a gene-expression array. Key genes related to cellular invasion, migration and chemoresistance were significantly down-regulated. Finally, an in vivo model of melanoma-induced lung metastasis was established and significant differences in lung tumors were observed in the obatoclax-treated mice. Altogether, these results describe, in depth, PGs' cellular antimetastatic effects and identify in vivo antimetastatic properties of Obatoclax.
Collapse
|
25
|
Huang Y, Hong W, Wei X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J Hematol Oncol 2022; 15:129. [PMID: 36076302 PMCID: PMC9461252 DOI: 10.1186/s13045-022-01347-8] [Citation(s) in RCA: 265] [Impact Index Per Article: 132.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is an essential process in normal embryonic development and tissue regeneration. However, aberrant reactivation of EMT is associated with malignant properties of tumor cells during cancer progression and metastasis, including promoted migration and invasiveness, increased tumor stemness, and enhanced resistance to chemotherapy and immunotherapy. EMT is tightly regulated by a complex network which is orchestrated with several intrinsic and extrinsic factors, including multiple transcription factors, post-translational control, epigenetic modifications, and noncoding RNA-mediated regulation. In this review, we described the molecular mechanisms, signaling pathways, and the stages of tumorigenesis involved in the EMT process and discussed the dynamic non-binary process of EMT and its role in tumor metastasis. Finally, we summarized the challenges of chemotherapy and immunotherapy in EMT and proposed strategies for tumor therapy targeting EMT.
Collapse
Affiliation(s)
- Yuhe Huang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
26
|
ATF2 loss promotes tumor invasion in colorectal cancer cells via upregulation of cancer driver TROP2. Cell Mol Life Sci 2022; 79:423. [PMID: 35838828 PMCID: PMC9287261 DOI: 10.1007/s00018-022-04445-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 12/24/2022]
Abstract
In cancer, the activating transcription factor 2 (ATF2) has pleiotropic functions in cellular responses to growth stimuli, damage, or inflammation. Due to only limited studies, the significance of ATF2 in colorectal cancer (CRC) is not well understood. We report that low ATF2 levels correlated with worse prognosis and tumor aggressiveness in CRC patients. NanoString gene expression and ChIP analysis confirmed trophoblast cell surface antigen 2 (TROP2) as a novel inhibitory ATF2 target gene. This inverse correlation was further observed in primary human tumor tissues. Immunostainings revealed that high intratumoral heterogeneity for ATF2 and TROP2 expression was sustained also in liver metastasis. Mechanistically, our in vitro data of CRISPR/Cas9-generated ATF2 knockout (KO) clones revealed that high TROP2 levels were critical for cell de-adhesion and increased cell migration without triggering EMT. TROP2 was enriched in filopodia and displaced Paxillin from adherens junctions. In vivo imaging, micro-computer tomography, and immunostainings verified that an ATF2KO/TROP2high status triggered tumor invasiveness in in vivo mouse and chicken xenograft models. In silico analysis provided direct support that ATF2low/TROP2high expression status defined high-risk CRC patients. Finally, our data demonstrate that ATF2 acts as a tumor suppressor by inhibiting the cancer driver TROP2. Therapeutic TROP2 targeting might prevent particularly the first steps in metastasis, i.e., the de-adhesion and invasion of colon cancer cells.
Collapse
|
27
|
Sun Y, Huang H, Zhan Z, Gao H, Zhang C, Lai J, Cao J, Li C, Chen Y, Liu Z. Berberine inhibits glioma cell migration and invasion by suppressing TGF-β1/COL11A1 pathway. Biochem Biophys Res Commun 2022; 625:38-45. [DOI: 10.1016/j.bbrc.2022.07.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 12/01/2022]
|
28
|
Reduced miR-371b-5p expression drives tumor progression via CSDE1/RAC1 regulation in triple-negative breast cancer. Oncogene 2022; 41:3151-3161. [PMID: 35490208 PMCID: PMC9135623 DOI: 10.1038/s41388-022-02326-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer; however, specific prognostic biomarkers have not yet been developed. In this study, we identified dysregulated microRNAs (miRNAs) in TNBC by profiling miRNA and mRNA expression. In patients with TNBC, miR-371b-5p expression was reduced, and miR-371b-5p overexpression significantly mitigated TNBC cell growth, migration, and invasion. In addition, we found that expression of cold shock domain-containing protein E1 (CSDE1), a direct target gene of miR-371b-5p, was upregulated in TNBC cells, and inhibition of CSDE1 expression alleviated TNBC cell growth by regulating RAC1 transcription. Mechanistically, CSDE1, phosphorylated C-terminal domain (p-CTD) of RNA polymerase II (RNAPII), and CDK7 form a complex, and downregulation of CSDE1 leads to weak interaction between RNAPII p-CTD and CDK7, resulting in a decrease in RNAPII p-CTD expression to reduce RAC1 transcript levels in CSDE1-deficient TNBC cells. Our data demonstrate that miR-371b-5p is a tumor-suppressive miRNA that regulates the CSDE1/Rac1 axis and could be a potential prognostic biomarker for TNBC.
Collapse
|
29
|
García-Padilla C, Muñoz-Gallardo MDM, Lozano-Velasco E, Castillo-Casas JM, Caño-Carrillo S, García-López V, Aránega A, Franco D, García-Martínez V, López-Sánchez C. New Insights into the Roles of lncRNAs as Modulators of Cytoskeleton Architecture and Their Implications in Cellular Homeostasis and in Tumorigenesis. Noncoding RNA 2022; 8:ncrna8020028. [PMID: 35447891 PMCID: PMC9033079 DOI: 10.3390/ncrna8020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/31/2022] [Accepted: 04/09/2022] [Indexed: 11/20/2022] Open
Abstract
The importance of the cytoskeleton not only in cell architecture but also as a pivotal element in the transduction of signals that mediate multiple biological processes has recently been highlighted. Broadly, the cytoskeleton consists of three types of structural proteins: (1) actin filaments, involved in establishing and maintaining cell shape and movement; (2) microtubules, necessary to support the different organelles and distribution of chromosomes during cell cycle; and (3) intermediate filaments, which have a mainly structural function showing specificity for the cell type where they are expressed. Interaction between these protein structures is essential for the cytoskeletal mesh to be functional. Furthermore, the cytoskeleton is subject to intense spatio-temporal regulation mediated by the assembly and disassembly of its components. Loss of cytoskeleton homeostasis and integrity of cell focal adhesion are hallmarks of several cancer types. Recently, many reports have pointed out that lncRNAs could be critical mediators in cellular homeostasis controlling dynamic structure and stability of the network formed by cytoskeletal structures, specifically in different types of carcinomas. In this review, we summarize current information available about the roles of lncRNAs as modulators of actin dependent cytoskeleton and their impact on cancer pathogenesis. Finally, we explore other examples of cytoskeletal lncRNAs currently unrelated to tumorigenesis, to illustrate knowledge about them.
Collapse
Affiliation(s)
- Carlos García-Padilla
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (E.L.-V.); (V.G.-L.); (V.G.-M.)
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (M.d.M.M.-G.); (J.M.C.-C.); (S.C.-C.); (A.A.); (D.F.)
- Correspondence: (C.G.-P.); (C.L.-S.)
| | - María del Mar Muñoz-Gallardo
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (M.d.M.M.-G.); (J.M.C.-C.); (S.C.-C.); (A.A.); (D.F.)
| | - Estefanía Lozano-Velasco
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (E.L.-V.); (V.G.-L.); (V.G.-M.)
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (M.d.M.M.-G.); (J.M.C.-C.); (S.C.-C.); (A.A.); (D.F.)
- Fundación Medina, 18016 Granada, Spain
| | - Juan Manuel Castillo-Casas
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (M.d.M.M.-G.); (J.M.C.-C.); (S.C.-C.); (A.A.); (D.F.)
| | - Sheila Caño-Carrillo
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (M.d.M.M.-G.); (J.M.C.-C.); (S.C.-C.); (A.A.); (D.F.)
| | - Virginio García-López
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (E.L.-V.); (V.G.-L.); (V.G.-M.)
| | - Amelia Aránega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (M.d.M.M.-G.); (J.M.C.-C.); (S.C.-C.); (A.A.); (D.F.)
- Fundación Medina, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (M.d.M.M.-G.); (J.M.C.-C.); (S.C.-C.); (A.A.); (D.F.)
- Fundación Medina, 18016 Granada, Spain
| | - Virginio García-Martínez
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (E.L.-V.); (V.G.-L.); (V.G.-M.)
| | - Carmen López-Sánchez
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (E.L.-V.); (V.G.-L.); (V.G.-M.)
- Correspondence: (C.G.-P.); (C.L.-S.)
| |
Collapse
|
30
|
Deng S, Leong HC, Datta A, Gopal V, Kumar AP, Yap CT. PI3K/AKT Signaling Tips the Balance of Cytoskeletal Forces for Cancer Progression. Cancers (Basel) 2022; 14:1652. [PMID: 35406424 PMCID: PMC8997157 DOI: 10.3390/cancers14071652] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/13/2022] [Accepted: 03/21/2022] [Indexed: 02/01/2023] Open
Abstract
The PI3K/AKT signaling pathway plays essential roles in multiple cellular processes, which include cell growth, survival, metabolism, and motility. In response to internal and external stimuli, the PI3K/AKT signaling pathway co-opts other signaling pathways, cellular components, and cytoskeletal proteins to reshape individual cells. The cytoskeletal network comprises three main components, which are namely the microfilaments, microtubules, and intermediate filaments. Collectively, they are essential for many fundamental structures and cellular processes. In cancer, aberrant activation of the PI3K/AKT signaling cascade and alteration of cytoskeletal structures have been observed to be highly prevalent, and eventually contribute to many cancer hallmarks. Due to their critical roles in tumor progression, pharmacological agents targeting PI3K/AKT, along with cytoskeletal components, have been developed for better intervention strategies against cancer. In our review, we first discuss existing evidence in-depth and then build on recent advances to propose new directions for therapeutic intervention.
Collapse
Affiliation(s)
- Shuo Deng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (S.D.); (V.G.)
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore;
| | - Hin Chong Leong
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore;
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore;
- Departments of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Arpita Datta
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore;
| | - Vennila Gopal
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (S.D.); (V.G.)
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore;
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore;
- Departments of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
| | - Celestial T. Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (S.D.); (V.G.)
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore;
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
| |
Collapse
|
31
|
Cytoskeletal dynamics regulates stromal invasion behavior of distinct liver cancer subtypes. Commun Biol 2022; 5:202. [PMID: 35241781 PMCID: PMC8894393 DOI: 10.1038/s42003-022-03121-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/08/2022] [Indexed: 02/07/2023] Open
Abstract
Drug treatment against liver cancer has limited efficacy due to heterogeneous response among liver cancer subtypes. In addition, the functional biophysical phenotypes which arise from this heterogeneity and contribute to aggressive invasive behavior remain poorly understood. This study interrogated how heterogeneity in liver cancer subtypes contributes to differences in invasive phenotypes and drug response. Utilizing histological analysis, quantitative 2D invasion metrics, reconstituted 3D hydrogels, and bioinformatics, our study linked cytoskeletal dynamics to differential invasion profiles and drug resistance in liver cancer subtypes. We investigated cytoskeletal regulation in 2D and 3D culture environments using two liver cancer cell lines, SNU-475 and HepG2, chosen for their distinct cytoskeletal features and invasion profiles. For SNU-475 cells, a model for aggressive liver cancer, many cytoskeletal inhibitors abrogated 2D migration but only some suppressed 3D migration. For HepG2 cells, cytoskeletal inhibition did not significantly affect 3D migration but did affect proliferative capabilities and spheroid core growth. This study highlights cytoskeleton driven phenotypic variation, their consequences and coexistence within the same tumor, as well as efficacy of targeting biophysical phenotypes that may be masked in traditional screens against tumor growth. Treatment for liver cancer is complicated by its various subtypes, which show different responses to anticancer drugs. This study demonstrates the effectiveness of targeting biophysical phenotypes related to cytoskeleton properties that are usually masked in traditional drug screens.
Collapse
|
32
|
Hirway SU, Weinberg SH. A review of computational modeling, machine learning and image analysis in cancer metastasis dynamics. COMPUTATIONAL AND SYSTEMS ONCOLOGY 2022. [DOI: 10.1002/cso2.1044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Shreyas U. Hirway
- Department of Biomedical Engineering The Ohio State University Columbus Ohio USA
| | - Seth H. Weinberg
- Department of Biomedical Engineering The Ohio State University Columbus Ohio USA
| |
Collapse
|
33
|
Bouyahya A, El Allam A, Zeouk I, Taha D, Zengin G, Goh BH, Catauro M, Montesano D, El Omari N. Pharmacological Effects of Grifolin: Focusing on Anticancer Mechanisms. Molecules 2022; 27:284. [PMID: 35011516 PMCID: PMC8746472 DOI: 10.3390/molecules27010284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 02/05/2023] Open
Abstract
Grifolin is a volatile compound contained in essential oils of several medicinal plants. Several studies show that this substance has been the subject of numerous pharmacological investigations, which have yielded interesting results. Grifolin demonstrated beneficial effects for health via its multiple pharmacological activities. It has anti-microbial properties against bacteria, fungi, and parasites. In addition, grifolin exhibited remarkable anti-cancer effects on different human cancer cells. The anticancer action of this molecule is related to its ability to act at cellular and molecular levels on different checkpoints controlling the signaling pathways of human cancer cell lines. Grifolin can induce apoptosis, cell cycle arrest, autophagy, and senescence in these cells. Despite its major pharmacological properties, grifolin has only been investigated in vitro and in vivo. Therefore, further investigations concerning pharmacodynamic and pharmacokinetic tests are required for any possible pharmaceutical application of this substance. Moreover, toxicological tests and other investigations involving humans as a study model are required to validate the safety and clinical applications of grifolin.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat 10106, Morocco; (A.B.); (A.E.A.)
| | - Aicha El Allam
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat 10106, Morocco; (A.B.); (A.E.A.)
| | - Ikrame Zeouk
- Pharmaceutical Industry Laboratory, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco;
| | - Douae Taha
- Laboratoire de Spectroscopie, Modélisation Moléculaire, Matériaux, Nanomatériaux, Eau et Environnement, CERNE2D, Faculté des Sciences, Mohammed V University, Rabat 10106, Morocco;
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey;
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia;
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Michelina Catauro
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma 29, 81031 Aversa, Italy
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10100, Morocco;
| |
Collapse
|
34
|
Hu H, Zhang S, Xiong S, Hu B, He Y, Gu Y. ACTR3 promotes cell migration and invasion by inducing epithelial mesenchymal transition in pancreatic ductal adenocarcinoma. J Gastrointest Oncol 2021; 12:2325-2333. [PMID: 34790395 DOI: 10.21037/jgo-21-609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Background Recurrence and metastasis are the major causes of pancreatic ductal adenocarcinoma (PDAC) mortality after treatment. The underlying molecular mechanism is poorly understood. Actin-related protein 3 (ACTR3) is an important component of the actin-related protein 2/3 complex, which is involved in the regulation of cell motility and epithelial mesenchymal transition (EMT) process. Previously published studies have indicated that ACTR3 expression is upregulated in several types of cancers, and promotes tumor development, including gastric cancer and hepatocellular carcinoma. However, to date, the expression levels and the role of ACTR3 in PDAC are not well understood. Methods In the present study, the expression levels of ACTR3 in PDAC tissue and the relationship of ACTR3 expression with clinical prognosis were analyzed by mRNA microarray and bioinformatics. The biological functions and underlying mechanism of ACTR3 in PDAC were examined by a series of assays, including Cell Counting Kit-8 (CCK-8), transwell assay, and Western blotting. Results We found that the expression of ACTR3 was significantly increased in PDAC tissues and cell lines. A higher expression of ACTR3 was predictive of poor outcome for patients with PDAC. In vitro, the knockdown of ACTR3 expression significantly inhibited the invasive and migratory capacity of PDAC cells, and altered the distribution of F-actin and the expression of EMT markers. Conclusions The findings of our study indicated that ACTR3 promotes cell migration and invasion by inducing EMT in PDAC, which may be a potential therapeutic target and prognostic indicator for PDAC patients.
Collapse
Affiliation(s)
- Hao Hu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China.,School of Medicine, Jiangnan University, Wuxi, China.,Department of Hepatobiliary and Pancreatic Surgery, The Third Hospital Affiliated to Nantong University, Wuxi, China.,School of Medicine, Nantong University, Nantong, China.,Wuxi Institute of Hepatobiliary Surgery, Wuxi, China
| | - Shuo Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China.,School of Medicine, Jiangnan University, Wuxi, China
| | - Shuming Xiong
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China.,School of Medicine, Jiangnan University, Wuxi, China
| | - Benshun Hu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China.,Wuxi Institute of Hepatobiliary Surgery, Wuxi, China
| | - Youzhao He
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China.,Wuxi Institute of Hepatobiliary Surgery, Wuxi, China
| | - Yuanlong Gu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China.,School of Medicine, Jiangnan University, Wuxi, China.,Wuxi Institute of Hepatobiliary Surgery, Wuxi, China
| |
Collapse
|
35
|
Diori Karidio I, Sanlier SH. Reviewing cancer's biology: an eclectic approach. J Egypt Natl Canc Inst 2021; 33:32. [PMID: 34719756 DOI: 10.1186/s43046-021-00088-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 09/11/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cancer refers to a group of some of the worldwide most diagnosed and deadliest pathophysiological conditions that conquered researchers' attention for decades and yet begs for more questions for a full comprehension of its complex cellular and molecular pathology. MAIN BODY The disease conditions are commonly characterized by unrestricted cell proliferation and dysfunctional replicative senescence pathways. In fact, the cell cycle operates under the rigorous control of complex signaling pathways involving cyclins and cyclin-dependent kinases assumed to be specific to each phase of the cycle. At each of these checkpoints, the cell is checked essentially for its DNA integrity. Genetic defects observed in these molecules (i.e., cyclins, cyclin-dependent kinases) are common features of cancer cells. Nevertheless, each cancer is different concerning its molecular and cellular etiology. These could range from the genetic defects mechanisms and/or the environmental conditions favoring epigenetically harbored homeostasis driving tumorigenesis alongside with the intratumoral heterogeneity with respect to the model that the tumor follows. CONCLUSIONS This review is not meant to be an exhaustive interpretation of carcinogenesis but to summarize some basic features of the molecular etiology of cancer and the intratumoral heterogeneity models that eventually bolster anticancer drug resistance for a more efficient design of drug targeting the pitfalls of the models.
Collapse
Affiliation(s)
- Ibrahim Diori Karidio
- Department of Biochemistry, Faculty of Science, E Block, Ege University, Erzene Mahallesi, Bornova, 35040, Izmir, Turkey.
| | - Senay Hamarat Sanlier
- Department of Biochemistry, Faculty of Science, E Block, Ege University, Erzene Mahallesi, Bornova, 35040, Izmir, Turkey.,ARGEFAR, Faculty of Medicine, Ege University, Bornova, 35040, Izmir, Turkey
| |
Collapse
|
36
|
Liu J, Kang L, Ratnayake I, Ahrenkiel P, Smith S, Wang C. Targeting cancer cell adhesion molecule, CD146, with low-dose gold nanorods and mild hyperthermia disrupts actin cytoskeleton and cancer cell migration. J Colloid Interface Sci 2021; 601:556-569. [PMID: 34090032 PMCID: PMC8349892 DOI: 10.1016/j.jcis.2021.05.144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/10/2021] [Accepted: 05/23/2021] [Indexed: 12/16/2022]
Abstract
Cluster of differentiation 146 (CD146), a cancer cell adhesion molecule, is over-expressed on the surfaces of melanoma, breast, ovarian, and prostate cancer cells, and its high expression indicates the migration tendency of these cancer cells and poor patient prognosis. Here, we hypothesize that targeting the CD146 with low-dose gold nanorods combined with mild hyperthermia can stop the migration of these cancer cells. Two metastatic cancer cells including a melanoma and a breast cancer cell line are selected as the model systems. Cell migration assays show that the migration of both cell lines can be completely stopped by the treatment. Atomic force microscopy and super resolution fluorescence microscopy reveal the alterations of actin cytoskeleton and cell morphology correspond to the inhibited cell migration. Further mechanistic analysis indicates the treatment disrupts the actin cytoskeleton by a synergistic mechanism including depleting membrane CD146 and interfering ezrin-radixin-moesin phosphorylation. As a result, we believe targeting CD146 with low-dose gold nanorods and mild hyperthermia could be a versatile, effective, and safe approach for stopping cancer metastasis. More broadly, the concept of targeting cancer cell surface markers that connect the underlying actin cytoskeleton, offers enormous potential in treating cancer metastasis, which accounts for more than 90% of cancer-associated mortality.
Collapse
Affiliation(s)
- Jinyuan Liu
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, USA; BioSystems Networks & Translational Research (BioSNTR), 501 East Saint Joseph Street, Rapid City, SD 57701, USA
| | - Lin Kang
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, USA; BioSystems Networks & Translational Research (BioSNTR), 501 East Saint Joseph Street, Rapid City, SD 57701, USA
| | - Ishara Ratnayake
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, USA; BioSystems Networks & Translational Research (BioSNTR), 501 East Saint Joseph Street, Rapid City, SD 57701, USA
| | - Phil Ahrenkiel
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, USA; BioSystems Networks & Translational Research (BioSNTR), 501 East Saint Joseph Street, Rapid City, SD 57701, USA
| | - Steve Smith
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, USA; BioSystems Networks & Translational Research (BioSNTR), 501 East Saint Joseph Street, Rapid City, SD 57701, USA
| | - Congzhou Wang
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, USA; BioSystems Networks & Translational Research (BioSNTR), 501 East Saint Joseph Street, Rapid City, SD 57701, USA.
| |
Collapse
|
37
|
Ye L, Jin W. Identification of lncRNA-associated competing endogenous RNA networks for occurrence and prognosis of gastric carcinoma. J Clin Lab Anal 2021; 35:e24028. [PMID: 34704289 PMCID: PMC8649378 DOI: 10.1002/jcla.24028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
Background Gastric cancer (GC) is one of the common digestive malignancies worldwide and causes a severe public health issue. So far, the underlying mechanisms of GC are largely unclear. Thus, we aim to identify the long non‐coding RNA (lncRNA)‐associated competing endogenous RNA (ceRNA) for GC. Methods TCGA database was downloaded and used for the identification of differentially expressed (DE) lncRNAs, miRNAs, and mRNAs, respectively. Then, the ceRNA network was constructed via multiple online datasets and approaches. In addition, various in vitro assays were carried out to validate the effect of certain hub lncRNAs. Results We constructed a ceRNA network, including 76 lncRNAs, 18 miRNAs, and 159 mRNAs, which involved multiple critical pathways. Next, univariate and multivariate analysis demonstrated 11 lncRNAs, including LINC02731, MIR99AHG, INHBA‐AS1, CCDC144NL‐AS1, VLDLR‐AS1, LIFR‐AS1, A2M‐AS1, LINC01537, and LINC00702, and were associated with OS, and nine of those lncRNAs were considered as hub lncRNAs involved in the sub‐ceRNA network. The in vitro assay indicated two lncRNAs, INHBA‐AS1 and CCDC144NL‐AS1, which were positively related to the GC aggressive features, including proliferation, invasion, and migration. Conclusions We identified nine hub lncRNAs and the associated ceRNA network related to the prognosis of GC, and then validated two out of them as promising oncogenes in GC.
Collapse
Affiliation(s)
- Lianmin Ye
- Department of Intensive Care, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wumin Jin
- Department of Reproductive Medicine Centre, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
38
|
Hung WY, Lee WJ, Cheng GZ, Tsai CH, Yang YC, Lai TC, Chen JQ, Chung CL, Chang JH, Chien MH. Blocking MMP-12-modulated epithelial-mesenchymal transition by repurposing penfluridol restrains lung adenocarcinoma metastasis via uPA/uPAR/TGF-β/Akt pathway. Cell Oncol (Dordr) 2021; 44:1087-1103. [PMID: 34319576 DOI: 10.1007/s13402-021-00620-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/11/2021] [Indexed: 01/30/2023] Open
Abstract
PURPOSE Metastasis of lung adenocarcinoma (LADC) is a crucial factor determining patient survival. Repurposing of the antipsychotic agent penfluridol has been found to be effective in the inhibition of growth of various cancers. As yet, however, the anti-metastatic effect of penfluridol on LADC has rarely been investigated. Herein, we addressed the therapeutic potential of penfluridol on the invasion/metastasis of LADC cells harboring different epidermal growth factor receptor (EGFR) mutation statuses. METHODS MTS viability, transwell migration and invasion, and tumor endothelium adhesion assays were employed to determine cytotoxic and anti-metastatic effects of penfluridol on LADC cells. Protease array, Western blot, immunohistochemistry (IHC), immunofluorescence (IF) staining, and expression knockdown by shRNA or exogenous overexpression by DNA plasmid transfection were performed to explore the underlying mechanisms, both in vitro and in vivo. RESULTS We found that nontoxic concentrations of penfluridol reduced the migration, invasion and adhesion of LADC cells. Protease array screening identified matrix metalloproteinase-12 (MMP-12) as a potential target of penfluridol to modulate the motility and adhesion of LADC cells. In addition, we found that MMP-12 exhibited the most significantly adverse prognostic effect in LADC among 39 cancer types. Mechanistic investigations revealed that penfluridol inhibited the urokinase plasminogen activator (uPA)/uPA receptor/transforming growth factor-β/Akt axis to downregulate MMP-12 expression and, subsequently, reverse MMP-12-induced epithelial-mesenchymal transition (EMT). Subsequent analysis of clinical LADC samples revealed a positive correlation between MMP12 and mesenchymal-related gene expression levels. A lower survival rate was found in LADC patients with a SNAl1high/MMP12high profile compared to those with a SNAl1low/MMP12low profile. CONCLUSIONS Our results indicate that MMP-12 may serve as a useful biomarker for predicting LADC progression and as a promising penfluridol target for treating metastatic LADC.
Collapse
Affiliation(s)
- Wen-Yueh Hung
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, 11031, Taipei, Taiwan
| | - Wei-Jiunn Lee
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Guo-Zhou Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, 11031, Taipei, Taiwan
| | - Ching-Han Tsai
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, 11031, Taipei, Taiwan
| | - Yi-Chieh Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, 11031, Taipei, Taiwan
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Tsung-Ching Lai
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Hsing Long Road, Section 3, Taipei, 11696, Taiwan
| | - Ji-Qing Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, 11031, Taipei, Taiwan
- Department of Cancer Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Chi-Li Chung
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Jer-Hwa Chang
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Hsing Long Road, Section 3, Taipei, 11696, Taiwan.
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, 11031, Taipei, Taiwan.
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
39
|
Concomitant and decoupled effects of cigarette smoke and SCAL1 upregulation on oncogenic phenotypes and ROS detoxification in lung adenocarcinoma cells. Sci Rep 2021; 11:18345. [PMID: 34526564 PMCID: PMC8443756 DOI: 10.1038/s41598-021-97869-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is the leading cause of cancer deaths worldwide, with smoking as its primary predisposing factor. Although carcinogens in cigarettes are known to cause oncogenic DNA alterations, analyses of patient cohorts revealed heterogeneous genetic aberrations with no clear driver mutations. The contribution of noncoding RNAs (ncRNAs) in the pathogenesis of lung cancer has since been demonstrated. Their dysregulation has been linked to cancer initiation and progression. A novel long noncoding RNA (lncRNA) called smoke and cancer-associated lncRNA 1 (SCAL1) was recently found upregulated in smoke-exposed adenocarcinomic alveolar epithelial cells. The present study characterized the phenotypic consequences of SCAL1 overexpression and knockdown using A549 cells as model system, with or without prior exposure to cigarette smoke extract (CSE). Increase in SCAL1 levels either by CSE treatment or SCAL1 overexpression led to increased cell migration, extensive cytoskeletal remodeling, and resistance to apoptosis. Further, SCAL1 levels were negatively correlated with intracellular levels of reactive oxygen species (ROS). In contrast, SCAL1 knockdown showed converse results for these assays. These results confirm the oncogenic function of SCAL1 and its role as a CSE-activated lncRNA that mediates ROS detoxification in A549 cells, thereby allowing them to develop resistance to and survive smoke-induced toxicity.
Collapse
|
40
|
Mizutani Y, Omagari D, Hayatsu M, Nameta M, Komiyama K, Mikami Y, Ushiki T. SLPI facilitates cell migration by regulating lamellipodia/ruffles and desmosomes, in which Galectin4 plays an important role. Cell Adh Migr 2021; 14:195-203. [PMID: 33016205 PMCID: PMC7553583 DOI: 10.1080/19336918.2020.1829264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
To elucidate the underlying mechanism of secretory leukocyte protease inhibitor (SLPI)-induced cell migration, we compared SLPI-deleted human gingival carcinoma Ca9-22 (ΔSLPI) cells and original (wild-type: wt) Ca9-22 cells using several microscopic imaging methods and gene expression analysis. Our results indicated reduced migration of ΔSLPI cells compared to wtCa9-22 cells. The lamellipodia/dorsal ruffles were smaller and moved slower in ΔSLPI cells compared to wtCa9-22 cells. Furthermore, well-developed intermediate filament bundles were observed at the desmosome junction of ΔSLPI cells. In addition, Galectin4 was strongly expressed in ΔSLPI cells, and its forced expression suppressed migration of wtCa9-22 cells. Taken together, SLPI facilitates cell migration by regulating lamellipodia/ruffles and desmosomes, in which Galectin4 plays an important role.
Collapse
Affiliation(s)
- Yusuke Mizutani
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences , Niigata-shi, Japan.,Office of Institutional Research, Hokkaido University , Kita-ku, Japan
| | - Daisuke Omagari
- Department of Pathology, Nihon University School of Dentistry , Tokyo, Japan
| | - Manabu Hayatsu
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences , Niigata-shi, Japan
| | - Masaaki Nameta
- Electron Microscope Core Facility, Niigata University , Niigata-shi, Japan
| | - Kazuo Komiyama
- Department of Pathology, Nihon University School of Dentistry , Tokyo, Japan
| | - Yoshikazu Mikami
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences , Niigata-shi, Japan
| | - Tatsuo Ushiki
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences , Niigata-shi, Japan
| |
Collapse
|
41
|
Li JP, Zeng SH, Zhang YH, Liu YJ. Bioinformatics-based analysis of the association between the A1-chimaerin ( CHN1) gene and gastric cancer. Bioengineered 2021; 12:2874-2889. [PMID: 34152250 PMCID: PMC8806512 DOI: 10.1080/21655979.2021.1940621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer (GC) is one of the most common causes of cancer-related deaths worldwide and the identification of additional therapeutic targets and biomarkers has become vital. The A1-chimaerin (CHN1) gene encodes a ras-related protein that can be activated or inactivated by binding to GTP or GDP. The present study aimed to assess the expression of CHN1 in GC tissue and cells, to explore its relationship with GC progression, and to discover the potential mechanisms underlying these associations. The ONCOMINE database and The Cancer Genome Atlas (TCGA) were used to determine the transcriptional levels of CHN1 in GC. Western blot and immunohistochemistry were used for detecting protein expression. Correlations between CHN1 levels and the clinical outcomes of GC patients were examined using Kaplan–Meier and Cox regression analyses. Moreover, the CIBERSORT algorithm was used to estimate immune cell infiltration. In GC patients, CHN1 transcription and CHN1 protein expression were upregulated, and a high expression of CHN1 was remarkably linked to poor survival in GC patients. CHN1 expression was associated with immune infiltrates and this gene showed potential involvement in multiple cancer-related pathways. Furthermore, the expression of CHN1 was correlated with the immunotherapeutic response. Finally, our results indicated that the pro-carcinogenic role of CHN1 may involve DNA methylation. To our knowledge, this is the first report characterizing CHN1 expression in GC. Our results show that high CHN1 levels could be used as a clinical biomarker for poor prognosis and that CHN1 inhibitors may have potential as anti-cancer drugs.
Collapse
Affiliation(s)
- Jie-Pin Li
- Department of Oncology, Zhangjiagang TCM Hospital Affiliated to Nanjing, University of Chinese Medicine, Zhangjiagang, Jiangsu, China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shu-Hong Zeng
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yong-Hua Zhang
- Department of Oncology, Zhangjiagang TCM Hospital Affiliated to Nanjing, University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Yuan-Jie Liu
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
42
|
Liu M, Xu Z, Zhang C, Yang C, Feng J, Lu Y, Zhang W, Chen W, Xu X, Sun X, Yang M, Liu W, Zhou T, Yang Y. NudC L279P Mutation Destabilizes Filamin A by Inhibiting the Hsp90 Chaperoning Pathway and Suppresses Cell Migration. Front Cell Dev Biol 2021; 9:671233. [PMID: 34262899 PMCID: PMC8273881 DOI: 10.3389/fcell.2021.671233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/31/2021] [Indexed: 11/29/2022] Open
Abstract
Filamin A, the first discovered non-muscle actin filament cross-linking protein, plays a crucial role in regulating cell migration that participates in diverse cellular and developmental processes. However, the regulatory mechanism of filamin A stability remains unclear. Here, we find that nuclear distribution gene C (NudC), a cochaperone of heat shock protein 90 (Hsp90), is required to stabilize filamin A in mammalian cells. Immunoprecipitation-mass spectrometry and western blotting analyses reveal that NudC interacts with filamin A. Overexpression of human NudC-L279P (an evolutionarily conserved mutation in NudC that impairs its chaperone activity) not only decreases the protein level of filamin A but also results in actin disorganization and the suppression of cell migration. Ectopic expression of filamin A is able to reverse these defects induced by the overexpression of NudC-L279P. Furthermore, Hsp90 forms a complex with filamin A. The inhibition of Hsp90 ATPase activity by either geldanamycin or radicicol decreases the protein stability of filamin A. In addition, ectopic expression of Hsp90 efficiently restores NudC-L279P overexpression-induced protein stability and functional defects of filamin A. Taken together, these data suggest NudC L279P mutation destabilizes filamin A by inhibiting the Hsp90 chaperoning pathway and suppresses cell migration.
Collapse
Affiliation(s)
- Min Liu
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhangqi Xu
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Zhang
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunxia Yang
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaxing Feng
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqing Lu
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wen Zhang
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenwen Chen
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyang Xu
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxia Sun
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingyang Yang
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Liu
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianhua Zhou
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Cancer Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Yuehong Yang
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
43
|
Le Maout E, Lo Vecchio S, Kumar Korla P, Jinn-Chyuan Sheu J, Riveline D. Ratchetaxis in Channels: Entry Point and Local Asymmetry Set Cell Directions in Confinement. Biophys J 2021; 119:1301-1308. [PMID: 33027610 DOI: 10.1016/j.bpj.2020.08.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 01/02/2023] Open
Abstract
Cell motility is essential in a variety of biological phenomena ranging from early development to organ homeostasis and diseases. This phenomenon has mainly been studied and characterized on flat surfaces in vitro, whereas such conditions are rarely observed in vivo. Recently, cell motion in three-dimensional microfabricated channels was reported to be possible, and it was shown that confined cells push on walls. However, rules setting cell directions in this context have not yet been characterized. Here, we show by using assays that ratchetaxis operates in three-dimensional ratchets in fibroblasts and epithelial cancerous cells. Open ratchets rectify cell motion, whereas closed ratchets impose direct cell migration along channels set by the cell orientation at the channel entry point. We also show that nuclei are pressed in constriction zones through mechanisms involving dynamic asymmetries of focal contacts, stress fibers, and intermediate filaments. Interestingly, cells do not pass these constricting zones when they contain a defective keratin fusion protein implicated in squamous cancer. By combining ratchetaxis with chemical gradients, we finally report that cells are sensitive to local asymmetries in confinement and that topological and chemical cues may be encoded differently by cells. Overall, our ratchet channels could mimic small blood vessels in which cells such as circulating tumor cells are confined; cells can probe local asymmetries that determine their entry into tissues and their subsequent direction. Our results shed light on invasion mechanisms in cancer.
Collapse
Affiliation(s)
- Emilie Le Maout
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Simon Lo Vecchio
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Praveen Kumar Korla
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Jim Jinn-Chyuan Sheu
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Daniel Riveline
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France; Université de Strasbourg, Illkirch, France.
| |
Collapse
|
44
|
Aikemu B, Shao Y, Yang G, Ma J, Zhang S, Yang X, Hong H, Yesseyeva G, Huang L, Jia H, Wang C, Zang L, Sun J, Zheng M. NDRG1 regulates Filopodia-induced Colorectal Cancer invasiveness via modulating CDC42 activity. Int J Biol Sci 2021; 17:1716-1730. [PMID: 33994856 PMCID: PMC8120473 DOI: 10.7150/ijbs.56694] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
N-myc downstream regulated gene-1 (NDRG1) has been identified as a putative metastasis suppressor gene and proved to be a key player in cancer spreading and proliferation in our previous work. However, the effects of NDRG1 on tumor invasion and the mechanisms behind it are rarely understood. Here we provided in silico evidence that NDRG1 plays a crucial role in actin reorganization in colorectal cancer (CRC). Through in vitro experiments, we next observed filopodia formation was altered in NDRG1-modified cell lines, while cell division cycle-42 (CDC42) displayed excessive activation in NDRG1-silenced cells. Mechanistically, NDRG1 loss disrupts the binding between RhoGDIα and CDC42 and triggers the activation of CDC42 and the downstream cascades PAK1/Cofilin, thereby promotes the formation of filopodia and invasiveness of CRC. The knockdown of NDRG1 led to enhanced dissemination of CRC cells in vivo and correlates with active CDC42 expression. Using clinical sample analysis, we found an elevated level of active CDC42 in patients with advanced T stage, and it was negatively related to NDRG1 expression. In sum, these results uncover a mechanism utilized by NDRG1 to regulate CDC42 activity in coordinating cytoskeleton reorganization, which was crucial in cancer invasion.
Collapse
Affiliation(s)
- Batuer Aikemu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanfei Shao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjun Ma
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sen Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hiju Hong
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Galiya Yesseyeva
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Huang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongtao Jia
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenxing Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Zang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
45
|
Buachan P, Namsa-Aid M, Sung HK, Peng C, Sweeney G, Tanechpongtamb W. Inhibitory effects of terrein on lung cancer cell metastasis and angiogenesis. Oncol Rep 2021; 45:94. [PMID: 33846818 PMCID: PMC8047749 DOI: 10.3892/or.2021.8045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/01/2021] [Indexed: 01/08/2023] Open
Abstract
Cancer metastasis is the leading cause of mortality in cancer patients. Over 70% of lung cancer patients are diagnosed at advanced or metastatic stages, and this results in an increased incidence of mortality. Terrein is a secondary bioactive fungal metabolite isolated from Aspergillus terreus. Numerous studies have demonstrated that terrein has anticancer properties, but in the present study, the cellular mechanisms underlying the inhibition of lung cancer cell metastasis by terrein was investigated for the first time. Using MTT assays, the cytotoxic effects of terrein were first examined in human lung cancer cells (A549 cells) and then compared with its cytotoxic effects in three noncancer control cell lines (Vero kidney, L6 skeletal muscle and H9C2 cardiomyoblast cells). The results indicated that terrein significantly reduced the viability of all these cells but exhibited a different level of toxicity in each cell type; these results revealed a specific concentration range in which the effect of terrein was specific to A549 cells. This significant cytotoxic effect of terrein in A549 cells was verified using LDH assays. It was then demonstrated that terrein attenuated the proliferation of A549 cells using IncuCyte image analysis. Regarding its antimetastatic effects, terrein significantly inhibited A549 cell adhesion, migration and invasion. In addition, terrein suppressed the angiogenic processes of A549 cells, including vascular endothelial growth factor (VEGF) secretion, capillary-like tube formation and VEGF/VEGFR2 interaction. These phenomena were accompanied by reduced protein levels of integrins, FAK, and their downstream mediators (e.g., PI3K, AKT, mTORC1 and P70S6K). All these data indicated that terrein was able to inhibit all the major metastatic processes in human lung cancer cells, which is crucial for cancer treatment.
Collapse
Affiliation(s)
- Paiwan Buachan
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Maneekarn Namsa-Aid
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Hye Kyoung Sung
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Chun Peng
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Wanlaya Tanechpongtamb
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| |
Collapse
|
46
|
Mutation-specific non-canonical pathway of PTEN as a distinct therapeutic target for glioblastoma. Cell Death Dis 2021; 12:374. [PMID: 33828082 PMCID: PMC8027895 DOI: 10.1038/s41419-021-03657-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 01/02/2023]
Abstract
PTEN is one of the most frequently altered tumor suppressor genes in malignant tumors. The dominant-negative effect of PTEN alteration suggests that the aberrant function of PTEN mutation might be more disastrous than deletion, the most frequent genomic event in glioblastoma (GBM). This study aimed to understand the functional properties of various PTEN missense mutations and to investigate their clinical relevance. The genomic landscape of PTEN alteration was analyzed using the Samsung Medical Center GBM cohort and validated via The Cancer Genome Atlas dataset. Several hotspot mutations were identified, and their subcellular distributions and phenotypes were evaluated. We established a library of cancer cell lines that overexpress these mutant proteins using the U87MG and patient-derived cell models lacking functional PTEN. PTEN mutations were categorized into two major subsets: missense mutations in the phosphatase domain and truncal mutations in the C2 domain. We determined the subcellular compartmentalization of four mutant proteins (H93Y, C124S, R130Q, and R173C) from the former group and found that they had distinct localizations; those associated with invasive phenotypes ('edge mutations') localized to the cell periphery, while the R173C mutant localized to the nucleus. Invasive phenotypes derived from edge substitutions were unaffected by an anti-PI3K/Akt agent but were disrupted by microtubule inhibitors. PTEN mutations exhibit distinct functional properties regarding their subcellular localization. Further, some missense mutations ('edge mutations') in the phosphatase domain caused enhanced invasiveness associated with dysfunctional cytoskeletal assembly, thus suggesting it to be a potent therapeutic target.
Collapse
|
47
|
Zhang J, Yan L, Wei P, Zhou R, Hua C, Xiao M, Tu Y, Gu Z, Wei T. PEG-GO@XN nanocomposite suppresses breast cancer metastasis via inhibition of mitochondrial oxidative phosphorylation and blockade of epithelial-to-mesenchymal transition. Eur J Pharmacol 2021; 895:173866. [PMID: 33454376 DOI: 10.1016/j.ejphar.2021.173866] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 01/06/2023]
Abstract
Metastatic breast cancer is a significant contributor to mortality among women, but its complex regulation represents a barrier to precision targeting. In the present study, a graphene-based nanocomposite which probes and selectively inhibits cancer cell motility is described. By controllable coupling of prenylated chalcone xanthohumol, an efficient inhibitor of mitochondrial electron transport chain complex I, with PEGylated graphene oxide nanosheet, a PEG-GO@XN nanocomposite with good stability and biocompatibility is synthesized. PEG-GO@XN is capable of inhibiting mitochondrial oxidative phosphorylation selectively in MDA-MB-231 and MDA-MB-436 metastatic breast cancer cells. PEG-GO@XN reduces the production of ATP, impairs the formation of F-actin cytoskeleton in the lamellipodia, and blocks the migration and invasion of breast cancer cells in vitro, without interfering the proliferation and metabolism of non-cancerous cells. More importantly, PEG-GO@XN suppresses the metastasis of MDA-MB-231 cells to lung in nude mice. PEG-GO@XN abolishes the TGF-β1-induced down-regulation of E-cadherin and up-regulation of N-cadherin, vimentin, Snail and Twist, thus causes the maintenance of "epithelial-like" rather than the "mesenchymal-like" features, and decreases the motility potential of breast cancer cells. Taken together, this research unveils the enormous potential of PEG-GO@XN to suppress metastatic breast cancer by selective targeting oxidative phosphorylation and epithelial-mesenchymal transition of cancer cells and thereby providing insights on metastatic cancer treatment.
Collapse
Affiliation(s)
- Jialing Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Liang Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Peng Wei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| | - Ruyi Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Chaoju Hua
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| | - Min Xiao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Yaping Tu
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE68178, USA
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Taotao Wei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
48
|
Dubey T, Chinnathambi S. Photodynamic sensitizers modulate cytoskeleton structural dynamics in neuronal cells. Cytoskeleton (Hoboken) 2021; 78:232-248. [DOI: 10.1002/cm.21655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 01/10/2023]
Affiliation(s)
- Tushar Dubey
- Neurobiology Group, Division of Biochemical Sciences CSIR‐National Chemical Laboratory Pune India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences CSIR‐National Chemical Laboratory Pune India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
49
|
Lorico A, Lorico-Rappa M, Karbanová J, Corbeil D, Pizzorno G. CD9, a tetraspanin target for cancer therapy? Exp Biol Med (Maywood) 2021; 246:1121-1138. [PMID: 33601913 DOI: 10.1177/1535370220981855] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the present minireview, we intend to provide a brief history of the field of CD9 involvement in oncogenesis and in the metastatic process of cancer, considering its potential value as a tumor-associated antigenic target. Over the years, CD9 has been identified as a favorable prognostic marker or predictor of metastatic potential depending on the cancer type. To understand its implications in cancer beside its use as an antigenic biomarker, it is essential to know its physiological functions, including its molecular partners in a given cell system. Moreover, the discovery that CD9 is one of the most specific and broadly expressed markers of extracellular membrane vesicles, nanometer-sized entities that are released into extracellular space and various physiological body fluids and play a role in intercellular communication under physiological and pathological conditions, notably the establishment of cancer metastases, has added a new dimension to our knowledge of CD9 function in cancer. Here, we will discuss these issues as well as the possible cancer therapeutic implications of CD9, their limitations, and pitfalls.
Collapse
Affiliation(s)
- Aurelio Lorico
- Touro University College of Medicine, Henderson, NV 89014, USA.,Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | | | - Jana Karbanová
- Biotechnology Center and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | - Denis Corbeil
- Biotechnology Center and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | - Giuseppe Pizzorno
- University of Tennessee Health Science Center, Memphis, TN 38163, USA.,Erlanger Health System, Chattanooga, TN 37403 , USA
| |
Collapse
|
50
|
Tavianatou AG, Piperigkou Z, Koutsakis C, Barbera C, Beninatto R, Franchi M, Karamanos NK. The action of hyaluronan in functional properties, morphology and expression of matrix effectors in mammary cancer cells depends on its molecular size. FEBS J 2021; 288:4291-4310. [PMID: 33512780 DOI: 10.1111/febs.15734] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/24/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022]
Abstract
Breast cancer constitutes a heterogeneous disease. The expression profiles of estrogen receptors (ERs), as well as the expression patterns of extracellular matrix (ECM) macromolecules, determine its development and progression. Hyaluronan (HA) is an ECM molecule that regulates breast cancer cells' properties in a molecular size-dependent way. Previous studies have shown that 200-kDa HA fragments modulate the functional properties, morphology, and expression of several matrix mediators of the highly metastatic ERα- /ERβ+ MDA-MB-231 cells. In order to evaluate the effects of HA fragments (< 10, 30 and 200-kDa) in ERβ-suppressed breast cancer cells, the shERβ MDA-MB-231 cells were used. These cells are less aggressive when compared with MDA-MB-231 cells. To this end, the functional properties, the morphology, and the expression of the molecules associated with breast cancer cells metastatic potential were studied. Notably, both cell proliferation and invasion were significantly reduced after treatment with 200-kDa HA. Moreover, as assessed by scanning electron microscopy, 200-kDa HA affected cellular morphology, and as assessed by qPCR, upregulated the epithelial marker Ε-cadherin. The expression profiles of ECM mediators, such as HAS2, CD44, and MMP7, were also altered. On the other hand, cellular migration and the expression levels of syndecan-4 (SDC-4) were not significantly affected in contrast to our observations regarding MDA-MB-231 cells. These novel data demonstrate that the molecular size of the HA determines its effects on ERβ-suppressed breast cancer cells and that 200-kDa HA exhibits antiproliferative effects on these cells. A deeper understanding of this mechanism may contribute to the development of therapeutic strategies against breast cancer.
Collapse
Affiliation(s)
- Anastasia-Gerasimoula Tavianatou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Christos Koutsakis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | | | | | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Italy
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| |
Collapse
|