1
|
Masopustová M, Goga A, Soural M, Kopečná M, Šebela M. N-carboxyacyl and N-α-aminoacyl derivatives of aminoaldehydes as shared substrates of plant aldehyde dehydrogenases 10 and 7. Amino Acids 2024; 56:52. [PMID: 39207552 PMCID: PMC11362210 DOI: 10.1007/s00726-024-03415-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Aldehyde dehydrogenases (ALDHs) represent a superfamily of enzymes, which oxidize aldehydes to the corresponding acids. Certain families, namely ALDH9 and ALDH10, are best active with ω-aminoaldehydes arising from the metabolism of polyamines such as 3-aminopropionaldehyde and 4-aminobutyraldehyde. Plant ALDH10s show broad specificity and accept many different aldehydes (aliphatic, aromatic and heterocyclic) as substrates. This work involved the above-mentioned aminoaldehydes acylated with dicarboxylic acids, phenylalanine, and tyrosine. The resulting products were then examined with native ALDH10 from pea and recombinant ALDH7s from pea and maize. This investigation aimed to find a common efficient substrate for the two plant ALDH families. One of the best natural substrates of ALDH7s is aminoadipic semialdehyde carrying a carboxylic group opposite the aldehyde group. The substrate properties of the new compounds were demonstrated by mass spectrometry of the reaction mixtures, spectrophotometric assays and molecular docking. The N-carboxyacyl derivatives were good substrates of pea ALDH10 but were only weakly oxidized by the two plant ALDH7s. The N-phenylalanyl and N-tyrosyl derivatives of 3-aminopropionaldehyde were good substrates of pea and maize ALDH7. Particularly the former compound was converted very efficiently (based on the kcat/Km ratio), but it was only weakly oxidized by pea ALDH10. Although no compound exhibited the same level of substrate properties for both ALDH families, we show that these enzymes may possess more common substrates than expected.
Collapse
Affiliation(s)
- Michaela Masopustová
- Department of Biochemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Adam Goga
- Department of Biochemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Miroslav Soural
- Department of Organic Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Martina Kopečná
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Marek Šebela
- Department of Biochemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic.
| |
Collapse
|
2
|
Hasse D, Hülsemann J, Carlsson GH, Valegård K, Andersson I. Structure and mechanism of piperideine-6-carboxylate dehydrogenase from Streptomyces clavuligerus. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2019; 75:1107-1118. [PMID: 31793904 DOI: 10.1107/s2059798319014852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 11/04/2019] [Indexed: 11/11/2022]
Abstract
The core of β-lactam antibiotics originates from amino acids of primary metabolism in certain microorganisms. β-Lactam-producing bacteria, including Streptomyces clavuligerus, synthesize the precursor of the amino acid α-aminoadipic acid by the catabolism of lysine in two steps. The second reaction, the oxidation of piperideine-6-carboxylate (or its open-chain form α-aminoadipate semialdehyde) to α-aminoadipic acid, is catalysed by the NAD+-dependent enzyme piperideine-6-carboxylate dehydrogenase (P6CDH). This structural study, focused on ligand binding and catalysis, presents structures of P6CDH from S. clavuligerus in its apo form and in complexes with the cofactor NAD+, the product α-aminoadipic acid and a substrate analogue, picolinic acid. P6CDH adopts the common aldehyde dehydrogenase fold, consisting of NAD-binding, catalytic and oligomerization domains. The product binds in the oxyanion hole, close to the catalytic residue Cys299. Clear density is observed for the entire cofactor, including the nicotinamide riboside, in the binary complex. NAD+ binds in an extended conformation with its nicotinamide ring overlapping with the binding site of the carboxylate group of the product, implying that the conformation of the cofactor may change during catalysis. The binding site of the substrate analogue overlaps with that of the product, suggesting that the cyclic form of the substrate, piperideine-6-carboxylate, may be accepted as a substrate by the enzyme. The catalytic mechanism and the roles of individual residues are discussed in light of these results.
Collapse
Affiliation(s)
- Dirk Hasse
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-751 24 Uppsala, Sweden
| | - Janne Hülsemann
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-751 24 Uppsala, Sweden
| | - Gunilla H Carlsson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-751 24 Uppsala, Sweden
| | - Karin Valegård
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-751 24 Uppsala, Sweden
| | - Inger Andersson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
3
|
Korasick DA, Wyatt JW, Luo M, Laciak AR, Ruddraraju K, Gates KS, Henzl MT, Tanner JJ. Importance of the C-Terminus of Aldehyde Dehydrogenase 7A1 for Oligomerization and Catalytic Activity. Biochemistry 2017; 56:5910-5919. [PMID: 29045138 DOI: 10.1021/acs.biochem.7b00803] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Aldehyde dehydrogenase 7A1 (ALDH7A1) catalyzes the terminal step of lysine catabolism, the NAD+-dependent oxidation of α-aminoadipate semialdehyde to α-aminoadipate. Structures of ALDH7A1 reveal the C-terminus is a gate that opens and closes in response to the binding of α-aminoadipate. In the closed state, the C-terminus of one protomer stabilizes the active site of the neighboring protomer in the dimer-of-dimers tetramer. Specifically, Ala505 and Gln506 interact with the conserved aldehyde anchor loop structure in the closed state. The apparent involvement of these residues in catalysis is significant because they are replaced by Pro505 and Lys506 in a genetic deletion (c.1512delG) that causes pyridoxine-dependent epilepsy. Inspired by the c.1512delG defect, we generated variant proteins harboring either A505P, Q506K, or both mutations (A505P/Q506K). Additionally, a C-terminal truncation mutant lacking the last eight residues was prepared. The catalytic behaviors of the variants were examined in steady-state kinetic assays, and their quaternary structures were examined by analytical ultracentrifugation. The mutant enzymes exhibit a profound kinetic defect characterized by markedly elevated Michaelis constants for α-aminoadipate semialdehyde, suggesting that the mutated residues are important for substrate binding. Furthermore, analyses of the in-solution oligomeric states revealed that the mutant enzymes are defective in tetramer formation. Overall, these results suggest that the C-terminus of ALDH7A1 is crucial for the maintenance of both the oligomeric state and the catalytic activity.
Collapse
Affiliation(s)
- David A Korasick
- Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| | - Jesse W Wyatt
- Department of Chemistry, University of Missouri , Columbia, Missouri 65211, United States
| | - Min Luo
- Department of Chemistry, University of Missouri , Columbia, Missouri 65211, United States
| | - Adrian R Laciak
- Department of Chemistry, University of Missouri , Columbia, Missouri 65211, United States
| | - Kasi Ruddraraju
- Department of Chemistry, University of Missouri , Columbia, Missouri 65211, United States
| | - Kent S Gates
- Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States.,Department of Chemistry, University of Missouri , Columbia, Missouri 65211, United States
| | - Michael T Henzl
- Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| | - John J Tanner
- Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States.,Department of Chemistry, University of Missouri , Columbia, Missouri 65211, United States
| |
Collapse
|
4
|
Chen J, Wei B, Li G, Fan R, Zhong Y, Wang X, Zhang X. TraeALDH7B1-5A, encoding aldehyde dehydrogenase 7 in wheat, confers improved drought tolerance in Arabidopsis. PLANTA 2015; 242:137-51. [PMID: 25893867 DOI: 10.1007/s00425-015-2290-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 03/09/2015] [Indexed: 05/21/2023]
Abstract
TraeALDH7B1 - 5A , encoding aldehyde dehydrogenase 7 in wheat, conferred significant drought tolerance to Arabidopsis , supported by molecular biological and physiological experiments. Drought stress significantly affects wheat yields. Aldehyde dehydrogenase (ALDH) is a family of enzymes catalyzing the irreversible conversion of aldehydes into acids to decrease the damage caused by abiotic stresses. However, no wheat ALDH member has been functionally characterized to date. Here, we obtained a differentially expressed EST encoding ALDH7 from a cDNA-AFLP library of wheat that was treated with polyethylene glycol 6000. The three full-length homologs of TraeALDH7B1 were isolated by searching the NCBI database and by homolog-based cloning method. Using nulli-tetrasomic lines we located them on wheat chromosomes 5A, 5B and 5D, and named them as TraeALDH7B1-5A, -5B and -5D, respectively. Gene expression profiles indicated that the expressions of all three genes were induced in roots, leaves, culms and spikelets under drought and salt stresses. Enzymatic activity analysis showed that TraeALDH7B1-5A had acetaldehyde dehydrogenase activity. For further functional analysis, we developed transgenic Arabidopsis lines overexpressing TraeALDH7B1-5A driven by the cauliflower mosaic virus 35S promoter. Compared with wild type Arabidopsis, 35S::TraeALDH7B1-5A plants significantly enhanced the tolerance to drought stress, which was demonstrated by up-regulation of stress responsive genes and physiological evidence of primary root length, maintenance of water retention and contents of chlorophyll and MDA. The combined results indicated that TraeALDH7B1-5A is an important drought responsive gene for genetic transformation to improve drought tolerance in crops.
Collapse
Affiliation(s)
- Jiamin Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
5
|
Končitíková R, Vigouroux A, Kopečná M, Andree T, Bartoš J, Šebela M, Moréra S, Kopečný D. Role and structural characterization of plant aldehyde dehydrogenases from family 2 and family 7. Biochem J 2015; 468:109-23. [PMID: 25734422 DOI: 10.1042/bj20150009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aldehyde dehydrogenases (ALDHs) are responsible for oxidation of biogenic aldehyde intermediates as well as for cell detoxification of aldehydes generated during lipid peroxidation. So far, 13 ALDH families have been described in plants. In the present study, we provide a detailed biochemical characterization of plant ALDH2 and ALDH7 families by analysing maize and pea ALDH7 (ZmALDH7 and PsALDH7) and four maize cytosolic ALDH(cALDH)2 isoforms RF2C, RF2D, RF2E and RF2F [the first maize ALDH2 was discovered as a fertility restorer (RF2A)]. We report the crystal structures of ZmALDH7, RF2C and RF2F at high resolution. The ZmALDH7 structure shows that the three conserved residues Glu(120), Arg(300) and Thr(302) in the ALDH7 family are located in the substrate-binding site and are specific to this family. Our kinetic analysis demonstrates that α-aminoadipic semialdehyde, a lysine catabolism intermediate, is the preferred substrate for plant ALDH7. In contrast, aromatic aldehydes including benzaldehyde, anisaldehyde, cinnamaldehyde, coniferaldehyde and sinapaldehyde are the best substrates for cALDH2. In line with these results, the crystal structures of RF2C and RF2F reveal that their substrate-binding sites are similar and are formed by an aromatic cluster mainly composed of phenylalanine residues and several nonpolar residues. Gene expression studies indicate that the RF2C gene, which is strongly expressed in all organs, appears essential, suggesting that the crucial role of the enzyme would certainly be linked to the cell wall formation using aldehydes from phenylpropanoid pathway as substrates. Finally, plant ALDH7 may significantly contribute to osmoprotection because it oxidizes several aminoaldehydes leading to products known as osmolytes.
Collapse
Affiliation(s)
- Radka Končitíková
- *Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc CZ-783 71, Czech Republic
| | - Armelle Vigouroux
- ‡Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Martina Kopečná
- *Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc CZ-783 71, Czech Republic
| | - Tomáš Andree
- †Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc CZ-783 71, Czech Republic
| | - Jan Bartoš
- §Centre of Plant Structural and Functional Genomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, Olomouc CZ-78371, Czech Republic
| | - Marek Šebela
- *Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc CZ-783 71, Czech Republic
| | - Solange Moréra
- ‡Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - David Kopečný
- *Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc CZ-783 71, Czech Republic
| |
Collapse
|
6
|
Coulter-Mackie MB, Tiebout S, van Karnebeek C, Stockler S. Overexpression of recombinant human antiquitin in E. coli: partial enzyme activity in selected ALDH7A1 missense mutations associated with pyridoxine-dependent epilepsy. Mol Genet Metab 2014; 111:462-6. [PMID: 24613284 DOI: 10.1016/j.ymgme.2014.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 12/01/2022]
Abstract
Pyridoxine-dependent epilepsy (PDE) is an autosomal recessive disorder characterized by early onset seizures responsive to pyridoxine and caused by a defect in the α-aminoadipic semialdehyde dehydrogenase (antiquitin) gene (ALDH7A1). We selected four PDE-associated missense ALDH7A1 mutations, p.V367F, p.F410L, p.Q425R, and p.C450S, generated them in a recombinant human antiquitin cDNA with expression in E. coli at either 30°C or 37°C. One mutation, p.C450S, demonstrated substantial activity after expression at both temperatures, potentially contributing to milder biochemical and clinical phenotypes. The p.Q425R mutation yielded no activity at either temperature. The other two mutations yielded significant enzymatic activity at 30°C and markedly reduced activity at 37°C. For these latter three mutations, the markedly reduced or absent enzymatic activity resulting from expression at 37°C may be consistent with pathogenicity.
Collapse
Affiliation(s)
- Marion B Coulter-Mackie
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada; Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Sylvia Tiebout
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.
| | - Clara van Karnebeek
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada.
| | - Sylvia Stockler
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
7
|
Stiti N, Podgórska K, Bartels D. Aldehyde dehydrogenase enzyme ALDH3H1 from Arabidopsis thaliana: Identification of amino acid residues critical for cofactor specificity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:681-93. [DOI: 10.1016/j.bbapap.2014.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 11/27/2022]
|
8
|
Fan X, Wang G, English RD, Firoze Khan M. Proteomic identification of carbonylated proteins in the kidney of trichloroethene-exposed MRL+/+ mice. Toxicol Mech Methods 2013; 24:21-30. [PMID: 24024666 DOI: 10.3109/15376516.2013.843112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Trichloroethene (TCE), a common environmental and occupational pollutant, is associated with multiorgan toxicity. Kidney is one of major target organs affected as a result of TCE exposure. Our previous studies have shown that exposure to TCE causes increased protein oxidation (protein carbonylation) in the kidneys of autoimmune-prone MRL+/+ mice, and suggested a potential role of protein oxidation in TCE-mediated nephrotoxicity. To assess the impact of chronic TCE exposure on protein oxidation, particularly to identify the carbonylated proteins in kidneys, female MRL+/+ mice were treated with TCE at the dose of 2 mg/ml via drinking water for 36 weeks and kidney protein extracts were analyzed for protein carbonyls and carbonylated proteins identified using proteomic approaches (2D gel, Western blot, MALDI TOF/TOF MS/MS, etc.). TCE treatment led to significantly increased protein carbonyls in the kidney protein extracts (20 000 g pellet fraction). Interestingly, among 18 identified carbonylated proteins, 10 were found only in the kidneys of TCE-treated mice, whereas other 8 were present in the kidneys of both control and TCE-treated mice. The identified carbonylated proteins represent skeletal proteins, chaperones, stress proteins, enzymes, plasma protein and proteins involved in signaling pathways. The findings provide a map for further exploring the role of carbonylated proteins in TCE-mediated nephrotoxicity.
Collapse
|
9
|
Riveros-Rosas H, González-Segura L, Julián-Sánchez A, Díaz-Sánchez AG, Muñoz-Clares RA. Structural determinants of substrate specificity in aldehyde dehydrogenases. Chem Biol Interact 2012; 202:51-61. [PMID: 23219887 DOI: 10.1016/j.cbi.2012.11.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/24/2012] [Accepted: 11/27/2012] [Indexed: 12/28/2022]
Abstract
Within the aldehyde dehydrogenase (ALDH) superfamily, proteins belonging to the ALDH9, ALDH10, ALDH25, ALDH26 and ALDH27 families display activity as ω-aminoaldehyde dehydrogenases (AMADHs). These enzymes participate in polyamine, choline and arginine catabolism, as well as in synthesis of several osmoprotectants and carnitine. Active site aromatic and acidic residues are involved in binding the ω-aminoaldehydes in plant ALDH10 enzymes. In order to ascertain the degree of conservation of these residues among AMADHs and to evaluate their possible relevance in determining the aminoaldehyde specificity, we compared the known amino acid sequences of every ALDH family that have at least one member with known crystal structure, as well as the electrostatic potential surface of the aldehyde binding sites of these structures. Our analyses showed that four or three aromatic residues form a similar "aromatic box" in the active site of the AMADH enzymes, being the equivalents to Phe170 and Trp177 (human ALDH2 numbering) strictly conserved in all of them, which supports their relevance in binding the aminoaldehyde by cation-π interactions. In addition, all AMADHs exhibit a negative electrostatic potential surface in the aldehyde-entrance tunnel, due to side-chain carboxyl and hydroxyl groups or main-chain carbonyl groups. In contrast, ALDHs that have non-polar or negatively charged substrates exhibit neutral or positive electrostatic potential surfaces, respectively. Finally, our comparative sequence analyses revealed that the residues equivalent to Asp121 and Phe170 are highly conserved in many ALDH families irrespective of their substrate specificity-suggesting that they perform a role in catalysis additional or different to binding of the substrate-and that the positions Met124, Cys301, and Cys303 are hot spots changed during evolution to confer aldehyde specificity to several ALDH families.
Collapse
Affiliation(s)
- Héctor Riveros-Rosas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 México, DF, Mexico
| | | | | | | | | |
Collapse
|
10
|
Coulter-Mackie MB, Li A, Lian Q, Struys E, Stockler S, Waters PJ. Overexpression of human antiquitin in E. coli: enzymatic characterization of twelve ALDH7A1 missense mutations associated with pyridoxine-dependent epilepsy. Mol Genet Metab 2012; 106:478-81. [PMID: 22784480 DOI: 10.1016/j.ymgme.2012.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/14/2012] [Accepted: 06/14/2012] [Indexed: 11/19/2022]
Abstract
Pyridoxine dependent epilepsy is an autosomal recessive disorder characterized by early onset seizures responsive to pyridoxine and caused by a defect in the α-aminoadipic semialdehyde dehydrogenase (antiquitin) gene (ALDH7A1). In order to characterize the effects of a series of twelve disease-associated ALDH7A1 missense mutations on antiquitin activity, we generated the mutations in a recombinant human antiquitin cDNA and expressed them in Escherichia coli. We developed an automated spectrophotometric assay of antiquitin enzymatic activity using the natural substrate α-aminoadipic semialdehyde. The substrate was generated using a recombinant lysine aminotransferase gene (lat) from Streptomyces clavuligerus. In the E. coli expression system all the mutants were stably expressed but lacked enzymatic activity. This is consistent with pathogenicity of these mutations in vivo.
Collapse
|
11
|
Stockler S, Plecko B, Gospe SM, Coulter-Mackie M, Connolly M, van Karnebeek C, Mercimek-Mahmutoglu S, Hartmann H, Scharer G, Struijs E, Tein I, Jakobs C, Clayton P, Van Hove JLK. Pyridoxine dependent epilepsy and antiquitin deficiency: clinical and molecular characteristics and recommendations for diagnosis, treatment and follow-up. Mol Genet Metab 2011; 104:48-60. [PMID: 21704546 DOI: 10.1016/j.ymgme.2011.05.014] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 05/18/2011] [Accepted: 05/19/2011] [Indexed: 11/18/2022]
Abstract
Antiquitin (ATQ) deficiency is the main cause of pyridoxine dependent epilepsy characterized by early onset epileptic encephalopathy responsive to large dosages of pyridoxine. Despite seizure control most patients have intellectual disability. Folinic acid responsive seizures (FARS) are genetically identical to ATQ deficiency. ATQ functions as an aldehyde dehydrogenase (ALDH7A1) in the lysine degradation pathway. Its deficiency results in accumulation of α-aminoadipic semialdehyde (AASA), piperideine-6-carboxylate (P6C) and pipecolic acid, which serve as diagnostic markers in urine, plasma, and CSF. To interrupt seizures a dose of 100 mg of pyridoxine-HCl is given intravenously, or orally/enterally with 30 mg/kg/day. First administration may result in respiratory arrest in responders, and thus treatment should be performed with support of respiratory management. To make sure that late and masked response is not missed, treatment with oral/enteral pyridoxine should be continued until ATQ deficiency is excluded by negative biochemical or genetic testing. Long-term treatment dosages vary between 15 and 30 mg/kg/day in infants or up to 200 mg/day in neonates, and 500 mg/day in adults. Oral or enteral pyridoxal phosphate (PLP), up to 30 mg/kg/day can be given alternatively. Prenatal treatment with maternal pyridoxine supplementation possibly improves outcome. PDE is an organic aciduria caused by a deficiency in the catabolic breakdown of lysine. A lysine restricted diet might address the potential toxicity of accumulating αAASA, P6C and pipecolic acid. A multicenter study on long term outcomes is needed to document potential benefits of this additional treatment. The differential diagnosis of pyridoxine or PLP responsive seizure disorders includes PLP-responsive epileptic encephalopathy due to PNPO deficiency, neonatal/infantile hypophosphatasia (TNSALP deficiency), familial hyperphosphatasia (PIGV deficiency), as well as yet unidentified conditions and nutritional vitamin B6 deficiency. Commencing treatment with PLP will not delay treatment in patients with pyridox(am)ine phosphate oxidase (PNPO) deficiency who are responsive to PLP only.
Collapse
Affiliation(s)
- Sylvia Stockler
- Division of Biochemical Diseases, British Columbia Children's Hospital, University of British Columbia, 4480 Oak Street, Vancouver BC, Canada V6H 3V4.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Human antiquitin: structural and functional studies. Chem Biol Interact 2010; 191:165-70. [PMID: 21185811 DOI: 10.1016/j.cbi.2010.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 12/17/2010] [Accepted: 12/18/2010] [Indexed: 11/21/2022]
Abstract
Antiquitin (ALDH7) is a member of the aldehyde dehydrogenase superfamily which oxidizes various aldehydes to form the corresponding carboxylic acids. Human antiquitin (ALDH7A1) is believed to play a role in detoxification, osmoregulation and more specifically, in lysine metabolism in which alpha-aminoadipic semialdehyde is identified as the specific, physiological substrate of the enzyme. In the present study, the structural basis for the substrate specificity was studied by site-directed mutagenesis. Kinetic analysis on wild-type human antiquitin and its mutants E121A and R301A demonstrated the importance of Glu121 and Arg301 in the binding as well as the turnover of alpha-aminoadipic semialdehyde. On the functional aspect, in addition to the already diversified physiological functions of antiquitin, the recent demonstration of its presence in the nucleus suggests that it may also play a role in cell growth and cell cycle progression. In this investigation, the expression level of antiquitin was monitored in synchronized WRL68 and HEK293 cell culture systems. It was found that the protein was up-regulated during G(1)-S phase transition. Immunofluorescence staining of the synchronized cells demonstrated an increased expression and accumulation of antiquitin in the nucleus during the G(1)-S phase transition. Knockdown of antiquitin using shRNA transfection also resulted in changes in the levels of several key cell cycle-regulating proteins.
Collapse
|
13
|
Mills PB, Footitt EJ, Mills KA, Tuschl K, Aylett S, Varadkar S, Hemingway C, Marlow N, Rennie J, Baxter P, Dulac O, Nabbout R, Craigen WJ, Schmitt B, Feillet F, Christensen E, De Lonlay P, Pike MG, Hughes MI, Struys EA, Jakobs C, Zuberi SM, Clayton PT. Genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy (ALDH7A1 deficiency). ACTA ACUST UNITED AC 2010; 133:2148-59. [PMID: 20554659 PMCID: PMC2892945 DOI: 10.1093/brain/awq143] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pyridoxine-dependent epilepsy was recently shown to be due to mutations in the ALDH7A1 gene, which encodes antiquitin, an enzyme that catalyses the nicotinamide adenine dinucleotide-dependent dehydrogenation of l-α-aminoadipic semialdehyde/l-Δ1-piperideine 6-carboxylate. However, whilst this is a highly treatable disorder, there is general uncertainty about when to consider this diagnosis and how to test for it. This study aimed to evaluate the use of measurement of urine l-α-aminoadipic semialdehyde/creatinine ratio and mutation analysis of ALDH7A1 (antiquitin) in investigation of patients with suspected or clinically proven pyridoxine-dependent epilepsy and to characterize further the phenotypic spectrum of antiquitin deficiency. Urinary l-α-aminoadipic semialdehyde concentration was determined by liquid chromatography tandem mass spectrometry. When this was above the normal range, DNA sequencing of the ALDH7A1 gene was performed. Clinicians were asked to complete questionnaires on clinical, biochemical, magnetic resonance imaging and electroencephalography features of patients. The clinical spectrum of antiquitin deficiency extended from ventriculomegaly detected on foetal ultrasound, through abnormal foetal movements and a multisystem neonatal disorder, to the onset of seizures and autistic features after the first year of life. Our relatively large series suggested that clinical diagnosis of pyridoxine dependent epilepsy can be challenging because: (i) there may be some response to antiepileptic drugs; (ii) in infants with multisystem pathology, the response to pyridoxine may not be instant and obvious; and (iii) structural brain abnormalities may co-exist and be considered sufficient cause of epilepsy, whereas the fits may be a consequence of antiquitin deficiency and are then responsive to pyridoxine. These findings support the use of biochemical and DNA tests for antiquitin deficiency and a clinical trial of pyridoxine in infants and children with epilepsy across a broad range of clinical scenarios.
Collapse
Affiliation(s)
- Philippa B Mills
- Institute of Child Health, University College London with Great Ormond Street Hospital for Children, National Health Service Trust, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Brocker C, Lassen N, Estey T, Pappa A, Cantore M, Orlova VV, Chavakis T, Kavanagh KL, Oppermann U, Vasiliou V. Aldehyde dehydrogenase 7A1 (ALDH7A1) is a novel enzyme involved in cellular defense against hyperosmotic stress. J Biol Chem 2010; 285:18452-63. [PMID: 20207735 DOI: 10.1074/jbc.m109.077925] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mammalian ALDH7A1 is homologous to plant ALDH7B1, an enzyme that protects against various forms of stress, such as salinity, dehydration, and osmotic stress. It is known that mutations in the human ALDH7A1 gene cause pyridoxine-dependent and folic acid-responsive seizures. Herein, we show for the first time that human ALDH7A1 protects against hyperosmotic stress by generating osmolytes and metabolizing toxic aldehydes. Human ALDH7A1 expression in Chinese hamster ovary cells attenuated osmotic stress-induced apoptosis caused by increased extracellular concentrations of sucrose or sodium chloride. Purified recombinant ALDH7A1 efficiently metabolized a number of aldehyde substrates, including the osmolyte precursor, betaine aldehyde, lipid peroxidation-derived aldehydes, and the intermediate lysine degradation product, alpha-aminoadipic semialdehyde. The crystal structure for ALDH7A1 supports the enzyme's substrate specificities. Tissue distribution studies in mice showed the highest expression of ALDH7A1 protein in liver, kidney, and brain, followed by pancreas and testes. ALDH7A1 protein was found in the cytosol, nucleus, and mitochondria, making it unique among the aldehyde dehydrogenase enzymes. Analysis of human and mouse cDNA sequences revealed mitochondrial and cytosolic transcripts that are differentially expressed in a tissue-specific manner in mice. In conclusion, ALDH7A1 is a novel aldehyde dehydrogenase expressed in multiple subcellular compartments that protects against hyperosmotic stress by generating osmolytes and metabolizing toxic aldehydes.
Collapse
Affiliation(s)
- Chad Brocker
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wong JWY, Chan CL, Tang WK, Cheng CHK, Fong WP. Is antiquitin a mitochondrial Enzyme? J Cell Biochem 2010; 109:74-81. [PMID: 19885858 DOI: 10.1002/jcb.22381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Antiquitin is an aldehyde dehydrogenase involved in the catabolism of lysine. Mutations of antiquitin have been linked with the disease pyridoxine-dependent seizures. While it is well established that lysine metabolism takes place in the mitochondrial matrix, evidence for the mitochondrial localization of antiquitin has been lacking. In the present study, the subcellular localization of antiquitin was investigated using human embryonic kidney HEK293 cells. Three different approaches were used. First, confocal microscopic analysis was carried out on cells transiently transfected with fusion constructs containing enhanced green fluorescent protein with different lengths of antiquitin based on the different potential start codons of translation. Second, immunofluorescence staining was used to detect the localization of antiquitin directly in the cells. Third, subcellular fractionation was carried out and the individual fraction was analyzed for the presence of antiquitin by Western blot and flow cytometric analyses. All the results showed that antiquitin was present not only in the cytosol but also in the mitochondria.
Collapse
Affiliation(s)
- Judy Wei-Yan Wong
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | |
Collapse
|
16
|
Antenatal treatment in two Dutch families with pyridoxine-dependent seizures. Eur J Pediatr 2010; 169:297-303. [PMID: 19588165 DOI: 10.1007/s00431-009-1020-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 06/15/2009] [Indexed: 10/20/2022]
Abstract
Incidental reports suggest that antenatal treatment of pyridoxine dependent seizures (PDS) may improve neurodevelopmental outcome of affected patients. Two families with PDS are reported, both with two affected siblings. Antenatal treatment with pyridoxine was instituted during the second pregnancy in each family (50 and 60 mg daily from 3 and 10 weeks of gestation, respectively). Perinatal characteristics and neurodevelopmental outcome at 4 (Family A) and 12 (Family B) years of age were compared between the untreated and treated child within each family. Meconium-stained amniotic fluid was present in both first pregnancies and abnormal foetal movements were noticed in one. In the treated infants, pregnancy and birth were uncomplicated. In family A, postnatal pyridoxine supplementation prevented neonatal seizures. Both children in family A were hypotonic and started walking after 2 years of age; both had white matter changes on MRI, and the first child was treated for squint. IQ was 73 and 98 in the antenatally untreated and treated child, respectively. The second child in family B developed seizures on the seventh day, because pyridoxine maintenance therapy had not been instituted after birth. Seizures responded rapidly to pyridoxine supplementation. MRI showed large ventricles and a mega cisterna magna. IQ was 80 and 106 in the antenatally untreated and treated child respectively. Both children had normal motor development. These results suggest that antenatal pyridoxine supplementation may be effective in preventing intrauterine seizures, decreasing the risk of complicated birth and improving neurodevelopmental outcome in PDS.
Collapse
|