1
|
Choi DI, Zayed M, Jeong BH. Novel Single-Nucleotide Polymorphisms (SNPs) and Genetic Studies of the Shadow of Prion Protein ( SPRN) in Quails. Animals (Basel) 2024; 14:2481. [PMID: 39272266 PMCID: PMC11394228 DOI: 10.3390/ani14172481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Prion diseases are a group of deadly neurodegenerative disorders caused by the accumulation of the normal prion protein (PrPC) into misfolding pathological conformations (PrPSc). The PrP gene is essential for the development of prion diseases. Another candidate implicated in prion pathogenesis is the shadow of the prion protein (SPRN) gene. To date, genetic polymorphisms of the SPRN gene and the structure of the Sho protein have not been explored in quails. We used polymerase chain reaction (PCR) to amplify the SPRN gene sequence and then conducted Sanger DNA sequencing to identify the genetic polymorphisms in quail SPRN. Furthermore, we examined the genotype, allele, and haplotype frequencies, and assessed the linkage disequilibrium among the genetic polymorphisms of the SPRN gene in quails. Additionally, we used in silico programs such as MutPred2, SIFT, MUpro, AMYCO, and SODA to predict the pathogenicity of non-synonymous single-nucleotide polymorphisms (SNPs). Alphafold2 predicted the 3D structure of the Sho protein in quails. The results showed that a total of 13 novel polymorphisms were found in 106 quails, including 4 non-synonymous SNPs. Using SIFT and MUpro in silico programs, three out of the four non-synonymous SNPs (A68T, L74P, and M105I) were predicted to have deleterious effects on quail Sho. Furthermore, the 3D structure of quail Sho was predicted to be similar to that of chicken Sho. To our knowledge, this is the first report to investigate the genetic and structural properties of the quail SPRN gene.
Collapse
Affiliation(s)
- Da-In Choi
- Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-ro, Iksan 54531, Republic of Korea
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Mohammed Zayed
- Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-ro, Iksan 54531, Republic of Korea
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Surgery, College of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-ro, Iksan 54531, Republic of Korea
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
2
|
Burato A, Legname G. Comparing Prion Proteins Across Species: Is Zebrafish a Useful Model? Mol Neurobiol 2024:10.1007/s12035-024-04324-z. [PMID: 38918277 DOI: 10.1007/s12035-024-04324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Despite the considerable body of research dedicated to the field of neurodegeneration, the gap in knowledge on the prion protein and its intricate involvement in brain diseases remains substantial. However, in the past decades, many steps forward have been taken toward a better understanding of the molecular mechanisms underlying both the physiological role of the prion protein and the misfolding event converting it into its pathological counterpart, the prion. This review aims to provide an overview of the main findings regarding this protein, highlighting the advantages of many different animal models that share a conserved amino acid sequence and/or structure with the human prion protein. A particular focus will be given to the species Danio rerio, a compelling research organism for the investigation of prion biology, thanks to its conserved orthologs, ease of genetic manipulation, and cost-effectiveness of high-throughput experimentation. We will explore its potential in filling some of the gaps on physiological and pathological aspects of the prion protein, with the aim of directing the future development of therapeutic interventions.
Collapse
Affiliation(s)
- Anna Burato
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy.
| |
Collapse
|
3
|
Membrane Domain Localization and Interaction of the Prion-Family Proteins, Prion and Shadoo with Calnexin. MEMBRANES 2021; 11:membranes11120978. [PMID: 34940479 PMCID: PMC8704586 DOI: 10.3390/membranes11120978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022]
Abstract
The cellular prion protein (PrPC) is renowned for its infectious conformational isoform PrPSc, capable of templating subsequent conversions of healthy PrPCs and thus triggering the group of incurable diseases known as transmissible spongiform encephalopathies. Besides this mechanism not being fully uncovered, the protein’s physiological role is also elusive. PrPC and its newest, less understood paralog Shadoo are glycosylphosphatidylinositol-anchored proteins highly expressed in the central nervous system. While they share some attributes and neuroprotective actions, opposing roles have also been reported for the two; however, the amount of data about their exact functions is lacking. Protein–protein interactions and membrane microdomain localizations are key determinants of protein function. Accurate identification of these functions for a membrane protein, however, can become biased due to interactions occurring during sample processing. To avoid such artifacts, we apply a non-detergent-based membrane-fractionation approach to study the prion protein and Shadoo. We show that the two proteins occupy similarly raft and non-raft membrane fractions when expressed in N2a cells and that both proteins pull down the chaperone calnexin in both rafts and non-rafts. These indicate their possible binding to calnexin in both types of membrane domains, which might be a necessary requisite to aid the inherently unstable native conformation during their lifetime.
Collapse
|
4
|
Pollock NM, Leighton P, Neil G, Allison WT. Transcriptomic analysis of zebrafish prion protein mutants supports conserved cross-species function of the cellular prion protein. Prion 2021; 15:70-81. [PMID: 34139950 PMCID: PMC8216189 DOI: 10.1080/19336896.2021.1924557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 10/31/2022] Open
Abstract
Cellular Prion Protein (PrPC) is a well-studied protein as the substrate for various progressive untreatable neurodegenerative diseases. Normal functions of PrPC are poorly understood, though recent proteomic and transcriptomic approaches have begun to reveal common themes. We use our compound prp1 and prp2 knockout mutant zebrafish at three days post fertilization to take a transcriptomic approach to investigating potentially conserved PrPC functions during development. Gene ontology analysis shows the biological processes with the largest changes in gene expression include redox processing, transport and cell adhesion. Within these categories several different gene families were prevalent including the solute carrier proteins, cytochrome p450 enzymes and protocadherins. Continuing from previous studies identifying cell adhesion as an important function of PrPC we found that in addition to the protocadherins there was a significant reduction in transcript abundance of both ncam1a and st8sia2. These two genes are involved in the early development of vertebrates. The alterations in cell adhesion transcripts were consistent with past findings in zebrafish and mouse prion protein mutants; however E-cadherin processing after prion protein knockdown failed to reveal any differences compared with wild type in either our double prp1/prp2 mutant fish or after prp1 morpholino knockdown. Our data supports a cross species conserved role for PrPC in the development and maintenance of the central nervous system, particularly by regulating various and important cell adhesion processes.
Collapse
Affiliation(s)
- Niall Mungo Pollock
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, Canada
| | - Patricia Leighton
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, Canada
| | - Gavin Neil
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - W. Ted Allison
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, Canada
| |
Collapse
|
5
|
Lee K, Yu H, Shouse S, Kong B, Lee J, Lee SH, Ko KS. RNA-Seq Reveals Different Gene Expression in Liver-Specific Prohibitin 1 Knock-Out Mice. Front Physiol 2021; 12:717911. [PMID: 34539442 PMCID: PMC8446661 DOI: 10.3389/fphys.2021.717911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/27/2021] [Indexed: 12/24/2022] Open
Abstract
Prohibitin 1 (PHB1) is an evolutionarily conserved and ubiquitously expressed protein that stabilizes mitochondrial chaperone. Our previous studies showed that liver-specific Phb1 deficiency induced liver injuries and aggravated lipopolysaccharide (LPS)-induced innate immune responses. In this study, we performed RNA-sequencing (RNA-seq) analysis with liver tissues to investigate global gene expression among liver-specific Phb1−/−, Phb1+/−, and WT mice, focusing on the differentially expressed (DE) genes between Phb1+/− and WT. When 78 DE genes were analyzed for biological functions, using ingenuity pathway analysis (IPA) tool, lipid metabolism-related genes, including insulin receptor (Insr), sterol regulatory element-binding transcription factor 1 (Srebf1), Srebf2, and SREBP cleavage-activating protein (Scap) appeared to be downregulated in liver-specific Phb1+/− compared with WT. Diseases and biofunctions analyses conducted by IPA verified that hepatic system diseases, including liver fibrosis, liver hyperplasia/hyperproliferation, and liver necrosis/cell death, which may be caused by hepatotoxicity, were highly associated with liver-specific Phb1 deficiency in mice. Interestingly, of liver disease-related 5 DE genes between Phb1+/− and WT, the mRNA expressions of forkhead box M1 (Foxm1) and TIMP inhibitor of metalloproteinase (Timp1) were matched with validation for RNA-seq in liver tissues and AML12 cells transfected with Phb1 siRNA. The results in this study provide additional insights into molecular mechanisms responsible for increasing susceptibility of liver injuries associated with hepatic Phb1.
Collapse
Affiliation(s)
- Kyuwon Lee
- Department of Nutritional Science and Food Management, College of Science and Industry Convergence, Ewha Womans University, Seoul, South Korea
| | - Hyeonju Yu
- Department of Nutritional Science and Food Management, College of Science and Industry Convergence, Ewha Womans University, Seoul, South Korea
| | - Stephanie Shouse
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, AR, United States
| | - Byungwhi Kong
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, AR, United States
| | - Jihye Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, United States
| | - Seong-Ho Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, United States
| | - Kwang Suk Ko
- Department of Nutritional Science and Food Management, College of Science and Industry Convergence, Ewha Womans University, Seoul, South Korea.,Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Beverly Hills, CA, United States
| |
Collapse
|
6
|
Onur P, Shaver M, Iqbal MA. Interstitial 20p13 microdeletion including PRNP and adjacent genes in a fetus with congenital abnormalities-First case report. Clin Case Rep 2021; 9:e04082. [PMID: 34084500 PMCID: PMC8142463 DOI: 10.1002/ccr3.4082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/31/2021] [Accepted: 02/22/2021] [Indexed: 11/11/2022] Open
Abstract
We present a prenatal case with congenital anomalies that revealed a 759 kb microdeletion at 20p13 possibly implicating PRNP and adjacent genes.
Collapse
Affiliation(s)
- Pelin Onur
- Pathology and Laboratory MedicineUniversity of Rochester Medical CenterRochesterNYUSA
| | - Mary Shaver
- Pathology and Laboratory MedicineUniversity of Rochester Medical CenterRochesterNYUSA
| | | |
Collapse
|
7
|
Salanga CM, Salanga MC. Genotype to Phenotype: CRISPR Gene Editing Reveals Genetic Compensation as a Mechanism for Phenotypic Disjunction of Morphants and Mutants. Int J Mol Sci 2021; 22:ijms22073472. [PMID: 33801686 PMCID: PMC8036752 DOI: 10.3390/ijms22073472] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022] Open
Abstract
Forward genetic screens have shown the consequences of deleterious mutations; however, they are best suited for model organisms with fast reproductive rates and large broods. Furthermore, investigators must faithfully identify changes in phenotype, even if subtle, to realize the full benefit of the screen. Reverse genetic approaches also probe genotype to phenotype relationships, except that the genetic targets are predefined. Until recently, reverse genetic approaches relied on non-genomic gene silencing or the relatively inefficient, homology-dependent gene targeting for loss-of-function generation. Fortunately, the flexibility and simplicity of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system has revolutionized reverse genetics, allowing for the precise mutagenesis of virtually any gene in any organism at will. The successful integration of insertions/deletions (INDELs) and nonsense mutations that would, at face value, produce the expected loss-of-function phenotype, have been shown to have little to no effect, even if other methods of gene silencing demonstrate robust loss-of-function consequences. The disjunction between outcomes has raised important questions about our understanding of genotype to phenotype and highlights the capacity for compensation in the central dogma. This review describes recent studies in which genomic compensation appears to be at play, discusses the possible compensation mechanisms, and considers elements important for robust gene loss-of-function studies.
Collapse
Affiliation(s)
- Cristy M. Salanga
- Office of the Vice President for Research, Northern Arizona University, Flagstaff, AZ 86011, USA;
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Matthew C. Salanga
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
- Correspondence:
| |
Collapse
|
8
|
Sztal TE, Stainier DYR. Transcriptional adaptation: a mechanism underlying genetic robustness. Development 2020; 147:147/15/dev186452. [PMID: 32816903 DOI: 10.1242/dev.186452] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mutations play a crucial role in evolution as they provide the genetic variation that allows evolutionary change. Although some mutations in regulatory elements or coding regions can be beneficial, a large number of them disrupt gene function and reduce fitness. Organisms utilize several mechanisms to compensate for the damaging consequences of genetic perturbations. One such mechanism is the recently identified process of transcriptional adaptation (TA): during this event, mutations that cause mutant mRNA degradation trigger the transcriptional modulation of so-called adapting genes. In some cases, for example when one (or more) of the upregulated genes is functionally redundant with the mutated gene, this process compensates for the loss of the mutated gene's product. Notably, unlike other mechanisms underlying genetic robustness, TA is not triggered by the loss of protein function, an observation that has prompted studies into the machinery of TA and the contexts in which it functions. Here, we review the discovery and current understanding of TA, and discuss how its main features appear to be conserved across species. In light of these findings, we also speculate on the importance of TA in the context of human disease, and provide some recommendations for genome-editing strategies that should be more effective.
Collapse
Affiliation(s)
- Tamar E Sztal
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, Bad Nauheim 61231, Germany
| |
Collapse
|
9
|
Passet B, Castille J, Makhzami S, Truchet S, Vaiman A, Floriot S, Moazami-Goudarzi K, Vilotte M, Gaillard AL, Helary L, Bertaud M, Andréoletti O, Vaiman D, Calvel P, Daniel-Carlier N, Moudjou M, Beauvallet C, Benharouga M, Laloé D, Mouillet-Richard S, Duchesne A, Béringue V, Vilotte JL. The Prion-like protein Shadoo is involved in mouse embryonic and mammary development and differentiation. Sci Rep 2020; 10:6765. [PMID: 32317725 PMCID: PMC7174383 DOI: 10.1038/s41598-020-63805-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 04/03/2020] [Indexed: 11/09/2022] Open
Abstract
Shadoo belongs to the prion protein family, an evolutionary conserved and extensively studied family due to the implication of PrP in Transmissible Spongiform Encephalopathies. However, the biological function of these genes remains poorly understood. While Sprn-knockdown experiments suggested an involvement of Shadoo during mouse embryonic development, Sprn-knockout experiments in 129Pas/C57BL/6J or 129Pas/FVB/NCr mice did not confirm it. In the present study, we analyzed the impact of Sprn gene invalidation in a pure FVB/NJ genetic background, using a zinc finger nuclease approach. The in-depth analysis of the derived knockout transgenic mice revealed a significant increase in embryonic lethality at early post-implantation stages, a growth retardation of young Sprn-knockout pups fed by wild type mice and a lactation defect of Sprn-knockout females. Histological and transcriptional analyses of knockout E7.5 embryos, E14.5 placentas and G7.5 mammary glands revealed specific roles of the Shadoo protein in mouse early embryogenesis, tissue development and differentiation with a potential antagonist action between PrP and Shadoo. This study thus highlights the entanglement between the proteins of the prion family.
Collapse
Affiliation(s)
- Bruno Passet
- Université Paris-Saclay, INRAE, AgroParisTech, UMR1313-GABI, 78350, Jouy-en-Josas, France
| | - Johan Castille
- Université Paris-Saclay, INRAE, AgroParisTech, UMR1313-GABI, 78350, Jouy-en-Josas, France
| | - Samira Makhzami
- Université Paris-Saclay, INRAE, AgroParisTech, UMR1313-GABI, 78350, Jouy-en-Josas, France
| | - Sandrine Truchet
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Anne Vaiman
- Université Paris-Saclay, INRAE, AgroParisTech, UMR1313-GABI, 78350, Jouy-en-Josas, France
| | - Sandrine Floriot
- Université Paris-Saclay, INRAE, AgroParisTech, UMR1313-GABI, 78350, Jouy-en-Josas, France
| | | | - Marthe Vilotte
- Université Paris-Saclay, INRAE, AgroParisTech, UMR1313-GABI, 78350, Jouy-en-Josas, France
| | - Anne-Laure Gaillard
- Université Paris-Saclay, INRAE, AgroParisTech, UMR1313-GABI, 78350, Jouy-en-Josas, France
| | - Louise Helary
- Université Paris-Saclay, INRAE, AgroParisTech, UMR1313-GABI, 78350, Jouy-en-Josas, France
| | - Maud Bertaud
- Université Paris-Saclay, INRAE, AgroParisTech, UMR1313-GABI, 78350, Jouy-en-Josas, France
| | | | - Daniel Vaiman
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université de Paris, Paris, France
| | - Pierre Calvel
- Université Paris-Saclay, INRAE, AgroParisTech, UMR1313-GABI, 78350, Jouy-en-Josas, France
| | | | - Mohammed Moudjou
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Christian Beauvallet
- Université Paris-Saclay, INRAE, AgroParisTech, UMR1313-GABI, 78350, Jouy-en-Josas, France
| | | | - Denis Laloé
- Université Paris-Saclay, INRAE, AgroParisTech, UMR1313-GABI, 78350, Jouy-en-Josas, France
| | - Sophie Mouillet-Richard
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006, Paris, France
| | - Amandine Duchesne
- Université Paris-Saclay, INRAE, AgroParisTech, UMR1313-GABI, 78350, Jouy-en-Josas, France
| | - Vincent Béringue
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Jean-Luc Vilotte
- Université Paris-Saclay, INRAE, AgroParisTech, UMR1313-GABI, 78350, Jouy-en-Josas, France.
| |
Collapse
|
10
|
Combined gene essentiality scoring improves the prediction of cancer dependency maps. EBioMedicine 2019; 50:67-80. [PMID: 31732481 PMCID: PMC6923492 DOI: 10.1016/j.ebiom.2019.10.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 12/22/2022] Open
Abstract
Background Probing genetic dependencies of cancer cells can improve our understanding of tumour development and progression, as well as identify potential drug targets. CRISPR-Cas9-based and shRNA-based genetic screening are commonly utilized to identify essential genes that affect cancer growth. However, systematic methods leveraging these genetic screening techniques to derive consensus cancer dependency maps for individual cancer cell lines are lacking. Finding In this work, we first explored the CRISPR-Cas9 and shRNA gene essentiality profiles in 42 cancer cell lines representing 10 cancer types. We observed limited consistency between the essentiality profiles of these two screens at the genome scale. To improve consensus on the cancer dependence map, we developed a computational model called combined essentiality score (CES) to integrate the genetic essentiality profiles from CRISPR-Cas9 and shRNA screens, while accounting for the molecular features of the genes. We found that the CES method outperformed the existing gene essentiality scoring approaches in terms of ability to detect cancer essential genes. We further demonstrated the power of the CES method in adjusting for screen-specific biases and predicting genetic dependencies in individual cancer cell lines. Interpretation Systematic comparison of the CRISPR-Cas9 and shRNA gene essentiality profiles showed the limitation of relying on a single technique to identify cancer essential genes. The CES method provides an integrated framework to leverage both genetic screening techniques as well as molecular feature data to determine gene essentiality more accurately for cancer cells.
Collapse
|
11
|
Kim YA, Moon H, Park CJ. CRISPR/Cas9-targeted mutagenesis of Os8N3 in rice to confer resistance to Xanthomonas oryzae pv. oryzae. RICE (NEW YORK, N.Y.) 2019; 12:67. [PMID: 31446506 PMCID: PMC6708514 DOI: 10.1186/s12284-019-0325-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/13/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Genome editing tools are important for functional genomics research and biotechnology applications. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 (Cas9) system for gene knockout has emerged as the most effective genome-editing tool. It has previously been reported that, in rice plants, knockdown of the Os8N3 gene resulted in enhanced resistance to Xanthomonas oryzae pv. oryzae (Xoo), while displaying abnormal pollen development. RESULTS The CRISPR/Cas9 system was employed to knockout rice Os8N3, in order to confer enhanced resistance to Xoo. Analysis of the genotypes and edited Os8N3 in T0, T1, T2, and T3 transgenic rice plants showed that the mutations were transmitted to subsequent generations, and homozygous mutants displayed significantly enhanced resistance to Xoo. Stable transmission of CRISPR/Cas9-mediated Os8N3 gene editing without the transferred DNA (T-DNA) was confirmed by segregation in the T1 generation. With respect to many investigated agronomic traits including pollen development, there was no significant difference between homozygous mutants and non-transgenic control plants under greenhouse growth conditions. CONCLUSION Data from this study indicate that the CRISPR/Cas9-mediated Os8N3 edition can be successfully employed for non-transgenic crop improvements.
Collapse
Affiliation(s)
- Young-Ah Kim
- Department of Plant Biotechnology, Sejong University, Seoul, 05006 South Korea
| | - Hyeran Moon
- Department of Molecular Biology, Sejong University, Seoul, 05006 South Korea
| | - Chang-Jin Park
- Department of Plant Biotechnology, Sejong University, Seoul, 05006 South Korea
- Department of Molecular Biology, Sejong University, Seoul, 05006 South Korea
- Plant Engineering Research Institute, Sejong University, Seoul, 05006 South Korea
| |
Collapse
|
12
|
Leighton PLA, Kanyo R, Neil GJ, Pollock NM, Allison WT. Prion gene paralogs are dispensable for early zebrafish development and have nonadditive roles in seizure susceptibility. J Biol Chem 2018; 293:12576-12592. [PMID: 29903907 DOI: 10.1074/jbc.ra117.001171] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 06/07/2018] [Indexed: 11/06/2022] Open
Abstract
Normally folded prion protein (PrPC) and its functions in healthy brains remain underappreciated compared with the intense study of its misfolded forms ("prions," PrPSc) during the pathobiology of prion diseases. This impedes the development of therapeutic strategies in Alzheimer's and prion diseases. Disrupting the zebrafish homologs of PrPC has provided novel insights; however, mutagenesis of the zebrafish paralog prp2 did not recapitulate previous dramatic developmental phenotypes, suggesting redundancy with the prp1 paralog. Here, we generated zebrafish prp1 loss-of-function mutant alleles and dual prp1-/-;prp2-/- mutants. Zebrafish prp1-/- and dual prp1-/-;prp2-/- mutants resemble mammalian Prnp knockouts insofar as they lack overt phenotypes, which surprisingly contrasts with reports of severe developmental phenotypes when either prp1 or prp2 is knocked down acutely. Previous studies suggest that PrPC participates in neural cell development/adhesion, including in zebrafish where loss of prp2 affects adhesion and deposition patterns of lateral line neuromasts. In contrast with the expectation that prp1's functions would be redundant to prp2, they appear to have opposing functions in lateral line neurodevelopment. Similarly, loss of prp1 blunted the seizure susceptibility phenotypes observed in prp2 mutants, contrasting the expected exacerbation of phenotypes if these prion gene paralogs were serving redundant roles. In summary, prion mutant fish lack the overt phenotypes previously predicted, and instead they have subtle phenotypes similar to mammals. No evidence was found for functional redundancy in the zebrafish prion gene paralogs, and the phenotypes observed when each gene is disrupted individually are consistent with ancient functions of prion proteins in neurodevelopment and modulation of neural activity.
Collapse
Affiliation(s)
- Patricia L A Leighton
- From the Department of Biological Sciences and the Centre for Prion and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Richard Kanyo
- From the Department of Biological Sciences and the Centre for Prion and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Gavin J Neil
- From the Department of Biological Sciences and the Centre for Prion and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Niall M Pollock
- From the Department of Biological Sciences and the Centre for Prion and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - W Ted Allison
- From the Department of Biological Sciences and the Centre for Prion and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
13
|
The function of the cellular prion protein in health and disease. Acta Neuropathol 2018; 135:159-178. [PMID: 29151170 DOI: 10.1007/s00401-017-1790-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022]
Abstract
The essential role of the cellular prion protein (PrPC) in prion disorders such as Creutzfeldt-Jakob disease is well documented. Moreover, evidence is accumulating that PrPC may act as a receptor for protein aggregates and transduce neurotoxic signals in more common neurodegenerative disorders, such as Alzheimer's disease. Although the pathological roles of PrPC have been thoroughly characterized, a general consensus on its physiological function within the brain has not yet been established. Knockout studies in various organisms, ranging from zebrafish to mice, have implicated PrPC in a diverse range of nervous system-related activities that include a key role in the maintenance of peripheral nerve myelination as well as a general ability to protect against neurotoxic stimuli. Thus, the function of PrPC may be multifaceted, with different cell types taking advantage of unique aspects of its biology. Deciphering the cellular function(s) of PrPC and the consequences of its absence is not simply an academic curiosity, since lowering PrPC levels in the brain is predicted to be a powerful therapeutic strategy for the treatment of prion disease. In this review, we outline the various approaches that have been employed in an effort to uncover the physiological and pathological functions of PrPC. While these studies have revealed important clues about the biology of the prion protein, the precise reason for PrPC's existence remains enigmatic.
Collapse
|
14
|
Combined shRNA over CRISPR/cas9 as a methodology to detect off-target effects and a potential compensatory mechanism. Sci Rep 2018; 8:93. [PMID: 29311693 PMCID: PMC5758708 DOI: 10.1038/s41598-017-18551-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/13/2017] [Indexed: 11/25/2022] Open
Abstract
Inhibition of genes is a powerful approach to study their function. While RNA interference is a widely used method to achieve this goal, mounting evidence indicates that such an approach is prone to off-target effects. An alternative approach to gene function inhibition is genetic mutation, such as the CRISPR/cas9 method. A recent report, however, demonstrated that genetic mutation and inhibition of gene expression do not always give corresponding results. This can be explained by off-target effects, but it was recently shown, at least in one case, that these differences are the result of a compensatory mechanism induced only by genetic mutation. We present here a combination of RNA inhibition and CRISPR/cas9 methods to identify possible off targets as well as potential compensatory effects. This approach is demonstrated by testing a possible role for Sema4B in glioma biology, in which our results implicate Sema4B as having a critical function. In stark contrast, by using shRNA over CRISPR/cas9 combined methodology, we clearly demonstrate that the Sema4B targeted shRNA effects on cell proliferation is the result of off-target effects. Nevertheless, it also revealed that certain splice variants of Sema4B are important for the ability of glioma cells to grow as individual clones.
Collapse
|
15
|
Abstract
Several recent studies in a number of model systems including zebrafish, Arabidopsis, and mouse have revealed phenotypic differences between knockouts (i.e., mutants) and knockdowns (e.g., antisense-treated animals). These differences have been attributed to a number of reasons including off-target effects of the antisense reagents. An alternative explanation was recently proposed based on a zebrafish study reporting that genetic compensation was observed in egfl7 mutant but not knockdown animals. Dosage compensation was first reported in Drosophila in 1932, and genetic compensation in response to a gene knockout was first reported in yeast in 1969. Since then, genetic compensation has been documented many times in a number of model organisms; however, our understanding of the underlying molecular mechanisms remains limited. In this review, we revisit studies reporting genetic compensation in higher eukaryotes and outline possible molecular mechanisms, which may include both transcriptional and posttranscriptional processes.
Collapse
Affiliation(s)
- Mohamed A. El-Brolosy
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- * E-mail:
| |
Collapse
|
16
|
Abstract
Shadoo (Sho), a member of prion protein family, has been shown to prevent embryonic lethality in Prnp0/0 mice and to be reduced in the brains of rodents with terminal prion diseases. Sho can also affect PrP structural dynamics and can increase the prion conversion into its misfolded isoform (PrPSc), which is amyloidogenic and strictly related to expression, intracellular localization and association of PrPC to lipid rafts. We reasoned that if Sho possesses a natural tendency to convert to amyloid-like forms in vitro, it should be able to exhibit “prion-like” properties, such as PK-resistance and aggregation state, also in live cells. We tested this hypothesis, by different approaches in neuronal cells, finding that Sho shows folding properties partially dependent on lipid rafts integrity whose alteration, as well as proteasomal block, regulated generation of intermediate Sho isoforms and exacerbated its misfolding. Moreover, a 18 kDa isoform of Sho, likely bearing the signal peptide, was targeted to mitochondria by interacting with the molecular chaperone TRAP1 which, in turn controlled Sho dual targeting to ER or mitochondria. Our studies contribute to understand the role of molecular chaperones and of PrP-related folding intermediates in “prion-like” conversion.
Collapse
|
17
|
Mehrabian M, Brethour D, Williams D, Wang H, Arnould H, Schneider B, Schmitt-Ulms G. Prion Protein Deficiency Causes Diverse Proteome Shifts in Cell Models That Escape Detection in Brain Tissue. PLoS One 2016; 11:e0156779. [PMID: 27327609 PMCID: PMC4915660 DOI: 10.1371/journal.pone.0156779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/19/2016] [Indexed: 12/13/2022] Open
Abstract
A popular method for studying the function of a given protein is to generate and characterize a suitable model deficient for its expression. For the prion protein (PrP), best known for its role in several invariably fatal neurodegenerative diseases, a natural choice, therefore, would be to undertake such studies with brain samples. We recently documented the surprising observation that PrP deficiency caused a loss or enhancement of NCAM1 polysialylation, dependent on the cell model used. To identify possible causes for this disparity, we set out to systematically investigate the consequence of PrP deficiency on the global proteome in brain tissue and in four distinct cell models. Here we report that PrP deficiency causes robust but surprisingly divergent changes to the global proteomes of cell models but has no discernible impact on the global brain proteome. Amongst >1,500 proteins whose levels were compared in wild-type and PrP-deficient models, members of the MARCKS protein family exhibited pronounced, yet cell model-dependent changes to their steady-state levels. Follow-up experiments revealed that PrP collaborates with members of the MARCKS protein family in its control of NCAM1 polysialylation. We conclude that the physiological function of PrP may be masked in analyses of complex brain samples but its cell-type specific influence on a lipid raft-based NCAM1-related cell biology comes to the fore in investigations of specific cell types.
Collapse
Affiliation(s)
- Mohadeseh Mehrabian
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
- Departments of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
| | - Dylan Brethour
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
- Departments of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
| | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
- Departments of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
| | - Hansen Wang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Hélène Arnould
- French Institute of Health and Medical Research (INSERM), Paris, France, and University Paris Descartes, Paris, France
| | - Benoit Schneider
- French Institute of Health and Medical Research (INSERM), Paris, France, and University Paris Descartes, Paris, France
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
- Departments of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
18
|
Allais-Bonnet A, Castille J, Pannetier M, Passet B, Elzaïat M, André M, Montazer-Torbati F, Moazami-Goudarzi K, Vilotte JL, Pailhoux E. A specific role for PRND in goat foetal Leydig cells is suggested by prion family gene expression during gonad development in goats and mice. FEBS Open Bio 2016; 6:4-15. [PMID: 27047737 PMCID: PMC4794797 DOI: 10.1002/2211-5463.12002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 10/22/2015] [Accepted: 11/20/2015] [Indexed: 12/17/2022] Open
Abstract
Three genes of the prion protein gene family are expressed in gonads. Comparative analyses of their expression patterns in mice and goats revealed constant expression of PRNP and SPRN in both species and in both male and female gonads, but with a weaker expression of SPRN. By contrast, expression of PRND was found to be sex‐dimorphic, in agreement with its role in spermatogenesis. More importantly, our study revealed that PRND seems to be a key marker of foetal Leydig cells specifically in goats, suggesting a yet unknown role for its encoded protein Doppel during gonadal differentiation in nonrodent mammals.
Collapse
Affiliation(s)
- Aurélie Allais-Bonnet
- Biologie du Développement et Reproduction INRA, UMR 1198 Jouy-en-Josas France; ALLICE Paris France
| | - Johan Castille
- Génétique Animale et Biologie Intégrative INRA, UMR 1313 Jouy-en-Josas France
| | - Maëlle Pannetier
- Biologie du Développement et Reproduction INRA, UMR 1198 Jouy-en-Josas France
| | - Bruno Passet
- Génétique Animale et Biologie Intégrative INRA, UMR 1313 Jouy-en-Josas France
| | - Maëva Elzaïat
- Biologie du Développement et Reproduction INRA, UMR 1198 Jouy-en-Josas France
| | - Marjolaine André
- Biologie du Développement et Reproduction INRA, UMR 1198 Jouy-en-Josas France
| | | | | | - Jean-Luc Vilotte
- Génétique Animale et Biologie Intégrative INRA, UMR 1313 Jouy-en-Josas France
| | - Eric Pailhoux
- Biologie du Développement et Reproduction INRA, UMR 1198 Jouy-en-Josas France
| |
Collapse
|
19
|
Ciric D, Richard CA, Moudjou M, Chapuis J, Sibille P, Daude N, Westaway D, Adrover M, Béringue V, Martin D, Rezaei H. Interaction between Shadoo and PrP Affects the PrP-Folding Pathway. J Virol 2015; 89:6287-93. [PMID: 25855735 PMCID: PMC4474288 DOI: 10.1128/jvi.03429-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/27/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Prion diseases are characterized by conformational changes of a cellular prion protein (PrP(C)) into a β-sheet-enriched and aggregated conformer (PrP(Sc)). Shadoo (Sho), a member of the prion protein family, is expressed in the central nervous system (CNS) and is highly conserved among vertebrates. On the basis of histoanatomical colocalization and sequence similarities, it is suspected that Sho and PrP may be functionally related. The downregulation of Sho expression during prion pathology and the direct interaction between Sho and PrP, as revealed by two-hybrid analysis, suggest a relationship between Sho and prion replication. Using biochemical and biophysical approaches, we demonstrate that Sho forms a 1:1 complex with full-length PrP with a dissociation constant in the micromolar range, and this interaction consequently modifies the PrP-folding pathway. Using a truncated PrP that mimics the C-terminal C1 fragment, an allosteric binding behavior with a Hill number of 4 was observed, suggesting that at least a tetramerization state occurs. A cell-based prion titration assay performed with different concentrations of Sho revealed an increase in the PrP(Sc) conversion rate in the presence of Sho. Collectively, our observations suggest that Sho can affect the prion replication process by (i) acting as a holdase and (ii) interfering with the dominant-negative inhibitor effect of the C1 fragment. IMPORTANCE Since the inception of the prion theory, the search for a cofactor involved in the conversion process has been an active field of research. Although the PrP interactome presents a broad landscape, candidates corresponding to specific criteria for cofactors are currently missing. Here, we describe for the first time that Sho can affect PrP structural dynamics and therefore increase the prion conversion rate. A biochemical characterization of Sho-PrP indicates that Sho acts as an ATP-independent holdase.
Collapse
Affiliation(s)
- Danica Ciric
- National Institute for Agricultural Research (INRA), Pathological Macro-Assemblies and Prion Pathology Group (MAP), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Charles-Adrien Richard
- National Institute for Agricultural Research (INRA), Pathological Macro-Assemblies and Prion Pathology Group (MAP), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Mohammed Moudjou
- National Institute for Agricultural Research (INRA), Pathological Macro-Assemblies and Prion Pathology Group (MAP), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Jérôme Chapuis
- National Institute for Agricultural Research (INRA), Pathological Macro-Assemblies and Prion Pathology Group (MAP), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Pierre Sibille
- National Institute for Agricultural Research (INRA), Pathological Macro-Assemblies and Prion Pathology Group (MAP), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Nathalie Daude
- University of Alberta, Centre for Prion and Protein Folding Diseases, Research in Neurodegenerative Diseases, Edmonton, AB, Canada
| | - David Westaway
- University of Alberta, Centre for Prion and Protein Folding Diseases, Research in Neurodegenerative Diseases, Edmonton, AB, Canada
| | - Miguel Adrover
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Vincent Béringue
- National Institute for Agricultural Research (INRA), Pathological Macro-Assemblies and Prion Pathology Group (MAP), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Davy Martin
- National Institute for Agricultural Research (INRA), Pathological Macro-Assemblies and Prion Pathology Group (MAP), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Human Rezaei
- National Institute for Agricultural Research (INRA), Pathological Macro-Assemblies and Prion Pathology Group (MAP), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| |
Collapse
|
20
|
Prodromidou K, Papastefanaki F, Sklaviadis T, Matsas R. Functional cross-talk between the cellular prion protein and the neural cell adhesion molecule is critical for neuronal differentiation of neural stem/precursor cells. Stem Cells 2015; 32:1674-87. [PMID: 24497115 DOI: 10.1002/stem.1663] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/20/2013] [Accepted: 01/11/2014] [Indexed: 12/15/2022]
Abstract
Cellular prion protein (PrP) is prominently expressed in brain, in differentiated neurons but also in neural stem/precursor cells (NPCs). The misfolding of PrP is a central event in prion diseases, yet the physiological function of PrP is insufficiently understood. Although PrP has been reported to associate with the neural cell adhesion molecule (NCAM), the consequences of concerted PrP-NCAM action in NPC physiology are unknown. Here, we generated NPCs from the subventricular zone (SVZ) of postnatal day 5 wild-type and PrP null (-/-) mice and observed that PrP is essential for proper NPC proliferation and neuronal differentiation. Moreover, we found that PrP is required for the NPC response to NCAM-induced neuronal differentiation. In the absence of PrP, NCAM not only fails to promote neuronal differentiation but also induces an accumulation of doublecortin-positive neuronal progenitors at the proliferation stage. In agreement, we noted an increase in cycling neuronal progenitors in the SVZ of PrP-/- mice compared with PrP+/+ mice, as evidenced by double labeling for the proliferation marker Ki67 and doublecortin as well as by 5-bromo-2'-deoxyuridine incorporation experiments. Additionally, fewer newly born neurons were detected in the rostral migratory stream of PrP-/- mice. Analysis of the migration of SVZ cells in microexplant cultures from wild-type and PrP-/- mice revealed no differences between genotypes or a role for NCAM in this process. Our data demonstrate that PrP plays a critical role in neuronal differentiation of NPCs and suggest that this function is, at least in part, NCAM-dependent.
Collapse
Affiliation(s)
- Kanella Prodromidou
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | | | | | | |
Collapse
|
21
|
Lee YJ, Baskakov IV. The cellular form of the prion protein guides the differentiation of human embryonic stem cells into neuron-, oligodendrocyte-, and astrocyte-committed lineages. Prion 2014; 8:266-75. [PMID: 25486050 DOI: 10.4161/pri.32079] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Prion protein, PrP(C), is a glycoprotein that is expressed on the cell surface beginning with the early stages of embryonic stem cell differentiation. Previously, we showed that ectopic expression of PrP(C) in human embryonic stem cells (hESCs) triggered differentiation toward endodermal, mesodermal, and ectodermal lineages, whereas silencing of PrP(C) suppressed differentiation toward ectodermal but not endodermal or mesodermal lineages. Considering that PrP(C) might be involved in controlling the balance between cells of different lineages, the current study was designed to test whether PrP(C) controls differentiation of hESCs into cells of neuron-, oligodendrocyte-, and astrocyte-committed lineages. PrP(C) was silenced in hESCs cultured under three sets of conditions that were previously shown to induce hESCs differentiation into predominantly neuron-, oligodendrocyte-, and astrocyte-committed lineages. We found that silencing of PrP(C) suppressed differentiation toward all three lineages. Similar results were observed in all three protocols, arguing that the effect of PrP(C) was independent of differentiation conditions employed. Moreover, switching PrP(C) expression during a differentiation time course revealed that silencing PrP(C) expression during the very initial stage that corresponds to embryonic bodies has a more significant impact than silencing at later stages of differentiation. The current work illustrates that PrP(C) controls differentiation of hESCs toward neuron-, oligodendrocyte-, and astrocyte-committed lineages and is likely involved at the stage of uncommitted neural progenitor cells rather than lineage-committed neural progenitors.
Collapse
Key Words
- CNTF, ciliary neurotrophic factor
- EBs, embryoid bodies
- EFG, epidermal growth factor
- ESCs, embryonic stem cells
- GFAP, glial fibrillary acidic protein
- GRM, glial restrictive medium
- Lenti-ShPrPC, lentiviral vector expressing short hairpin RNA against PrPC
- Lenti-ShScram, lentiviral vector expressing scrambled shRNA
- Lenti-TetR, lentiviral vector expressing tetracycline repressor
- MEF-CM, mouse embryonic feeder-conditioned medium
- MEFs, mouse embryonic fibroblasts
- NDM, neuronal differentiation medium
- NIM, neural induction medium
- NPM, neural proliferation medium
- Olig1, a marker of oligodendrocyte-committed lineages
- PrPC, normal, cellular isoform of the prion protein
- RA, retinoic acid
- Syn, synapsin I
- TH, tyrosine hydroxylase
- Tet, tetracycline
- TetR, tetracycline repressor
- bFGF, basic fibroblast growth factor
- hES+TetR+ShPrPC, hESCs transfected with Lenti-TetR and Lenti-ShPrPC
- hES+TetR+ShScram, hESCs transfected with Lenti-TetR and Lenti-ShScram
- hESCs, human ESCs
- human embryonic stem cells
- neural progenitor cells
- neuron-committed lineages
- prion protein
- stem cell differentiation
Collapse
Affiliation(s)
- Young Jin Lee
- a Center for Biomedical Engineering and; Technology Department of Anatomy and Neurobiology ; University of Maryland School of Medicine ; Baltimore , MD USA
| | | |
Collapse
|
22
|
Halliez S, Passet B, Martin-Lannerée S, Hernandez-Rapp J, Laude H, Mouillet-Richard S, Vilotte JL, Béringue V. To develop with or without the prion protein. Front Cell Dev Biol 2014; 2:58. [PMID: 25364763 PMCID: PMC4207017 DOI: 10.3389/fcell.2014.00058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/22/2014] [Indexed: 12/23/2022] Open
Abstract
The deletion of the cellular form of the prion protein (PrPC) in mouse, goat, and cattle has no drastic phenotypic consequence. This stands in apparent contradiction with PrPC quasi-ubiquitous expression and conserved primary and tertiary structures in mammals, and its pivotal role in neurodegenerative diseases such as prion and Alzheimer's diseases. In zebrafish embryos, depletion of PrP ortholog leads to a severe loss-of-function phenotype. This raises the question of a potential role of PrPC in the development of all vertebrates. This view is further supported by the early expression of the PrPC encoding gene (Prnp) in many tissues of the mouse embryo, the transient disruption of a broad number of cellular pathways in early Prnp−/− mouse embryos, and a growing body of evidence for PrPC involvement in the regulation of cell proliferation and differentiation in various types of mammalian stem cells and progenitors. Finally, several studies in both zebrafish embryos and in mammalian cells and tissues in formation support a role for PrPC in cell adhesion, extra-cellular matrix interactions and cytoskeleton. In this review, we summarize and compare the different models used to decipher PrPC functions at early developmental stages during embryo- and organo-genesis and discuss their relevance.
Collapse
Affiliation(s)
- Sophie Halliez
- Institut National de la Recherche Agronomique, U892 Virologie et Immunologie Moléculaires Jouy-en-Josas, France
| | - Bruno Passet
- Institut National de la Recherche Agronomique, UMR1313 Génétique Animale et Biologie Intégrative Jouy-en-Josas, France
| | - Séverine Martin-Lannerée
- Institut National de la Santé et de la Recherche Médicale, UMR-S1124 Paris, France ; Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124 Paris, France
| | - Julia Hernandez-Rapp
- Institut National de la Santé et de la Recherche Médicale, UMR-S1124 Paris, France ; Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124 Paris, France
| | - Hubert Laude
- Institut National de la Recherche Agronomique, U892 Virologie et Immunologie Moléculaires Jouy-en-Josas, France
| | - Sophie Mouillet-Richard
- Institut National de la Santé et de la Recherche Médicale, UMR-S1124 Paris, France ; Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124 Paris, France
| | - Jean-Luc Vilotte
- Institut National de la Recherche Agronomique, UMR1313 Génétique Animale et Biologie Intégrative Jouy-en-Josas, France
| | - Vincent Béringue
- Institut National de la Recherche Agronomique, U892 Virologie et Immunologie Moléculaires Jouy-en-Josas, France
| |
Collapse
|
23
|
Makzhami S, Passet B, Halliez S, Castille J, Moazami-Goudarzi K, Duchesne A, Vilotte M, Laude H, Mouillet-Richard S, Béringue V, Vaiman D, Vilotte JL. The prion protein family: a view from the placenta. Front Cell Dev Biol 2014; 2:35. [PMID: 25364742 PMCID: PMC4207016 DOI: 10.3389/fcell.2014.00035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/22/2014] [Indexed: 02/01/2023] Open
Abstract
Based on its developmental pattern of expression, early studies suggested the implication of the mammalian Prion protein PrP, a glycosylphosphatidylinositol-anchored ubiquitously expressed and evolutionary conserved glycoprotein encoded by the Prnp gene, in early embryogenesis. However, gene invalidation in several species did not result in obvious developmental abnormalities and it was only recently that it was associated in mice with intra-uterine growth retardation and placental dysfunction. A proposed explanation for this lack of easily detectable developmental-related phenotype is the existence in the genome of one or more gene (s) able to compensate for the absence of PrP. Indeed, two other members of the Prnp gene family have been recently described, Doppel and Shadoo, and the consequences of their invalidation alongside that of PrP tested in mice. No embryonic defect was observed in mice depleted for Doppel and PrP. Interestingly, the co-invalidation of PrP and Shadoo in two independent studies led to apparently conflicting observations, with no apparent consequences in one report and the observation of a developmental defect of the ectoplacental cone that leads to early embryonic lethality in the other. This short review aims at summarizing these recent, apparently conflicting data highlighting the related biological questions and associated implications in terms of animal and human health.
Collapse
Affiliation(s)
- Samira Makzhami
- INRA, UMR1313 Génétique Animale et Biologie Intégrative Jouy-en-Josas, France
| | - Bruno Passet
- INRA, UMR1313 Génétique Animale et Biologie Intégrative Jouy-en-Josas, France
| | - Sophie Halliez
- INRA, U892 Virologie et Immunologie Moléculaires Jouy-en-Josas, France
| | - Johan Castille
- INRA, UMR1313 Génétique Animale et Biologie Intégrative Jouy-en-Josas, France
| | | | - Amandine Duchesne
- INRA, UMR1313 Génétique Animale et Biologie Intégrative Jouy-en-Josas, France
| | - Marthe Vilotte
- INRA, UMR1313 Génétique Animale et Biologie Intégrative Jouy-en-Josas, France
| | - Hubert Laude
- INRA, U892 Virologie et Immunologie Moléculaires Jouy-en-Josas, France
| | - Sophie Mouillet-Richard
- INSERM, UMR-S1124 Signalisation et Physiopathologie Neurologique, Université Paris Descartes Paris, France
| | - Vincent Béringue
- INRA, U892 Virologie et Immunologie Moléculaires Jouy-en-Josas, France
| | - Daniel Vaiman
- Faculté Paris Descartes, UMR8104 CNRS, U1016 INSERM, Institut Cochin Paris, France
| | - Jean-Luc Vilotte
- INRA, UMR1313 Génétique Animale et Biologie Intégrative Jouy-en-Josas, France
| |
Collapse
|
24
|
Wang S, Zhao H, Zhang Y. Advances in research on Shadoo, shadow of prion protein. CHINESE SCIENCE BULLETIN-CHINESE 2014. [DOI: 10.1007/s11434-014-0129-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Zhang J, Guo Y, Xie WL, Xu Y, Ren K, Shi Q, Zhang BY, Chen C, Tian C, Gao C, Dong XP. Disruption of glycosylation enhances ubiquitin-mediated proteasomal degradation of Shadoo in Scrapie-infected rodents and cultured cells. Mol Neurobiol 2014; 49:1373-84. [PMID: 24390475 DOI: 10.1007/s12035-013-8612-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/08/2013] [Indexed: 01/06/2023]
Abstract
Shadoo (Sho) is an N-glycosylated glycophosphatidylinositol-anchored protein that is expressed in the brain and exhibits neuroprotective properties. Recently, research has shown that a reduction of Sho levels may reflect the presence of PrPSc in the brain. However, the possible mechanism by which prion infection triggers down-regulation of Sho remains unclear. In the present study, Western blot and immunohistochemical assays revealed that Sho, especially glycosylated Sho, declined markedly in the brains of five scrapie agent-infected hamsters and mice at the terminal stages. Analyses of the down-regulation of Sho levels with the emergence of PrPSc C2 proteolytic fragments did not identify close association in all tested scrapie-infected models. To further investigate the mechanism of depletion of Sho in prion disease, a Sho-expressing plasmid with HA tag was introduced into a scrapie-infected cell line, SMB-S15, and its normal cell line, SMB-PS. Western blot assay revealed dramatically decreased Sho in SMB-S15 cells, especially its glycosylated form. Proteasome inhibitor MG132 reversed the decrease of nonglycosylated Sho, but had little effect on glycosylated Sho. N-acetylglucosamine transferase inhibitor tunicamycin efficiently reduced the glycosylations of Sho and PrPC in SMB-PS cells, while two other endoplasmic reticulum stress inducers showed clear inhibition of diglycosylated PrPC, but did not change the expression level and profile of Sho. Furthermore, immunoprecipitation of HA-Sho illustrated ubiquitination of Sho in SMB-S15 cells, but not in SMB-PS cells. We propose that the depletions of Sho in scrapie-infected cell lines due to inhibition of glycosylation mediate protein destabilization and subsequently proteasome degradation after modification by ubiquitination.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Road 155, Beijing, 102206, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Llorens F, Ferrer I, del Río JA. Gene expression resulting from PrPC ablation and PrPC overexpression in murine and cellular models. Mol Neurobiol 2013; 49:413-23. [PMID: 23949728 DOI: 10.1007/s12035-013-8529-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/05/2013] [Indexed: 02/07/2023]
Abstract
The cellular prion protein (PrP(C)) plays a key role in prion diseases when it converts to the pathogenic form scrapie prion protein. Increasing knowledge of its participation in prion infection contrasts with the elusive and controversial data regarding its physiological role probably related to its pleiotropy, cell-specific functions, and cellular-specific milieu. Multiple approaches have been made to the increasing understanding of the molecular mechanisms and cellular functions modulated by PrP(C) at the transcriptomic and proteomic levels. Gene expression analyses have been made in several mouse and cellular models with regulated expression of PrP(C) resulting in PrP(C) ablation or PrP(C) overexpression. These analyses support previous functional data and have yielded clues about new potential functions. However, experiments on animal models have shown moderate and varied results which are difficult to interpret. Moreover, studies in cell cultures correlate little with in vivo counterparts. Yet, both animal and cell models have provided some insights on how to proceed in the future by using more refined methods and selected functional experiments.
Collapse
Affiliation(s)
- Franc Llorens
- Institute of Neuropathology, University Hospital Bellvitge-Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain,
| | | | | |
Collapse
|
27
|
Miranda A, Ramos-Ibeas P, Pericuesta E, Ramirez MA, Gutierrez-Adan A. The role of prion protein in stem cell regulation. Reproduction 2013; 146:R91-9. [PMID: 23740082 DOI: 10.1530/rep-13-0100] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cellular prion protein (PrP(C)) has been well described as an essential partner of prion diseases due to the existence of a pathological conformation (PrP(Sc)). Recently, it has also been demonstrated that PrP(C) is an important element of the pluripotency and self-renewal matrix, with an increasing amount of evidence pointing in this direction. Here, we review the data that demonstrate its role in the transcriptional regulation of pluripotency, in the differentiation of stem cells into different lineages (e.g. muscle and neurons), in embryonic development, and its involvement in reproductive cells. Also highlighted are recent results from our laboratory that describe an important regulation by PrP(C) of the major pluripotency gene Nanog. Together, these data support the appearance of new strategies to control stemness, which could represent an important advance in the field of regenerative medicine.
Collapse
Affiliation(s)
- A Miranda
- Departamento de Reproducción Animal, INIA, Avenida Puerta de Hierro no. 12, Local 10, Madrid 28040, Spain
| | | | | | | | | |
Collapse
|
28
|
Tóth E, Kulcsár PI, Fodor E, Ayaydin F, Kalmár L, Borsy AÉ, László L, Welker E. The highly conserved, N-terminal (RXXX)8 motif of mouse Shadoo mediates nuclear accumulation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1199-211. [PMID: 23360978 DOI: 10.1016/j.bbamcr.2013.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/29/2012] [Accepted: 01/15/2013] [Indexed: 01/09/2023]
Abstract
The prion protein (PrP)-known for its central role in transmissible spongiform encephalopathies-has been reported to possess two nuclear localization signals and localize in the nuclei of certain cells in various forms. Although these data are superficially contradictory, it is apparent that nuclear forms of the prion protein can be found in cells in either the healthy or the diseased state. Here we report that Shadoo (Sho)-a member of the prion protein superfamily-is also found in the nucleus of several neural and non-neural cell lines as visualized by using an YFP-Sho construct. This nuclear localization is mediated by the (25-61) fragment of mouse Sho encompassing an (RXXX)8 motif. Bioinformatic analysis shows that the (RXXX)n motif (n=7-8) is a highly conserved and characteristic part of mammalian Shadoo proteins. Experiments to assess if Sho enters the nucleus by facilitated transport gave no decisive results: the inhibition of active processes that require energy in the cell, abolishes nuclear but not nucleolar accumulation. However, the (RXXX)8 motif is not able to mediate the nuclear transport of large fusion constructs exceeding the size limit of the nuclear pore for passive entry. Tracing the journey of various forms of Sho from translation to the nucleus and discerning the potential nuclear function of PrP and Sho requires further studies.
Collapse
Affiliation(s)
- E Tóth
- Institute of Biochemistry, Hungarian Academy of Sciences, Szeged, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Passet B, Halliez S, Béringue V, Laude H, Vilotte JL. The prion protein family: looking outside the central nervous system. Prion 2012; 7:127-30. [PMID: 23154632 PMCID: PMC3609118 DOI: 10.4161/pri.22851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Although the pivotal implication of the host-encoded Prion protein, PrP, in the neuropathology of transmissible spongiform encephalopathy is known for decades, its biological role remains mostly elusive. Genetic inactivation is one way to assess such issue but, so far, PrP-knockout mice did not help much. However, recent reports involving (1) further studies of these mice during embryogenesis, (2) knockdown experiments in Zebrafish and (3) knockdown of Shadoo, a protein with PrP-like functional domains, in PrP-knockout mice, all suggested a role of the Prion protein family in early embryogenesis. This view is challenged by the recent report that PrP/Shadoo knockout mice are healthy and fertile. Although puzzling, these apparently contradictory data may on the contrary help at deciphering the Prion protein family role through focusing scientific attention outside the central nervous system and by helping the identification of other loci involved in the genetic robustness associated with PrP.
Collapse
Affiliation(s)
- Bruno Passet
- UMR1313 Génétique Animale et Biologie Intégrative, Institut Nationale de la Recherche Agronomique, Jouy-en-Josas, France
| | | | | | | | | |
Collapse
|
30
|
Abstract
The human cellular prion protein (PrP(C)) is a glycosylphosphatidylinositol (GPI) anchored membrane glycoprotein with two N-glycosylation sites at residues 181 and 197. This protein migrates in several bands by Western blot analysis (WB). Interestingly, PNGase F treatment of human brain homogenates prior to the WB, which is known to remove the N-glycosylations, unexpectedly gives rise to two dominant bands, which are now known as C-terminal (C1) and N-terminal (N1) fragments. This resembles the β-amyloid precursor protein (APP) in Alzheimer disease (AD), which can be physiologically processed by α-, β-, and γ-secretases. The processing of APP has been extensively studied, while the identity of the cellular proteases involved in the proteolysis of PrP(C) and their possible role in prion biology has remained limited and controversial. Nevertheless, there is a strong correlation between the neurotoxicity caused by prion proteins and the blockade of their normal proteolysis. For example, expression of non-cleavable PrP(C) mutants in transgenic mice generates neurotoxicity, even in the absence of infectious prions, suggesting that PrP(C) proteolysis is physiologically and pathologically important. As many mouse models of prion diseases have recently been developed and the knowledge about the proteases responsible for the PrP(C) proteolysis is accumulating, we examine the historical experimental evidence and highlight recent studies that shed new light on this issue.
Collapse
|
31
|
Lee YJ, Baskakov IV. The cellular form of the prion protein is involved in controlling cell cycle dynamics, self-renewal, and the fate of human embryonic stem cell differentiation. J Neurochem 2012; 124:310-22. [PMID: 22860629 DOI: 10.1111/j.1471-4159.2012.07913.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 08/02/2012] [Accepted: 08/03/2012] [Indexed: 11/27/2022]
Abstract
Prion protein (PrP(C) ), is a glycoprotein that is expressed on the cell surface. The current study examines the role of PrP(C) in early human embryogenesis using human embryonic stem cells (hESCs) and tetracycline-regulated lentiviral vectors that up-regulate or suppresses PrP(C) expression. Here, we show that expression of PrP(C) in pluripotent hESCs cultured under self-renewal conditions induced cell differentiation toward lineages of three germ layers. Silencing of PrP(C) in hESCs undergoing spontaneous differentiation altered the dynamics of the cell cycle and changed the balance between the lineages of the three germ layers, where differentiation toward ectodermal lineages was suppressed. Moreover, over-expression of PrP(C) in hESCs undergoing spontaneous differentiation inhibited differentiation toward lineages of all three germ layers and helped to preserve high proliferation activity. These results illustrate that PrP(C) is involved in key activities that dictate the status of hESCs including regulation of cell cycle dynamics, controlling the switch between self-renewal and differentiation, and determining the fate of hESCs differentiation. This study suggests that PrP(C) is at the crossroads of several signaling pathways that regulate the switch between preservation of or departure from the self-renewal state, control cell proliferation activity, and define stem cell fate.
Collapse
Affiliation(s)
- Young Jin Lee
- Center for Biomedical Engineering and Technology and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
32
|
Abstract
Shadoo (Sho) is a brain glycoprotein with similarities to the unstructured region of PrPC. Frameshift alleles of the Sho gene, Sprn, are reported in variant Creutzfeldt-Jakob disease (vCJD) patients while Sprn mRNA knockdown in PrP-null (Prnp0/0) embryos produces lethality, advancing Sho as the hypothetical PrP-like “pi” protein. Also, Sho levels are reduced as misfolded PrP accumulates during prion infections. To penetrate these issues we created Sprn null alleles (Daude et al., Proc. Natl. Acad. Sci USA 2012; 109(23): 9035–40). Results from the challenge of Sprn null and TgSprn transgenic mice with rodent-adapted prions coalesce to define downregulation of Sho as a “tracer” for the formation of misfolded PrP. However, classical BSE and rodent-adapted BSE isolates may behave differently, as they do for other facets of the pathogenic process, and this intriguing variation warrants closer scrutiny. With regards to physiological function, double knockout mice (Sprn0/0/Prnp0/0) mice survived to over 600 d of age. This suggests that Sho is not pi, or, given the accumulating data for many activities for PrPC, that the pi hypothesis invoking a discrete signaling pathway to maintain neuronal viability is no longer tenable.
Collapse
Affiliation(s)
- Nathalie Daude
- Centre for Prions and Protein Folding Diseases, University of Alberta Edmonton, AB, Canada
| | | |
Collapse
|
33
|
Passet B, Young R, Makhzami S, Vilotte M, Jaffrezic F, Halliez S, Bouet S, Marthey S, Khalifé M, Kanellopoulos-Langevin C, Béringue V, Le Provost F, Laude H, Vilotte JL. Prion protein and Shadoo are involved in overlapping embryonic pathways and trophoblastic development. PLoS One 2012; 7:e41959. [PMID: 22860039 PMCID: PMC3408428 DOI: 10.1371/journal.pone.0041959] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 06/27/2012] [Indexed: 12/24/2022] Open
Abstract
The potential requirement of either the Prion or Shadoo protein for early mouse embryogenesis was recently suggested. However, the current data did not allow to precise the developmental process that was affected in the absence of both proteins and that led to the observed early lethal phenotype. In the present study, using various Prnp transgenic mouse lines and lentiviral vectors expressing shRNAs that target the Shadoo-encoding mRNA, we further demonstrate the specific requirement of at least one of these two PrP-related proteins at early developmental stages. Histological analysis reveals developmental defect of the ectoplacental cone and important hemorrhage surrounding the Prnp-knockout-Sprn-knockdown E7.5 embryos. By restricting the RNA interference to the trophoblastic cell lineages, the observed lethal phenotype could be attributed to the sole role of these proteins in this trophectoderm-derived compartment. RNAseq analysis performed on early embryos of various Prnp and Sprn genotypes indicated that the simultaneous down-regulation of these two proteins affects cell-adhesion and inflammatory pathways as well as the expression of ectoplacental-specific genes. Overall, our data provide biological clues in favor of a crucial and complementary embryonic role of the prion protein family in Eutherians and emphasizes the need to further evaluate its implication in normal and pathological human placenta biology.
Collapse
Affiliation(s)
- Bruno Passet
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
| | - Rachel Young
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
| | - Samira Makhzami
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
| | - Marthe Vilotte
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
| | - Florence Jaffrezic
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
| | - Sophie Halliez
- INRA, UR892, Virologie et Immunologie Moléculaires, INRA, Jouy-en-Josas, France
| | - Stéphan Bouet
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
| | - Sylvain Marthey
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
| | - Manal Khalifé
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
| | - Colette Kanellopoulos-Langevin
- Laboratory of Inflammation, Gestation and Autoimmunity, J. Monod Institute, UMR 7592 (CNRS and University Diderot), Paris, France
| | - Vincent Béringue
- INRA, UR892, Virologie et Immunologie Moléculaires, INRA, Jouy-en-Josas, France
| | - Fabienne Le Provost
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
| | - Hubert Laude
- INRA, UR892, Virologie et Immunologie Moléculaires, INRA, Jouy-en-Josas, France
| | - Jean-Luc Vilotte
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
- * E-mail:
| |
Collapse
|
34
|
Knockout of the prion protein (PrP)-like Sprn gene does not produce embryonic lethality in combination with PrP(C)-deficiency. Proc Natl Acad Sci U S A 2012; 109:9035-40. [PMID: 22619325 DOI: 10.1073/pnas.1202130109] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Sprn gene encodes Shadoo (Sho), a glycoprotein with biochemical properties similar to the unstructured region of cellular prion protein (PrP(C)). Sho has been considered a candidate for the hypothetical π protein that supplies a PrP(C)-like function to maintain the viability of Prnp(0/0) mice lacking the PrP(C) protein. To understand these relationships more clearly we probed the cell biology of Sho and created knockout mice. Besides full-length and a "C1" C-terminal fragment, we describe a 6-kDa N-terminal Sho neuropeptide, "N1," which is present in membrane-enriched subcellular fractions of wild-type mice. Sprn null alleles were produced that delete all protein coding sequences yet spare the Mtg1 gene transcription unit that overlaps the Sprn 3' UTR; the resulting mice bred to homozygosity were viable and fertile, although Sprn(0/0) mice maintained in two genetic backgrounds weighed less than wild-type mice. Lack of Sho protein did not affect prion incubation time. Contrasting with lethality reported for knockdown of expression in Prnp(0/0) embryos using lentiviruses targeted against the Sprn 3' UTR, we established that double-knockout mice deficient in both Sho and PrP(C) are fertile and viable up to 690 d of age. Our data reduce the impetus for equating Sho with the notional π protein and are not readily reconciled with hypotheses wherein expression of PrP(C) and Sho are both required for completion of embryogenesis. Alternatively, and in accord with some reports for PrP(C), we infer that Sho's activity will prove germane to the maintenance of neuronal viability in postnatal life.
Collapse
|
35
|
Human prion protein binds Argonaute and promotes accumulation of microRNA effector complexes. Nat Struct Mol Biol 2012; 19:517-24, S1. [PMID: 22484317 DOI: 10.1038/nsmb.2273] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 02/28/2012] [Indexed: 12/13/2022]
Abstract
Despite intense research in the context of neurodegenerative diseases associated with its misfolding, the endogenous human prion protein PrP(C) (or PRNP) has poorly understood physiological functions. Whereas most PrP(C) is exposed to the extracellular environment, conserved domains result in transmembrane forms of PrP(C) that traffic in the endolysosomal system and are linked to inherited and infectious neuropathologies. One transmembrane PrP(C) variant orients the N-terminal 'octarepeat' domain into the cytoplasm. Here we demonstrate that the octarepeat domain of human PrP(C) contains GW/WG motifs that bind Argonaute (AGO) proteins, the essential components of microRNA (miRNA)-induced silencing complexes (miRISCs). Transmembrane PrP(C) preferentially binds AGO, and PrP(C) promotes formation or stability of miRISC effector complexes containing the trinucleotide repeat-containing gene 6 proteins (TNRC6) and miRNA-repressed mRNA. Accordingly, effective repression of several miRNA targets requires PrP(C). We propose that dynamic interactions between PrP(C)-enriched endosomes and subcellular foci of AGO underpin these effects.
Collapse
|
36
|
Alais S, Soto-Rifo R, Balter V, Gruffat H, Manet E, Schaeffer L, Darlix JL, Cimarelli A, Raposo G, Ohlmann T, Leblanc P. Functional mechanisms of the cellular prion protein (PrP(C)) associated anti-HIV-1 properties. Cell Mol Life Sci 2012; 69:1331-52. [PMID: 22076653 PMCID: PMC11114771 DOI: 10.1007/s00018-011-0879-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 10/15/2011] [Accepted: 10/24/2011] [Indexed: 12/22/2022]
Abstract
The cellular prion protein PrP(C)/CD230 is a GPI-anchor protein highly expressed in cells from the nervous and immune systems and well conserved among vertebrates. In the last decade, several studies suggested that PrP(C) displays antiviral properties by restricting the replication of different viruses, and in particular retroviruses such as murine leukemia virus (MuLV) and the human immunodeficiency virus type 1 (HIV-1). In this context, we previously showed that PrP(C) displays important similarities with the HIV-1 nucleocapsid protein and found that PrP(C) expression in a human cell line strongly reduced HIV-1 expression and virus production. Using different PrP(C) mutants, we report here that the anti-HIV-1 properties are mostly associated with the amino-terminal 24-KRPKP-28 basic domain. In agreement with its reported RNA chaperone activity, we found that PrP(C) binds to the viral genomic RNA of HIV-1 and negatively affects its translation. Using a combination of biochemical and cell imaging strategies, we found that PrP(C) colocalizes with the virus assembly machinery at the plasma membrane and at the virological synapse in infected T cells. Depletion of PrP(C) in infected T cells and microglial cells favors HIV-1 replication, confirming its negative impact on the HIV-1 life cycle.
Collapse
Affiliation(s)
- Sandrine Alais
- Université de Lyon, 69000 Lyon, France
- Human virology department, INSERM U758, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Ricardo Soto-Rifo
- Université de Lyon, 69000 Lyon, France
- Human virology department, INSERM U758, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Vincent Balter
- Université de Lyon, 69000 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- CNRS UMR 5276 “Laboratoire de Géologie de Lyon”, Lyon, France
| | - Henri Gruffat
- Université de Lyon, 69000 Lyon, France
- Human virology department, INSERM U758, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Evelyne Manet
- Université de Lyon, 69000 Lyon, France
- Human virology department, INSERM U758, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Laurent Schaeffer
- Université de Lyon, 69000 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Laboratoire de Biologie Moléculaire de la Cellule (LBMC) UMR5239 CNRS/ENS/Université de Lyon/HCL, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Jean Luc Darlix
- Université de Lyon, 69000 Lyon, France
- Human virology department, INSERM U758, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Andrea Cimarelli
- Université de Lyon, 69000 Lyon, France
- Human virology department, INSERM U758, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Graça Raposo
- Structure and Membrane Compartments and PICT-IBiSA, Institut Curie, CNRS-UMR144, 12 Rue Lhomond, 75005 Paris, France
| | - Théophile Ohlmann
- Université de Lyon, 69000 Lyon, France
- Human virology department, INSERM U758, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Pascal Leblanc
- Université de Lyon, 69000 Lyon, France
- Human virology department, INSERM U758, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Laboratoire de Biologie Moléculaire de la Cellule (LBMC) UMR5239 CNRS/ENS/Université de Lyon/HCL, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| |
Collapse
|
37
|
Young R, Bouet S, Polyte J, Le Guillou S, Passet B, Vilotte M, Castille J, Beringue V, Le Provost F, Laude H, Vilotte JL. Expression of the prion-like protein Shadoo in the developing mouse embryo. Biochem Biophys Res Commun 2011; 416:184-7. [DOI: 10.1016/j.bbrc.2011.11.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 11/04/2011] [Indexed: 01/29/2023]
|
38
|
Watts JC, Stöhr J, Bhardwaj S, Wille H, Oehler A, DeArmond SJ, Giles K, Prusiner SB. Protease-resistant prions selectively decrease Shadoo protein. PLoS Pathog 2011; 7:e1002382. [PMID: 22163178 PMCID: PMC3219722 DOI: 10.1371/journal.ppat.1002382] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 10/04/2011] [Indexed: 11/30/2022] Open
Abstract
The central event in prion diseases is the conformational conversion of the cellular prion protein (PrP(C)) into PrP(Sc), a partially protease-resistant and infectious conformer. However, the mechanism by which PrP(Sc) causes neuronal dysfunction remains poorly understood. Levels of Shadoo (Sho), a protein that resembles the flexibly disordered N-terminal domain of PrP(C), were found to be reduced in the brains of mice infected with the RML strain of prions [1], implying that Sho levels may reflect the presence of PrP(Sc) in the brain. To test this hypothesis, we examined levels of Sho during prion infection using a variety of experimental systems. Sho protein levels were decreased in the brains of mice, hamsters, voles, and sheep infected with different natural and experimental prion strains. Furthermore, Sho levels were decreased in the brains of prion-infected, transgenic mice overexpressing Sho and in infected neuroblastoma cells. Time-course experiments revealed that Sho levels were inversely proportional to levels of protease-resistant PrP(Sc). Membrane anchoring and the N-terminal domain of PrP both influenced the inverse relationship between Sho and PrP(Sc). Although increased Sho levels had no discernible effect on prion replication in mice, we conclude that Sho is the first non-PrP marker specific for prion disease. Additional studies using this paradigm may provide insight into the cellular pathways and systems subverted by PrP(Sc) during prion disease.
Collapse
Affiliation(s)
- Joel C. Watts
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, United States of America
| | - Jan Stöhr
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, United States of America
| | - Sumita Bhardwaj
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, United States of America
| | - Holger Wille
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, United States of America
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | - Abby Oehler
- Department of Pathology, University of California, San Francisco, San Francisco, California, United States of America
| | - Stephen J. DeArmond
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California, San Francisco, San Francisco, California, United States of America
| | - Kurt Giles
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, United States of America
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | - Stanley B. Prusiner
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, United States of America
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
39
|
Loubet D, Dakowski C, Pietri M, Pradines E, Bernard S, Callebert J, Ardila-Osorio H, Mouillet-Richard S, Launay JM, Kellermann O, Schneider B. Neuritogenesis: the prion protein controls β1 integrin signaling activity. FASEB J 2011; 26:678-90. [PMID: 22038049 DOI: 10.1096/fj.11-185579] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cytoskeleton modifications are required for neuronal stem cells to acquire neuronal polarization. Little is known, however, about mechanisms that orchestrate cytoskeleton remodeling along neuritogenesis. Here, we show that the silencing of the cellular prion protein (PrP(C)) impairs the initial sprouting of neurites upon induction of differentiation of the 1C11 neuroectodermal cell line, indicating that PrP(C) is necessary to neuritogenesis. Such PrP(C) function relies on its capacity to negatively regulate the clustering, activation, and signaling activity of β1 integrins at the plasma membrane. β1 Integrin aggregation caused by PrP(C) depletion triggers overactivation of the RhoA-Rho kinase-LIMK-cofilin pathway, which, in turn, alters the turnover of focal adhesions, increases the stability of actin microfilaments, and in fine impairs neurite formation. Inhibition of Rho kinases is sufficient to compensate for the lack of PrP(C) and to restore neurite sprouting. We also observe an increased secretion of fibronectin in the surrounding milieu of PrP(C)-depleted 1C11 cells, which likely self-sustains β1 integrin signaling overactivation and contributes to neuritogenesis defect. Our overall data reveal that PrP(C) contributes to the acquisition of neuronal polarization by modulating β1 integrin activity, cell interaction with fibronectin, and cytoskeleton dynamics.
Collapse
Affiliation(s)
- Damien Loubet
- Institut National Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR-S) 747, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Young R, Le Guillou S, Tilly G, Passet B, Vilotte M, Castille J, Beringue V, Le Provost F, Laude H, Vilotte JL. Generation of Sprn-regulated reporter mice reveals gonadic spatial expression of the prion-like protein Shadoo in mice. Biochem Biophys Res Commun 2011; 412:752-6. [PMID: 21871438 DOI: 10.1016/j.bbrc.2011.08.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 08/09/2011] [Indexed: 10/17/2022]
Abstract
The protein Shadoo (Sho) is a paralogue of prion protein, and encoded by the gene Sprn. Like prion protein it is primarily expressed in central nervous system, and has been shown to have a similar expression pattern in certain regions of the brain. We have generated reporter mice carrying a transgene encompassing the Sprn promoter, exon 1, intron 1 and the 5'-end of exon 2 driving expression of either the LacZ or GFP reporter gene to study the expression profile of Shadoo in mice. Expression of the reporter genes was analysed in brains of these transgenic mice and was shown to mimic that of the endogenous gene expression, previously described by Watts et al. [1]. Consequently, the Sprn-LacZ mice were used to study the spatial expression of Sho in other tissues of the adult mouse. Several tissues were collected and stained for β-gal activity, including the thymus, heart, lung, liver, kidney, spleen, intestine, muscle, and gonads. From this array of tissues, the transgene was consistently expressed only in specific cell types of the testicle and ovary, suggesting a role for Shadoo in fertility and reproduction. These mice may serve as a useful tool in deciphering the regulation of the prion-like gene Sprn and thus, indirectly, of the Shadoo protein.
Collapse
Affiliation(s)
- Rachel Young
- INRA UMR 1313, Equipe Différenciation et Spécialisation Cellulaires (DISC), Génétique Animale et Biologie Intégrative (GABI), Jouy-en-Josas, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Khalifé M, Young R, Passet B, Halliez S, Vilotte M, Jaffrezic F, Marthey S, Béringue V, Vaiman D, Le Provost F, Laude H, Vilotte JL. Transcriptomic analysis brings new insight into the biological role of the prion protein during mouse embryogenesis. PLoS One 2011; 6:e23253. [PMID: 21858045 PMCID: PMC3156130 DOI: 10.1371/journal.pone.0023253] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 07/11/2011] [Indexed: 11/25/2022] Open
Abstract
The biological function of the Prion protein remains largely unknown but recent data revealed its implication in early zebrafish and mammalian embryogenesis. To gain further insight into its biological function, comparative transcriptomic analysis between FVB/N and FVB/N Prnp knockout mice was performed at early embryonic stages. RNAseq analysis revealed the differential expression of 73 and 263 genes at E6.5 and E7.5, respectively. The related metabolic pathways identified in this analysis partially overlap with those described in PrP1 and PrP2 knockdown zebrafish embryos and prion-infected mammalian brains and emphasize a potentially important role for the PrP family genes in early developmental processes.
Collapse
Affiliation(s)
- Manal Khalifé
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
| | - Rachel Young
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
| | - Bruno Passet
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
| | - Sophie Halliez
- INRA, UR892, Virologie et Immunologie Moléculaires, INRA, Jouy-en-Josas, France
| | - Marthe Vilotte
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
| | - Florence Jaffrezic
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
| | - Sylvain Marthey
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
| | - Vincent Béringue
- INRA, UR892, Virologie et Immunologie Moléculaires, INRA, Jouy-en-Josas, France
| | | | - Fabienne Le Provost
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
| | - Hubert Laude
- INRA, UR892, Virologie et Immunologie Moléculaires, INRA, Jouy-en-Josas, France
| | - Jean-Luc Vilotte
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
- * E-mail:
| |
Collapse
|
42
|
Miranda A, Pericuesta E, Ramírez MÁ, Gutiérrez-Adán A. Prion protein in ESC regulation. Prion 2011; 5:169-71. [PMID: 21814032 DOI: 10.4161/pri.5.3.16797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A large number of studies have analysed the putative functions of the prion protein (PrP(C)) in mammals. Although its sequence conservation over a wide range of different animals may indicate that this protein could have a key role in prion diseases, an absolutely accepted involvement has not been found so far. We have recently reported that PrP(C) regulates Nanog mRNA expression, the first non-redundant function of PrP(C) in embryonic stem cells (ESC), which translates into control of pluripotency and early differentiation. Contrary to what it is believed, the other two members of the prion protein family, Doppel and Shadoo, cannot replace the absence of PrP(C), causing the appearance of a new embryoid body (EB) population in our in vitro culture. The similarities between EB and an early post-implantation embryo suggest that this might also occur in vivo, enhancing the importance of this finding. On the other hand, our data may support the hypothesis of a relationship between the loss of PrP(C) function and neuronal degeneration in prion diseases. A reduction in brain stem cells pluripotency after PrP(C) is misfolded into the pathological conformation (PrP(Sc)) could lead to a delay or a disappearance of the normal brain damage recovery.
Collapse
Affiliation(s)
- Alberto Miranda
- Departamento de Reproducción Animal y Conservación de Recursos Zoogenéticos, INIA, Madrid, Spain.
| | | | | | | |
Collapse
|
43
|
Miranda A, Pericuesta E, Ramírez MÁ, Gutierrez-Adan A. Prion protein expression regulates embryonic stem cell pluripotency and differentiation. PLoS One 2011; 6:e18422. [PMID: 21483752 PMCID: PMC3070729 DOI: 10.1371/journal.pone.0018422] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 03/06/2011] [Indexed: 01/06/2023] Open
Abstract
Cellular prion protein (PRNP) is a glycoprotein involved in the pathogenesis of transmissible spongiform encephalopathies (TSEs). Although the physiological function of PRNP is largely unknown, its key role in prion infection has been extensively documented. This study examines the functionality of PRNP during the course of embryoid body (EB) differentiation in mouse Prnp-null (KO) and WT embryonic stem cell (ESC) lines. The first feature observed was a new population of EBs that only appeared in the KO line after 5 days of differentiation. These EBs were characterized by their expression of several primordial germ cell (PGC) markers until Day 13. In a comparative mRNA expression analysis of genes playing an important developmental role during ESC differentiation to EBs, Prnp was found to participate in the transcription of a key pluripotency marker such as Nanog. A clear switching off of this gene on Day 5 was observed in the KO line as opposed to the WT line, in which maximum Prnp and Nanog mRNA levels appeared at this time. Using a specific antibody against PRNP to block PRNP pathways, reduced Nanog expression was confirmed in the WT line. In addition, antibody-mediated inhibition of ITGB5 (integrin αvβ5) in the KO line rescued the low expression of Nanog on Day 5, suggesting the regulation of Nanog transcription by Prnp via this Itgb5. mRNA expression analysis of the PRNP-related proteins PRND (Doppel) and SPRN (Shadoo), whose PRNP function is known to be redundant, revealed their incapacity to compensate for the absence of PRNP during early ESC differentiation. Our findings provide strong evidence for a relationship between Prnp and several key pluripotency genes and attribute Prnp a crucial role in regulating self-renewal/differentiation status of ESC, confirming the participation of PRNP during early embryogenesis.
Collapse
Affiliation(s)
- Alberto Miranda
- Departamento de Reproducción Animal y Conservación de Recursos Zoogenéticos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain.
| | | | | | | |
Collapse
|
44
|
Westaway D, Daude N, Wohlgemuth S, Harrison P. The PrP-Like Proteins Shadoo and Doppel. Top Curr Chem (Cham) 2011; 305:225-56. [DOI: 10.1007/128_2011_190] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
45
|
Fish models in prion biology: underwater issues. Biochim Biophys Acta Mol Basis Dis 2010; 1812:402-14. [PMID: 20933080 DOI: 10.1016/j.bbadis.2010.09.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 09/11/2010] [Accepted: 09/21/2010] [Indexed: 12/14/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs), otherwise known as prion disorders, are fatal diseases causing neurodegeneration in a wide range of mammalian hosts, including humans. The causative agents - prions - are thought to be composed of a rogue isoform of the endogenous prion protein (PrP). Beyond these and other basic concepts, fundamental questions in prion biology remain unanswered, such as the physiological function of PrP, the molecular mechanisms underlying prion pathogenesis, and the origin of prions. To date, the occurrence of TSEs in lower vertebrates like fish and birds has received only limited attention, despite the fact that these animals possess bona fide PrPs. Recent findings, however, have brought fish before the footlights of prion research. Fish models are beginning to provide useful insights into the roles of PrP in health and disease, as well as the potential risk of prion transmission between fish and mammals. Although still in its infancy, the use of fish models in TSE research could significantly improve our basic understanding of prion diseases, and also help anticipate risks to public health. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases.
Collapse
|
46
|
Chadi S, Young R, Le Guillou S, Tilly G, Bitton F, Martin-Magniette ML, Soubigou-Taconnat L, Balzergue S, Vilotte M, Peyre C, Passet B, Béringue V, Renou JP, Le Provost F, Laude H, Vilotte JL. Brain transcriptional stability upon prion protein-encoding gene invalidation in zygotic or adult mouse. BMC Genomics 2010; 11:448. [PMID: 20649983 PMCID: PMC3091645 DOI: 10.1186/1471-2164-11-448] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 07/22/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The physiological function of the prion protein remains largely elusive while its key role in prion infection has been expansively documented. To potentially assess this conundrum, we performed a comparative transcriptomic analysis of the brain of wild-type mice with that of transgenic mice invalidated at this locus either at the zygotic or at the adult stages. RESULTS Only subtle transcriptomic differences resulting from the Prnp knockout could be evidenced, beside Prnp itself, in the analyzed adult brains following microarray analysis of 24 109 mouse genes and QPCR assessment of some of the putatively marginally modulated loci. When performed at the adult stage, neuronal Prnp disruption appeared to sequentially induce a response to an oxidative stress and a remodeling of the nervous system. However, these events involved only a limited number of genes, expression levels of which were only slightly modified and not always confirmed by RT-qPCR. If not, the qPCR obtained data suggested even less pronounced differences. CONCLUSIONS These results suggest that the physiological function of PrP is redundant at the adult stage or important for only a small subset of the brain cell population under classical breeding conditions. Following its early reported embryonic developmental regulation, this lack of response could also imply that PrP has a more detrimental role during mouse embryogenesis and that potential transient compensatory mechanisms have to be searched for at the time this locus becomes transcriptionally activated.
Collapse
Affiliation(s)
- Sead Chadi
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, F-78350, Jouy-en-Josas, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|