1
|
Fährrolfes R, Bietz S, Flachsenberg F, Meyder A, Nittinger E, Otto T, Volkamer A, Rarey M. ProteinsPlus: a web portal for structure analysis of macromolecules. Nucleic Acids Res 2019; 45:W337-W343. [PMID: 28472372 PMCID: PMC5570178 DOI: 10.1093/nar/gkx333] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/18/2017] [Indexed: 11/15/2022] Open
Abstract
With currently more than 126 000 publicly available structures and an increasing growth rate, the Protein Data Bank constitutes a rich data source for structure-driven research in fields like drug discovery, crop science and biotechnology in general. Typical workflows in these areas involve manifold computational tools for the analysis and prediction of molecular functions. Here, we present the ProteinsPlus web server that offers a unified easy-to-use interface to a broad range of tools for the early phase of structure-based molecular modeling. This includes solutions for commonly required pre-processing tasks like structure quality assessment (EDIA), hydrogen placement (Protoss) and the search for alternative conformations (SIENA). Beyond that, it also addresses frequent problems as the generation of 2D-interaction diagrams (PoseView), protein-protein interface classification (HyPPI) as well as automatic pocket detection and druggablity assessment (DoGSiteScorer). The unified ProteinsPlus interface covering all featured approaches provides various facilities for intuitive input and result visualization, case-specific parameterization and download options for further processing. Moreover, its generalized workflow allows the user a quick familiarization with the different tools. ProteinsPlus also stores the calculated results temporarily for future request and thus facilitates convenient result communication and re-access. The server is freely available at http://proteins.plus.
Collapse
Affiliation(s)
- Rainer Fährrolfes
- Universität Hamburg, ZBH-Center for Bioinformatics, Bundesstrasse 43, 20146 Hamburg, Germany
| | - Stefan Bietz
- Universität Hamburg, ZBH-Center for Bioinformatics, Bundesstrasse 43, 20146 Hamburg, Germany
| | - Florian Flachsenberg
- Universität Hamburg, ZBH-Center for Bioinformatics, Bundesstrasse 43, 20146 Hamburg, Germany
| | - Agnes Meyder
- Universität Hamburg, ZBH-Center for Bioinformatics, Bundesstrasse 43, 20146 Hamburg, Germany
| | - Eva Nittinger
- Universität Hamburg, ZBH-Center for Bioinformatics, Bundesstrasse 43, 20146 Hamburg, Germany
| | - Thomas Otto
- Universität Hamburg, ZBH-Center for Bioinformatics, Bundesstrasse 43, 20146 Hamburg, Germany
| | - Andrea Volkamer
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Virchowweg 6, 10117 Berlin, Germany
| | - Matthias Rarey
- Universität Hamburg, ZBH-Center for Bioinformatics, Bundesstrasse 43, 20146 Hamburg, Germany
| |
Collapse
|
2
|
Sato H, Nagashima K, Ogura M, Sato Y, Tahara Y, Ogura K, Yamano G, Sugizaki K, Fujita N, Tatsuoka H, Usui R, Mukai E, Fujimoto S, Inagaki N. Src regulates insulin secretion and glucose metabolism by influencing subcellular localization of glucokinase in pancreatic β-cells. J Diabetes Investig 2015; 7:171-8. [PMID: 27042268 PMCID: PMC4773676 DOI: 10.1111/jdi.12407] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 07/14/2015] [Accepted: 07/26/2015] [Indexed: 12/28/2022] Open
Abstract
Aims/Introduction Src, a non‐receptor tyrosine kinase, regulates a wide range of cellular functions, and hyperactivity of Src is involved in impaired glucose metabolism in pancreatic β‐cells. However, the physiological role of Src in glucose metabolism in normal, unstressed β‐cells remains unclear. In the present study, we investigated the role of Src in insulin secretion and glucose metabolism. Materials and Methods Src was downregulated using small interfering ribonucleic acid in INS‐1 cells, and glucose‐induced insulin secretion, adenosine triphosphate content, intracellular calcium concentration, glucose utilization and glucokinase activity were measured. Expression levels of messenger ribonucleic acid and protein of glucokinase were examined by semiquantitative real‐time polymerase chain reaction and immunoblotting, respectively. Cells were fractionated by digitonin treatment, and subcellular localization of glucokinase was examined by immunoblotting. Interaction between glucokinase and neuronal nitric oxide synthase was estimated by immunoprecipitation. Results In Src downregulated INS‐1 cells, glucose‐induced insulin secretion was impaired, whereas insulin secretion induced by high K+ was not affected. Intracellular adenosine triphosphate content and elevation of intracellular calcium concentration by glucose stimulation were suppressed by Src downregulation. Src downregulation reduced glucose utilization in the presence of high glucose, which was accompanied by a reduction in glucokinase activity without affecting its expression. However, Src downregulation reduced glucokinase in soluble, cytoplasmic fraction, and increased it in pellet containing intaracellular organelles. In addition, interaction between glucokinase and neuronal nitric oxide synthase was facilitated by Src downregulation. Conclusions Src plays an important role in glucose‐induced insulin secretion in pancreatic β‐cells through maintaining subcellular localization and activity of glucokinase.
Collapse
Affiliation(s)
- Hiroki Sato
- Department of Diabetes, Endocrinology and Nutrition Graduate School of Medicine Kyoto University Kyoto Japan
| | - Kazuaki Nagashima
- Department of Diabetes, Endocrinology and Nutrition Graduate School of Medicine Kyoto University Kyoto Japan
| | - Masahito Ogura
- Department of Diabetes, Endocrinology and Nutrition Graduate School of Medicine Kyoto University Kyoto Japan
| | - Yuichi Sato
- Department of Diabetes, Endocrinology and Nutrition Graduate School of Medicine Kyoto University Kyoto Japan
| | - Yumiko Tahara
- Department of Diabetes, Endocrinology and Nutrition Graduate School of Medicine Kyoto University Kyoto Japan
| | - Kasane Ogura
- Department of Diabetes, Endocrinology and Nutrition Graduate School of Medicine Kyoto University Kyoto Japan
| | - Gen Yamano
- Department of Diabetes, Endocrinology and Nutrition Graduate School of Medicine Kyoto University Kyoto Japan
| | - Kazu Sugizaki
- Department of Diabetes, Endocrinology and Nutrition Graduate School of Medicine Kyoto University Kyoto Japan
| | - Naotaka Fujita
- Department of Diabetes, Endocrinology and Nutrition Graduate School of Medicine Kyoto University Kyoto Japan
| | - Hisato Tatsuoka
- Department of Diabetes, Endocrinology and Nutrition Graduate School of Medicine Kyoto University Kyoto Japan
| | - Ryota Usui
- Department of Diabetes, Endocrinology and Nutrition Graduate School of Medicine Kyoto University Kyoto Japan
| | - Eri Mukai
- Department of Medical Physiology Graduate School of Medicine, Chiba University Chiba Japan
| | - Shimpei Fujimoto
- Department of Endocrinology, Metabolism, and Nephrology Kochi Medical School Kochi University Nankoku Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition Graduate School of Medicine Kyoto University Kyoto Japan
| |
Collapse
|
3
|
Shammas C, Neocleous V, Phelan MM, Lian LY, Skordis N, Phylactou LA. A report of 2 new cases of MODY2 and review of the literature: implications in the search for type 2 diabetes drugs. Metabolism 2013; 62:1535-42. [PMID: 23890519 DOI: 10.1016/j.metabol.2013.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/11/2013] [Accepted: 06/11/2013] [Indexed: 10/26/2022]
Abstract
Glucokinase (GCK) acts as a glucose sensor and stimulates the release of insulin from pancreatic β-cells and any GCK gene mutations can lead to different forms of diabetes, such as GCK-monogenic diabetes of the young type 2 (MODY2), permanent neonatal diabetes and congenital hyperinsulinism. Many MODY2 causing mutations display a variation in the degree of severity, ranging from mild dietary-restricted forms to more detrimental presentation requiring insulin replacement. The present study reviews known and two novel GCK mutations in terms of molecular perturbation of the GCK atomic structure but also emphasizes the inactivating and activating properties of the GCK as treatment for T2DM. In silico analysis demonstrated that the newly discovered mutation p.Arg447Pro causes structural conformational changes that lead to the destabilization of the functional properties of the protein resulting in the reduction of glucose and MgATP2- affinity. The novel p.Glu440Stop nonsense mutation on the other hand inactivates the cytoplasmic enzymatic activity of the protein as it is responsible for the loss of the C-terminal end of the polypeptide that includes vital glucose-releasing residues. Based on the in silico models of existing structural data we identified several classes of GCK mutations and discuss their relation to disease outcome. GCK has a central role in controlling body glucose homeostasis and therefore is considered an outstanding drug target for developing new antidiabetic therapies using small molecular activators (GKAs). This study emphasizes the importance in understanding how inactivating and activating GCK mutations affect the mechanistic properties of this glucose sensor. Such information can become the basis for drug discovery of therapeutic compounds and the treatment of T2DM by targeting the GCK allosteric activator site.
Collapse
Affiliation(s)
- Christos Shammas
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683 Nicosia, Cyprus
| | | | | | | | | | | |
Collapse
|
4
|
Larion M, Salinas RK, Bruschweiler-Li L, Miller BG, Brüschweiler R. Order-disorder transitions govern kinetic cooperativity and allostery of monomeric human glucokinase. PLoS Biol 2012; 10:e1001452. [PMID: 23271955 PMCID: PMC3525530 DOI: 10.1371/journal.pbio.1001452] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 11/07/2012] [Indexed: 11/18/2022] Open
Abstract
Analysis of the functional dynamics of human glucokinase reveals that a slow order-disorder transition governs monomeric kinetic cooperativity in response to glucose concentrations. Glucokinase (GCK) catalyzes the rate-limiting step of glucose catabolism in the pancreas, where it functions as the body's principal glucose sensor. GCK dysfunction leads to several potentially fatal diseases including maturity–onset diabetes of the young type II (MODY-II) and persistent hypoglycemic hyperinsulinemia of infancy (PHHI). GCK maintains glucose homeostasis by displaying a sigmoidal kinetic response to increasing blood glucose levels. This positive cooperativity is unique because the enzyme functions exclusively as a monomer and possesses only a single glucose binding site. Despite nearly a half century of research, the mechanistic basis for GCK's homotropic allostery remains unresolved. Here we explain GCK cooperativity in terms of large-scale, glucose-mediated disorder–order transitions using 17 isotopically labeled isoleucine methyl groups and three tryptophan side chains as sensitive nuclear magnetic resonance (NMR) probes. We find that the small domain of unliganded GCK is intrinsically disordered and samples a broad conformational ensemble. We also demonstrate that small-molecule diabetes therapeutic agents and hyperinsulinemia-associated GCK mutations share a strikingly similar activation mechanism, characterized by a population shift toward a more narrow, well-ordered ensemble resembling the glucose-bound conformation. Our results support a model in which GCK generates its cooperative kinetic response at low glucose concentrations by using a millisecond disorder–order cycle of the small domain as a “time-delay loop,” which is bypassed at high glucose concentrations, providing a unique mechanism to allosterically regulate the activity of human GCK under physiological conditions. Glucokinase is a key metabolic enzyme that functions as the body's principal glucose sensor. Glucokinase regulates the rate at which insulin is secreted by the pancreas by using a unique but poorly understood cooperative kinetic response to increasing glucose concentrations. The physiological importance of this enzyme is underlined by the fact that mutations in the glucokinase gene lead to maturity-onset diabetes of the young type II (MODY II), permanent neonatal diabetes mellitus (PNDM), and hypoglycemic hyperinsulinemia of infancy (HI). In this study, we use cutting-edge high-resolution nuclear magnetic resonance methods to understand how the kinetic properties of glucokinase contribute to glucose homeostasis. We also seek to understand how a class of recently discovered small-molecule drugs, which hold promise as therapeutics for type 2 diabetes, function to enhance glucokinase activity. Our results suggest that glucokinase samples a range of conformational states in the absence of glucose. However, in the presence of glucose or a small-molecule activator, the enzyme population shifts towards a more narrow, well-structured ensemble of states. Our findings provide a new model for glucokinase cooperative kinetics, which relies on a slow order–disorder transition in response to glucose concentrations. These results also reveal a universal mechanism of glucokinase activation, which may inform the development of new antidiabetic agents.
Collapse
Affiliation(s)
- Mioara Larion
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America
| | - Roberto Kopke Salinas
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America
- Institute of Chemistry, University of São Paulo, São Paulo, Brazil
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, United States of America
| | - Lei Bruschweiler-Li
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, United States of America
| | - Brian G. Miller
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America
- * E-mail: (BGM); (RB)
| | - Rafael Brüschweiler
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, United States of America
- * E-mail: (BGM); (RB)
| |
Collapse
|
5
|
Negahdar M, Aukrust I, Johansson BB, Molnes J, Molven A, Matschinsky FM, Søvik O, Kulkarni RN, Flatmark T, Njølstad PR, Bjørkhaug L. GCK-MODY diabetes associated with protein misfolding, cellular self-association and degradation. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1705-15. [PMID: 22820548 DOI: 10.1016/j.bbadis.2012.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 06/17/2012] [Accepted: 07/12/2012] [Indexed: 12/31/2022]
Abstract
GCK-MODY, dominantly inherited mild fasting hyperglycemia, has been associated with >600 different mutations in the glucokinase (GK)-encoding gene (GCK). When expressed as recombinant pancreatic proteins, some mutations result in enzymes with normal/near-normal catalytic properties. The molecular mechanism(s) of GCK-MODY due to these mutations has remained elusive. Here, we aimed to explore the molecular mechanisms for two such catalytically 'normal' GCK mutations (S263P and G264S) in the F260-L270 loop of GK. When stably overexpressed in HEK293 cells and MIN6 β-cells, the S263P- and G264S-encoded mutations generated misfolded proteins with an increased rate of degradation (S263P>G264S) by the protein quality control machinery, and a propensity to self-associate (G264S>S263P) and form dimers (SDS resistant) and aggregates (partly Triton X-100 insoluble), as determined by pulse-chase experiments and subcellular fractionation. Thus, the GCK-MODY mutations S263P and G264S lead to protein misfolding causing destabilization, cellular dimerization/aggregation and enhanced rate of degradation. In silico predicted conformational changes of the F260-L270 loop structure are considered to mediate the dimerization of both mutant proteins by a domain swapping mechanism. Thus, similar properties may represent the molecular mechanisms for additional unexplained GCK-MODY mutations, and may also contribute to the disease mechanism in other previously characterized GCK-MODY inactivating mutations.
Collapse
Affiliation(s)
- Maria Negahdar
- Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Larion M, Miller BG. Homotropic allosteric regulation in monomeric mammalian glucokinase. Arch Biochem Biophys 2012; 519:103-11. [PMID: 22107947 PMCID: PMC3294010 DOI: 10.1016/j.abb.2011.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/03/2011] [Accepted: 11/04/2011] [Indexed: 11/30/2022]
Abstract
Glucokinase catalyzes the ATP-dependent phosphorylation of glucose, a chemical transformation that represents the rate-limiting step of glycolytic metabolism in the liver and pancreas. Glucokinase is a central regulator of glucose homeostasis as evidenced by its association with two disease states, maturity onset diabetes of the young (MODY) and persistent hyperinsulinemia of infancy (PHHI). Mammalian glucokinase is subject to homotropic allosteric regulation by glucose-the steady-state velocity of glucose-6-phosphate production is not hyperbolic, but instead displays a sigmoidal response to increasing glucose concentrations. The positive cooperativity displayed by glucokinase is intriguing since the enzyme functions as a monomer under physiological conditions and contains only a single binding site for glucose. Despite the existence of several models of kinetic cooperativity in monomeric enzymes, a consensus has yet to be reached regarding the mechanism of allosteric regulation in glucokinase. Experimental evidence collected over the last 45 years by a number of investigators supports a link between cooperativity and slow conformational reorganizations of the glucokinase scaffold. In this review, we summarize advances in our understanding of glucokinase allosteric regulation resulting from recent X-ray crystallographic, pre-equilibrium kinetic and high-resolution nuclear magnetic resonance investigations. We conclude with a brief discussion of unanswered questions regarding the mechanistic basis of kinetic cooperativity in mammalian glucokinase.
Collapse
Affiliation(s)
- Mioara Larion
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | | |
Collapse
|