1
|
Myxobacterial Genomics and Post-Genomics: A Review of Genome Biology, Genome Sequences and Related 'Omics Studies. Microorganisms 2021; 9:microorganisms9102143. [PMID: 34683464 PMCID: PMC8538405 DOI: 10.3390/microorganisms9102143] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/27/2022] Open
Abstract
Myxobacteria are fascinating and complex microbes. They prey upon other members of the soil microbiome by secreting antimicrobial proteins and metabolites, and will undergo multicellular development if starved. The genome sequence of the model myxobacterium Myxococcus xanthus DK1622 was published in 2006 and 15 years later, 163 myxobacterial genome sequences have now been made public. This explosion in genomic data has enabled comparative genomics analyses to be performed across the taxon, providing important insights into myxobacterial gene conservation and evolution. The availability of myxobacterial genome sequences has allowed system-wide functional genomic investigations into entire classes of genes. It has also enabled post-genomic technologies to be applied to myxobacteria, including transcriptome analyses (microarrays and RNA-seq), proteome studies (gel-based and gel-free), investigations into protein–DNA interactions (ChIP-seq) and metabolism. Here, we review myxobacterial genome sequencing, and summarise the insights into myxobacterial biology that have emerged as a result. We also outline the application of functional genomics and post-genomic approaches in myxobacterial research, highlighting important findings to emerge from seminal studies. The review also provides a comprehensive guide to the genomic datasets available in mid-2021 for myxobacteria (including 24 genomes that we have sequenced and which are described here for the first time).
Collapse
|
2
|
Klenk JM, Ertl J, Rapp L, Fischer MP, Hauer B. Expression and characterization of the benzoic acid hydroxylase CYP199A25 from Arthrobacter sp. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
3
|
Klenk JM, Dubiel P, Sharma M, Grogan G, Hauer B. Characterization and structure-guided engineering of the novel versatile terpene monooxygenase CYP109Q5 from Chondromyces apiculatus DSM436. Microb Biotechnol 2019; 12:377-391. [PMID: 30592153 PMCID: PMC6389848 DOI: 10.1111/1751-7915.13354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 01/12/2023] Open
Abstract
One of the major challenges in chemical synthesis is the selective oxyfunctionalization of non-activated C-H bonds, which can be enabled by biocatalysis using cytochrome P450 monooxygenases. In this study, we report on the characterization of the versatile CYP109Q5 from Chondromyces apiculatus DSM436, which is able to functionalize a wide range of substrates (terpenes, steroids and drugs), including the ring of β-ionone in non-allylic positions. The crystal structure of CYP109Q5 revealed flexibility within the active site pocket that permitted the accommodation of bulky substrates, and enabled a structure-guided approach to engineering the enzyme. Some variants of CYP109Q5 displayed a switch in selectivity towards the non-allylic positions of β-ionone, allowing the simultaneous production of 2- and 3-hydroxy-β-ionone, which are chemically challenging to synthesize and are important precursors for carotenoid synthesis. An efficient whole-cell system finally enabled the production of up to 0.5 g l-1 hydroxylated products of β-ionone; this system can be applied to product identification in further biotransformations. Overall, CYP109Q5 proved to be highly evolvable and active. The studies in this work demonstrate that, using rational mutagenesis, the highly versatile CYP109Q5 generalist can be progressively evolved to be an industrially valuable specialist for the synthesis of specific products.
Collapse
Affiliation(s)
- Jan M. Klenk
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| | - Paulina Dubiel
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Mahima Sharma
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Gideon Grogan
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Bernhard Hauer
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| |
Collapse
|
4
|
Khatri Y, Jóźwik IK, Ringle M, Ionescu IA, Litzenburger M, Hutter MC, Thunnissen AMWH, Bernhardt R. Structure-Based Engineering of Steroidogenic CYP260A1 for Stereo- and Regioselective Hydroxylation of Progesterone. ACS Chem Biol 2018; 13:1021-1028. [PMID: 29509407 DOI: 10.1021/acschembio.8b00026] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The production of regio- and stereoselectively hydroxylated steroids is of high pharmaceutical interest and can be achieved by cytochrome P450-based biocatalysts. CYP260A1 from Sorangium cellulosum strain So ce56 catalyzes hydroxylation of C19 or C21 steroids at the very unique 1α-position. However, the conversion of progesterone (PROG) by CYP260A1 is very unselective. In order to improve its selectivity we applied a semirational protein engineering approach, resulting in two different, highly regio- and stereoselective mutants by replacing a single serine residue (S276) of the substrate recognition site 5 with an asparagine or isoleucine. The S276N mutant converted PROG predominantly into 1α-hydroxy-PROG, while the S276I mutant led to 17α-hydroxy-PROG. We solved the high-resolution crystal structures of the PROG-bound S276N and S276I mutants, which revealed two different binding modes of PROG in the active site. The orientations were consistent with the exclusive 1α- (pro-1α binding mode) and 17α-hydroxylation (pro-17α-binding mode) of S276N and S276I, respectively. We observed that water-mediated hydrogen bonds contribute to the stabilization of the polar C3 and C17 substituents of PROG. Both binding modes of PROG may be stabilized in the wild-type enzyme. The change in regioselectivity is mainly driven by destabilizing the alternative binding mode due to steric hindrance and hydrogen bond disruption, caused by the mutations of Ser276. Thus, for the first time, the change in the selectivity of cytochrome P450-mediated steroid hydroxylation created by rational mutagenesis can be explained by the obtained 3D structures of the substrate-bound mutants, providing the basis for further experiments to engineer the biocatalyst toward novel steroid hydroxylation positions.
Collapse
Affiliation(s)
- Yogan Khatri
- Department of Biochemistry, Campus B2.2, 66123, Saarland University, Saarbrücken, Germany
| | - Ilona K. Jóźwik
- Laboratory of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Michael Ringle
- Department of Biochemistry, Campus B2.2, 66123, Saarland University, Saarbrücken, Germany
| | | | - Martin Litzenburger
- Department of Biochemistry, Campus B2.2, 66123, Saarland University, Saarbrücken, Germany
| | | | - Andy-Mark W. H. Thunnissen
- Laboratory of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Rita Bernhardt
- Department of Biochemistry, Campus B2.2, 66123, Saarland University, Saarbrücken, Germany
| |
Collapse
|
5
|
Chenge JT, Duyet LV, Swami S, McLean KJ, Kavanagh ME, Coyne AG, Rigby SEJ, Cheesman MR, Girvan HM, Levy CW, Rupp B, von Kries JP, Abell C, Leys D, Munro AW. Structural Characterization and Ligand/Inhibitor Identification Provide Functional Insights into the Mycobacterium tuberculosis Cytochrome P450 CYP126A1. J Biol Chem 2016; 292:1310-1329. [PMID: 27932461 PMCID: PMC5270475 DOI: 10.1074/jbc.m116.748822] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 12/02/2016] [Indexed: 12/12/2022] Open
Abstract
The Mycobacterium tuberculosis H37Rv genome encodes 20 cytochromes P450, including P450s crucial to infection and bacterial viability. Many M. tuberculosis P450s remain uncharacterized, suggesting that their further analysis may provide new insights into M. tuberculosis metabolic processes and new targets for drug discovery. CYP126A1 is representative of a P450 family widely distributed in mycobacteria and other bacteria. Here we explore the biochemical and structural properties of CYP126A1, including its interactions with new chemical ligands. A survey of azole antifungal drugs showed that CYP126A1 is inhibited strongly by azoles containing an imidazole ring but not by those tested containing a triazole ring. To further explore the molecular preferences of CYP126A1 and search for probes of enzyme function, we conducted a high throughput screen. Compounds containing three or more ring structures dominated the screening hits, including nitroaromatic compounds that induce substrate-like shifts in the heme spectrum of CYP126A1. Spectroelectrochemical measurements revealed a 155-mV increase in heme iron potential when bound to one of the newly identified nitroaromatic drugs. CYP126A1 dimers were observed in crystal structures of ligand-free CYP126A1 and for CYP126A1 bound to compounds discovered in the screen. However, ketoconazole binds in an orientation that disrupts the BC-loop regions at the P450 dimer interface and results in a CYP126A1 monomeric crystal form. Structural data also reveal that nitroaromatic ligands "moonlight" as substrates by displacing the CYP126A1 distal water but inhibit enzyme activity. The relatively polar active site of CYP126A1 distinguishes it from its most closely related sterol-binding P450s in M. tuberculosis, suggesting that further investigations will reveal its diverse substrate selectivity.
Collapse
Affiliation(s)
- Jude T Chenge
- From the Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Le Van Duyet
- From the Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Shalini Swami
- From the Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Kirsty J McLean
- From the Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Madeline E Kavanagh
- the Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Anthony G Coyne
- the Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Stephen E J Rigby
- From the Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Myles R Cheesman
- the School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom, and
| | - Hazel M Girvan
- From the Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Colin W Levy
- From the Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Bernd Rupp
- the Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Jens P von Kries
- the Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Chris Abell
- the Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David Leys
- From the Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Andrew W Munro
- From the Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom,
| |
Collapse
|
6
|
Shumyantseva V, Kuzikov A, Masamrekh R, Khatri Y, Zavialova M, Bernhardt R, Archakov A. Direct electrochemistry of CYP109C1, CYP109C2 and CYP109D1 from Sorangium cellulosum So ce56. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.01.162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Schifrin A, Khatri Y, Kirsch P, Thiel V, Schulz S, Bernhardt R. A single terpene synthase is responsible for a wide variety of sesquiterpenes in Sorangium cellulosum Soce56. Org Biomol Chem 2016; 14:3385-93. [DOI: 10.1039/c6ob00130k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The myxobacterium Sorangium cellulosum So ce56 is a prolific producer of volatile sesquiterpenes.
Collapse
Affiliation(s)
- Alexander Schifrin
- Universität des Saarlandes
- Institut für Biochemie
- 66123 Saarbrücken
- Germany
| | - Yogan Khatri
- Universität des Saarlandes
- Institut für Biochemie
- 66123 Saarbrücken
- Germany
| | - Philine Kirsch
- Universität des Saarlandes
- Institut für Biochemie
- 66123 Saarbrücken
- Germany
| | - Verena Thiel
- Technische Universität Braunschweig
- Institut für Organische Chemie
- 38106 Braunschweig
- Germany
| | - Stefan Schulz
- Technische Universität Braunschweig
- Institut für Organische Chemie
- 38106 Braunschweig
- Germany
| | - Rita Bernhardt
- Universität des Saarlandes
- Institut für Biochemie
- 66123 Saarbrücken
- Germany
| |
Collapse
|
8
|
Schifrin A, Ly TTB, Günnewich N, Zapp J, Thiel V, Schulz S, Hannemann F, Khatri Y, Bernhardt R. Characterization of the Gene Cluster CYP264B1-geoA fromSorangium cellulosumSo ce56: Biosynthesis of (+)-Eremophilene and Its Hydroxylation. Chembiochem 2014; 16:337-44. [DOI: 10.1002/cbic.201402443] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Indexed: 11/06/2022]
|
9
|
Khatri Y, Hannemann F, Girhard M, Kappl R, Hutter M, Urlacher VB, Bernhardt R. A natural heme-signature variant of CYP267A1 fromSorangium cellulosumSo ce56 executes diverse ω-hydroxylation. FEBS J 2014; 282:74-88. [DOI: 10.1111/febs.13104] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/30/2014] [Accepted: 10/06/2014] [Indexed: 02/04/2023]
Affiliation(s)
- Yogan Khatri
- Department of Biochemistry; Saarland University; Saarbrücken Germany
| | - Frank Hannemann
- Department of Biochemistry; Saarland University; Saarbrücken Germany
| | - Marco Girhard
- Institute of Biochemistry; Heinrich-Heine-Universität Düsseldorf; Germany
| | - Reinhard Kappl
- Department of Biophysics; Saarland University; Homburg Germany
| | - Michael Hutter
- Center for Bioinformatics; Saarland University; Saarbrücken Germany
| | - Vlada B. Urlacher
- Institute of Biochemistry; Heinrich-Heine-Universität Düsseldorf; Germany
| | - Rita Bernhardt
- Department of Biochemistry; Saarland University; Saarbrücken Germany
| |
Collapse
|
10
|
|
11
|
Novel family members of CYP109 fromSorangium cellulosumSo ce56 exhibit characteristic biochemical and biophysical properties. Biotechnol Appl Biochem 2013; 60:18-29. [DOI: 10.1002/bab.1087] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 12/18/2012] [Indexed: 01/21/2023]
|
12
|
CYP264B1 from Sorangium cellulosum So ce56: a fascinating norisoprenoid and sesquiterpene hydroxylase. Appl Microbiol Biotechnol 2012; 95:123-33. [DOI: 10.1007/s00253-011-3727-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 10/28/2011] [Accepted: 11/14/2011] [Indexed: 10/14/2022]
|