1
|
Xia Y, Wang H, Shao M, Liu X, Sun F. MAP3K19 Promotes the Progression of Tuberculosis-Induced Pulmonary Fibrosis Through Activation of the TGF-β/Smad2 Signaling Pathway. Mol Biotechnol 2024; 66:3300-3310. [PMID: 37906388 DOI: 10.1007/s12033-023-00941-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023]
Abstract
Tuberculosis-induced pulmonary fibrosis (PF) is a chronic, irreversible interstitial lung disease, which severely affects lung ventilation and air exchange, leading to respiratory distress, impaired lung function, and ultimately death. As previously reported, epithelial-mesenchymal transition (EMT) and fibrosis in type II alveolar epithelial cells (AEC II) are two critical processes that contributes to the initiation and progression of tuberculosis-related PF, but the underlying pathological mechanisms remain unclear. In this study, through performing Real-Time quantitative PCR (RT-qPCR), Western blot, immunohistochemistry, and immunofluorescence staining assay, we confirmed that the expression levels of EMT and fibrosis-related biomarkers were significantly increased in lung tissues with tuberculosis-associated PF in vivo and Mycobacterium bovis Bacillus Calmette-Guérin (BCG) strain-infected AEC II cells in vitro. Besides, we noticed that the mitogen-activated protein kinase 19 (MAP3K19) was aberrantly overexpressed in PF models, and silencing of MAP3K19 significantly reduced the expression levels of fibronectin, collagen type I, and alpha-smooth muscle actin to decrease fibrosis, and upregulated E-cadherin and downregulated vimentin to suppress EMT in BCG-treated AEC II cells. Then, we uncovered the underlying mechanisms and found that BCG synergized with MAP3K19 to activate the pro-inflammatory transforming growth factor-beta (TGF-β)/Smad2 signal pathway in AEC II cells, and BCG-induced EMT process and fibrosis in AEC II cells were all abrogated by co-treating cells with TGF-β/Smad2 signal pathway inhibitor LY2109761. In summary, our results uncovered the underlying mechanisms by which the MAP3K19/TGF-β/Smad2 signaling pathway regulated EMT and fibrotic phenotypes of AEC II cells to facilitate the development of tuberculosis-associated PF, and these findings will provide new ideas and biomarkers to ameliorate tuberculosis-induced PF in clinic.
Collapse
Affiliation(s)
- Yu Xia
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China.
| | - Haiyue Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China
| | - Meihua Shao
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China
| | - Xuemei Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China
| | - Feng Sun
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China
| |
Collapse
|
2
|
Shaikh R, Larson NJ, Kam J, Hanjaya-Putra D, Zartman J, Umulis DM, Li L, Reeves GT. Optimal performance objectives in the highly conserved bone morphogenetic protein signaling pathway. NPJ Syst Biol Appl 2024; 10:103. [PMID: 39277657 PMCID: PMC11401948 DOI: 10.1038/s41540-024-00430-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024] Open
Abstract
Throughout development, complex networks of cell signaling pathways drive cellular decision-making across different tissues and contexts. The transforming growth factor β (TGF-β) pathways, including the BMP/Smad pathway, play crucial roles in determining cellular responses. However, as the Smad pathway is used reiteratively throughout the life cycle of all animals, its systems-level behavior varies from one context to another, despite the pathway connectivity remaining nearly constant. For instance, some cellular systems require a rapid response, while others require high noise filtering. In this paper, we examine how the BMP-Smad pathway balances trade-offs among three such systems-level behaviors, or "Performance Objectives (POs)": response speed, noise amplification, and the sensitivity of pathway output to receptor input. Using a Smad pathway model fit to human cell data, we show that varying non-conserved parameters (NCPs) such as protein concentrations, the Smad pathway can be tuned to emphasize any of the three POs and that the concentration of nuclear phosphatase has the greatest effect on tuning the POs. However, due to competition among the POs, the pathway cannot simultaneously optimize all three, but at best must balance trade-offs among the POs. We applied the multi-objective optimization concept of the Pareto Front, a widely used concept in economics to identify optimal trade-offs among various requirements. We show that the BMP pathway efficiently balances competing POs across species and is largely Pareto optimal. Our findings reveal that varying the concentration of NCPs allows the Smad signaling pathway to generate a diverse range of POs. This insight identifies how signaling pathways can be optimally tuned for each context.
Collapse
Affiliation(s)
- Razeen Shaikh
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, TX, USA
| | - Nissa J Larson
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jayden Kam
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, TX, USA
| | - Donny Hanjaya-Putra
- Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, USA
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, USA
| | - Jeremiah Zartman
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, USA
- Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - David M Umulis
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| | - Linlin Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| | - Gregory T Reeves
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, TX, USA.
- Faculty of Genetics and Genomics, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
3
|
Lauraine M, de Taffin de Tilques M, Melamed-Kadosh D, Cherqaoui B, Rincheval V, Prevost E, Rincheval-Arnold A, Cela E, Admon A, Guénal I, Araujo LM, Breban M. TGFβ signaling pathway is altered by HLA-B27 expression, resulting in pathogenic consequences relevant for spondyloarthritis. Arthritis Res Ther 2024; 26:131. [PMID: 39010233 PMCID: PMC11247877 DOI: 10.1186/s13075-024-03370-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/05/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Association of HLA-B27 with spondyloarthritis (SpA) has been known for 50 years, but still remains unexplained. We recently showed that HLA-B27 expressed in wing imaginal disc from HLA-B27/human-β2 microglobulin (hβ2m) transgenic Drosophila deregulated bone morphogenetic protein (BMP) pathway by interacting physically with type I BMP receptor (BMPR1) Saxophone (Sax), leading to crossveinless phenotype. METHODS Genetic interaction was studied between activin/transforming growth factor β (TGFβ) pathway and HLA-B27/hβ2m in transgenic Drosophila wings. The HLA-B27-bound peptidome was characterized in wing imaginal discs. In mesenteric lymph node (mLN) T cells from HLA-B27/hβ2m rat (B27 rat), physical interaction between HLA-B27 and activin receptor-like kinase-2 (ALK2), ALK3 and ALK5 BMPR1s, phosphorylation of small mothers against decapentaplegic (SMADs) and proteins of the non-canonical BMP/TGFβ pathways induced by its ligands, and the transcript level of target genes of the TGFβ pathway, were evaluated. RESULTS In HLA-B27/hβ2m transgenic Drosophila, inappropriate signalling through the activin/TGFβ pathway, involving Baboon (Babo), the type I activin/TGFβ receptor, contributed to the crossveinless phenotype, in addition to deregulated BMP pathway. We identified peptides bound to HLA-B27 with the canonical binding motif in HLA-B27/hβ2m transgenic Drosophila wing imaginal disc. We demonstrated specific physical interaction, between HLA-B27/hβ2m and mammalian orthologs of Sax and Babo, i.e. ALK2 and ALK5 (i.e. TGFβ receptor I), in the mLN cells from B27 rat. The magnitude of phosphorylation of SMAD2/3 in response to TGFβ1 was increased in T cells from B27 rats, showing evidence for deregulated TGFβ pathway. Accordingly, expression of several target genes of the pathway was increased in T cells from B27 rats, in basal conditions and/or after TGFβ exposure, including Foxp3, Rorc, Runx1 and Maf. Interestingly, Tgfb1 expression was reduced in naive T cells from B27 rats, even premorbid, an observation consistent with a pro-inflammatory pattern. CONCLUSIONS This study shows that HLA-B27 alters the TGFβ pathways in Drosophila and B27 rat. Given the importance of this pathway in CD4 + T cells differentiation and regulation, its disturbance could contribute to the abnormal expansion of pro-inflammatory T helper 17 cells and altered regulatory T cell phenotype observed in B27 rats.
Collapse
Affiliation(s)
- Marc Lauraine
- Infection & Inflammation, UMR 1173, Inserm, UVSQ, Université Paris Saclay, 2 avenue de la Source de la Bièvre, Montigny-le-Bretonneux, 78180, France
- Laboratoire d'Excellence Inflamex, Université Paris Cité, Paris, France
| | | | - Dganit Melamed-Kadosh
- Department of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Bilade Cherqaoui
- Infection & Inflammation, UMR 1173, Inserm, UVSQ, Université Paris Saclay, 2 avenue de la Source de la Bièvre, Montigny-le-Bretonneux, 78180, France
- Laboratoire d'Excellence Inflamex, Université Paris Cité, Paris, France
- Service de pédiatre, Hôpital Ambroise Paré, AP-HP, Boulogne-Billancourt, France
| | | | - Erwan Prevost
- Université Paris-Saclay, UVSQ, LGBC, Versailles, 78000, France
| | | | - Eneida Cela
- Infection & Inflammation, UMR 1173, Inserm, UVSQ, Université Paris Saclay, 2 avenue de la Source de la Bièvre, Montigny-le-Bretonneux, 78180, France
- Laboratoire d'Excellence Inflamex, Université Paris Cité, Paris, France
- Rheumatology, allergology and clinical immunology, University of Rome "Tor Vergata",, Rome, Italy
| | - Arie Admon
- Department of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Isabelle Guénal
- Université Paris-Saclay, UVSQ, LGBC, Versailles, 78000, France
| | - Luiza M Araujo
- Infection & Inflammation, UMR 1173, Inserm, UVSQ, Université Paris Saclay, 2 avenue de la Source de la Bièvre, Montigny-le-Bretonneux, 78180, France
- Laboratoire d'Excellence Inflamex, Université Paris Cité, Paris, France
| | - Maxime Breban
- Infection & Inflammation, UMR 1173, Inserm, UVSQ, Université Paris Saclay, 2 avenue de la Source de la Bièvre, Montigny-le-Bretonneux, 78180, France.
- Laboratoire d'Excellence Inflamex, Université Paris Cité, Paris, France.
- Service de rhumatologie, Hôpital Ambroise Paré, AP-HP, 9 avenue Charles de Gaulle, Boulogne, 92100, France.
| |
Collapse
|
4
|
Li Y, Deng D, Höfer CT, Kim J, Do Heo W, Xu Q, Liu X, Zi Z. Liebig's law of the minimum in the TGF-β/SMAD pathway. PLoS Comput Biol 2024; 20:e1012072. [PMID: 38753874 PMCID: PMC11135686 DOI: 10.1371/journal.pcbi.1012072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/29/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
Cells use signaling pathways to sense and respond to their environments. The transforming growth factor-β (TGF-β) pathway produces context-specific responses. Here, we combined modeling and experimental analysis to study the dependence of the output of the TGF-β pathway on the abundance of signaling molecules in the pathway. We showed that the TGF-β pathway processes the variation of TGF-β receptor abundance using Liebig's law of the minimum, meaning that the output-modifying factor is the signaling protein that is most limited, to determine signaling responses across cell types and in single cells. We found that the abundance of either the type I (TGFBR1) or type II (TGFBR2) TGF-β receptor determined the responses of cancer cell lines, such that the receptor with relatively low abundance dictates the response. Furthermore, nuclear SMAD2 signaling correlated with the abundance of TGF-β receptor in single cells depending on the relative expression levels of TGFBR1 and TGFBR2. A similar control principle could govern the heterogeneity of signaling responses in other signaling pathways.
Collapse
Affiliation(s)
- Yuchao Li
- Max Planck Institute for Molecular Genetics, Otto Warburg Laboratory, Berlin, Germany
| | - Difan Deng
- German Federal Institute for Risk Assessment, Department of Experimental Toxicology and ZEBET, Berlin, Germany
| | - Chris Tina Höfer
- German Federal Institute for Risk Assessment, Department of Experimental Toxicology and ZEBET, Berlin, Germany
| | - Jihye Kim
- Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Won Do Heo
- Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Quanbin Xu
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Xuedong Liu
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Zhike Zi
- Max Planck Institute for Molecular Genetics, Otto Warburg Laboratory, Berlin, Germany
- German Federal Institute for Risk Assessment, Department of Experimental Toxicology and ZEBET, Berlin, Germany
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
5
|
Akiyama T, Raftery LA, Wharton KA. Bone morphogenetic protein signaling: the pathway and its regulation. Genetics 2024; 226:iyad200. [PMID: 38124338 PMCID: PMC10847725 DOI: 10.1093/genetics/iyad200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023] Open
Abstract
In the mid-1960s, bone morphogenetic proteins (BMPs) were first identified in the extracts of bone to have the remarkable ability to induce heterotopic bone. When the Drosophila gene decapentaplegic (dpp) was first identified to share sequence similarity with mammalian BMP2/BMP4 in the late-1980s, it became clear that secreted BMP ligands can mediate processes other than bone formation. Following this discovery, collaborative efforts between Drosophila geneticists and mammalian biochemists made use of the strengths of their respective model systems to identify BMP signaling components and delineate the pathway. The ability to conduct genetic modifier screens in Drosophila with relative ease was critical in identifying the intracellular signal transducers for BMP signaling and the related transforming growth factor-beta/activin signaling pathway. Such screens also revealed a host of genes that encode other core signaling components and regulators of the pathway. In this review, we provide a historical account of this exciting time of gene discovery and discuss how the field has advanced over the past 30 years. We have learned that while the core BMP pathway is quite simple, composed of 3 components (ligand, receptor, and signal transducer), behind the versatility of this pathway lies multiple layers of regulation that ensures precise tissue-specific signaling output. We provide a sampling of these discoveries and highlight many questions that remain to be answered to fully understand the complexity of BMP signaling.
Collapse
Affiliation(s)
- Takuya Akiyama
- Department of Biology, Rich and Robin Porter Cancer Research Center, The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Laurel A Raftery
- School of Life Sciences, University of Nevada, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
| | - Kristi A Wharton
- Department of Molecular Biology, Cell Biology, and Biochemistry, Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| |
Collapse
|
6
|
Fox SC, Waskiewicz AJ. Transforming growth factor beta signaling and craniofacial development: modeling human diseases in zebrafish. Front Cell Dev Biol 2024; 12:1338070. [PMID: 38385025 PMCID: PMC10879340 DOI: 10.3389/fcell.2024.1338070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
Humans and other jawed vertebrates rely heavily on their craniofacial skeleton for eating, breathing, and communicating. As such, it is vital that the elements of the craniofacial skeleton develop properly during embryogenesis to ensure a high quality of life and evolutionary fitness. Indeed, craniofacial abnormalities, including cleft palate and craniosynostosis, represent some of the most common congenital abnormalities in newborns. Like many other organ systems, the development of the craniofacial skeleton is complex, relying on specification and migration of the neural crest, patterning of the pharyngeal arches, and morphogenesis of each skeletal element into its final form. These processes must be carefully coordinated and integrated. One way this is achieved is through the spatial and temporal deployment of cell signaling pathways. Recent studies conducted using the zebrafish model underscore the importance of the Transforming Growth Factor Beta (TGF-β) and Bone Morphogenetic Protein (BMP) pathways in craniofacial development. Although both pathways contain similar components, each pathway results in unique outcomes on a cellular level. In this review, we will cover studies conducted using zebrafish that show the necessity of these pathways in each stage of craniofacial development, starting with the induction of the neural crest, and ending with the morphogenesis of craniofacial elements. We will also cover human skeletal and craniofacial diseases and malformations caused by mutations in the components of these pathways (e.g., cleft palate, craniosynostosis, etc.) and the potential utility of zebrafish in studying the etiology of these diseases. We will also briefly cover the utility of the zebrafish model in joint development and biology and discuss the role of TGF-β/BMP signaling in these processes and the diseases that result from aberrancies in these pathways, including osteoarthritis and multiple synostoses syndrome. Overall, this review will demonstrate the critical roles of TGF-β/BMP signaling in craniofacial development and show the utility of the zebrafish model in development and disease.
Collapse
|
7
|
Wan R, Wang L, Duan Y, Zhu M, Li W, Zhao M, Yuan H, Xu K, Li Z, Zhang X, Yu G. ADRB2 inhibition combined with antioxidant treatment alleviates lung fibrosis by attenuating TGFβ/SMAD signaling in lung fibroblasts. Cell Death Discov 2023; 9:407. [PMID: 37923730 PMCID: PMC10624856 DOI: 10.1038/s41420-023-01702-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive and fatal interstitial lung disease with a poor prognosis and limited therapeutic options, which is characterized by aberrant myofibroblast activation and pathological remodeling of the extracellular matrix, while the mechanism remains elusive. In the present investigation, we observed a reduction in ADRB2 expression within both IPF and bleomycin-induced fibrotic lung samples, as well as in fibroblasts treated with TGF-β1. ADRB2 inhibition blunted bleomycin-induced lung fibrosis. Blockage of the ADRB2 suppressed proliferation, migration, and invasion and attenuated TGF-β1-induced fibroblast activation. Conversely, the enhancement of ADRB2 expression or functionality proved capable of inducing fibroblast-to-myofibroblast differentiation. Subsequent mechanistic investigation revealed that inhibition of ADRB2 suppressed the activation of SMAD2/3 in lung fibroblasts and increased phos-SMAD2/3 proteasome degradation, and vice versa. Finally, ADRB2 inhibition combined with antioxidants showed increased efficacy in the therapy of bleomycin-induced lung fibrosis. In short, these data indicate that ADRB2 is involved in lung fibroblast differentiation, and targeting ADRB2 could emerge as a promising and innovative therapeutic approach for pulmonary fibrosis.
Collapse
Grants
- This work was supported by Ministry of Science and Technology, PR China, 2019YFE0119500, State Innovation Base for Pulmonary Fibrosis (111 Project), and Henan Project of Science and Technology, 212102310894, 222102310711, 232102310067, and 232102521025, Xinxiang Major Project 21ZD002.
- This work was supported by Henan Project of Science and Technology, 212102310894, 222102310711, 232102310067, and 232102521025, Xinxiang Major Project 21ZD002.
Collapse
Affiliation(s)
- Ruyan Wan
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Lan Wang
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yudi Duan
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Miaomiao Zhu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Wenwen Li
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Mengxia Zhao
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Hongmei Yuan
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Kai Xu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Zhongzheng Li
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xiao Zhang
- Zhengzhou 101 Middle School, Zhengzhou, Henan, 450000, China
| | - Guoying Yu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
8
|
Di X, Gao X, Peng L, Ai J, Jin X, Qi S, Li H, Wang K, Luo D. Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. Signal Transduct Target Ther 2023; 8:282. [PMID: 37518181 PMCID: PMC10387486 DOI: 10.1038/s41392-023-01501-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 08/01/2023] Open
Abstract
Cellular mechanotransduction, a critical regulator of numerous biological processes, is the conversion from mechanical signals to biochemical signals regarding cell activities and metabolism. Typical mechanical cues in organisms include hydrostatic pressure, fluid shear stress, tensile force, extracellular matrix stiffness or tissue elasticity, and extracellular fluid viscosity. Mechanotransduction has been expected to trigger multiple biological processes, such as embryonic development, tissue repair and regeneration. However, prolonged excessive mechanical stimulation can result in pathological processes, such as multi-organ fibrosis, tumorigenesis, and cancer immunotherapy resistance. Although the associations between mechanical cues and normal tissue homeostasis or diseases have been identified, the regulatory mechanisms among different mechanical cues are not yet comprehensively illustrated, and no effective therapies are currently available targeting mechanical cue-related signaling. This review systematically summarizes the characteristics and regulatory mechanisms of typical mechanical cues in normal conditions and diseases with the updated evidence. The key effectors responding to mechanical stimulations are listed, such as Piezo channels, integrins, Yes-associated protein (YAP) /transcriptional coactivator with PDZ-binding motif (TAZ), and transient receptor potential vanilloid 4 (TRPV4). We also reviewed the key signaling pathways, therapeutic targets and cutting-edge clinical applications of diseases related to mechanical cues.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiaoshuai Gao
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Liao Peng
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jianzhong Ai
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xi Jin
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Shiqian Qi
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Hong Li
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Kunjie Wang
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| | - Deyi Luo
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| |
Collapse
|
9
|
Evangelatov A, Georgiev G, Arabadjiev B, Pankov S, Krastev P, Momchilova A, Pankov R. Hyperglycemia attenuates fibroblast contractility via suppression of TβRII receptor modulated α-smooth muscle actin expression. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2041486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Alexandar Evangelatov
- Department of Cytology, Histology and Embryology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Georgi Georgiev
- Department of Cytology, Histology and Embryology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Borislav Arabadjiev
- Department of Cytology, Histology and Embryology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Stefan Pankov
- Department of Lipid-Protein Interactions, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Plamen Krastev
- Cardiology Clinic, University Hospital “St. Ekaterina”, Sofia, Bulgaria
| | - Albena Momchilova
- Department of Lipid-Protein Interactions, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Roumen Pankov
- Department of Cytology, Histology and Embryology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| |
Collapse
|
10
|
Trelford CB, Di Guglielmo GM. Autophagy regulates transforming growth factor β signaling and receptor trafficking. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119284. [PMID: 35605790 DOI: 10.1016/j.bbamcr.2022.119284] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/20/2022] [Accepted: 05/04/2022] [Indexed: 12/26/2022]
Abstract
Transforming growth factor beta (TGFβ) stimulates tumorigenesis by inducing epithelial to mesenchymal transition (EMT) and cell migration. TGFβ signaling is regulated by the endocytosis of cell surface receptors and their subcellular trafficking into the endo-lysosomal system. Here we investigated how autophagy, a cellular quality control network that delivers material to lysosomes, regulates TGFβ signaling pathways that induce EMT and cell migration. We impaired autophagy in non-small cell lung cancer cells using chloroquine, spautin-1, ULK-101, or small interfering RNA (siRNA) targeting autophagy-related gene (ATG)5 and ATG7 and observed that inhibiting autophagy results in a decrease in TGFβ1-dependent EMT transcription factor and cell marker expression, as well as attenuated stress fiber formation and cell migration. This correlated with decreased internalization of cell surface TGFβ receptors and their trafficking to early/late endosomal and lysosomal compartments. The effects of autophagy inhibition on TGFβ signaling were investigated by Smad2/Smad3 phosphorylation and cellular localization using western blotting, subcellular fractionation, and immunofluorescence microscopy. We observed that inhibiting autophagy decreased the amount and timeframe of Smad2/Smad3 signaling. Taken together, our results suggest that inhibiting autophagy attenuates pro-tumorigenic TGFβ signaling by regulating receptor trafficking, resulting in impaired Smad2/Smad3 phosphorylation and nuclear accumulation.
Collapse
Affiliation(s)
- Charles B Trelford
- Schulich School of Medicine and Dentistry, Western University, Department of Physiology and Pharmacology, London, Ontario N6A 5B7, Canada
| | - Gianni M Di Guglielmo
- Schulich School of Medicine and Dentistry, Western University, Department of Physiology and Pharmacology, London, Ontario N6A 5B7, Canada.
| |
Collapse
|
11
|
Jiao C, Yun H, Liang H, Lian X, Li S, Chen J, Qadir J, Yang BB, Xie Y. An active ingredient isolated from Ganoderma lucidum promotes burn wound healing via TRPV1/SMAD signaling. Aging (Albany NY) 2022; 14:5376-5389. [PMID: 35696640 PMCID: PMC9320545 DOI: 10.18632/aging.204119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022]
Abstract
The mushroom Ganoderma lucidum is a traditional Chinese medicine and G. lucidum spore oil (GLSO) is the lipid fraction isolated from Ganoderma spores. We examined the effect of GLSO on burn wound healing in mice. Following wounding, GLSO was applied on the wounds twice daily. Repair analysis was performed by Sirius-Red-staining at different time points. Cell proliferation and migration assays were performed to verify the effect of GLSO on growth. Network pharmacology analysis to identify possible targets was also carried out, followed by Western blotting, nuclear translocation, cell proliferation, and immunofluorescence assays for in-depth investigation of the mechanism. Our study showed that GLSO significantly promoted cell proliferation, and network pharmacology analysis suggested that GLSO might act through transient receptor potential vanilloid receptor 1 (TRPV1)/SMAD signaling. Furthermore, GLSO elevated SMAD2/3 expression in skin burn and promoted its nuclear translocation, and TRPV1 expression was also increased upon exposure to GLSO. Cell proliferation and immunofluorescence assays with TRPV1 inhibitor showed that GLSO accelerated skin burn wound healing through TRPV1 and SMADs signaling, which provides a foundation for clinical application of GLSO in the healing of deep skin burns.
Collapse
Affiliation(s)
- Chunwei Jiao
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou 510663, P. R. China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, P. R. China
| | - Hao Yun
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou 510663, P. R. China
| | - Huijia Liang
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou 510663, P. R. China
| | - Xiaodong Lian
- Guangdong Yuewei Bioscience Co., Ltd., Zhaoqing 526000, P. R. China
| | - Shunxian Li
- Guangdong Yuewei Bioscience Co., Ltd., Zhaoqing 526000, P. R. China
| | - Jiaming Chen
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou 510663, P. R. China
| | - Javeria Qadir
- Sunnybrook Research Institute, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Burton B Yang
- Sunnybrook Research Institute, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Yizhen Xie
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou 510663, P. R. China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, P. R. China
| |
Collapse
|
12
|
Chiba N, Noguchi Y, Hwan Seong C, Ohnishi T, Matsuguchi T. EGR1 Plays an Important Role in BMP9-Mediated Osteoblast Differentiation by Promoting SMAD1/5 Phosphorylation. FEBS Lett 2022; 596:1720-1732. [PMID: 35594155 DOI: 10.1002/1873-3468.14407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 11/06/2022]
Abstract
Bone morphogenetic proteins (BMPs) are essential regulators of skeletal homeostasis, and BMP9 is the most potently osteogenic among them. Here, we found that BMP9 and BMP2 rapidly induced early growth response 1 (EGR1) protein expression in osteoblasts through MEK/ERK pathway-dependent transcriptional activation. Knockdown of EGR1 using siRNA significantly inhibited BMP9-induced matrix mineralization and osteogenic marker gene expression in osteoblasts. Knockdown of EGR1 significantly reduced SMAD1/5 phosphorylation and inhibited the expression of their transcriptional targets in osteoblasts stimulated by BMP9. In contrast, forced EGR1 overexpression in osteoblasts enhanced BMP9-mediated osteoblast differentiation and SMAD1/5 phosphorylation. An intracellular association between EGR1 and SMAD1/5 was identified using immunoprecipitation assays. These results indicated that EGR1 plays an important role in BMP9-stimulated osteoblast differentiation by enhancing SMAD1/5 phosphorylation.
Collapse
Affiliation(s)
- Norika Chiba
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 8-35-1 Sakuragaoka, 890-8544, Japan
| | - Yukie Noguchi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 8-35-1 Sakuragaoka, 890-8544, Japan
| | - Chang Hwan Seong
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 8-35-1 Sakuragaoka, 890-8544, Japan.,Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 8-35-1 Sakuragaoka, 890-8544, Japan
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 8-35-1 Sakuragaoka, 890-8544, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 8-35-1 Sakuragaoka, 890-8544, Japan
| |
Collapse
|
13
|
Pharmaco-proteogenomic profiling of pediatric diffuse midline glioma to inform future treatment strategies. Oncogene 2021; 41:461-475. [PMID: 34759345 PMCID: PMC8782719 DOI: 10.1038/s41388-021-02102-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
Diffuse midline glioma (DMG) is a deadly pediatric and adolescent central nervous system (CNS) tumor localized along the midline structures of the brain atop the spinal cord. With a median overall survival (OS) of just 9–11-months, DMG is characterized by global hypomethylation of histone H3 at lysine 27 (H3K27me3), driven by recurring somatic mutations in H3 genes including, HIST1H3B/C (H3.1K27M) or H3F3A (H3.3K27M), or through overexpression of EZHIP in patients harboring wildtype H3. The recent World Health Organization’s 5th Classification of CNS Tumors now designates DMG as, ‘H3 K27-altered’, suggesting that global H3K27me3 hypomethylation is a ubiquitous feature of DMG and drives devastating transcriptional programs for which there are no treatments. H3-alterations co-segregate with various other somatic driver mutations, highlighting the high-level of intertumoral heterogeneity of DMG. Furthermore, DMG is also characterized by very high-level intratumoral diversity with tumors harboring multiple subclones within each primary tumor. Each subclone contains their own combinations of driver and passenger lesions that continually evolve, making precision-based medicine challenging to successful execute. Whilst the intertumoral heterogeneity of DMG has been extensively investigated, this is yet to translate to an increase in patient survival. Conversely, our understanding of the non-genomic factors that drive the rapid growth and fatal nature of DMG, including endogenous and exogenous microenvironmental influences, neurological cues, and the posttranscriptional and posttranslational architecture of DMG remains enigmatic or at best, immature. However, these factors are likely to play a significant role in the complex biological sequelae that drives the disease. Here we summarize the heterogeneity of DMG and emphasize how analysis of the posttranslational architecture may improve treatment paradigms. We describe factors that contribute to treatment response and disease progression, as well as highlight the potential for pharmaco-proteogenomics (i.e., the integration of genomics, proteomics and pharmacology) in the management of this uniformly fatal cancer.
Collapse
|
14
|
Abstract
Transforming growth factor-beta2 (TGF-β2) is recognized as a versatile cytokine that plays a vital role in regulation of joint development, homeostasis, and diseases, but its role as a biological mechanism is understood far less than that of its counterpart, TGF-β1. Cartilage as a load-resisting structure in vertebrates however displays a fragile performance when any tissue disturbance occurs, due to its lack of blood vessels, nerves, and lymphatics. Recent reports have indicated that TGF-β2 is involved in the physiological processes of chondrocytes such as proliferation, differentiation, migration, and apoptosis, and the pathological progress of cartilage such as osteoarthritis (OA) and rheumatoid arthritis (RA). TGF-β2 also shows its potent capacity in the repair of cartilage defects by recruiting autologous mesenchymal stem cells and promoting secretion of other growth factor clusters. In addition, some pioneering studies have already considered it as a potential target in the treatment of OA and RA. This article aims to summarize the current progress of TGF-β2 in cartilage development and diseases, which might provide new cues for remodelling of cartilage defect and intervention of cartilage diseases.
Collapse
Affiliation(s)
- Mengmeng Duan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qingxuan Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Thielen N, Neefjes M, Wiegertjes R, van den Akker G, Vitters E, van Beuningen H, Blaney Davidson E, Koenders M, van Lent P, van de Loo F, van Caam A, van der Kraan P. Osteoarthritis-Related Inflammation Blocks TGF-β's Protective Effect on Chondrocyte Hypertrophy via (de)Phosphorylation of the SMAD2/3 Linker Region. Int J Mol Sci 2021; 22:ijms22158124. [PMID: 34360888 PMCID: PMC8347103 DOI: 10.3390/ijms22158124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/13/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by irreversible cartilage damage, inflammation and altered chondrocyte phenotype. Transforming growth factor-β (TGF-β) signaling via SMAD2/3 is crucial for blocking hypertrophy. The post-translational modifications of these SMAD proteins in the linker domain regulate their function and these can be triggered by inflammation through the activation of kinases or phosphatases. Therefore, we investigated if OA-related inflammation affects TGF-β signaling via SMAD2/3 linker-modifications in chondrocytes. We found that both Interleukin (IL)-1β and OA-synovium conditioned medium negated SMAD2/3 transcriptional activity in chondrocytes. This inhibition of TGF-β signaling was enhanced if SMAD3 could not be phosphorylated on Ser213 in the linker region and the inhibition by IL-1β was less if the SMAD3 linker could not be phosphorylated at Ser204. Our study shows evidence that inflammation inhibits SMAD2/3 signaling in chondrocytes via SMAD linker (de)-phosphorylation. The involvement of linker region modifications may represent a new therapeutic target for OA.
Collapse
Affiliation(s)
- Nathalie Thielen
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Margot Neefjes
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Renske Wiegertjes
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Guus van den Akker
- Department of Orthopedic Surgery, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Elly Vitters
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Henk van Beuningen
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Esmeralda Blaney Davidson
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Marije Koenders
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Peter van Lent
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Fons van de Loo
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Arjan van Caam
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Peter van der Kraan
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
- Correspondence:
| |
Collapse
|
16
|
Kim G, Kim W, Lim S, Lee H, Koo J, Nam K, Kim S, Park S, Choi J. In Vivo Induction of Regulatory T Cells Via CTLA-4 Signaling Peptide to Control Autoimmune Encephalomyelitis and Prevent Disease Relapse. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004973. [PMID: 34306974 PMCID: PMC8292875 DOI: 10.1002/advs.202004973] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/01/2021] [Indexed: 05/22/2023]
Abstract
Regulatory T cells play a key role in immune tolerance to self-antigens, thereby preventing autoimmune diseases. However, no drugs targeting Treg cells have been approved for clinical trials yet. Here, a chimeric peptide is generated by conjugation of the cytoplasmic domain of CTLA-4 (ctCTLA-4) with dNP2 for intracellular delivery, dNP2-ctCTLA-4, and evaluated Foxp3 expression during Th0, Th1, Treg, and Th17 differentiation dependent on TGF-β. The lysine motif of ctCTLA-4, not tyrosine motif, is required for Foxp3 expression for Treg induction and amelioration of experimental autoimmune encephalomyelitis (EAE). Transcriptome analysis reveals that dNP2-ctCTLA-4-treated T cells express Treg transcriptomic patterns with properties of suppressive functions. In addition, the molecular interaction between the lysine motif of ctCTLA-4 and PKC-η is critical for Foxp3 expression. Although both CTLA-4-Ig and dNP2-ctCTLA-4 treatment in vivo ameliorated EAE progression, only dNP2-ctCTLA-4 requires Treg cells for inhibition of disease progression and prevention of relapse. Furthermore, the CTLA-4 signaling peptide is able to induce human Tregs in vitro and in vivo as well as from peripheral blood mononuclear cells (PBMCs) of multiple sclerosis patients. These results collectively suggest that the chimeric CTLA-4 signaling peptide can be used for successful induction of regulatory T cells in vivo to control autoimmune diseases, such as multiple sclerosis.
Collapse
Affiliation(s)
- Gil‐Ran Kim
- Department of Life ScienceCollege of Natural SciencesHanyang UniversityResearch institute for Natural SciencesHanyang UniversitySeoul04763Republic of Korea
| | - Won‐Ju Kim
- Department of Life ScienceCollege of Natural SciencesHanyang UniversityResearch institute for Natural SciencesHanyang UniversitySeoul04763Republic of Korea
| | - Sangho Lim
- Hubrecht Institute for Developmental Biology and Stem Cell Research‐KNAW, University Medical Centre UtrechtUtrecht3584 CTNetherland
| | - Hong‐Gyun Lee
- Department of Life ScienceCollege of Natural SciencesHanyang UniversityResearch institute for Natural SciencesHanyang UniversitySeoul04763Republic of Korea
| | - Ja‐Hyun Koo
- Department of Life ScienceCollege of Natural SciencesHanyang UniversityResearch institute for Natural SciencesHanyang UniversitySeoul04763Republic of Korea
| | - Kyung‐Ho Nam
- Department of Life ScienceCollege of Natural SciencesHanyang UniversityResearch institute for Natural SciencesHanyang UniversitySeoul04763Republic of Korea
| | - Sung‐Min Kim
- Department of NeurologyCollege of MedicineSeoul National UniversitySeoul National University HospitalSeoul03080Republic of Korea
| | - Sung‐Dong Park
- Department of Life ScienceCollege of Natural SciencesHanyang UniversityResearch institute for Natural SciencesHanyang UniversitySeoul04763Republic of Korea
| | - Je‐Min Choi
- Department of Life ScienceCollege of Natural SciencesHanyang UniversityResearch institute for Natural SciencesResearch Institute for Convergence of Basic SciencesHanyang UniversitySeoul04763Republic of Korea
| |
Collapse
|
17
|
Louzada RA, Corre R, Ameziane El Hassani R, Meziani L, Jaillet M, Cazes A, Crestani B, Deutsch E, Dupuy C. NADPH oxidase DUOX1 sustains TGF-β1 signalling and promotes lung fibrosis. Eur Respir J 2020; 57:13993003.01949-2019. [DOI: 10.1183/13993003.01949-2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 07/22/2020] [Indexed: 01/20/2023]
Abstract
Interstitial lung fibroblast activation coupled with extracellular matrix production is a pathological signature of pulmonary fibrosis, and is governed by transforming growth factor (TGF)-β1/Smad signalling. TGF-β1 and oxidative stress cooperate to drive fibrosis. Cells can produce reactive oxygen species through activation and/or induction of NADPH oxidases, such as dual oxidase (DUOX1/2). Since DUOX enzymes, as extracellular hydrogen peroxide (H2O2)-generating systems, are involved in extracellular matrix formation and in wound healing in different experimental models, we hypothesised that DUOX-based NADPH oxidase plays a role in the pathophysiology of pulmonary fibrosis.Our in vivo data (idiopathic pulmonary fibrosis patients and mouse models of lung fibrosis) showed that the NADPH oxidase DUOX1 is induced in response to lung injury. DUOX1-deficient mice (DUOX1+/− and DUOX1−/−) had an attenuated fibrotic phenotype. In addition to being highly expressed at the epithelial surface of airways, DUOX1 appears to be well expressed in the fibroblastic foci of remodelled lungs. By using primary human and mouse lung fibroblasts, we showed that TGF-β1 upregulates DUOX1 and its maturation factor DUOXA1 and that DUOX1-derived H2O2 promoted the duration of TGF-β1-activated Smad3 phosphorylation by preventing phospho-Smad3 degradation. Analysis of the mechanism revealed that DUOX1 inhibited the interaction between phospho-Smad3 and the ubiquitin ligase NEDD4L, preventing NEDD4L-mediated ubiquitination of phospho-Smad3 and its targeting for degradation.These findings highlight a role for DUOX1-derived H2O2 in a positive feedback that amplifies the signalling output of the TGF-β1 pathway and identify DUOX1 as a new therapeutic target in pulmonary fibrosis.
Collapse
|
18
|
Tang R, Wang YC, Mei X, Shi N, Sun C, Ran R, Zhang G, Li W, Staveley-O'Carroll KF, Li G, Chen SY. LncRNA GAS5 attenuates fibroblast activation through inhibiting Smad3 signaling. Am J Physiol Cell Physiol 2020; 319:C105-C115. [PMID: 32374674 DOI: 10.1152/ajpcell.00059.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transforming growth factor-β (TGF-β)-induced fibroblast activation is a key pathological event during tissue fibrosis. Long noncoding RNA (lncRNA) is a class of versatile gene regulators participating in various cellular and molecular processes. However, the function of lncRNA in fibroblast activation is still poorly understood. In this study, we identified growth arrest-specific transcript 5 (GAS5) as a novel regulator for TGF-β-induced fibroblast activation. GAS5 expression was downregulated in cultured fibroblasts by TGF-β and in resident fibroblasts from bleomycin-treated skin tissues. Overexpression of GAS5 suppressed TGF-β-induced fibroblast to myofibroblast differentiation. Mechanistically, GAS5 directly bound mothers against decapentaplegic homolog 3 (Smad3) and promoted Smad3 binding to Protein phosphatase 1A (PPM1A), a Smad3 dephosphatase, and thus accelerated Smad3 dephosphorylation in TGF-β-treated fibroblasts. In addition, GAS5 inhibited fibroblast proliferation. Importantly, local delivery of GAS5 via adenoviral vector suppressed bleomycin-induced skin fibrosis in mice. Collectively, our data revealed that GAS5 suppresses fibroblast activation and fibrogenesis through inhibiting TGF-β/Smad3 signaling, which provides a rationale for an lncRNA-based therapy to treat fibrotic diseases.
Collapse
Affiliation(s)
- Rui Tang
- Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia
| | - Yung-Chun Wang
- Department of Surgery, University of Missouri School of Medicine, Columbia, Missouri
| | - Xiaohan Mei
- Department of Surgery, University of Missouri School of Medicine, Columbia, Missouri.,Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia
| | - Ning Shi
- Department of Surgery, University of Missouri School of Medicine, Columbia, Missouri
| | - Chenming Sun
- Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia
| | - Ran Ran
- Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia
| | - Gui Zhang
- Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia
| | - Wenjing Li
- Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia
| | - Kevin F Staveley-O'Carroll
- Department of Surgery, University of Missouri School of Medicine, Columbia, Missouri.,The Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri
| | - Guangfu Li
- Department of Surgery, University of Missouri School of Medicine, Columbia, Missouri
| | - Shi-You Chen
- Department of Surgery, University of Missouri School of Medicine, Columbia, Missouri.,Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia.,Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri
| |
Collapse
|
19
|
Olsen OE, Hella H, Elsaadi S, Jacobi C, Martinez-Hackert E, Holien T. Activins as Dual Specificity TGF-β Family Molecules: SMAD-Activation via Activin- and BMP-Type 1 Receptors. Biomolecules 2020; 10:biom10040519. [PMID: 32235336 PMCID: PMC7225989 DOI: 10.3390/biom10040519] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/17/2022] Open
Abstract
Activins belong to the transforming growth factor (TGF)-β family of multifunctional cytokines and signal via the activin receptors ALK4 or ALK7 to activate the SMAD2/3 pathway. In some cases, activins also signal via the bone morphogenetic protein (BMP) receptor ALK2, causing activation of the SMAD1/5/8 pathway. In this study, we aimed to dissect how activin A and activin B homodimers, and activin AB and AC heterodimers activate the two main SMAD branches. We compared the activin-induced signaling dynamics of ALK4/7-SMAD2/3 and ALK2-SMAD1/5 in a multiple myeloma cell line. Signaling via the ALK2-SMAD1/5 pathway exhibited greater differences between ligands than signaling via ALK4/ALK7-SMAD2/3. Interestingly, activin B and activin AB very potently activated SMAD1/5, resembling the activation commonly seen with BMPs. As SMAD1/5 was also activated by activins in other cell types, we propose that dual specificity is a general mechanism for activin ligands. In addition, we found that the antagonist follistatin inhibited signaling by all the tested activins, whereas the antagonist cerberus specifically inhibited activin B. Taken together, we propose that activins may be considered dual specificity TGF-β family members, critically affecting how activins may be considered and targeted clinically.
Collapse
Affiliation(s)
- Oddrun Elise Olsen
- Department of Clinical and Molecular Medicine, NTNU – Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Hematology, St. Olav’s University Hospital, 7030 Trondheim, Norway
| | - Hanne Hella
- Department of Clinical and Molecular Medicine, NTNU – Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Samah Elsaadi
- Department of Clinical and Molecular Medicine, NTNU – Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Carsten Jacobi
- Novartis Institutes for BioMedical Research Basel, Musculoskeletal Disease Area, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Erik Martinez-Hackert
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Toril Holien
- Department of Clinical and Molecular Medicine, NTNU – Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Hematology, St. Olav’s University Hospital, 7030 Trondheim, Norway
- Correspondence: ; Tel.: +47-924-21-162
| |
Collapse
|
20
|
Darrigrand JF, Valente M, Comai G, Martinez P, Petit M, Nishinakamura R, Osorio DS, Renault G, Marchiol C, Ribes V, Cadot B. Dullard-mediated Smad1/5/8 inhibition controls mouse cardiac neural crest cells condensation and outflow tract septation. eLife 2020; 9:e50325. [PMID: 32105214 PMCID: PMC7069721 DOI: 10.7554/elife.50325] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
The establishment of separated pulmonary and systemic circulation in vertebrates, via cardiac outflow tract (OFT) septation, is a sensitive developmental process accounting for 10% of all congenital anomalies. Neural Crest Cells (NCC) colonising the heart condensate along the primitive endocardial tube and force its scission into two tubes. Here, we show that NCC aggregation progressively decreases along the OFT distal-proximal axis following a BMP signalling gradient. Dullard, a nuclear phosphatase, tunes the BMP gradient amplitude and prevents NCC premature condensation. Dullard maintains transcriptional programs providing NCC with mesenchymal traits. It attenuates the expression of the aggregation factor Sema3c and conversely promotes that of the epithelial-mesenchymal transition driver Twist1. Altogether, Dullard-mediated fine-tuning of BMP signalling ensures the timed and progressive zipper-like closure of the OFT by the NCC and prevents the formation of a heart carrying the congenital abnormalities defining the tetralogy of Fallot.
Collapse
Affiliation(s)
| | - Mariana Valente
- Cellular, Molecular, and Physiological Mechanisms of Heart Failure team, Paris-Cardiovascular Research Center (PARCC), European Georges Pompidou Hospital (HEGP), INSERM U970, F-75737ParisFrance
| | - Glenda Comai
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, CNRS UMR 3738, Institut PasteurParisFrance
| | - Pauline Martinez
- INSERM - Sorbonne Université UMR974 - Center for Research in MyologyParisFrance
| | - Maxime Petit
- Unité Lymphopoïèse – INSERM U1223, Institut PasteurParisFrance
| | | | - Daniel S Osorio
- Cytoskeletal Dynamics Lab, Institute for Molecular and Cellular Biology, Instituto de Investigação e Inovação em Saúde, Universidade do PortoPortoPortugal
| | - Gilles Renault
- Université de Paris, Institut Cochin, INSERM, CNRSParisFrance
| | - Carmen Marchiol
- Université de Paris, Institut Cochin, INSERM, CNRSParisFrance
| | - Vanessa Ribes
- Universite de Paris, Institut Jacques MonodCNRSParisFrance
| | - Bruno Cadot
- INSERM - Sorbonne Université UMR974 - Center for Research in MyologyParisFrance
| |
Collapse
|
21
|
Role of TGF-β in Skin Chronic Wounds: A Keratinocyte Perspective. Cells 2020; 9:cells9020306. [PMID: 32012802 PMCID: PMC7072438 DOI: 10.3390/cells9020306] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/17/2020] [Accepted: 01/27/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic wounds are characterized for their incapacity to heal within an expected time frame. Potential mechanisms driving this impairment are poorly understood and current hypotheses point to the development of an unbalanced milieu of growth factor and cytokines. Among them, TGF-β is considered to promote the broadest spectrum of effects. Although it is known to contribute to healthy skin homeostasis, the highly context-dependent nature of TGF-β signaling restricts the understanding of its roles in healing and wound chronification. Historically, low TGF-β levels have been suggested as a pattern in chronic wounds. However, a revision of the available evidence in humans indicates that this could constitute a questionable argument. Thus, in chronic wounds, divergences regarding skin tissue compartments seem to be characterized by elevated TGF-β levels only in the epidermis. Understanding how this aspect affects keratinocyte activities and their capacity to re-epithelialize might offer an opportunity to gain comprehensive knowledge of the involvement of TGF-β in chronic wounds. In this review, we compile existing evidence on the roles played by TGF-β during skin wound healing, with special emphasis on keratinocyte responses. Current limitations and future perspectives of TGF-β research in chronic wounds are discussed.
Collapse
|
22
|
TGF-β/Smad3 Signalling Modulates GABA Neurotransmission: Implications in Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21020590. [PMID: 31963327 PMCID: PMC7013528 DOI: 10.3390/ijms21020590] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
γ-Aminobutiryc acid (GABA) is found extensively in different brain nuclei, including parts involved in Parkinson’s disease (PD), such as the basal ganglia and hippocampus. In PD and in different models of the disorder, an increase in GABA neurotransmission is observed and may promote bradykinesia or L-Dopa-induced side-effects. In addition, proteins involved in GABAA receptor (GABAAR) trafficking, such as GABARAP, Trak1 or PAELR, may participate in the aetiology of the disease. TGF-β/Smad3 signalling has been associated with several pathological features of PD, such as dopaminergic neurodegeneration; reduction of dopaminergic axons and dendrites; and α-synuclein aggregation. Moreover, TGF-β/Smad3 intracellular signalling was recently shown to modulate GABA neurotransmission in the context of parkinsonism and cognitive alterations. This review provides a summary of GABA neurotransmission and TGF-β signalling; their implications in PD; and the regulation of GABA neurotransmission by TGF-β/Smad3. There appear to be new possibilities to develop therapeutic approaches for the treatment of PD using GABA modulators.
Collapse
|
23
|
Thielen NGM, van der Kraan PM, van Caam APM. TGFβ/BMP Signaling Pathway in Cartilage Homeostasis. Cells 2019; 8:cells8090969. [PMID: 31450621 PMCID: PMC6769927 DOI: 10.3390/cells8090969] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 01/15/2023] Open
Abstract
Cartilage homeostasis is governed by articular chondrocytes via their ability to modulate extracellular matrix production and degradation. In turn, chondrocyte activity is regulated by growth factors such as those of the transforming growth factor β (TGFβ) family. Members of this family include the TGFβs, bone morphogenetic proteins (BMPs), and growth and differentiation factors (GDFs). Signaling by this protein family uniquely activates SMAD-dependent signaling and transcription but also activates SMAD-independent signaling via MAPKs such as ERK and TAK1. This review will address the pivotal role of the TGFβ family in cartilage biology by listing several TGFβ family members and describing their signaling and importance for cartilage maintenance. In addition, it is discussed how (pathological) processes such as aging, mechanical stress, and inflammation contribute to altered TGFβ family signaling, leading to disturbed cartilage metabolism and disease.
Collapse
Affiliation(s)
- Nathalie G M Thielen
- Experimental Rheumatology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Arjan P M van Caam
- Experimental Rheumatology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
24
|
Arnò B, Galli F, Roostalu U, Aldeiri BM, Miyake T, Albertini A, Bragg L, Prehar S, McDermott JC, Cartwright EJ, Cossu G. TNAP limits TGF-β-dependent cardiac and skeletal muscle fibrosis by inactivating the SMAD2/3 transcription factors. J Cell Sci 2019; 132:jcs.234948. [PMID: 31289197 DOI: 10.1242/jcs.234948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/27/2019] [Indexed: 12/30/2022] Open
Abstract
Fibrosis is associated with almost all forms of chronic cardiac and skeletal muscle diseases. The accumulation of extracellular matrix impairs the contractility of muscle cells contributing to organ failure. Transforming growth factor β (TGF-β) plays a pivotal role in fibrosis, activating pro-fibrotic gene programmes via phosphorylation of SMAD2/3 transcription factors. However, the mechanisms that control de-phosphorylation of SMAD2 and SMAD3 (SMAD2/3) have remained poorly characterized. Here, we show that tissue non-specific alkaline phosphatase (TNAP, also known as ALPL) is highly upregulated in hypertrophic hearts and in dystrophic skeletal muscles, and that the abrogation of TGF-β signalling in TNAP-positive cells reduces vascular and interstitial fibrosis. We show that TNAP colocalizes and interacts with SMAD2. The TNAP inhibitor MLS-0038949 increases SMAD2/3 phosphorylation, while TNAP overexpression reduces SMAD2/3 phosphorylation and the expression of downstream fibrotic genes. Overall our data demonstrate that TNAP negatively regulates TGF-β signalling and likely represents a mechanism to limit fibrosis.
Collapse
Affiliation(s)
- Benedetta Arnò
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.,Medicines Discovery Catapult, Mereside, Alderley Edge SK104TG, UK
| | - Francesco Galli
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Urmas Roostalu
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.,Gubra Hørsholm Kongevej 11B 2970 Hørsholm, Denmark
| | - Bashar M Aldeiri
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.,King's College Hospital, Denmark Hill, London SE5 9RS, UK
| | - Tetsuaki Miyake
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Alessandra Albertini
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.,TIGET-HSR, Ospedale San Raffele, Via Olgettina 60, 20132 Milan, Italy
| | - Laricia Bragg
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Sukhpal Prehar
- Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - John C McDermott
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Elizabeth J Cartwright
- Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Giulio Cossu
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
25
|
Fuchs C, Medici G, Trazzi S, Gennaccaro L, Galvani G, Berteotti C, Ren E, Loi M, Ciani E. CDKL5 deficiency predisposes neurons to cell death through the deregulation of SMAD3 signaling. Brain Pathol 2019; 29:658-674. [PMID: 30793413 DOI: 10.1111/bpa.12716] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/18/2019] [Indexed: 12/11/2022] Open
Abstract
CDKL5 deficiency disorder (CDD) is a rare encephalopathy characterized by early onset epilepsy and severe intellectual disability. CDD is caused by mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene, a member of a highly conserved family of serine-threonine kinases. Only a few physiological substrates of CDKL5 are currently known, which hampers the discovery of therapeutic strategies for CDD. Here, we show that SMAD3, a primary mediator of TGF-β action, is a direct phosphorylation target of CDKL5 and that CDKL5-dependent phosphorylation promotes SMAD3 protein stability. Importantly, we found that restoration of the SMAD3 signaling through TGF-β1 treatment normalized defective neuronal survival and maturation in Cdkl5 knockout (KO) neurons. Moreover, we demonstrate that Cdkl5 KO neurons are more vulnerable to neurotoxic/excitotoxic stimuli. In vivo treatment with TGF-β1 prevents increased NMDA-induced cell death in hippocampal neurons from Cdkl5 KO mice, suggesting an involvement of the SMAD3 signaling deregulation in the neuronal susceptibility to excitotoxic injury of Cdkl5 KO mice. Our finding reveals a new function for CDKL5 in maintaining neuronal survival that could have important implications for susceptibility to neurodegeneration in patients with CDD.
Collapse
Affiliation(s)
- Claudia Fuchs
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Laura Gennaccaro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Galvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Chiara Berteotti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Elisa Ren
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
26
|
Bradford STJ, Ranghini EJ, Grimley E, Lee PH, Dressler GR. High-throughput screens for agonists of bone morphogenetic protein (BMP) signaling identify potent benzoxazole compounds. J Biol Chem 2019; 294:3125-3136. [PMID: 30602563 DOI: 10.1074/jbc.ra118.006817] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/27/2018] [Indexed: 12/31/2022] Open
Abstract
Bone morphogenetic protein (BMP) signaling is critical in renal development and disease. In animal models of chronic kidney disease (CKD), re-activation of BMP signaling is reported to be protective by promoting renal repair and regeneration. Clinical use of recombinant BMPs, however, requires harmful doses to achieve efficacy and is costly because of BMPs' complex synthesis. Therefore, alternative strategies are needed to harness the beneficial effects of BMP signaling in CKD. Key aspects of the BMP signaling pathway can be regulated by both extracellular and intracellular molecules. In particular, secreted proteins like noggin and chordin inhibit BMP activity, whereas kielin/chordin-like proteins (KCP) enhance it and attenuate kidney fibrosis or CKD. Clinical development of KCP, however, is precluded by its size and complexity. Therefore, we propose an alternative strategy to enhance BMP signaling by using small molecules, which are simpler to synthesize and more cost-effective. To address our objective, here we developed a small-molecule high-throughput screen (HTS) with human renal cells having an integrated luciferase construct highly responsive to BMPs. We demonstrate the activity of a potent benzoxazole compound, sb4, that rapidly stimulated BMP signaling in these cells. Activation of BMP signaling by sb4 increased the phosphorylation of key second messengers (SMAD-1/5/9) and also increased expression of direct target genes (inhibitors of DNA binding, Id1 and Id3) in canonical BMP signaling. Our results underscore the feasibility of utilizing HTS to identify compounds that mimic key downstream events of BMP signaling in renal cells and have yielded a lead BMP agonist.
Collapse
Affiliation(s)
- Shayna T J Bradford
- From the Department of Pathology and.,the Molecular and Cellular Pathology Graduate Program, School of Medicine, and
| | | | - Edward Grimley
- From the Department of Pathology and.,the Molecular and Cellular Pathology Graduate Program, School of Medicine, and
| | - Pil H Lee
- the Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109
| | | |
Collapse
|
27
|
Rizvi F, Siddiqui R, DeFranco A, Homar P, Emelyanova L, Holmuhamedov E, Ross G, Tajik AJ, Jahangir A. Simvastatin reduces TGF-β1-induced SMAD2/3-dependent human ventricular fibroblasts differentiation: Role of protein phosphatase activation. Int J Cardiol 2018; 270:228-236. [PMID: 30220377 DOI: 10.1016/j.ijcard.2018.06.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Excessive cardiac fibrosis due to maladaptive remodeling leads to progression of cardiac dysfunction and is modulated by TGF-β1-activated intracellular phospho-SMAD signaling effectors and transcription regulators. SMAD2/3 phosphorylation, regulated by protein-phosphatases, has been studied in different cell types, but its role in human ventricular fibroblasts (hVFs) is not defined as a target to reduce cytokine-mediated excessive fibrotic response and adverse cardiac remodeling. Statins are a class of drugs reported to reduce cardiac fibrosis, although underlying mechanisms are not completely understood. We aimed to assess whether simvastatin-mediated reduction in TGF-β1-augmented profibrotic response involves reduction in phospho-SMAD2/3 owing to activation of protein-phosphatase in hVFs. METHODS AND RESULTS Cultures of hVFs were used. Effect of simvastatin on TGF-β1-treated hVF proliferation, cytotoxicity, myofibroblast differentiation/activation, profibrotic gene expression and protein-phosphatase activity was assessed. Simvastatin (1 μM) reduced effect of TGF-β1 (5 ng/mL) on hVF proliferation, myofibroblast differentiation (reduced α-smooth muscle actin [α-SMA-expression]) and activation (decreased procollagen-peptide release). Simvastatin also reduced TGF-β1-stimulated time-dependent increases in SMAD2/3 phosphorylation and nuclear translocation, mediated through catalytic activation of protein-phosphatases PPM1A and PP2A, which physically interact with SMAD2/3, thereby promoting their dephosphorylation. Effect of simvastatin on TGF-β1-induced fibroblast activation was annulled by okadaic acid, an inhibitor of protein-phosphatase. CONCLUSIONS This proof-of-concept study using an in vitro experimental cell culture model identifies the protective role of simvastatin against TGF-β1-induced hVF transformation into activated myofibroblasts through activation of protein phosphatase, a novel target that can be therapeutically modulated to curb excessive cardiac fibrosis associated with maladaptive cardiac remodeling.
Collapse
Affiliation(s)
- Farhan Rizvi
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora Research Institute, Aurora Health Care, 2801 W. Kinnickinnic River Parkway, Milwaukee, WI, USA.
| | - Ramail Siddiqui
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora Research Institute, Aurora Health Care, 2801 W. Kinnickinnic River Parkway, Milwaukee, WI, USA
| | - Alessandra DeFranco
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora Research Institute, Aurora Health Care, 2801 W. Kinnickinnic River Parkway, Milwaukee, WI, USA
| | - Peter Homar
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora Research Institute, Aurora Health Care, 2801 W. Kinnickinnic River Parkway, Milwaukee, WI, USA
| | - Larisa Emelyanova
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora Research Institute, Aurora Health Care, 2801 W. Kinnickinnic River Parkway, Milwaukee, WI, USA
| | - Ekhson Holmuhamedov
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora Research Institute, Aurora Health Care, 2801 W. Kinnickinnic River Parkway, Milwaukee, WI, USA
| | - Gracious Ross
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora Research Institute, Aurora Health Care, 2801 W. Kinnickinnic River Parkway, Milwaukee, WI, USA
| | - A Jamil Tajik
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora Research Institute, Aurora Health Care, 2801 W. Kinnickinnic River Parkway, Milwaukee, WI, USA; Aurora Cardiovascular Services, Aurora Sinai/Aurora St. Luke's Medical Centers, University of Wisconsin School of Medicine and Public Health, 2801 W. Kinnickinnic River Parkway, Milwaukee, WI, USA
| | - Arshad Jahangir
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora Research Institute, Aurora Health Care, 2801 W. Kinnickinnic River Parkway, Milwaukee, WI, USA; Aurora Cardiovascular Services, Aurora Sinai/Aurora St. Luke's Medical Centers, University of Wisconsin School of Medicine and Public Health, 2801 W. Kinnickinnic River Parkway, Milwaukee, WI, USA
| |
Collapse
|
28
|
David CJ, Massagué J. Contextual determinants of TGFβ action in development, immunity and cancer. Nat Rev Mol Cell Biol 2018; 19:419-435. [PMID: 29643418 DOI: 10.1038/s41580-018-0007-0] [Citation(s) in RCA: 558] [Impact Index Per Article: 79.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Few cell signals match the impact of the transforming growth factor-β (TGFβ) family in metazoan biology. TGFβ cytokines regulate cell fate decisions during development, tissue homeostasis and regeneration, and are major players in tumorigenesis, fibrotic disorders, immune malfunctions and various congenital diseases. The effects of the TGFβ family are mediated by a combinatorial set of ligands and receptors and by a common set of receptor-activated mothers against decapentaplegic homologue (SMAD) transcription factors, yet the effects can differ dramatically depending on the cell type and the conditions. Recent progress has illuminated a model of TGFβ action in which SMADs bind genome-wide in partnership with lineage-determining transcription factors and additionally integrate inputs from other pathways and the chromatin to trigger specific cellular responses. These new insights clarify the operating logic of the TGFβ pathway in physiology and disease.
Collapse
Affiliation(s)
- Charles J David
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Tsinghua University School of Medicine, Department of Basic Sciences, Beijing, China
| | - Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
29
|
Impaired Wnt signaling in dopamine containing neurons is associated with pathogenesis in a rotenone triggered Drosophila Parkinson's disease model. Sci Rep 2018; 8:2372. [PMID: 29403026 PMCID: PMC5799194 DOI: 10.1038/s41598-018-20836-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/25/2018] [Indexed: 12/18/2022] Open
Abstract
Parkinson’s disease, which is the one of the most common neurodegenerative movement disorder, is characterized by a progressive loss of dopamine containing neurons. The mechanisms underlying disease initiation and development are not well understood and causative therapies are currently not available. To elucidate the molecular processes during early stages of Parkinson’s disease, we utilized a Drosophila model. To induce Parkinson’s disease-like phenotypes, we treated flies with the pesticide rotenone and isolated dopamine producing neurons of animals that were at an early disease stage. Transcriptomic analyses revealed that gene ontologies associated with regulation of cell death and neuronal functions were significantly enriched. Moreover, the activities of the MAPK/EGFR- and TGF-β signaling pathways were enhanced, while the Wnt pathway was dampened. In order to evaluate the role of Wnt signaling for survival of dopaminergic neurons in the disease model, we rescued the reduced Wnt signaling activity by ectopic overexpression of armadillo/β-catenin. This intervention rescued the rotenone induced movement impairments in the Drosophila model. Taken together, this initial study showed a highly relevant role of Wnt signaling for dopamine producing neurons during pathogenesis in Parkinson’s disease and it implies that interfering with this pathway might by a suitable therapeutic option for the future.
Collapse
|
30
|
Zhou F, Wang A, Li D, Wang Y, Lin L. Pinocembrin from Penthorum chinense Pursh suppresses hepatic stellate cells activation through a unified SIRT3-TGF-β-Smad signaling pathway. Toxicol Appl Pharmacol 2018; 341:38-50. [DOI: 10.1016/j.taap.2018.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/03/2018] [Accepted: 01/13/2018] [Indexed: 01/18/2023]
|
31
|
Itoh Y, Saitoh M, Miyazawa K. Smad3-STAT3 crosstalk in pathophysiological contexts. Acta Biochim Biophys Sin (Shanghai) 2018; 50:82-90. [PMID: 29140406 DOI: 10.1093/abbs/gmx118] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 10/20/2017] [Indexed: 01/06/2023] Open
Abstract
Smad3 and STAT3 are intracellular molecules that transmit signals from plasma membrane receptors to the nucleus. Smad3 operates downstream of growth/differentiation factors that utilize activin receptor-like kinase (ALK)-4, 5, or 7, such as transforming growth factor-β (TGF-β), activin, and myostatin. STAT3 principally functions downstream of cytokines that exert their effects via gp130 and Janus family kinases, including interleukin-6 (IL-6), leukemia inhibitory factor (LIF), and oncostatin M. Accumulating evidence indicates that Smad3 and STAT3 engage in crosstalk in a highly context-dependent fashion, cooperating in some conditions while acting antagonistically each other in others. Here, we review the crosstalk between Smad3 and STAT3 in various biological contexts, including early tumorigenesis, epithelial-mesenchymal transition, fibrosis, and T cell differentiation.
Collapse
Affiliation(s)
- Yuka Itoh
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Masao Saitoh
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Keiji Miyazawa
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
32
|
IRS4, a novel modulator of BMP/Smad and Akt signalling during early muscle differentiation. Sci Rep 2017; 7:8778. [PMID: 28821740 PMCID: PMC5562708 DOI: 10.1038/s41598-017-08676-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/12/2017] [Indexed: 12/27/2022] Open
Abstract
Elaborate regulatory networks of the Bone Morphogenetic Protein (BMP) pathways ensure precise signalling outcome during cell differentiation and tissue homeostasis. Here, we identified IRS4 as a novel regulator of BMP signal transduction and provide molecular insights how it integrates into the signalling pathway. We found that IRS4 interacts with the BMP receptor BMPRII and specifically targets Smad1 for proteasomal degradation consequently leading to repressed BMP/Smad signalling in C2C12 myoblasts while concomitantly activating the PI3K/Akt axis. IRS4 is present in human and primary mouse myoblasts, the expression increases during myogenic differentiation but is downregulated upon final commitment coinciding with Myogenin expression. Functionally, IRS4 promotes myogenesis in C2C12 cells, while IRS4 knockdown inhibits differentiation of myoblasts. We propose that IRS4 is particularly critical in the myoblast stage to serve as a molecular switch between BMP/Smad and Akt signalling and to thereby control cell commitment. These findings provide profound understanding of the role of BMP signalling in early myogenic differentiation and open new ways for targeting the BMP pathway in muscle regeneration.
Collapse
|
33
|
Ma P, Ren B, Yang X, Sun B, Liu X, Kong Q, Li C, Mao B. ZC4H2 stabilizes Smads to enhance BMP signalling, which is involved in neural development in Xenopus. Open Biol 2017; 7:rsob.170122. [PMID: 28814648 PMCID: PMC5577449 DOI: 10.1098/rsob.170122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/17/2017] [Indexed: 01/16/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) play vital roles in regulating stem cell maintenance, differentiation and embryonic development. Intracellularly, BMP signalling is mediated by Smad proteins, which are regulated post-transcriptionally through reversible phosphorylation and ubiquitination. ZC4H2 is a small nuclear protein associated with intellectual disability and neural development in humans. Here, we report that ZC4H2 is highly expressed in the developing neural system and is involved in neural patterning and BMP signalling in Xenopus Knockdown of ZC4H2 led to expansion of the expression of the pan neural plate marker Sox2 in Xenopus embryos. In mammalian cells, ZC4H2 promotes BMP signalling and is involved in BMP regulated myogenic and osteogenic differentiation of mouse myoblast cells. Mechanistically, ZC4H2 binds and stabilizes Smad1 and Smad5 proteins through reducing their association with the Smurf ubiquitin ligases and thus their ubiquitination. We also found that a group of ZC4H2 mutations, which have been isolated in patients with intellectual disorders, showed weaker Smad-stabilizing activity, suggesting that the ZC4H2-Smad interaction might contribute to proper neural development in humans.
Collapse
Affiliation(s)
- Pengcheng Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, People's Republic of China
| | - Biyu Ren
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, People's Republic of China.,Institute of Health Sciences, Anhui University, Hefei 230601, People's Republic of China
| | - Xiangcai Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, People's Republic of China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650203, People's Republic of China
| | - Bin Sun
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650203, People's Republic of China.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming 650223, People's Republic of China
| | - Xiaoliang Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, People's Republic of China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650203, People's Republic of China
| | - Qinghua Kong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, People's Republic of China
| | - Chaocui Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, People's Republic of China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, People's Republic of China
| |
Collapse
|
34
|
Hu B, Yi P, Li Z, Zhang M, Wen C, Jian S, Yang G. Molecular characterization of two distinct Smads gene and their roles in the response to bacteria change and wound healing from Hyriopsis cumingii. FISH & SHELLFISH IMMUNOLOGY 2017; 67:129-140. [PMID: 28546027 DOI: 10.1016/j.fsi.2017.05.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/14/2017] [Accepted: 05/20/2017] [Indexed: 06/07/2023]
Abstract
The proteins of Smad family are critical components of the TGF-β superfamily signal pathway. In this paper, we cloned two intracellular mediators of TGF-β signaling, Smad3 and Smad5, from the pearl mussel Hyriopsis cumingii. The full length cDNA of HcSmad3 and HcSmad5 were 2052 bp and 1908 bp and encoded two polypeptides of 418 and 461amino acid residues, respectively. The deduced amino acid of HcSmad3 and HcSmad5 possessed two putative conserved domains, MH1 and MH2, a conserved phosphorylation motif SSXS at the carboxyl-terminal. The two Smad genes were detected muscle, mantle, hepatopancreas and gill, but with a very low level in heamocytes. The transcripts of Smad3 and Smad5 were up-regulated in hemocytes and hepatopancreas after A. hydrophila and PGN stimulation. However, the expression of Smad3 and Smad5 were only up-regulated in hepatopancreas after A. hydrophila stimulation. The transcripts of Smad3 and Smad5 had a slight change in hepatopancreas after PGN stimulation. The transcripts of HcSmad3 showed very little increase and HcSmad5 mRNA significantly up-regulated after wounding.
Collapse
Affiliation(s)
- Baoqing Hu
- Institute of Life Science, Nanchang University, Nanchang 330031, China.
| | - Peipei Yi
- Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Zhenfang Li
- Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Ming Zhang
- College of Jiangxi Biotech Vocational, Nanchang 330200, China
| | - Chungen Wen
- Institute of Life Science, Nanchang University, Nanchang 330031, China.
| | - Shaoqing Jian
- Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Gang Yang
- Institute of Life Science, Nanchang University, Nanchang 330031, China
| |
Collapse
|
35
|
Aschner Y, Downey GP. Transforming Growth Factor-β: Master Regulator of the Respiratory System in Health and Disease. Am J Respir Cell Mol Biol 2017; 54:647-55. [PMID: 26796672 DOI: 10.1165/rcmb.2015-0391tr] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In this article, we review the biology and physiological importance of transforming growth factor-β (TGF-β) to homeostasis in the respiratory system, its importance to innate and adaptive immune responses in the lung, and its pathophysiological role in various chronic pulmonary diseases including pulmonary arterial hypertension, chronic obstructive pulmonary disease, asthma, and pulmonary fibrosis. The TGF-β family is responsible for initiation of the intracellular signaling pathways that direct numerous cellular activities including proliferation, differentiation, extracellular matrix synthesis, and apoptosis. When TGF-β signaling is dysregulated or essential control mechanisms are unbalanced, the consequences of organ and tissue dysfunction can be profound. The complexities and myriad checkpoints built into the TGF-β signaling pathways provide attractive targets for the treatment of these disease states, many of which are currently being investigated. This review focuses on those aspects of TGF-β biology that are most relevant to pulmonary diseases and that hold promise as novel therapeutic targets.
Collapse
Affiliation(s)
- Yael Aschner
- 1 Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, and
| | - Gregory P Downey
- 1 Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, and.,2 Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado; and.,3 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and.,4 Departments of Pediatrics, and.,5 Biomedical Research, National Jewish Health, Denver, Colorado
| |
Collapse
|
36
|
Haider S, Kunihs V, Fiala C, Pollheimer J, Knöfler M. Expression pattern and phosphorylation status of Smad2/3 in different subtypes of human first trimester trophoblast. Placenta 2017; 57:17-25. [PMID: 28864007 DOI: 10.1016/j.placenta.2017.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/21/2017] [Accepted: 06/05/2017] [Indexed: 11/25/2022]
Abstract
INTRODUCTION TGF-β superfamily members are thought to play a pivotal role in placental development and differentiation. However, their downstream effectors, the Smad transcription factors, have been poorly investigated in human trophoblasts. METHODS Expression and localisation of the canonical TGF-β targets Smad2/3 and their regulators (Smad4 and Smad7) were investigated in first trimester placenta and purified cytotrophoblast (CTB) subtypes using immunofluorescence, western blotting and qPCR. Canonical and non-canonical activation was analysed in nuclear/cytoplasmic extracts of trophoblast subtypes as well as in tissue sections using antibodies against Smad2/3, phosphorylated either at the C-terminus (pSmad2C/3C) or in their linker regions (pSmad2L/3L). Smad phosphorylation was also examined in differentiating extravillous trophoblasts (EVTs) in the absence or presence of decidual stromal cell (DSC)-conditioned medium. RESULTS Smad2, Smad4 and Smad7 protein were uniformly expressed between 6th and 12th week placentae and the different isolated CTB subtypes. Activated pSmad2L was mainly detected in nuclei and cytoplasm of villous CTBs, whereas pSmad2C was absent from these cells. In contrast, pSmad2C could be detected in the cytoplasm of cell column trophoblasts and in the cytoplasm/nuclei of EVTs. Smad3 and its phosphorylated forms pSmad3C and pSmad3L specifically localised to EVT nuclei. During EVT differentiation autocrine activation of pSmad2C/3C and pSmad3L was observed. DSC-conditioned medium further increased Smad2/3 phosphorylation in EVTs. DISCUSSION The lack of pSmad2C in villous CTBs suggests that other mitogens than TGF-β could promote Smad2 linker phosphorylation under homeostatic conditions. Whereas autocrine signalling activates Smad2/3 in differentiating EVTs, paracrine factors contribute to Smad phosphorylation in these cells.
Collapse
Affiliation(s)
- S Haider
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - V Kunihs
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - C Fiala
- Gynmed Clinic, Vienna, Austria
| | - J Pollheimer
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - M Knöfler
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
37
|
Fu G, Xu Q, Qiu Y, Jin X, Xu T, Dong S, Wang J, Ke Y, Hu H, Cao X, Wang D, Cantor H, Gao X, Lu L. Suppression of Th17 cell differentiation by misshapen/NIK-related kinase MINK1. J Exp Med 2017; 214:1453-1469. [PMID: 28400474 PMCID: PMC5413330 DOI: 10.1084/jem.20161120] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 01/09/2017] [Accepted: 02/22/2017] [Indexed: 12/22/2022] Open
Abstract
T helper type 17 cells (Th17 cells) are major contributors to many autoimmune diseases. In this study, we demonstrate that the germinal center kinase family member MINK1 (misshapen/NIK-related kinase 1) negatively regulates Th17 cell differentiation. The suppressive effect of MINK1 on induction of Th17 cells is mediated by the inhibition of SMAD2 activation through direct phosphorylation of SMAD2 at the T324 residue. The importance of MINK1 to Th17 cell differentiation was strengthened in the animal model of experimental autoimmune encephalomyelitis (EAE). Moreover, we show that the reactive oxygen species (ROS) scavenger N-acetyl cysteine boosts Th17 cell differentiation in a MINK1-dependent manner and exacerbates the severity of EAE. Thus, we have not only established MINK1 as a critical regulator of Th17 cell differentiation, but also clarified that accumulation of ROS may limit the generation of Th17 cells. The contribution of MINK1 to ROS-regulated Th17 cell differentiation may suggest an important mechanism for the development of autoimmune diseases influenced by antioxidant dietary supplements.
Collapse
Affiliation(s)
- Guotong Fu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qin Xu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuanjun Qiu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xuexiao Jin
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ting Xu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shunli Dong
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jianli Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuehai Ke
- Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hu Hu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xuetao Cao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Institute of Immunology and National Key Laboratory of Medical Immunology, Second Military Medical University, Shanghai 200433, China
| | - Di Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Harvey Cantor
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115.,Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, Boston, MA 02115
| | - Xiang Gao
- Key Laboratory of Model Animals for Disease Study of the Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Linrong Lu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China .,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Innovation Center for Cell Signaling Network, Zhejiang University School of Medicine, Hangzhou 310058, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou 310058, China.,Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
38
|
Notch signalling in placental development and gestational diseases. Placenta 2017; 56:65-72. [PMID: 28117145 DOI: 10.1016/j.placenta.2017.01.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 01/14/2023]
Abstract
Activation of Notch signalling upon cell-cell contact of neighbouring cells controls a plethora of cellular processes such as stem cell maintenance, cell lineage determination, cell proliferation, and survival. Accumulating evidence suggests that the pathway also critically regulates these events during placental development and differentiation. Herein, we summarize our present knowledge about Notch signalling in murine and human placentation and discuss its potential role in the pathophysiology of gestational disorders. Studies in mice suggest that Notch controls trophectoderm formation, decidualization, placental branching morphogenesis and endovascular trophoblast invasion. In humans, the particular signalling cascade promotes formation of the extravillous trophoblast lineage and regulates trophoblast proliferation, survival and differentiation. Expression patterns as well as functional analyses indicate distinct roles of Notch receptors in different trophoblast subtypes. Altered effects of Notch signalling have been detected in choriocarcinoma cells, consistent with its role in cancer development and progression. Moreover, deregulation of Notch signalling components were observed in pregnancy disorders such as preeclampsia and fetal growth restriction. In summary, Notch plays fundamental roles in different developmental processes of the placenta. Abnormal signalling through this pathway could contribute to the pathogenesis of gestational diseases with aberrant placentation and trophoblast function.
Collapse
|
39
|
Chen X, Cao X, Sun X, Lei R, Chen P, Zhao Y, Jiang Y, Yin J, Chen R, Ye D, Wang Q, Liu Z, Liu S, Cheng C, Mao J, Hou Y, Wang M, Siebenlist U, Eugene Chin Y, Wang Y, Cao L, Hu G, Zhang X. Bcl-3 regulates TGFβ signaling by stabilizing Smad3 during breast cancer pulmonary metastasis. Cell Death Dis 2016; 7:e2508. [PMID: 27906182 PMCID: PMC5261001 DOI: 10.1038/cddis.2016.405] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 12/22/2022]
Abstract
Transforming growth factor beta (TGFβ) signaling in breast cancer is selectively associated with pulmonary metastasis. However, the underlying mechanisms remain unclear. Here we show that Bcl-3, a member of the IκB family, serves as a critical regulator in TGFβ signaling to modulate breast cancer pulmonary metastasis. Bcl-3 expression was significantly associated with metastasis-free survival in breast cancer patients. Bcl-3 deletion inhibited the migration and invasion of breast cancer cells in vitro, as well as breast cancer lung metastasis in vivo. Bcl-3 was required for the expression of downstream TGFβ signaling genes that are involved in breast cancer lung metastasis. Bcl-3 knockdown enhanced the degradation of Smad3 but not Smad2 following TGFβ treatment. Bcl-3 could bind to Smad3 and prevent the ubiquitination and degradation of Smad3 protein. These results indicate that Bcl-3 serves as a promising target to prevent breast tumor lung metastasis.
Collapse
Affiliation(s)
- Xi Chen
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Xinwei Cao
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Xiaohua Sun
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Rong Lei
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Pengfei Chen
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Yongxu Zhao
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Yuhang Jiang
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Jie Yin
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Ran Chen
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Deji Ye
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Qi Wang
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Zhanjie Liu
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Sanhong Liu
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Chunyan Cheng
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Jie Mao
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan
Hospital, Fudan University School of Medicine, Shanghai
200032, China
| | - Mingliang Wang
- Department of General Surgery, Ruijin
Hospital, Shanghai Jiao-Tong University School of Medicine,
Shanghai
200025, China
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology,
National Institute of Allergy and Infectious Diseases, National Institutes
of Health, Bethesda, MD
20892, USA
| | - Y Eugene Chin
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
- Collaborative Innovation Center of
System Biomedicine, Shanghai Jiao Tong University School of Medicine,
Shanghai
200240, China
| | - Ying Wang
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Liu Cao
- Liaoning Province Collaborative
Innovation Center of Aging Related Disease Diagnosis and Treatment and
Prevention, Shenyang
110001, China
- Key laboratory of Medical Cell
Biology, China Medical University, Shenyang
110001, China
| | - Guohong Hu
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
- Collaborative Innovation Center of
System Biomedicine, Shanghai Jiao Tong University School of Medicine,
Shanghai
200240, China
| | - Xiaoren Zhang
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
- Collaborative Innovation Center of
System Biomedicine, Shanghai Jiao Tong University School of Medicine,
Shanghai
200240, China
| |
Collapse
|
40
|
Boehme SA, Franz-Bacon K, DiTirro DN, Ly TW, Bacon KB. MAP3K19 Is a Novel Regulator of TGF-β Signaling That Impacts Bleomycin-Induced Lung Injury and Pulmonary Fibrosis. PLoS One 2016; 11:e0154874. [PMID: 27144281 PMCID: PMC4856290 DOI: 10.1371/journal.pone.0154874] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/20/2016] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, debilitating disease for which two medications, pirfenidone and nintedanib, have only recently been approved for treatment. The cytokine TGF-β has been shown to be a central mediator in the disease process. We investigated the role of a novel kinase, MAP3K19, upregulated in IPF tissue, in TGF-β-induced signal transduction and in bleomycin-induced pulmonary fibrosis. MAP3K19 has a very limited tissue expression, restricted primarily to the lungs and trachea. In pulmonary tissue, expression was predominantly localized to alveolar and interstitial macrophages, bronchial epithelial cells and type II pneumocytes of the epithelium. MAP3K19 was also found to be overexpressed in bronchoalveolar lavage macrophages from IPF patients compared to normal patients. Treatment of A549 or THP-1 cells with either MAP3K19 siRNA or a highly potent and specific inhibitor reduced phospho-Smad2 & 3 nuclear translocation following TGF-β stimulation. TGF-β-induced gene transcription was also strongly inhibited by both the MAP3K19 inhibitor and nintedanib, whereas pirfenidone had a much less pronounced effect. In combination, the MAP3K19 inhibitor appeared to act synergistically with either pirfenidone or nintedanib, at the level of target gene transcription or protein production. Finally, in an animal model of IPF, inhibition of MAP3K19 strongly attenuated bleomycin-induced pulmonary fibrosis when administered either prophylactically ortherapeutically. In summary, these results strongly suggest that inhibition of MAP3K19 may have a beneficial therapeutic effect in the treatment of IPF and represents a novel strategy to target this disease.
Collapse
Affiliation(s)
- Stefen A. Boehme
- AxikinPharmaceuticals, Inc., San Diego, California, United States of America
| | - Karin Franz-Bacon
- DNA Consulting, Inc., San Diego, California, United States of America
| | - Danielle N. DiTirro
- AxikinPharmaceuticals, Inc., San Diego, California, United States of America
| | - Tai Wei Ly
- AxikinPharmaceuticals, Inc., San Diego, California, United States of America
| | - Kevin B. Bacon
- AxikinPharmaceuticals, Inc., San Diego, California, United States of America
| |
Collapse
|
41
|
Xu X, Xu C, Saud SM, Lu X, Liu L, Fang L, Zhang X, Hu J, Li W. Effect of Kuijie Granule on the Expression of TGF-β/Smads Signaling Pathway in Patients with Ulcerative Colitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2016; 2016:2601830. [PMID: 27019660 PMCID: PMC4785256 DOI: 10.1155/2016/2601830] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/10/2016] [Indexed: 12/15/2022]
Abstract
The dysregulation of TGF-β/Smads signaling pathway has been postulated to contribute to the development of ulcerative colitis (UC) and the manifestation of clinical symptoms. Kuijie Granule is a prescription medicine used clinically in China to alleviate the symptoms associated with UC. To evaluate whether the clinical benefit of Kuijie Granule is associated with TGF-β/Smads signaling, we measured the expression levels of TGF-β/Smads signaling proteins (TGF-β1, TGF-βRII, Smad2, Smad4, Smad6, and Smad7) in the intestinal mucosa of 72 patients with UC treated with Kuijie Granule for 60 days. Colonic tissues were obtained by a virtual colonoscopy guided biopsy before and after Kuijie Granule treatment followed by pathological analysis and quantitative analysis of TGF-β/Smads using immunohistochemistry. Kuijie Granule treatment significantly improved symptoms associated with UC, which include diarrhea, mucus production, pus and blood in stool, abdominal pain and distention, and tenesmus. The clinical benefit of Kuijie Granule treatment correlated with decreased expression of TGF-β1 and Smad7 and increased expression of TGF-βRII and Smad4. These clinical results indicate that Kuijie Granule can alleviate the symptoms associated with UC and modulate TGF-β/Smads signaling.
Collapse
Affiliation(s)
- Xinjie Xu
- Traditional Chinese Medicine Department, Affiliated Hospital of Taishan Medical University, Shandong 271000, China
| | - Chunhua Xu
- Gastroenterology Department, Chengdu Second People's Hospital, Sichuan 610017, China
| | - Shakir M. Saud
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Xiaoming Lu
- Gastroenterology Department, Liaocheng Second People's Hospital, Shandong 252600, China
| | - Lei Liu
- Pathology Department, Affiliated Hospital of Taishan Medical University, Shandong 271000, China
| | - Li Fang
- Dermatology Department, Tai'an Maternal and Child Health-Care Hospital, Shandong 271000, China
| | - Xiaowei Zhang
- Gastroenterology Department, Affiliated Hospital of Taishan Medical University, Shandong 271000, China
| | - Jiangong Hu
- Gastroenterology Department, Affiliated Hospital of Taishan Medical University, Shandong 271000, China
| | - Weidong Li
- Department of Infectious Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
42
|
Sun G, Hu Z, Min Z, Yan X, Guan Z, Su H, Fu Y, Ma X, Chen YG, Zhang MQ, Tao Q, Wu W. Small C-terminal Domain Phosphatase 3 Dephosphorylates the Linker Sites of Receptor-regulated Smads (R-Smads) to Ensure Transforming Growth Factor β (TGFβ)-mediated Germ Layer Induction in Xenopus Embryos. J Biol Chem 2015; 290:17239-49. [PMID: 26013826 DOI: 10.1074/jbc.m115.655605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Indexed: 01/27/2023] Open
Abstract
Germ layer induction is one of the earliest events shortly after fertilization that initiates body formation of vertebrate embryos. In Xenopus, the maternally deposited transcriptional factor VegT promotes the expression of zygotic Nodal/Activin ligands that further form a morphogen gradient along the vegetal-animal axis and trigger the induction of the three germ layers. Here we found that SCP3 (small C-terminal domain phosphatase 3) is maternally expressed and vegetally enriched in Xenopus embryos and is essential for the timely induction of germ layers. SCP3 is required for the full activation of Nodal/Activin and bone morphogenetic protein signals and functions via dephosphorylation in the linker regions of receptor-regulated Smads. Consistently, the linker regions of receptor-regulated Smads are heavily phosphorylated in fertilized eggs, and this phosphorylation is gradually removed when embryos approach the midblastula transition. Knockdown of maternal SCP3 attenuates these dephosphorylation events and the activation of Nodal/Activin and bone morphogenetic protein signals after midblastula transition. This study thus suggested that the maternal SCP3 serves as a vegetally enriched, intrinsic factor to ensure a prepared status of Smads for their activation by the upcoming ligands during germ layer induction of Xenopus embryos.
Collapse
Affiliation(s)
- Guanni Sun
- From the MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhirui Hu
- the Bioinformatics Division, Center for Synthetic and Systems Biology, TNLIST, Tsinghua University, Beijing 100084, China
| | - Zheying Min
- the School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaohua Yan
- the State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China, and
| | - Zhenpo Guan
- From the MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hanxia Su
- From the MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yu Fu
- From the MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaopeng Ma
- the Bioinformatics Division, Center for Synthetic and Systems Biology, TNLIST, Tsinghua University, Beijing 100084, China
| | - Ye-Guang Chen
- the State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China, and
| | - Michael Q Zhang
- the Bioinformatics Division, Center for Synthetic and Systems Biology, TNLIST, Tsinghua University, Beijing 100084, China, the Department of Biological Sciences, Center for Systems Biology, University of Texas at Dallas, Richardson, Texas 75080
| | - Qinghua Tao
- the School of Life Sciences, Tsinghua University, Beijing 100084, China,
| | - Wei Wu
- From the MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China,
| |
Collapse
|
43
|
Li Y, Wei QW, Feng JG, Xu ML, Huang RH, Shi FX. Expression of bone morphogenetic protein 2, 4, and related components of the BMP signaling pathway in the mouse uterus during the estrous cycle. J Zhejiang Univ Sci B 2015; 15:601-10. [PMID: 25001220 DOI: 10.1631/jzus.b1300288] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The objective was to investigate the expression of bone morphogenetic protein (BMP) family members in the mouse uterus during the estrous cycle by real-time polymerase chain reaction (PCR) and immunohistochemistry. Uterine samples from Swiss ICR mice were collected and dissected free of surrounding tissue. One uterine horn was snap frozen in liquid nitrogen immediately after collection and stored at -80 °C for RNA extraction, and the other was fixed in 40 mg/ml paraformaldehyde at room temperature for immunolocalization of BMP2 protein. Real-time PCR analysis showed that the expression level of Bmp2 was significantly higher at proestrus than at estrus and metestrus (P<0.05). The relative abundance of Bmp4 exhibited significant fluctuations, but there were no statistically significant differences between the expression levels of Bmp2 and Bmp4 (P>0.05). The expression levels of Bmpr1a and Bmpr2 remained unchanged during estrous cycles. However, the level of Bmpr1b mRNA decreased significantly at estrus (P<0.05), increasing subsequently at metestrus. Furthermore, the level of Bmpr1b mRNA was significantly lower than those of Bmpr1a and Bmpr2 mRNA at the corresponding stages (P<0.05). All three receptor-regulated Smads (R-Smads) detected were differentially expressed in the mouse uterus and the expression levels of Smad1 and Smad5 were significantly higher than that of Smad8 (P<0.05). In addition, the expression level of Smad4 did not change substantially throughout the estrous cycle. Immunohistochemical experiments revealed that BMP2 protein was differentially expressed and localized mainly in the uterine luminal and glandular epithelial cells throughout the estrous cycle. In conclusion, our results provide information about the variation in the mRNA levels of Bmp2 and Bmp4 and related components of the BMP signaling pathway. The data provide quantitative and useful information about the roles of endometrial BMP proposed and demonstrated by others, such as the degradation and remodeling of the endometrium.
Collapse
Affiliation(s)
- Yan Li
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | |
Collapse
|
44
|
Herhaus L, Al-Salihi MA, Dingwell KS, Cummins TD, Wasmus L, Vogt J, Ewan R, Bruce D, Macartney T, Weidlich S, Smith JC, Sapkota GP. USP15 targets ALK3/BMPR1A for deubiquitylation to enhance bone morphogenetic protein signalling. Open Biol 2015; 4:140065. [PMID: 24850914 PMCID: PMC4042855 DOI: 10.1098/rsob.140065] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Protein kinase ALK3/BMPR1A mediates bone morphogenetic protein (BMP) signalling through phosphorylation and activation of SMADs 1/5/8. SMAD6, a transcriptional target of BMP, negatively regulates the BMP pathway by recruiting E3 ubiquitin ligases and targeting ALK3 for ubiquitin-mediated degradation. Here, we identify a deubiquitylating enzyme USP15 as an interactor of SMAD6 and ALK3. We show that USP15 enhances BMP-induced phosphorylation of SMAD1 by interacting with and deubiquitylating ALK3. RNAi-mediated depletion of USP15 increases ALK3 K48-linked polyubiquitylation, and reduces both BMP-induced SMAD1 phosphorylation and transcription of BMP target genes. We also show that loss of USP15 expression from mouse myoblast cells inhibits BMP-induced osteoblast differentiation. Furthermore, USP15 modulates BMP-induced phosphorylation of SMAD1 and transcription during Xenopus embryogenesis.
Collapse
Affiliation(s)
- Lina Herhaus
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dow St., Dundee DD1 5EH, UK
| | - Mazin A Al-Salihi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dow St., Dundee DD1 5EH, UK
| | - Kevin S Dingwell
- Division of Systems Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill NW7 1AA, UK
| | - Timothy D Cummins
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dow St., Dundee DD1 5EH, UK
| | - Lize Wasmus
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dow St., Dundee DD1 5EH, UK
| | - Janis Vogt
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dow St., Dundee DD1 5EH, UK
| | - Richard Ewan
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dow St., Dundee DD1 5EH, UK
| | - David Bruce
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dow St., Dundee DD1 5EH, UK
| | - Thomas Macartney
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dow St., Dundee DD1 5EH, UK
| | - Simone Weidlich
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dow St., Dundee DD1 5EH, UK
| | - James C Smith
- Division of Systems Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill NW7 1AA, UK
| | - Gopal P Sapkota
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dow St., Dundee DD1 5EH, UK
| |
Collapse
|
45
|
Tsukamoto S, Mizuta T, Fujimoto M, Ohte S, Osawa K, Miyamoto A, Yoneyama K, Murata E, Machiya A, Jimi E, Kokabu S, Katagiri T. Smad9 is a new type of transcriptional regulator in bone morphogenetic protein signaling. Sci Rep 2014; 4:7596. [PMID: 25534700 PMCID: PMC4274517 DOI: 10.1038/srep07596] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 12/03/2014] [Indexed: 01/23/2023] Open
Abstract
Smad1, Smad5 and Smad9 (also known as Smad8) are activated by phosphorylation by bone morphogenetic protein (BMP)-bound type I receptor kinases. We examined the role of Smad1, Smad5, and Smad9 by creating constitutively active forms (Smad(DVD)). Transcriptional activity of Smad9(DVD) was lower than that of Smad1(DVD) or Smad5(DVD), even though all three Smad(DVD)s associated with Smad4 and bound to the target DNA. The linker region of Smad9 was sufficient to reduce transcriptional activity. Smad9 expression was increased by the activation of BMP signaling, similar to that of inhibitory Smads (I-Smads), and Smad9 reduced BMP activity. In contrast to I-Smads, however, Smad9 did not inhibit the type I receptor kinase and suppressed the constitutively active Smad1(DVD). Smad9 formed complexes with Smad1 and bound to DNA but suppressed the transcription of the target gene. Taken together, our findings suggest that Smad9 is a new type of transcriptional regulator in BMP signaling.
Collapse
Affiliation(s)
- S. Tsukamoto
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - T. Mizuta
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - M. Fujimoto
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - S. Ohte
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - K. Osawa
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - A. Miyamoto
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - K. Yoneyama
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - E. Murata
- School of Medical Technology and Health, Faculty of Health and Medical Care, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - A. Machiya
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - E. Jimi
- Division of Molecular Signaling and Biochemistry, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu-shi, Fukuoka 803-8580, Japan
| | - S. Kokabu
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - T. Katagiri
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| |
Collapse
|
46
|
Hong J, Sung J, Lee D, Reddy R H, Kim YJ. Selective Dephosphorylation by SCP1 and PP2A in Phosphorylated Residues of SMAD2. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.11.3385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Herhaus L, Sapkota GP. The emerging roles of deubiquitylating enzymes (DUBs) in the TGFβ and BMP pathways. Cell Signal 2014; 26:2186-92. [PMID: 25007997 PMCID: PMC4443431 DOI: 10.1016/j.cellsig.2014.06.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 06/27/2014] [Indexed: 12/20/2022]
Abstract
The members of the transforming growth factor beta (TGFβ) family of cytokines, including bone morphogenetic proteins (BMP), play fundamental roles in development and tissue homeostasis. Hence, aberrant TGFβ/BMP signalling is associated with several human diseases such as fibrosis, bone and immune disorders, cancer progression and metastasis. Consequently, targeting TGFβ signalling for intervention potentially offers therapeutic opportunities against these diseases. Many investigations have focussed on understanding the molecular mechanisms underpinning the regulation of TGFβ signalling. One of the key areas has been to investigate the regulation of the protein components of the TGFβ/BMP signal transduction pathways by ubiquitylation and deubiquitylation. In the last 15years, extensive research has led to the discovery and characterisation of several E3 ubiquitin ligases that influence the TGFβ pathway. However, the research on DUBs regulating the TGFβ pathway has received prominence only recently and is still an emerging field. This review will provide a concise summary of our current understanding of how DUBs regulate TGFβ signalling.
Collapse
Affiliation(s)
- Lina Herhaus
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH Scotland, United Kingdom
| | - Gopal P Sapkota
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH Scotland, United Kingdom.
| |
Collapse
|
48
|
Chen X, Shi W, Wang F, Du Z, Yang Y, Gao M, Yao Y, He K, Wang C, Hao A. Zinc Finger DHHC-Type Containing 13 Regulates Fate Specification of Ectoderm and Mesoderm Cell Lineages by Modulating Smad6 Activity. Stem Cells Dev 2014; 23:1899-909. [DOI: 10.1089/scd.2014.0068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Xueran Chen
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | - Wei Shi
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | - Fen Wang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | - Zhaoxia Du
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | - Yang Yang
- Infertility Center, Qilu Hospital, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | - Ming Gao
- Reproductive Medical Center of Shandong University, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | - Yao Yao
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | - Kun He
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | - Chen Wang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | - Aijun Hao
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| |
Collapse
|
49
|
Cho A, Tang Y, Davila J, Deng S, Chen L, Miller E, Wernig M, Graef IA. Calcineurin signaling regulates neural induction through antagonizing the BMP pathway. Neuron 2014; 82:109-124. [PMID: 24698271 PMCID: PMC4011666 DOI: 10.1016/j.neuron.2014.02.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2014] [Indexed: 12/28/2022]
Abstract
Development of the nervous system begins with neural induction, which is controlled by complex signaling networks functioning in concert with one another. Fine-tuning of the bone morphogenetic protein (BMP) pathway is essential for neural induction in the developing embryo. However, the molecular mechanisms by which cells integrate the signaling pathways that contribute to neural induction have remained unclear. We find that neural induction is dependent on the Ca(2+)-activated phosphatase calcineurin (CaN). Fibroblast growth factor (FGF)-regulated Ca(2+) entry activates CaN, which directly and specifically dephosphorylates BMP-regulated Smad1/5 proteins. Genetic and biochemical analyses revealed that CaN adjusts the strength and transcriptional output of BMP signaling and that a reduction of CaN activity leads to an increase of Smad1/5-regulated transcription. As a result, FGF-activated CaN signaling opposes BMP signaling during gastrulation, thereby promoting neural induction and the development of anterior structures.
Collapse
Affiliation(s)
- Ahryon Cho
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, USA
| | - Yitai Tang
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, USA
| | - Jonathan Davila
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Suhua Deng
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, USA
| | - Lei Chen
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, USA
| | - Erik Miller
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Isabella A Graef
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, USA
| |
Collapse
|
50
|
Kopf J, Paarmann P, Hiepen C, Horbelt D, Knaus P. BMP growth factor signaling in a biomechanical context. Biofactors 2014; 40:171-87. [PMID: 24123658 DOI: 10.1002/biof.1137] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 07/07/2013] [Accepted: 08/01/2013] [Indexed: 01/10/2023]
Abstract
Bone Morphogenetic Proteins (BMPs) are members of the transforming growth factor-β superfamily of secreted polypeptide growth factors and are important regulators in a multitude of cellular processes. To ensure the precise and balanced propagation of their pleiotropic signaling responses, BMPs and their corresponding signaling pathways are subject to tight control. A large variety of regulatory mechanisms throughout different biological levels combines into a complex network and provides the basis for physiological BMP function. This regulatory network not only includes biochemical factors but also mechanical cues. Both BMP signaling and mechanotransduction pathways are tightly interconnected and represent an elaborate signaling network active during development but also during organ homeostasis. Moreover, its dysregulation is associated with a number of human pathologies. A more detailed understanding of this crosstalk in respect to molecular interactions will be indispensable in the future, in particular to understand BMP-related diseases as well as with regard to an efficient clinical application of BMP ligands.
Collapse
Affiliation(s)
- Jessica Kopf
- Institute for Chemistry/Biochemistry, Freie Universität, Berlin, Berlin, Germany
| | | | | | | | | |
Collapse
|