1
|
Chen L, Lu Y, Zhao M, Xu J, Wang Y, Xu Q, Cao Y, Liu H. A non-canonical role of endothelin converting enzyme 1 (ECE1) in promoting lung cancer development via directly targeting protein kinase B (AKT). J Gene Med 2024; 26:e3612. [PMID: 37897251 DOI: 10.1002/jgm.3612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Lung cancer is the second most common malignancy in the world, and lung adenocarcinoma (LUAD) in particular is the leading cause of cancer death worldwide. Endothelin converting enzyme 1 (ECE1) is a membrane-bound metalloprotease involved in endothelin-1 (ET-1) processing and regulates vasoconstriction. However, very few studies have reported the involvement of ECE1 in regulating tumor cell proliferation, and the mechanism remains poorly understood. Therefore, we aimed to determine the role of ECE1 in lung cancer development. METHODS The Cancer Genome Atlas database and Kaplan-Meier plotter were used to assess the association between ECE1 and lung cancer. The expression of ECE1 was detected using immunohistochemistry staining and western blotting. A variety of in vitro assays were performed to evaluate the effects of ECE1 on the colony formation, proliferation, migration and invasion using ECE1 knockdown lung cancer cells. The gene expression profiles regulated by ECE1 were investigated by RNA sequencing. An immunoprecipitation assay and immunofluorescence assay were used to evaluate the mechanism underlying the regulatory effect of ECE1 on protein kinase B (AKT). The effect of ECE1 on tumor development was assessed by xenografted lung cancer cells in either C57BL/6 mice or nude mice. RESULTS ECE1 was upregulated in LUAD and correlated with the poor prognosis of patients with LUAD. Functional studies showed that knockdown of ECE1 retarded the progression of tumors formed by lung cancer cells at least partly by inhibiting tumor cell proliferation. Moreover, ECE1 accelerated tumor cell proliferation through promoting AKT activation dispensable of its canonical target ET-1. Mechanically, ECE1 interacted with the pleckstrin homology (PH) domain of AKT and facilitated its translocation to the plasma membrane for activation. Furthermore, the inhibition of AKT activity counteracted the lung cancer cell growth inhibition observed both in vitro and in xenografts caused by ECE1 suppression. CONCLUSIONS The present study reveals a non-canonical function of ECE1 in regulating AKT activation and cell proliferation, which provides the basis for the development of a novel strategy for the intervention of cancer including LUAD by abrogating ECE1-AKT signaling.
Collapse
Affiliation(s)
- Li Chen
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yikai Lu
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mengmeng Zhao
- Research Center of Translational Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Junfang Xu
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yan Wang
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qinghua Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yajuan Cao
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Haipeng Liu
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Pasha M, Wooldridge AL, Kirschenman R, Spaans F, Davidge ST, Cooke CLM. Altered Vascular Adaptations to Pregnancy in a Rat Model of Advanced Maternal Age. Front Physiol 2021; 12:718568. [PMID: 34393831 PMCID: PMC8356803 DOI: 10.3389/fphys.2021.718568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/07/2021] [Indexed: 12/20/2022] Open
Abstract
Advanced maternal age (≥35 years old) increases the risk of pregnancy complications such as preeclampsia and fetal growth restriction. We previously demonstrated vascular dysfunction and abnormal pregnancy outcomes in a rat model of advanced maternal age. However, vascular adaptations to pregnancy in aging were not studied. We hypothesize that advanced maternal age is associated with a more vasoconstrictive phenotype due to reduced nitric oxide (NO) and increased activity of matrix metalloproteinases (MMPs), contributing to impaired vascular adaptations to pregnancy. A rat model of advanced maternal age was used: young (4 months) and aged (9.5 months; ∼35 years in humans) non-pregnant and pregnant rats. On gestational day 20 (term = 22 days; non-pregnant rats were aged-matched), blood pressure and heart rate were measured (tail cuff plethysmography) and vascular function was assessed in mesenteric arteries (wire myography). Endothelium-dependent relaxation to methylcholine (MCh) was assessed in the presence/absence of nitric oxide synthase inhibitor (L-NAME), or inhibitors of endothelium-dependent hyperpolarization (EDH; apamin and TRAM-34). Vasoconstriction responses to big endothelin-1 (bigET-1), in the presence/absence of MMPs-inhibitor (GM6001) or endothelin converting enzyme (ECE-1) inhibitor (CGS35066), in addition, ET-1 responsiveness, were measured. Blood pressure was elevated only in aged non-pregnant rats (p < 0.001) compared to all other groups. MCh responses were not different, however, L-NAME decreased maximum vasodilation in young (p < 0.01) and aged pregnant rats (p < 0.001), and decreased MCh sensitivity in young non-pregnant rats (p < 0.01), without effects in aged non-pregnant rats. EDH contribution to relaxation was similar in young non-pregnant, and aged non-pregnant and pregnant rats, while EDH-mediated relaxation was absent in young pregnant rats (p < 0.001). BigET-1 responses were enhanced in aged non-pregnant (p < 0.01) and pregnant rats (p < 0.05). No significant changes in bigET-1 conversion occurred in the presence of MMP-inhibitor, whereas ECE-1 inhibition reduced bigET-1 constriction in aged rats (p < 0.01). No differences in ET-1 sensitivity were observed. In conclusion, contrary to our hypothesis, reduced blood pressure, and an increased EDH-dependent contribution to vasodilation suggest a compensatory mechanism that may reflect beneficial adaptations in these aged rats that were able to maintain pregnancy. These data increase our understanding of how the vascular adaptive pathways in pregnancy compensate for advanced maternal age.
Collapse
Affiliation(s)
- Mazhar Pasha
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Amy L. Wooldridge
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Raven Kirschenman
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Floor Spaans
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Sandra T. Davidge
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Christy-Lynn M. Cooke
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
3
|
Pérez-Moreno P, Quezada-Meza C, Chavez-Almarza C, Niechi I, Silva-Pavez E, Trigo-Hidalgo C, Aguayo F, Jara L, Cáceres-Verschae A, Varas-Godoy M, Díaz VM, García de Herreros A, Burzio VA, Tapia JC. Phosphorylation of Endothelin-Converting Enzyme-1c at Serines 18 and 20 by CK2 Promotes Aggressiveness Traits in Colorectal Cancer Cells. Front Oncol 2020; 10:1004. [PMID: 32850305 PMCID: PMC7406796 DOI: 10.3389/fonc.2020.01004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Endothelin-converting enzyme-1 (ECE1) activates the endothelin-1 peptide, which upregulates pathways that are related to diverse hallmarks of cancer. ECE1 is expressed as four isoforms differing in their N-terminal domains. Protein kinase CK2 phosphorylates the N-terminus of isoform ECE1c, enhancing its stability and promoting invasiveness of colorectal cancer cells. However, the specific residues in ECE1c that are phosphorylated by CK2 and how this phosphorylation promotes invasiveness was unknown. Here we demonstrate that Ser-18 and Ser-20 are the bona fide residues phosphorylated by CK2 in ECE1c. Thus, biphospho-mimetic ECE1cDD and biphospho-resistant ECE1cAA mutants were constructed and stably expressed in different colorectal cancer cells through lentiviral transduction. Biphospho-mimetic ECE1cDD displayed the highest stability in cells, even in the presence of the specific CK2 inhibitor silmitasertib. Concordantly, ECE1cDD-expressing cells showed enhanced hallmarks of cancer, such as proliferation, migration, invasiveness, and self-renewal capacities. Conversely, cells expressing the less-stable biphospho-resistant ECE1cAA showed a reduction in these features, but also displayed an important sensitization to 5-fluorouracil, an antineoplastic agent traditionally used as therapy in colorectal cancer patients. Altogether, these findings suggest that phosphorylation of ECE1c at Ser-18 and Ser-20 by CK2 promotes aggressiveness in colorectal cancer cells. Therefore, phospho-ECE1c may constitute a novel biomarker of poor prognosis and CK2 inhibition may be envisioned as a potential therapy for colorectal cancer patients.
Collapse
Affiliation(s)
- Pablo Pérez-Moreno
- Programa de Biología Celular y Molecular, Facultad de Medicina, ICBM, Universidad de Chile, Santiago, Chile
| | - Camila Quezada-Meza
- Programa de Biología Celular y Molecular, Facultad de Medicina, ICBM, Universidad de Chile, Santiago, Chile
| | - Cristopher Chavez-Almarza
- Programa de Biología Celular y Molecular, Facultad de Medicina, ICBM, Universidad de Chile, Santiago, Chile
| | - Ignacio Niechi
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
| | - Eduardo Silva-Pavez
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - César Trigo-Hidalgo
- Programa de Biología Celular y Molecular, Facultad de Medicina, ICBM, Universidad de Chile, Santiago, Chile
| | - Francisco Aguayo
- Programa de Virología, Facultad de Medicina, ICBM, Universidad de Chile, Santiago, Chile
| | - Lilian Jara
- Programa de Genética, Facultad de Medicina, ICBM, Universidad de Chile, Santiago, Chile
| | - Albano Cáceres-Verschae
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Manuel Varas-Godoy
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Víctor M Díaz
- Unidad Asociada CSIC, Programa de Recerca en Cáncer, Departament de Ciéncies Experimentals i de la Salut, Institut Hospital del Mar d'Investigacions Médiques, Universitat Pompeu Fabra, Barcelona, Spain
| | - Antonio García de Herreros
- Unidad Asociada CSIC, Programa de Recerca en Cáncer, Departament de Ciéncies Experimentals i de la Salut, Institut Hospital del Mar d'Investigacions Médiques, Universitat Pompeu Fabra, Barcelona, Spain
| | - Verónica A Burzio
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Fundación Ciencia & Vida, Andes Biotechnologies SpA, Santiago, Chile
| | - Julio C Tapia
- Programa de Biología Celular y Molecular, Facultad de Medicina, ICBM, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Abstract
PURPOSE To review the recent developments on the effect of chronic high mean arterial blood pressure (MAP) on cerebral blood flow (CBF) autoregulation and supporting the notion that CBF autoregulation impairment has connection with chronic cerebral diseases. Method: A narrative review of all the relevant papers known to the authors was conducted. Results: Our understanding of the connection between cerebral perfusion impairment and chronic high MAP and cerebral disease is rapidly evolving, from cerebral perfusion impairment being the result of cerebral diseases to being the cause of cerebral diseases. We now better understand the intertwined impact of hypertension and Alzheimer's disease (AD) on cerebrovascular sensory elements and recognize cerebrovascular elements that are more vulnerable to these diseases. Conclusion: We conclude with the suggestion that the sensory elements pathology plays important roles in intertwined mechanisms of chronic high MAP and AD that impact cerebral perfusion.
Collapse
Affiliation(s)
- Noushin Yazdani
- College of Public Health, University of South Florida , Tampa, FL, USA
| | - Mark S Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida , Tampa, FL, USA.,Biomedical Research, James A. Haley VA Medical Center , Tampa, FL, USA
| | - Saeid Taheri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida , Tampa, FL, USA.,Byrd Neuroscience Institute, University of South Florida , Tampa, FL, USA
| |
Collapse
|
5
|
Tapia JC, Niechi I. Endothelin-converting enzyme-1 in cancer aggressiveness. Cancer Lett 2019; 452:152-157. [DOI: 10.1016/j.canlet.2019.03.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 12/29/2022]
|
6
|
Endothelin-converting enzyme-1 regulates glucagon-like peptide-1 receptor signalling and resensitisation. Biochem J 2019; 476:513-533. [PMID: 30626614 DOI: 10.1042/bcj20180853] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 02/08/2023]
Abstract
Following nutrient ingestion, glucagon-like peptide 1 (GLP-1) is secreted from intestinal L-cells and mediates anti-diabetic effects, most notably stimulating glucose-dependent insulin release from pancreatic β-cells but also inhibiting glucagon release, promoting satiety and weight reduction and potentially enhancing or preserving β-cell mass. These effects are mediated by the GLP-1 receptor (GLP-1R), which is a therapeutic target in type 2 diabetes. Although agonism at the GLP-1R has been well studied, desensitisation and resensitisation are perhaps less well explored. An understanding of these events is important, particularly in the design and use of novel receptor ligands. Here, using either HEK293 cells expressing the recombinant human GLP-1R or the pancreatic β-cell line, INS-1E with endogenous expressesion of the GLP-1R, we demonstrate GLP-1R desensitisation and subsequent resensitisation following removal of extracellular GLP-1 7-36 amide. Resensitisation is dependent on receptor internalisation, endosomal acidification and receptor recycling. Resensitisation is also regulated by endothelin-converting enzyme-1 (ECE-1) activity, most likely through proteolysis of GLP-1 in endosomes and the facilitation of GLP-1R dephosphorylation and recycling. Inhibition of ECE-1 activity also increases GLP-1-induced activation of extracellular signal-regulated kinase and generation of cAMP, suggesting processes dependent upon the lifetime of the internalised ligand-receptor complex.
Collapse
|
7
|
Mous DS, Buscop-van Kempen MJ, Wijnen RMH, Tibboel D, Rottier RJ. Changes in vasoactive pathways in congenital diaphragmatic hernia associated pulmonary hypertension explain unresponsiveness to pharmacotherapy. Respir Res 2017; 18:187. [PMID: 29115963 PMCID: PMC5688796 DOI: 10.1186/s12931-017-0670-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/31/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Patients with congenital diaphragmatic hernia (CDH) have structural and functional different pulmonary vessels, leading to pulmonary hypertension. They often fail to respond to standard vasodilator therapy targeting the major vasoactive pathways, causing a high morbidity and mortality. We analyzed whether the expression of crucial members of these vasoactive pathways could explain the lack of responsiveness to therapy in CDH patients. METHODS The expression of direct targets of current vasodilator therapy in the endothelin and prostacyclin pathway was analyzed in human lung specimens of control and CDH patients. RESULTS CDH lungs showed increased expression of both ETA and ETB endothelin receptors and the rate-limiting Endothelin Converting Enzyme (ECE-1), and a decreased expression of the prostaglandin-I2 receptor (PTGIR). These data were supported by increased expression of both endothelin receptors and ECE-1, endothelial nitric oxide synthase and PTGIR in the well-established nitrofen-CDH rodent model. CONCLUSIONS Together, these data demonstrate aberrant expression of targeted receptors in the endothelin and prostacyclin pathway in CDH already early during development. The analysis of this unique patient material may explain why a significant number of patients do not respond to vasodilator therapy. This knowledge could have important implications for the choice of drugs and the design of future clinical trials internationally.
Collapse
Affiliation(s)
- Daphne S Mous
- Department of Pediatric Surgery, Erasmus Medical Center, Sophia Children's Hospital, Wytemaweg 80, 3015 CN, PO Box 2040, Rotterdam, The Netherlands
| | - Marjon J Buscop-van Kempen
- Department of Pediatric Surgery, Erasmus Medical Center, Sophia Children's Hospital, Wytemaweg 80, 3015 CN, PO Box 2040, Rotterdam, The Netherlands
| | - Rene M H Wijnen
- Department of Pediatric Surgery, Erasmus Medical Center, Sophia Children's Hospital, Wytemaweg 80, 3015 CN, PO Box 2040, Rotterdam, The Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery, Erasmus Medical Center, Sophia Children's Hospital, Wytemaweg 80, 3015 CN, PO Box 2040, Rotterdam, The Netherlands
| | - Robbert J Rottier
- Department of Pediatric Surgery, Erasmus Medical Center, Sophia Children's Hospital, Wytemaweg 80, 3015 CN, PO Box 2040, Rotterdam, The Netherlands. .,Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
8
|
Kuruppu S, Rajapakse NW, Parkington HC, Smith I. Pharmacological hypothesis: Nitric oxide-induced inhibition of ADAM-17 activity as well as vesicle release can in turn prevent the production of soluble endothelin-converting enzyme. Pharmacol Res Perspect 2017; 5. [PMID: 28971608 PMCID: PMC5625149 DOI: 10.1002/prp2.335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 02/23/2017] [Accepted: 04/19/2017] [Indexed: 12/20/2022] Open
Abstract
Endothelin‐1 (ET‐1) and nitric oxide (NO) are two highly potent vasoactive molecules with opposing effects on the vasculature. Endothelin‐converting enzyme (ECE) and nitric oxide synthase (NOS) catalyse the production of ET‐1 and NO, respectively. It is well established that these molecules play a crucial role in the initiation and progression of cardiovascular diseases and have therefore become targets of therapy. Many studies have examined the mechanism(s) by which NO regulates ET‐1 production. Expression and localization of ECE‐1 is a key factor that determines the rate of ET‐1 production. ECE‐1 can either be membrane bound or be released from the cell surface to produce a soluble form. NO has been shown to reduce the expression of both membrane‐bound and soluble ECE‐1. Several studies have examined the mechanism(s) behind NO‐mediated inhibition of ECE expression on the cell membrane. However, the precise mechanism(s) behind NO‐mediated inhibition of soluble ECE production are unknown. We hypothesize that both exogenous and endogenous NO, inhibits the production of soluble ECE‐1 by preventing its release via extracellular vesicles (e.g., exosomes), and/or by inhibiting the activity of A Disintegrin and Metalloprotease‐17 (ADAM17). If this hypothesis is proven correct in future studies, these pathways represent targets for the therapeutic manipulation of soluble ECE‐1 production.
Collapse
Affiliation(s)
- Sanjaya Kuruppu
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Niwanthi W Rajapakse
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria, 3004, Australia
| | - Helena C Parkington
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Ian Smith
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
9
|
Colon cancer cell invasion is promoted by protein kinase CK2 through increase of endothelin-converting enzyme-1c protein stability. Oncotarget 2016; 6:42749-60. [PMID: 26543229 PMCID: PMC4767467 DOI: 10.18632/oncotarget.5722] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 10/06/2015] [Indexed: 11/25/2022] Open
Abstract
Endothelin-converting enzyme-1c (ECE-1c) is a membrane metalloprotease involved in endothelin-1 synthesis, which has been shown in vitro to have a role in breast, ovary and prostate cancer cell invasion. N-terminal end of ECE-1c displays three putative phosphorylation sites for the protein kinase CK2. We studied whether CK2 phosphorylates N-terminal end of ECE-1c as well as whether this has a role in migration and invasion of colon cancer cells. CK2 phosphorylated the N-terminal end of ECE-1c and this was precluded upon inhibition of CK2. Inhibition also led to diminished protein levels of both endogen ECE-1 or GFP-fused N-terminal end of ECE-1c in 293T embryonic and DLD-1 colon cancer cells, which highlighted the importance of this motif on UPS-dependent ECE-1c degradation. Full-length ECE-1c mutants designed either to mimic or abrogate CK2-phosphorylation displayed increased or decreased migration/invasion of colon cancer cells, respectively. Moreover, ECE-1c overexpression or its silencing with a siRNA led to increased or diminished cell migration/invasion, respectively. Altogether, these data show that CK2-increased ECE-1c protein stability is related to augmented migration and invasion of colon cancer cells, shedding light on a novel mechanism by which CK2 may promote malignant progression of this disease.
Collapse
|
10
|
Zeng Y, Ma M, Liu B, Xia J, Xu H, Liu Y, Du X, Hu Z, Yang Q, Zhang L. Association between ECE1 gene polymorphisms and risk of intracerebral haemorrhage. J Int Med Res 2016; 44:444-52. [PMID: 27036146 PMCID: PMC5536701 DOI: 10.1177/0300060516635385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/03/2016] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To determine whether endothelin converting enzyme-1 (ECE1) gene polymorphisms contribute to susceptibility to intracerebral haemorrhage (ICH) by influencing blood pressure. METHODS This case-control study enrolled patients with ICH and healthy control subjects from a Southern Han Chinese population. The ECE1 gene polymorphisms rs212528 and rs213045 were genotyped. The association between the genotypes and the risk of ICH was assessed. The effects of these two ECE1 gene polymorphisms on blood pressure were also analysed. RESULTS A total of 389 patients with ICH and 404 healthy control subjects participated in the study. There was no significant association between the ECE1 rs212528 and rs213045 polymorphisms and ICH even after adjusting for different confounding variables. In patients with ICH, the systolic blood pressure of patients with the rs212528 AA genotype was significantly lower than that of patients with the AG/GG genotypes. CONCLUSIONS These results indicated that the ECE1 rs212528 and rs213045 polymorphisms had no major role to play in the genetic susceptibility to ICH, although rs212528 might influence blood pressure in patients with ICH.
Collapse
Affiliation(s)
- Yi Zeng
- Department of Geriatrics, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Mingming Ma
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Baoqiong Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Hongwei Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yunhai Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiaoping Du
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Qidong Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Le Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
11
|
Boratkó A, Veréb Z, Petrovski G, Csortos C. TIMAP-protein phosphatase 1-complex controls endothelin-1 production via ECE-1 dephosphorylation. Int J Biochem Cell Biol 2016; 73:11-18. [DOI: 10.1016/j.biocel.2016.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 01/16/2016] [Accepted: 01/20/2016] [Indexed: 01/13/2023]
|
12
|
Wang X, Zhang R, Gu L, Zhang Y, Zhao X, Bi K, Chen X. Cell-based screening identifies the active ingredients from Traditional Chinese Medicine formula Shixiao San as the inhibitors of atherosclerotic endothelial dysfunction. PLoS One 2015; 10:e0116601. [PMID: 25699522 PMCID: PMC4336328 DOI: 10.1371/journal.pone.0116601] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 12/12/2014] [Indexed: 12/25/2022] Open
Abstract
In this study, we performed a phenotypic screening in human endothelial cells exposed to oxidized low density lipoprotein (an in vitro model of atherosclerotic endothelial dysfunction) to identify the effective compounds in Shixiao San. After investigating the suitability and reliability of the cell-based screening method using atorvastatin as the positive control drug, this method was applied in screening Shixiao San and its extracts. The treatment of n-butanol fraction on endothelial cells exhibited stronger healing effects against oxidized low density lipoprotein-induced insult when compared with other fractions. Cell viability, the level of nitric oxide, endothelial nitric oxide synthase and endothelin-1 were measured, respectively. The assays revealed n-butanol fraction significantly elevated the survival ratio of impaired cells in culture. In parallel, n-butanol fraction exhibited the highest inhibition of inflammation. The generation of prostaglandin-2 and adhesion molecule (soluble intercellular adhesion molecule-1) was obviously declined. Furthermore, n-butanol fraction suppressed the production of reactive oxygen species and malondialdehyde, and restored the activity of superoxide dismutase. Compounds identification of the n-butanol fraction was carried out by ultra high liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry. The active ingredients including quercetin-3-O-(2G-α-l-rhamnosyl)-rutinoside, quercetin-3-O-neohesperidoside, isorhamnetin-3-O-neohesperidoside and isorhamnetin-3-O-rutinoside revealed the ability of anti-atherosclerosis after exposing on endothelial cells. The current work illustrated the pharmacology effect of Shixiao San and clearly indicated the major active components in Shixiao San. More importantly, the proposed cell-based screening method might be particularly suitable for fast evaluating the anti-atherosclerosis efficacy of Traditional Chinese Medicines and screening out the interesting ingredients of Traditional Chinese Medicines.
Collapse
Affiliation(s)
- Xiaofan Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Ruowen Zhang
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, United States of America
| | - Liqiang Gu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuanyuan Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xu Zhao
- School of Traditional Chinese Material Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaohui Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
- * E-mail:
| |
Collapse
|
13
|
Polymorphisms of ECE1 may contribute to susceptibility to ischemic stroke in Han Chinese of Northern China. Cell Biochem Biophys 2014; 69:237-46. [PMID: 24595843 DOI: 10.1007/s12013-013-9789-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Endothelin (ET) converting enzyme 1 (ECE1) is well known for its critical role in the process of ET. Recent studies have demonstrated that two genetic variants of ECE1 gene, rs212528 and rs213045 (C338A), are associated with hypertension and atherosclerosis formation. To investigate the association between the ECE1 gene polymorphisms and ischemic stroke (IS) in Chinese population. With a candidate loci strategy, we conducted a case-control study involving 381 IS cases and 366 non-IS controls in Han population of the Northern China. Two single nucleotide polymorphisms of ECE1 were genotyped and assessed the association with the risk of IS. Furthermore, stratified analyses were also carried out to evaluate the association between the gender or two etiologic subtypes [small-artery occlusion (SAO) and large-artery atherosclerosis (LAA)] and IS. Compared with rs213045 G homozygote, rs213045 TG genotype and rs213045 TT/TG genotypes are in dominant model significantly increased the risk of IS [adjusted odds ratio (OR) = 1.47, 95 % confidence interval (CI) = 1.04-2.07, P = 0.03; adjusted OR = 1.43, 95 % CI = 1.04-1.99, P = 0.029, respectively]. However, we did not find the significant association between the ECE1 gene polymorphisms and SAO or LAA of IS in this study. Our results indicated that ECE1 gene polymorphisms may contribute to the susceptibility of IS in Han population of the Northern China.
Collapse
|
14
|
Cheluvappa R, Eri R, Luo AS, Grimm MC. Endothelin and vascular remodelling in colitis pathogenesis--appendicitis and appendectomy limit colitis by suppressing endothelin pathways. Int J Colorectal Dis 2014; 29:1321-8. [PMID: 25085204 DOI: 10.1007/s00384-014-1974-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/16/2014] [Indexed: 02/04/2023]
Abstract
PURPOSE Appendicitis and appendectomy(AA), when done at a young age, offer protection against inflammatory bowel disease (IBD) development in later life. However, IBD pathogenesis involves both immunological and vascular abnormalities. Using the first murine model of AA (developed by us), we aimed to determine the role of AA in modulating vascular remodelling mediated by endothelin activity in IBD. METHODS Mice with two laparotomies each served as controls (sham-sham or SS). Distal colons were harvested (four AA group colons, four SS group colons), and RNA extracted from each. The RNA was subjected to microarray analysis and RT-PCR validation. Gene set enrichment analysis (GSEA) software was used to further analyze the microarray data. RESULTS Gene expression of seven genes closely associated with endothelin activity was examined in distal colons 3 days post-AA and 28 days post-AA. While there were no gene expression changes 3 days post-AA, the genes EDN1 (0.7-fold), EDN2 (0.8-fold) and ECE2 (0.8-fold) were downregulated (*p value <0.05) 28 days post-AA. However, EDN3 (1.3-fold) was upregulated 28 days post-AA (*p value <0.05). GSEA analysis showed downregulation of 11 gene sets (stringent cut-offs-false discovery rate <5 % and p value <0.001) associated with endothelin and endothelin-converting enzyme genes by AA, in contrast to only 1 being upregulated. CONCLUSIONS AA induces a delayed but significant suppression of genes pertaining to endothelin activity. Elucidating the pathways involved in suppression of endothelin activity and manipulation of different genes/enzymes/proteins related to endothelin activity will significantly enhance the extant repertoire of therapeutic options in IBD.
Collapse
Affiliation(s)
- Rajkumar Cheluvappa
- Department of Medicine, St George Clinical School, University of New South Wales, Sydney, NSW, Australia,
| | | | | | | |
Collapse
|
15
|
Kuruppu S, Rajapakse NW, Dunstan RA, Smith AI. Nitric oxide inhibits the production of soluble endothelin converting enzyme-1. Mol Cell Biochem 2014; 396:49-54. [DOI: 10.1007/s11010-014-2141-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 07/11/2014] [Indexed: 12/27/2022]
|
16
|
The clearance of misfolded proteins in neurodegenerative diseases by zinc metalloproteases: An inorganic perspective. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2013.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
McKenzie GAG, Hinsley EE, Hunter K, Lambert DW. The endothelin axis in head and neck cancer: a promising therapeutic opportunity? J Oral Pathol Med 2013; 43:395-404. [DOI: 10.1111/jop.12108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Gordon A. G. McKenzie
- College of Medical and Dental Sciences; University of Birmingham; Edgbaston UK
- Unit of Oral and Maxillofacial Pathology; School of Clinical Dentistry; University of Sheffield; Sheffield UK
| | - Emma E. Hinsley
- Unit of Oral and Maxillofacial Pathology; School of Clinical Dentistry; University of Sheffield; Sheffield UK
| | - Keith Hunter
- Unit of Oral and Maxillofacial Pathology; School of Clinical Dentistry; University of Sheffield; Sheffield UK
| | - Daniel W. Lambert
- Unit of Oral and Maxillofacial Pathology; School of Clinical Dentistry; University of Sheffield; Sheffield UK
| |
Collapse
|
18
|
Wang X, Xiang Y, Ren Z, Zhang Y, Qiao Y. Rational questing for inhibitors of endothelin converting enzyme-1 from Salvia miltiorrhiza by combining ligand- and structure-based virtual screening. CAN J CHEM 2013. [DOI: 10.1139/cjc-2012-0523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this study, a virtual screening approach based on pharmacophore and molecular docking was proposed to identify endothelin converting enzyme-1 (ECE-1) (EC 3.4.24.71) inhibitors from Salvia miltiorrhiza. First, the pharmacophore models were generated to recognize the common features of the ECE-1 inhibitors. The models were validated by a test database composed by a set of compounds known as ECE-1 inhibitors and nonactive compounds and proven to be successful in discriminating active and inactive inhibitors. Then, the best pharmacophore model was used to screen the compounds from S. miltiorrhiza. Furthermore, the Surflex-Dock procedure was used for molecular docking. All compounds from S. miltiorrhiza were docked into the active site of the target protein. An empirical scoring function was used to evaluate the affinity of the compounds and the target protein. Comparing the virtual screening results based on pharmacophore and molecular docking, respectively, 11 communal compounds with higher QFIT and docking score were hit, and the activity of some compounds was validated in the literature. The binding modes between these compounds and the ECE-1 binding site were predicted and used to identify the key interactions that contribute to the inhibitory activity of ECE-1 activity. The results show that the two methods have good consistency and can be validated and supplemented with each other.
Collapse
Affiliation(s)
- Xing Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Yuhong Xiang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhenzhen Ren
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Yanling Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Yanjiang Qiao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| |
Collapse
|
19
|
Kuruppu S, Tochon-Danguy N, Smith AI. Applicability of green fluorescence protein in the study of endothelin converting enzyme-1c trafficking. Protein Sci 2013; 22:306-13. [PMID: 23281075 DOI: 10.1002/pro.2212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/06/2012] [Accepted: 12/08/2012] [Indexed: 11/11/2022]
Abstract
Endothelin-1 (ET-1) is one of the most potent peptide vasoconstrictors known. It is produced upon the cleavage of its precursor big endothelin-1 by endothelin converting enzyme-1 (ECE-1). Production of ET-1 is thought to be dependent upon the expression of ECE-1 at the cell surface. Therefore, mechanisms inducing the trafficking of ECE-1 to the cell surface have been the focus of recent research. This research has identified phosphorylation of the cytoplasmic region of ECE-1 as a main cellular signal inducing its trafficking to the cell surface. Previous studies have used green fluorescent protein (GFP) tagged ECE-1 to monitor phosphorylation induced trafficking of ECE-1 to the cell surface. However, it has been speculated that the addition of the GFP tag can itself alter enzyme activity and phosphorylation of ECE-1, and hence the suitability of GFP or any other protein tag in studying ECE-1 distribution and trafficking. ECE-1c is the most widely expressed isoform in endothelial cells. We therefore expressed ECE-1c with a GFP tag either at the N or C-terminus of ECE-1c. Catalytic activity and effect on protein kinase C (PKC) induced phosphorylation was compared between the two chimeras and wild-type ECE-1c. Our results indicate that positioning of the GFP tag on the C-terminus abrogates activity without effecting PKC-induced phosphorylation. However, GFP tag on the N-terminus has the opposite effect. Results of this study shed light on the applicability of GFP or perhaps other protein tags in studying ECE-1c distribution and trafficking.
Collapse
Affiliation(s)
- Sanjaya Kuruppu
- Department of Biochemistry & Molecular Biology, Monash University, Wellington Rd, Clayton, Victoria 3800, Australia.
| | | | | |
Collapse
|
20
|
Protein Kinase C recognition sites in the cytoplasmic domain of Endothelin Converting Enzyme-1c. Biochem Biophys Res Commun 2012; 427:606-10. [DOI: 10.1016/j.bbrc.2012.09.105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 09/19/2012] [Indexed: 11/18/2022]
|