1
|
Wang YH, Zhang YQ, Zhang RR, Zhuang FY, Liu H, Xu ZS, Xiong AS. Lycopene ε-cyclase mediated transition of α-carotene and β-carotene metabolic flow in carrot fleshy root. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:986-1003. [PMID: 37158657 DOI: 10.1111/tpj.16275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/01/2022] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/10/2023]
Abstract
The accumulation of carotenoids, such as xanthophylls, lycopene, and carotenes, is responsible for the color of carrot (Daucus carota subsp. sativus) fleshy roots. The potential role of DcLCYE, encoding a lycopene ε-cyclase associated with carrot root color, was investigated using cultivars with orange and red roots. The expression of DcLCYE in red carrot varieties was significantly lower than that in orange carrots at the mature stage. Furthermore, red carrots accumulated larger amounts of lycopene and lower levels of α-carotene. Sequence comparison and prokaryotic expression analysis revealed that amino acid differences in red carrots did not affect the cyclization function of DcLCYE. Analysis of the catalytic activity of DcLCYE revealed that it mainly formed ε-carotene, while a side activity on α-carotene and γ-carotene was also observed. Comparative analysis of the promoter region sequences indicated that differences in the promoter region may affect the transcription of DcLCYE. DcLCYE was overexpressed in the red carrot 'Benhongjinshi' under the control of the CaMV35S promoter. Lycopene in transgenic carrot roots was cyclized, resulting in the accumulation of higher levels of α-carotene and xanthophylls, while the β-carotene content was significantly decreased. The expression levels of other genes in the carotenoid pathway were simultaneously upregulated. Knockout of DcLCYE in the orange carrot 'Kurodagosun' by CRISPR/Cas9 technology resulted in a decrease in the α-carotene and xanthophyll contents. The relative expression levels of DcPSY1, DcPSY2, and DcCHXE were sharply increased in DcLCYE knockout mutants. The results of this study provide insights into the function of DcLCYE in carrots, which could serve as a basis for creating colorful carrot germplasms.
Collapse
Affiliation(s)
- Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yu-Qing Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Rong-Rong Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Fei-Yun Zhuang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
2
|
Fang H, Liu J, Ma R, Zou Y, Ho SH, Chen J, Xie Y. Functional Characterization of Lycopene β- and ε-Cyclases from a Lutein-Enriched Green Microalga Chlorella sorokiniana FZU60. Mar Drugs 2023; 21:418. [PMID: 37504949 PMCID: PMC10381880 DOI: 10.3390/md21070418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023] Open
Abstract
Lutein is a high-value carotenoid with many human health benefits. Lycopene β- and ε-cyclases (LCYB and LCYE, respectively) catalyze the cyclization of lycopene into distinct downstream branches, one of which is the lutein biosynthesis pathway, via α-carotene. Hence, LCYB and LCYE are key enzymes in lutein biosynthesis. In this study, the coding genes of two lycopene cyclases (CsLCYB and CsLCYE) of a lutein-enriched marine green microalga, Chlorella sorokiniana FZU60, were isolated and identified. A sequence analysis and computational modeling of CsLCYB and CsLCYE were performed using bioinformatics to identify the key structural domains. Further, a phylogenetic analysis revealed that CsLCYB and CsLCYE were homogeneous to the proteins of other green microalgae. Subcellular localization tests in Nicotiana benthamiana showed that CsLCYB and CsLCYE localized in chloroplasts. A pigment complementation assay in Escherichia coli revealed that CsLCYB could efficiently β-cyclize both ends of lycopene to produce β-carotene. On the other hand, CsLCYE possessed a strong ε-monocyclase activity for the production of δ-carotene and a weak ε-bicyclic activity for the production of ε-carotene. In addition, CsLCYE was able to catalyze lycopene into β-monocyclic γ-carotene and ultimately produced α-carotene with a β-ring and an ε-ring via γ-carotene or δ-carotene. Moreover, the co-expression of CsLCYB and CsLCYE in E. coli revealed that α-carotene was a major product, which might lead to the production of a high level of lutein in C. sorokiniana FZU60. The findings provide a theoretical foundation for performing metabolic engineering to improve lutein biosynthesis and accumulation in C. sorokiniana FZU60.
Collapse
Affiliation(s)
- Hong Fang
- Marine Biological Manufacturing Center of Fuzhou Institute of Oceanography, Fuzhou University, Fuzhou 350108, China
- Technical Innovation Service Platform for High-Value and High-Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
- Fuzhou Industrial Technology Innovation Center for High-Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
| | - Junjie Liu
- Marine Biological Manufacturing Center of Fuzhou Institute of Oceanography, Fuzhou University, Fuzhou 350108, China
- Technical Innovation Service Platform for High-Value and High-Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
- Fuzhou Industrial Technology Innovation Center for High-Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
| | - Ruijuan Ma
- Marine Biological Manufacturing Center of Fuzhou Institute of Oceanography, Fuzhou University, Fuzhou 350108, China
- Technical Innovation Service Platform for High-Value and High-Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
- Fuzhou Industrial Technology Innovation Center for High-Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
| | - Yiping Zou
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shih-Hsin Ho
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jianfeng Chen
- Marine Biological Manufacturing Center of Fuzhou Institute of Oceanography, Fuzhou University, Fuzhou 350108, China
- Technical Innovation Service Platform for High-Value and High-Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
- Fuzhou Industrial Technology Innovation Center for High-Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
| | - Youping Xie
- Marine Biological Manufacturing Center of Fuzhou Institute of Oceanography, Fuzhou University, Fuzhou 350108, China
- Technical Innovation Service Platform for High-Value and High-Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
- Fuzhou Industrial Technology Innovation Center for High-Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
3
|
He W, Wang Y, Luo H, Li D, Liu C, Song J, Zhang Z, Liu C, Niu L. Effect of NaCl stress and supplemental CaCl2 on carotenoid accumulation in germinated yellow maize kernels. Food Chem 2020; 309:125779. [DOI: 10.1016/j.foodchem.2019.125779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/27/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022]
|
4
|
Deng YY, Cheng L, Wang Q, Ge ZH, Zheng H, Cao TJ, Lu QQ, Yang LE, Lu S. Functional Characterization of Lycopene Cyclases Illustrates the Metabolic Pathway toward Lutein in Red Algal Seaweeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1354-1363. [PMID: 31933364 DOI: 10.1021/acs.jafc.9b06918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/10/2023]
Abstract
Carotenoids are essential phytonutrients synthesized by all photosynthetic organisms. Acyclic lycopene is the first branching point for carotenoid biosynthesis. Lycopene β- and ε-cyclases (LCYB and LCYE, respectively) catalyze the cyclization of its open ends and direct the metabolic flux into different downstream branches. Carotenoids of the β,β-branch (e.g., β-carotene) are found in all photosynthetic organisms, but those of the β,ε-branch (e.g., lutein) are generally absent in cyanobacteria, heterokonts, and some red algae. Although both LCYBs and LCYEs have been characterized from land plants, there are only a few reports on LCYs from cyanobacteria and algae. Here, we cloned four LCY genes from Porphyra umbilicalis and Pyropia yezoensis (susabi-nori) of Bangiales, the most primitive red algal order that synthesizes lutein. Our functional characterization in both Escherichia coli and Arabidopsis thaliana demonstrated that each species has a pair of LCYB and LCYE. Similar to LCYs from higher plants, red algal LCYBs cyclize both ends of lycopene, and their LCYEs only cyclize a single end. The characterization of LCYEs from red algae resolved the first bifurcation step toward β-carotene and lutein biosynthesis. Our phylogenetic analysis suggests that LCYEs of the green lineage and the red algae originated separately during evolution.
Collapse
Affiliation(s)
- Yin-Yin Deng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
- Jiangsu Marine Fisheries Research Institute , Nantong 226007 , China
| | - Lu Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Qi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Zi-Han Ge
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Hui Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Tian-Jun Cao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Qin-Qin Lu
- Jiangsu Marine Fisheries Research Institute , Nantong 226007 , China
| | - Li-En Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
- Jiangsu Marine Fisheries Research Institute , Nantong 226007 , China
| | - Shan Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
5
|
Sun T, Li L. Toward the 'golden' era: The status in uncovering the regulatory control of carotenoid accumulation in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110331. [PMID: 31779888 DOI: 10.1016/j.plantsci.2019.110331] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/20/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 05/17/2023]
Abstract
Carotenoids are essential pigments to plants and important natural products to humans. Carotenoids as both primary and specialized metabolites fulfill multifaceted functions in plants. As such, carotenoid accumulation (a net process of biosynthesis, degradation and sequestration) is subjected to complicated regulation throughout plant life cycle in response to developmental and environmental signals. Investigation of transcriptional regulation of carotenoid metabolic genes remains the focus in understanding the regulatory control of carotenoid accumulation. While discovery of bona fide carotenoid metabolic regulators is still challenging, the recent progress of identification of various transcription factors and regulators helps us to construct hierarchical regulatory network of carotenoid accumulation. The elucidation of carotenoid regulatory mechanisms at protein level and in chromoplast provides some insights into post-translational regulation of carotenogenic enzymes and carotenoid sequestration in plastid sink. This review briefly describes the pathways and main flux-controlling steps for carotenoid accumulation in plants. It highlights our recent understanding of the regulatory mechanisms underlying carotenoid accumulation at both transcriptional and post-translational levels. It also discusses the opportunities to expand toolbox for further shedding light upon the intrinsic regulation of carotenoid accumulation in plants.
Collapse
Affiliation(s)
- Tianhu Sun
- Robert W Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, New York, 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA
| | - Li Li
- Robert W Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, New York, 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA.
| |
Collapse
|
6
|
Wang Q, Cao TJ, Zheng H, Zhou CF, Wang Z, Wang R, Lu S. Manipulation of Carotenoid Metabolic Flux by Lycopene Cyclization in Ripening Red Pepper ( Capsicum annuum var. conoides) Fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4300-4310. [PMID: 30908022 DOI: 10.1021/acs.jafc.9b00756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/09/2023]
Abstract
Carotenoids are essential phytonutrients for the human body. Higher plants usually synthesize and accumulate carotenoids in their leaves, flowers, and fruits. Most carotenoids have either two β-rings on both ends or β- and ε-rings separately on two ends of their molecules and are synthesized from the acyclic lycopene as the precursor. Lycopene β- and ε-cyclases (LCYB and LCYE, respectively) catalyze the β- and ε-cyclization of lycopene, respectively, and regulate the metabolic flux from lycopene to its downstream β,β-branches (by LCYB alone) and β,ε-branches (by LCYE and LCYB). In this study, we identified and characterized genes for two LCYBs (CaLCYB1 and CaLCYB2), one LCYE (CaLCYE1), and a capsanthin/capsorubin synthase (CaCCS1) which is also able to β-cyclize lycopene from the red pepper ( Capsicum annuum var. conoides) genome. By quantifying transcript abundances of these genes and contents of different carotenoid components in ripening fruits, we observed a correlation between the induction of both CaLCYBs and the accumulation of carotenoids of the β,β-branch during ripening. Although capsanthin was accumulated in ripened fruits, our quantification demonstrated a strong induction of CaCCS1 at the breaker stage, together with the simultaneous repression of CaLCYE1 and the decrease of lutein content, suggesting the involvement of CaCCS1 in competing against CaLCYE1 for synthesizing carotenoids of the β,β-branch. Our results provide important information for future metabolic engineering studies to manipulate carotenoid biosynthesis and accumulation in fruits.
Collapse
Affiliation(s)
- Qiang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Tian-Jun Cao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Hui Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Chang-Fang Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Zhong Wang
- Zhengzhou Tobacco Research Institute , Zhengzhou 450001 , China
| | - Ran Wang
- Zhengzhou Tobacco Research Institute , Zhengzhou 450001 , China
| | - Shan Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
7
|
Kang L, Park SC, Ji CY, Kim HS, Lee HS, Kwak SS. Metabolic engineering of carotenoids in transgenic sweetpotato. BREEDING SCIENCE 2017; 67:27-34. [PMID: 28465665 PMCID: PMC5407916 DOI: 10.1270/jsbbs.16118] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/26/2016] [Accepted: 12/24/2016] [Indexed: 05/08/2023]
Abstract
Sweetpotato [Ipomoea batatas (L.) Lam], which contains high levels of antioxidants such as ascorbate and carotenoids in its storage root, is one of the healthiest foods, as well as one of the best starch crops for growth on marginal lands. In plants, carotenoid pigments are involved in light harvesting for photosynthesis and are also essential for photo-protection against excess light. As dietary antioxidants in humans, these compounds benefit health by alleviating aging-related diseases. The storage root of sweetpotato is a good source of both carotenoids and carbohydrates for human consumption. Therefore, metabolic engineering of sweetpotato to increase the content of useful carotenoids represents an important agricultural goal. This effort has been facilitated by cloning of most of the carotenoid biosynthetic genes, as well as the Orange gene involved in carotenoid accumulation. In this review, we describe our current understanding of the regulation of biosynthesis, accumulation and catabolism of carotenoids in sweetpotato. A deeper understanding of these topics should contribute to development of new sweetpotato cultivars with higher levels of nutritional carotenoids and abiotic stress tolerance.
Collapse
Affiliation(s)
- Le Kang
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB),
Daejeon 34141,
Republic of Korea
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology (UST),
Daejeon 305-350,
Republic of Korea
| | - Sung-Chul Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB),
Daejeon 34141,
Republic of Korea
| | - Chang Yoon Ji
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB),
Daejeon 34141,
Republic of Korea
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology (UST),
Daejeon 305-350,
Republic of Korea
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB),
Daejeon 34141,
Republic of Korea
| | - Haeng-Soon Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB),
Daejeon 34141,
Republic of Korea
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology (UST),
Daejeon 305-350,
Republic of Korea
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB),
Daejeon 34141,
Republic of Korea
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology (UST),
Daejeon 305-350,
Republic of Korea
- Corresponding author (e-mail: )
| |
Collapse
|
8
|
Abstract
Carotenoids are the most important biocolor isoprenoids responsible for yellow, orange and red colors found in nature. In plants, they are synthesized in plastids of photosynthetic and sink organs and are essential molecules for photosynthesis, photo-oxidative damage protection and phytohormone synthesis. Carotenoids also play important roles in human health and nutrition acting as vitamin A precursors and antioxidants. Biochemical and biophysical approaches in different plants models have provided significant advances in understanding the structural and functional roles of carotenoids in plants as well as the key points of regulation in their biosynthesis. To date, different plant models have been used to characterize the key genes and their regulation, which has increased the knowledge of the carotenoid metabolic pathway in plants. In this chapter a description of each step in the carotenoid synthesis pathway is presented and discussed.
Collapse
Affiliation(s)
| | - Claudia Stange
- Centro de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile
| |
Collapse
|
9
|
Gemmecker S, Schaub P, Koschmieder J, Brausemann A, Drepper F, Rodriguez-Franco M, Ghisla S, Warscheid B, Einsle O, Beyer P. Phytoene Desaturase from Oryza sativa: Oligomeric Assembly, Membrane Association and Preliminary 3D-Analysis. PLoS One 2015; 10:e0131717. [PMID: 26147209 PMCID: PMC4492965 DOI: 10.1371/journal.pone.0131717] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/16/2015] [Accepted: 06/04/2015] [Indexed: 11/24/2022] Open
Abstract
Recombinant phytoene desaturase (PDS-His6) from rice was purified to near-homogeneity and shown to be enzymatically active in a biphasic, liposome-based assay system. The protein contains FAD as the sole protein-bound redox-cofactor. Benzoquinones, not replaceable by molecular oxygen, serve as a final electron acceptor defining PDS as a 15-cis-phytoene (donor):plastoquinone oxidoreductase. The herbicidal PDS-inhibitor norflurazon is capable of arresting the reaction by stabilizing the intermediary FADred, while an excess of the quinone acceptor relieves this blockage, indicating competition. The enzyme requires its homo-oligomeric association for activity. The sum of data collected through gel permeation chromatography, non-denaturing polyacrylamide electrophoresis, chemical cross-linking, mass spectrometry and electron microscopy techniques indicate that the high-order oligomers formed in solution are the basis for an active preparation. Of these, a tetramer consisting of dimers represents the active unit. This is corroborated by our preliminary X-ray structural analysis that also revealed similarities of the protein fold with the sequence-inhomologous bacterial phytoene desaturase CRTI and other oxidoreductases of the GR2-family of flavoproteins. This points to an evolutionary relatedness of CRTI and PDS yielding different carotene desaturation sequences based on homologous protein folds.
Collapse
Affiliation(s)
- Sandra Gemmecker
- Faculty of Biology, Cell Biology, University of Freiburg, Freiburg, Germany
| | - Patrick Schaub
- Faculty of Biology, Cell Biology, University of Freiburg, Freiburg, Germany
| | - Julian Koschmieder
- Faculty of Biology, Cell Biology, University of Freiburg, Freiburg, Germany
| | - Anton Brausemann
- Faculty of Chemistry and Pharmacy, Institute for Biochemistry, University of Freiburg, Freiburg, Germany
| | - Friedel Drepper
- Faculty of Biology, Biochemistry and Functional Proteomics, University of Freiburg, Freiburg, Germany
| | | | - Sandro Ghisla
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Bettina Warscheid
- Faculty of Biology, Biochemistry and Functional Proteomics, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Oliver Einsle
- Faculty of Chemistry and Pharmacy, Institute for Biochemistry, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Peter Beyer
- Faculty of Biology, Cell Biology, University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
10
|
Blatt A, Bauch ME, Pörschke Y, Lohr M. A lycopene β-cyclase/lycopene ε-cyclase/light-harvesting complex-fusion protein from the green alga Ostreococcus lucimarinus can be modified to produce α-carotene and β-carotene at different ratios. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:582-95. [PMID: 25759133 DOI: 10.1111/tpj.12826] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/03/2014] [Revised: 02/27/2015] [Accepted: 03/06/2015] [Indexed: 05/08/2023]
Abstract
Biosynthesis of asymmetric carotenoids such as α-carotene and lutein in plants and green algae involves the two enzymes lycopene β-cyclase (LCYB) and lycopene ε-cyclase (LCYE). The two cyclases are closely related and probably resulted from an ancient gene duplication. While in most plants investigated so far the two cyclases are encoded by separate genes, prasinophyte algae of the order Mamiellales contain a single gene encoding a fusion protein comprised of LCYB, LCYE and a C-terminal light-harvesting complex (LHC) domain. Here we show that the lycopene cyclase fusion protein from Ostreococcus lucimarinus catalyzed the simultaneous formation of α-carotene and β-carotene when heterologously expressed in Escherichia coli. The stoichiometry of the two products in E. coli could be altered by gradual truncation of the C-terminus, suggesting that the LHC domain may be involved in modulating the relative activities of the two cyclase domains in the algae. Partial deletions of the linker region between the cyclase domains or replacement of one or both cyclase domains with the corresponding cyclases from the green alga Chlamydomonas reinhardtii resulted in pronounced shifts of the α-carotene-to-β-carotene ratio, indicating that both the relative activities of the cyclase domains and the overall structure of the fusion protein have a strong impact on the product stoichiometry. The possibility to tune the product ratio of the lycopene cyclase fusion protein from Mamiellales renders it useful for the biotechnological production of the asymmetric carotenoids α-carotene or lutein in bacteria or fungi.
Collapse
Affiliation(s)
- Andreas Blatt
- Institut für Allgemeine Botanik, Johannes Gutenberg-Universität, 55099, Mainz, Germany
| | - Matthias E Bauch
- Institut für Allgemeine Botanik, Johannes Gutenberg-Universität, 55099, Mainz, Germany
| | - Yvonne Pörschke
- Institut für Allgemeine Botanik, Johannes Gutenberg-Universität, 55099, Mainz, Germany
| | - Martin Lohr
- Institut für Allgemeine Botanik, Johannes Gutenberg-Universität, 55099, Mainz, Germany
| |
Collapse
|
11
|
Nisar N, Li L, Lu S, Khin NC, Pogson BJ. Carotenoid metabolism in plants. MOLECULAR PLANT 2015; 8:68-82. [PMID: 25578273 DOI: 10.1016/j.molp.2014.12.007] [Citation(s) in RCA: 644] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/29/2014] [Revised: 11/30/2014] [Accepted: 12/11/2014] [Indexed: 05/19/2023]
Abstract
Carotenoids are mostly C40 terpenoids, a class of hydrocarbons that participate in various biological processes in plants, such as photosynthesis, photomorphogenesis, photoprotection, and development. Carotenoids also serve as precursors for two plant hormones and a diverse set of apocarotenoids. They are colorants and critical components of the human diet as antioxidants and provitamin A. In this review, we summarize current knowledge of the genes and enzymes involved in carotenoid metabolism and describe recent progress in understanding the regulatory mechanisms underlying carotenoid accumulation. The importance of the specific location of carotenoid enzyme metabolons and plastid types as well as of carotenoid-derived signals is discussed.
Collapse
Affiliation(s)
- Nazia Nisar
- Australian Research Council Centre of Excellence in Plant Energy Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Li Li
- US Department of Agriculture-Agricultural Research Service, Robert W. Holley Centre for Agriculture and Health, Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Shan Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 2100923, China
| | - Nay Chi Khin
- Australian Research Council Centre of Excellence in Plant Energy Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Barry J Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, The Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
12
|
Motilva MJ, Macià A, Romero MP, Labrador A, Domínguez A, Peiró L. Optimisation and validation of analytical methods for the simultaneous extraction of antioxidants: application to the analysis of tomato sauces. Food Chem 2014; 163:234-43. [PMID: 24912721 DOI: 10.1016/j.foodchem.2014.04.096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/22/2013] [Revised: 04/24/2014] [Accepted: 04/26/2014] [Indexed: 10/25/2022]
Abstract
In the present study, simultaneous extraction of natural antioxidants (phenols and carotenoids) in complex matrices, such as tomato sauces, is presented. The tomato sauce antioxidant compounds studied were the phenolics hydroxytyrosol, from virgin olive oil, quercetin and its derivatives, from onions, and quercetin-rutinoside as well as the carotenoid, lycopene (cis and trans), from tomatoes. These antioxidant compounds were extracted simultaneously with n-hexane/acetone/ethanol (50/25/25, v/v/v). The phenolics were analysed by ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS), and lycopene (cis- and trans-forms) was analysed using high-performance liquid chromatography coupled to a diode array detector (HPLC-DAD). After studying the parameters of these methods, they were applied to the analysis of virgin olive oil, fresh onion, tomato concentrate and tomato powder, and commercial five tomato sauces. Subsequently, the results obtained in our laboratory were compared with those from the Gallina Blanca Star Group laboratory.
Collapse
Affiliation(s)
- Maria-José Motilva
- Food Technology Department, XaRTA-TPV, Universitat de Lleida-Agrotecnio Center, Av/Alcalde Rovira Roure 191, 25198 Lleida, Spain.
| | - Alba Macià
- Food Technology Department, XaRTA-TPV, Universitat de Lleida-Agrotecnio Center, Av/Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Maria-Paz Romero
- Food Technology Department, XaRTA-TPV, Universitat de Lleida-Agrotecnio Center, Av/Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Agustín Labrador
- Preparados Alimenticios S.A. subsidiary of Gallina Blanca Star Group, Plaza Europa 41, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Alba Domínguez
- Preparados Alimenticios S.A. subsidiary of Gallina Blanca Star Group, Plaza Europa 41, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Lluís Peiró
- Preparados Alimenticios S.A. subsidiary of Gallina Blanca Star Group, Plaza Europa 41, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
13
|
Yu Q, Feilke K, Krieger-Liszkay A, Beyer P. Functional and molecular characterization of plastid terminal oxidase from rice (Oryza sativa). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1284-92. [PMID: 24780313 DOI: 10.1016/j.bbabio.2014.04.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/12/2014] [Revised: 04/09/2014] [Accepted: 04/12/2014] [Indexed: 11/27/2022]
Abstract
The plastid terminal oxidase (PTOX) is a plastohydroquinone:oxygen oxidoreductase that shares structural similarities with alternative oxidases (AOX). Multiple roles have been attributed to PTOX, such as involvement in carotene desaturation, a safety valve function, participation in the processes of chlororespiration and setting the redox poise for cyclic electron transport. We have investigated a homogenously pure MBP fusion of PTOX. The protein forms a homo-tetrameric complex containing 2 Fe per monomer and is very specific for the plastoquinone head-group. The reaction kinetics were investigated in a soluble monophasic system using chemically reduced decyl-plastoquinone (DPQ) as the model substrate and, in addition, in a biphasic (liposomal) system in which DPQ was reduced with DT-diaphorase. While PTOX did not detectably produce reactive oxygen species in the monophasic system, their formation was observed by room temperature EPR in the biphasic system in a [DPQH₂] and pH-dependent manner. This is probably the result of the higher concentration of DPQ achieved within the partial volume of the lipid bilayer and a higher Km observed with PTOX-membrane associates which is ≈47mM compared to the monophasic system where a Km of ≈74μM was determined. With liposomes and at the basic stromal pH of photosynthetically active chloroplasts, PTOX was antioxidant at low [DPQH₂] gaining prooxidant properties with increasing quinol concentrations. It is concluded that in vivo, PTOX can act as a safety valve when the steady state [PQH₂] is low while a certain amount of ROS is formed at high light intensities.
Collapse
Affiliation(s)
- Qiuju Yu
- Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Kathleen Feilke
- Commissariat à l'Energie Atomique (CEA) Saclay, iBiTec-S, CNRS UMR 8221, Service de Bioénergétique, Biologie Structurale et Mécanisme, 91191 Gif-sur-Yvette Cedex, France
| | - Anja Krieger-Liszkay
- Commissariat à l'Energie Atomique (CEA) Saclay, iBiTec-S, CNRS UMR 8221, Service de Bioénergétique, Biologie Structurale et Mécanisme, 91191 Gif-sur-Yvette Cedex, France
| | - Peter Beyer
- Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany.
| |
Collapse
|
14
|
Affiliation(s)
| | - Salim Al-Babili
- BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Eleanore T. Wurtzel
- The Graduate School and University Center, The City University of New York, New York, New York, USA
- Department of Biological Sciences, Lehman College, The City University of New York, Bronx, New York, USA
| |
Collapse
|
15
|
Elevation of lutein content in tomato: A biochemical tug-of-war between lycopene cyclases. Metab Eng 2013; 20:167-76. [DOI: 10.1016/j.ymben.2013.10.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/20/2013] [Revised: 09/13/2013] [Accepted: 10/11/2013] [Indexed: 11/17/2022]
|