1
|
Solone XKV, Caldara AL, Wells B, Qiao H, Wade LR, Salerno JC, Helms KA, Smith KER, McMurry JL, Chrestensen CA. MAP kinases differentially bind and phosphorylate NOS3 via two unique NOS3 sites. FEBS Open Bio 2022; 12:1075-1086. [PMID: 35182051 PMCID: PMC9063426 DOI: 10.1002/2211-5463.13384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/12/2022] [Accepted: 02/17/2022] [Indexed: 11/25/2022] Open
Abstract
Nitric oxide synthase 3 (NOS3) is a major vasoprotective enzyme that catalyzes the conversion of l-arginine to nitric oxide (NO) in response to a significant number of signaling pathways. Here, we provide evidence that NOS3 interactions with MAP kinases have physiological relevance. Binding interactions of NOS3 with c-Jun N-terminal kinase (JNK1α1 ), p38α, and ERK2 were characterized using optical biosensing with full-length NOS3 and NOS3 specific peptides and phosphopeptides. Like p38α and ERK2, JNK1α1 exhibited high-affinity binding to full-length NOS3 (KD 15 nm). Rate constants exhibited fast-on, slow-off binding (kon = 4106 m-1 s-1 ; koff = 6.2 × 10-5 s-1 ). Further analysis using synthetic NOS3 peptides revealed two MAP kinase binding sites unique to NOS3. p38α evinced similar affinity with both NOS3 binding sites. For ERK2 and JNK1α1, the affinity at the two sites differed. However, NOS3 peptides with a phosphate at either S114 or S633 did not meaningfully interact with the kinases. Immunoblotting revealed that each kinase phosphorylated NOS3 with a unique pattern. JNK1α1 predominantly phosphorylated NOS3 at S114, ERK2 at S600, and p38α phosphorylated both residues. In vitro production of NO was unchanged by phosphorylation at these sites. In human microvascular endothelial cells, endogenous interactions of all the MAP kinases with NOS3 were captured using proximity ligation assay in resting cells. Our results underscore the importance of MAP kinase interactions, identifying two unique NOS3 interaction sites with potential for modulation by MAP kinase phosphorylation (S114) and other signaling inputs, like protein kinase A (S633).
Collapse
Affiliation(s)
- Xzaviar K. V. Solone
- Department of Molecular & Cellular BiologyKennesaw State UniversityGAUSA
- Present address:
Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFLUSA
| | - Amber L. Caldara
- Department of Molecular & Cellular BiologyKennesaw State UniversityGAUSA
| | - Brady Wells
- Department of Chemistry & BiochemistryKennesaw State UniversityGAUSA
| | - Hao Qiao
- Department of Chemistry & BiochemistryKennesaw State UniversityGAUSA
| | - Lydia R. Wade
- Department of Chemistry & BiochemistryKennesaw State UniversityGAUSA
| | - John C. Salerno
- Department of Molecular & Cellular BiologyKennesaw State UniversityGAUSA
| | - Katy A. Helms
- Department of Molecular & Cellular BiologyKennesaw State UniversityGAUSA
- Present address:
Wake Forest Medical CenterWinston‐SalemNCUSA
| | | | | | | |
Collapse
|
2
|
He Y, Haque MM, Stuehr DJ, Lu HP. Conformational States and Fluctuations in Endothelial Nitric Oxide Synthase under Calmodulin Regulation. Biophys J 2021; 120:5196-5206. [PMID: 34748763 DOI: 10.1016/j.bpj.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/30/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
Mechanisms that regulate nitric oxide synthase enzymes (NOS) are of interest in biology and medicine. Although NOS catalysis relies on domain motions and is activated by calmodulin (CaM) binding, the relationships are unclear. We used single-molecule fluorescence resonance energy transfer (FRET) spectroscopy to elucidate the conformational states distribution and associated conformational fluctuation dynamics of the two NOS electron transfer domains in a FRET dye-labeled endothelial NOS reductase domain (eNOSr) and to understand how CaM affects the dynamics to regulate catalysis by shaping the spatial and temporal conformational behaviors of eNOSr. In addition, we developed and applied a new imaging approach capable of recording 3D FRET efficiency vs time images to characterize the impact on dynamic conformal states of the eNOSr enzyme by the binding of CaM, which identifies clearly that CaM binding generates an extra new open state of eNOSr, resolving more detailed NOS conformational states and their fluctuation dynamics. We identified a new output state that has an extra-open FAD-FMN conformation that is only populated in the CaM-bound eNOSr. This may reveal the critical role of CaM in triggering NOS activity as it gives conformational flexibility for eNOSr to assume the electron transfer output FMN-Heme state. Our results provide a dynamic link to recently reported EM static structure analyses and demonstrate a capable approach in probing and simultaneously analyzing all of the conformational states, their fluctuations, and the fluctuation dynamics for understanding the mechanism of NOS electron transfer, involving electron transfer amongst FAD, FMN, and Heme domains, during NO synthesis.
Collapse
Affiliation(s)
- Yufan He
- Center for Photochemical Sciences, Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403
| | - Mohammad Mahfuzul Haque
- Department of Inflammation and Immunology, Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Avenue, Cleveland Clinic, Cleveland, Ohio, 44195
| | - Dennis J Stuehr
- Department of Inflammation and Immunology, Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Avenue, Cleveland Clinic, Cleveland, Ohio, 44195.
| | - H Peter Lu
- Center for Photochemical Sciences, Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403.
| |
Collapse
|
3
|
Wang N, Hou XY. The Molecular Simulation Study of nNOS Activation Induced by the Interaction Between Its Calmodulin-Binding Domain and SUMO1. Front Mol Neurosci 2020; 13:535494. [PMID: 33192289 PMCID: PMC7658266 DOI: 10.3389/fnmol.2020.535494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/20/2020] [Indexed: 01/28/2023] Open
Abstract
Neuronal nitric oxide synthase (nNOS), an enzyme required for learning and memory, catalyzes L-arginine decomposition during nitric oxide production in mammalian neurons. Over-activation of nNOS leads to oxidative/nitrosative stress, which is part of the pathophysiological process of various neuropsychiatric disorders. Previous experimental studies suggest that nNOS is a target for small ubiquitin-like modifier 1 (SUMO1), and that SUMO1-ylation upregulates nNOS catalytic activity in hippocampal neurons. To date, a comprehensive structural model has not been proposed for nNOS SUMO1-ylation. In this study, our aim was to build in silico models to identify the non-bonded interactions between SUMO1 and the calmodulin binding domain (CaMBD) of nNOS. Using molecular docking and molecular dynamics simulation, we found that SUMO1 modification stabilizes the conformation of nNOS CaMBD, and helps maintain a conformation beneficial for nNOS catalysis. Analysis of the polar contacts and hydrogen bonds, and the root mean square derivation results showed that R726 and R727 of CaMBD formed polar contacts or high occupancy hydrogen bonds with SUMO1. Correlation factor analysis and free energy calculations showed that the W716, L734, F740, M745, and F781 residues were also involved in the SUMO1/CaMBD interaction in an orientation-dependent manner. The potential inhibitor binding pocket of SUMO1, aimed at disrupting SUMO1/CaMBD binding, was detected from the virtual screening results. Our in silico studies revealed that interfering with the non-bonded interactions of SUMO1/CaMBD would blocked nNOS SUMO-ylation and subsequent hyperactivation. This work provides novel structural insight into the functional regulation of nNOS by post-translational SUMO1 modification, and provides suggestions for the design of drugs targeting nNOS hyperactivation.
Collapse
Affiliation(s)
- Nan Wang
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Yu Hou
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China.,State Key Laboratory of Natural Medicines, School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
4
|
Stuehr DJ, Haque MM. Nitric oxide synthase enzymology in the 20 years after the Nobel Prize. Br J Pharmacol 2019; 176:177-188. [PMID: 30402946 PMCID: PMC6295403 DOI: 10.1111/bph.14533] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/25/2018] [Accepted: 10/31/2018] [Indexed: 12/31/2022] Open
Abstract
This review briefly summarizes what was known about NOS enzymology at the time of the Nobel Prize award in 1998 and then discusses from the author's perspective some of the advances in NOS enzymology over the subsequent 20 years, focused on five aspects: the maturation process of NOS enzymes and its regulation; the mechanism of NO synthesis; the redox roles played by the 6R-tetrahydrobiopterin cofactor; the role of protein conformational behaviour in enabling NOS electron transfer and its regulation by NOS structural elements and calmodulin, and the catalytic cycling pathways of NOS enzymes and their influence on NOS activity. LINKED ARTICLES: This article is part of a themed section on Nitric Oxide 20 Years from the 1998 Nobel Prize. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.2/issuetoc.
Collapse
Affiliation(s)
- Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research InstituteThe Cleveland ClinicClevelandOHUSA
| | | |
Collapse
|
5
|
Arnett DC, Bailey SK, Johnson CK. Exploring the conformations of nitric oxide synthase with fluorescence. Front Biosci (Landmark Ed) 2018; 23:2133-2145. [PMID: 29772550 DOI: 10.2741/4694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multi-domain oxidoreductases are a family of enzymes that catalyze oxidation-reduction reactions through a series of electron transfers. Efficient electron transfer requires a sequence of protein conformations that position electron donor and acceptor domains in close proximity to each other so that electron transfer can occur efficiently. An example is mammalian nitric oxide synthase (NOS), which consists of an N-terminal oxygenase domain containing heme and a C-terminal reductase domain containing NADPH/FAD and FMN subdomains. We describe the use of time-resolved and single-molecule fluorescence to detect and characterize the conformations and conformational dynamics of the neuronal and endothelial isoforms of NOS. Fluorescence signals are provided by a fluorescent dye attached to the Ca2+-signaling protein calmodulin (CaM), which regulates NOS activity. Time-resolved fluorescence decays reveal the presence of at least four underlying conformational states that are differentiated by the extent of fluorescence quenching. Single-molecule fluorescence displays transitions between conformational states on the time scales of milliseconds to seconds. This review describes the type of information available by analysis of time-resolved and single-molecule fluorescence experiments.
Collapse
Affiliation(s)
- David C Arnett
- Department of Chemistry, Northwestern College, 101 7th Street SW, Orange City, IA 51041
| | - Sheila K Bailey
- Department of Chemistry, University of Kansas, 1251 Wescoe Drive, Lawrence, KS 66045
| | - Carey K Johnson
- Department of Chemistry, University of Kansas, 1251 Wescoe Drive, Lawrence, KS 66045,
| |
Collapse
|
6
|
Astashkin AV, Li J, Zheng H, Miao Y, Feng C. A docked state conformational dynamics model to explain the ionic strength dependence of FMN - heme electron transfer in nitric oxide synthase. J Inorg Biochem 2018; 184:146-155. [PMID: 29751215 DOI: 10.1016/j.jinorgbio.2018.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/09/2018] [Accepted: 03/22/2018] [Indexed: 10/17/2022]
Abstract
The FMN-heme interdomain electron transfer (IET) in nitric oxide synthase (NOS) is a key stage of the electron transport chain, which supplies the catalytic heme site(s) with the NADPH-derived electrons. While there is a recognition that this IET depends on both the electron tunneling and the conformational dynamics, the detailed mechanism remains unclear. In this work, the IET kinetics were measured by laser flash photolysis for a bidomain oxygenase/FMN (oxyFMN) construct of human inducible NOS (iNOS) over the ionic strength range from 0.1 to 0.5 M. The forward (heme → FMN, kETf) and backward (FMN → heme, kETb) intrinsic IET rate constants were determined from the analysis of the observed IET rates using the additional information regarding the conformational dynamics obtained from the FMN fluorescence lifetime measurements and theoretical estimates. Both kETf and kETb exhibit a bell-shaped dependence on the ionic strength, I, with the maximum rates corresponding to I ~ 0.2 M. This dependence was explained using a new model, which considers the effect of formation of pairs between the protein surface charged residues and solution ions on the docked state dynamics. The trial simulations of the intrinsic IET rate dependences using this model show that the data can be reproduced using reasonable energetic, structural, and chemical parameters. The suggested model can explain both the monophasic and biphasic ionic strength dependences and can be used to rationalize the interprotein/interdomain electron transfer rates for other types of protein systems where the docked state is sufficiently long-lived.
Collapse
Affiliation(s)
- Andrei V Astashkin
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Jinghui Li
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Huayu Zheng
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA; Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Yubin Miao
- Department of Radiology, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Changjian Feng
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA; Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
7
|
Hanson QM, Carley JR, Gilbreath TJ, Smith BC, Underbakke ES. Calmodulin-induced Conformational Control and Allostery Underlying Neuronal Nitric Oxide Synthase Activation. J Mol Biol 2018; 430:935-947. [PMID: 29458127 DOI: 10.1016/j.jmb.2018.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 10/18/2022]
Abstract
Nitric oxide synthase (NOS) is the primary generator of nitric oxide signals controlling diverse physiological processes such as neurotransmission and vasodilation. NOS activation is contingent on Ca2+/calmodulin binding at a linker between its oxygenase and reductase domains to induce large conformational changes that orchestrate inter-domain electron transfer. However, the structural dynamics underlying activation of full-length NOS remain ambiguous. Employing hydrogen-deuterium exchange mass spectrometry, we reveal mechanisms underlying neuronal NOS activation by calmodulin and regulation by phosphorylation. We demonstrate that calmodulin binding orders the junction between reductase and oxygenase domains, exposes the FMN subdomain, and elicits a more dynamic oxygenase active site. Furthermore, we demonstrate that phosphorylation partially mimics calmodulin activation to modulate neuronal NOS activity via long-range allostery. Calmodulin binding and phosphorylation ultimately promote a more dynamic holoenzyme while coordinating inter-domain communication and electron transfer.
Collapse
Affiliation(s)
- Quinlin M Hanson
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Jeffrey R Carley
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Tyler J Gilbreath
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Eric S Underbakke
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
8
|
Hedison TM, Hay S, Scrutton NS. A perspective on conformational control of electron transfer in nitric oxide synthases. Nitric Oxide 2017; 63:61-67. [PMID: 27619338 PMCID: PMC5295631 DOI: 10.1016/j.niox.2016.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 01/20/2023]
Abstract
This perspective reviews single molecule and ensemble fluorescence spectroscopy studies of the three tissue specific nitric oxide synthase (NOS) isoenzymes and the related diflavin oxidoreductase cytochrome P450 reductase. The focus is on the role of protein dynamics and the protein conformational landscape and we discuss how recent fluorescence-based studies have helped in illustrating how the nature of the NOS conformational landscape relates to enzyme turnover and catalysis.
Collapse
Affiliation(s)
- Tobias M Hedison
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Sam Hay
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
9
|
Haque MM, Ray SS, Stuehr DJ. Phosphorylation Controls Endothelial Nitric-oxide Synthase by Regulating Its Conformational Dynamics. J Biol Chem 2016; 291:23047-23057. [PMID: 27613870 DOI: 10.1074/jbc.m116.737361] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Indexed: 11/06/2022] Open
Abstract
The activity of endothelial NO synthase (eNOS) is triggered by calmodulin (CaM) binding and is often further regulated by phosphorylation at several positions in the enzyme. Phosphorylation at Ser1179 occurs in response to diverse physiologic stimuli and increases the NO synthesis and cytochrome c reductase activities of eNOS, thereby enhancing its participation in biological signal cascades. Despite its importance, the mechanism by which Ser1179 phosphorylation increases eNOS activity is not understood. To address this, we used stopped-flow spectroscopy and computer modeling approaches to determine how the phosphomimetic mutation (S1179D) may impact electron flux through eNOS and the conformational behaviors of its reductase domain, both in the absence and presence of bound CaM. We found that S1179D substitution in CaM-free eNOS had multiple effects; it increased the rate of flavin reduction, altered the conformational equilibrium of the reductase domain, and increased the rate of its conformational transitions. We found these changes were equivalent in degree to those caused by CaM binding to wild-type eNOS, and the S1179D substitution together with CaM binding caused even greater changes in these parameters. The modeling indicated that the changes caused by the S1179D substitution, despite being restricted to the reductase domain, are sufficient to explain the stimulation of both the cytochrome c reductase and NO synthase activities of eNOS. This helps clarify how Ser1179 phosphorylation regulates eNOS and provides a foundation to compare its regulation by other phosphorylation events.
Collapse
Affiliation(s)
- Mohammad Mahfuzul Haque
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Sougata Sinha Ray
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Dennis J Stuehr
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
10
|
Hedison TM, Leferink NGH, Hay S, Scrutton NS. Correlating Calmodulin Landscapes with Chemical Catalysis in Neuronal Nitric Oxide Synthase using Time-Resolved FRET and a 5-Deazaflavin Thermodynamic Trap. ACS Catal 2016; 6:5170-5180. [PMID: 27563493 PMCID: PMC4993522 DOI: 10.1021/acscatal.6b01280] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/23/2016] [Indexed: 11/28/2022]
Abstract
![]()
A major challenge in enzymology is
the need to correlate the dynamic
properties of enzymes with, and understand the impact on, their catalytic
cycles. This is especially the case with large, multicenter enzymes
such as the nitric oxide synthases (NOSs), where the importance of
dynamics has been inferred from a variety of structural, single-molecule,
and ensemble spectroscopic approaches but where motions have not been
correlated experimentally with mechanistic steps in the reaction cycle.
Here we take such an approach. Using time-resolved spectroscopy employing
absorbance and Förster resonance energy transfer (FRET) and
exploiting the properties of a flavin analogue (5-deazaflavin mononucleotide
(5-dFMN)) and isotopically labeled nicotinamide coenzymes, we correlate
the timing of CaM structural changes when bound to neuronal nitric
oxide synthase (nNOS) with the nNOS catalytic cycle. We show that
remodeling of CaM occurs early in the electron transfer sequence (FAD
reduction), not at later points in the reaction cycle (e.g., FMN reduction).
Conformational changes are tightly correlated with FAD reduction kinetics
and reflect a transient “opening” and then “closure”
of the bound CaM molecule. We infer that displacement of the C-terminal
tail on binding NADPH and subsequent FAD reduction are the likely
triggers of conformational change. By combining the use of cofactor/coenzyme
analogues and time-resolved FRET/absorbance spectrophotometry, we
show how the reaction cycles of complex enzymes can be simplified,
enabling a detailed study of the relationship between protein dynamics
and reaction cycle chemistry—an approach that can also be used
with other complex multicenter enzymes.
Collapse
Affiliation(s)
- Tobias M. Hedison
- Manchester Synthetic Biology
Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester
Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Nicole G. H. Leferink
- Manchester Synthetic Biology
Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester
Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Sam Hay
- Manchester Synthetic Biology
Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester
Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Nigel S. Scrutton
- Manchester Synthetic Biology
Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester
Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
| |
Collapse
|
11
|
Stevenson PA, Rillich J. Controlling the decision to fight or flee: the roles of biogenic amines and nitric oxide in the cricket. Curr Zool 2016; 62:265-275. [PMID: 29491914 PMCID: PMC5804241 DOI: 10.1093/cz/zow028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 02/14/2016] [Indexed: 11/30/2022] Open
Abstract
Aggression is a common behavioral strategy employed by animals to secure limited resources, but must be applied with restraint to limit potential costs including injury. How animals make the adaptive decision to fight or flee is barely known. Here, we review our work on crickets that reveals the roles of biogenic amines, primarily octopamine (the insect analog of noradrenaline) and nitric oxide (NO). Using aminergic drugs, we found that amines are not essential for actually initiating aggression. However, octopamine is necessary for mediating the aggression-promoting effects of potentially rewarding experiences including stimulation with a male antenna, physical exertion, winning, and resource possession. Hence, octopamine can be considered as the motivational component of aggression. Imposed handicaps that impede aggressive signaling revealed that the agonistic actions of an opponent perceived during fighting act to reduce aggression, and that crickets make the decision to flee the moment the accumulated sum of such aversive experiences exceeds some critical level. Treatment with nitridergic drugs revealed that the impact of the opponent’s aggressive actions is mediated by NO. NO acts to suppress aggression by promoting the tendency to flee and is primarily responsible for the depressed aggressiveness of subordinates after social defeat. Octopamine and dopamine can each restore aggression in subordinates, but only dopamine is necessary for normal recovery. The role of serotonin remains unclear, and is discussed. We conclude that octopamine and NO control the decision to fight or flee by mediating the effects of potentially rewarding and aversive experiences, respectively.
Collapse
Affiliation(s)
- Paul A Stevenson
- Institute for Biology, Leipzig University, Talstr. 33, 04103 Leipzig, Germany
| | - Jan Rillich
- Institute for Biology, Leipzig University, Talstr. 33, 04103 Leipzig, Germany
| |
Collapse
|
12
|
Astashkin AV, Feng C. Solving Kinetic Equations for the Laser Flash Photolysis Experiment on Nitric Oxide Synthases: Effect of Conformational Dynamics on the Interdomain Electron Transfer. J Phys Chem A 2015; 119:11066-75. [PMID: 26477677 DOI: 10.1021/acs.jpca.5b08414] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The production of nitric oxide by the nitric oxide synthase (NOS) enzyme depends on the interdomain electron transfer (IET) between the flavin mononucleotide (FMN) and heme domains. Although the rate of this IET has been measured by laser flash photolysis (LFP) for various NOS proteins, no rigorous analysis of the relevant kinetic equations was performed so far. In this work, we provide an analytical solution of the kinetic equations underlying the LFP approach. The derived expressions reveal that the bulk IET rate is significantly affected by the conformational dynamics that determines the formation and dissociation rates of the docking complex between the FMN and heme domains. We show that in order to informatively study the electron transfer across the NOS enzyme, LFP should be used in combination with other spectroscopic methods that could directly probe the docking equilibrium and the conformational change rate constants. The implications of the obtained analytical expressions for the interpretation of the LFP results from various native and modified NOS proteins are discussed. The mathematical formulas derived in this work should also be applicable for interpreting the IET kinetics in other modular redox enzymes.
Collapse
Affiliation(s)
- Andrei V Astashkin
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| | - Changjian Feng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico , Albuquerque, New Mexico 87131, United States
| |
Collapse
|
13
|
He Y, Haque MM, Stuehr DJ, Lu HP. Single-molecule spectroscopy reveals how calmodulin activates NO synthase by controlling its conformational fluctuation dynamics. Proc Natl Acad Sci U S A 2015; 112:11835-40. [PMID: 26311846 PMCID: PMC4586839 DOI: 10.1073/pnas.1508829112] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mechanisms that regulate the nitric oxide synthase enzymes (NOS) are of interest in biology and medicine. Although NOS catalysis relies on domain motions, and is activated by calmodulin binding, the relationships are unclear. We used single-molecule fluorescence resonance energy transfer (FRET) spectroscopy to elucidate the conformational states distribution and associated conformational fluctuation dynamics of the two electron transfer domains in a FRET dye-labeled neuronal NOS reductase domain, and to understand how calmodulin affects the dynamics to regulate catalysis. We found that calmodulin alters NOS conformational behaviors in several ways: It changes the distance distribution between the NOS domains, shortens the lifetimes of the individual conformational states, and instills conformational discipline by greatly narrowing the distributions of the conformational states and fluctuation rates. This information was specifically obtainable only by single-molecule spectroscopic measurements, and reveals how calmodulin promotes catalysis by shaping the physical and temporal conformational behaviors of NOS.
Collapse
Affiliation(s)
- Yufan He
- Center for Photochemical Sciences, Department of Chemistry, Bowling Green State University, Bowling Green, OH 43403
| | - Mohammad Mahfuzul Haque
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Dennis J Stuehr
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - H Peter Lu
- Center for Photochemical Sciences, Department of Chemistry, Bowling Green State University, Bowling Green, OH 43403;
| |
Collapse
|
14
|
Sheng Y, Zhong L, Guo D, Lau G, Feng C. Insight into structural rearrangements and interdomain interactions related to electron transfer between flavin mononucleotide and heme in nitric oxide synthase: A molecular dynamics study. J Inorg Biochem 2015; 153:186-196. [PMID: 26277414 DOI: 10.1016/j.jinorgbio.2015.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/29/2015] [Accepted: 08/05/2015] [Indexed: 10/23/2022]
Abstract
Calmodulin (CaM) binding to nitric oxide synthase (NOS) enables a conformational change, in which the FMN domain shuttles between the FAD and heme domains to deliver electrons to the active site heme center. A clear understanding of this large conformational change is critical, since this step is the rate-limiting in NOS catalysis. Herein molecular dynamics simulations were conducted on a model of an oxygenase/FMN (oxyFMN) construct of human inducible NOS (iNOS). This is to investigate the structural rearrangements and the domain interactions related to the FMN-heme interdomain electron transfer (IET). We carried out simulations on the iNOS oxyFMN·CaM complex models in [Fe(III)][FMNH(-)] and [Fe(II)][FMNH] oxidation states, the pre- and post-IET states. The comparison of the dynamics and conformations of the iNOS construct at the two oxidation states has allowed us to identify key factors related to facilitating the FMN-heme IET process. The computational results demonstrated, for the first time, that the conformational change is redox-dependent. Predictions of the key interacting sites in optimal interdomain FMN/heme docking are well supported by experimental data in the literature. An intra-subunit pivot region is predicted to modulate the FMN domain motion and correlate with existence of a bottleneck in the conformational sampling that leads to the electron transfer-competent state. Interactions of the residues identified in this work are proposed to ensure that the FMN domain moves with appropriate degrees of freedom and docks to proper positions at the heme domain, resulting in efficient IET and nitric oxide production.
Collapse
Affiliation(s)
- Yinghong Sheng
- Department of Chemistry & Physics, College of Arts & Sciences, Florida Gulf Coast University, 10501 FGCU Blvd. S., Fort Myers, FL 33965, USA.
| | - Linghao Zhong
- Pennsylvania State University at Mont Alto, 1 Campus Drive, Mont Alto, PA 17237, USA
| | - Dahai Guo
- Department of Bioengineering and Software Engineering, U.A. Whitaker College of Engineering, Florida Gulf Coast University, 10501 FGCU Blvd. S., Fort Myers, FL 33965, USA
| | - Gavin Lau
- Department of Chemistry & Physics, College of Arts & Sciences, Florida Gulf Coast University, 10501 FGCU Blvd. S., Fort Myers, FL 33965, USA
| | - Changjian Feng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
15
|
Arnett DC, Persechini A, Tran QK, Black DJ, Johnson CK. Fluorescence quenching studies of structure and dynamics in calmodulin-eNOS complexes. FEBS Lett 2015; 589:1173-8. [PMID: 25871521 DOI: 10.1016/j.febslet.2015.03.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/17/2015] [Accepted: 03/31/2015] [Indexed: 10/23/2022]
Abstract
Activation of endothelial nitric oxide synthase (eNOS) by calmodulin (CaM) facilitates formation of a sequence of conformational states that is not well understood. Fluorescence decays of fluorescently labeled CaM bound to eNOS reveal four distinct conformational states and single-molecule fluorescence trajectories show multiple fluorescence states with transitions between states occurring on time scales of milliseconds to seconds. A model is proposed relating fluorescence quenching states to enzyme conformations. Specifically, we propose that the most highly quenched state corresponds to CaM docked to an oxygenase domain of the enzyme. In single-molecule trajectories, this state occurs with time lags consistent with the oxygenase activity of the enzyme.
Collapse
Affiliation(s)
- David C Arnett
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA; Department of Chemistry, Northwestern College, Orange City, IA 51041, USA
| | - Anthony Persechini
- Division of Molecular Biology and Biochemistry and Division of Cell Biology and Biophysics, University of Missouri at Kansas City, Kansas City, MO 64410, USA
| | - Quang-Kim Tran
- Division of Molecular Biology and Biochemistry and Division of Cell Biology and Biophysics, University of Missouri at Kansas City, Kansas City, MO 64410, USA
| | - D J Black
- Division of Molecular Biology and Biochemistry and Division of Cell Biology and Biophysics, University of Missouri at Kansas City, Kansas City, MO 64410, USA
| | - Carey K Johnson
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
16
|
Endothelial nitric oxide synthase is regulated by ERK phosphorylation at Ser602. Biosci Rep 2014; 34:BSR20140015. [PMID: 25000310 PMCID: PMC4166121 DOI: 10.1042/bsr20140015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
eNOS (endothelial nitric oxide synthase) contains a MAPK (mitogen-activated protein kinase)-binding site associated with a major eNOS control element. Purified ERK (extracellular-signal-regulated kinase) phosphorylates eNOS with a stoichiometry of 2–3 phosphates per eNOS monomer. Phosphorylation decreases NO synthesis and cytochrome c reductase activity. Three sites of phosphorylation were detected by MS. All sites matched the SP and TP MAPK (mitogen-activated protein kinase) phosphorylation motif. Ser602 lies at the N-terminal edge of the 42-residue eNOS AI (autoinhibitory) element. The pentabasic MAPK-binding site lies at the opposite end of the AI, and other critical regulatory features are between them. Thr46 and Ser58 are located in a flexible region associated with the N terminus of the oxygenase domain. In contrast with PKC (protein kinase C), phosphorylation by ERK did not significantly interfere with CaM (calmodulin) binding as analysed by optical biosensing. Instead, ERK phosphorylation favours a state in which FMN and FAD are in close association and prevents conformational changes that expose reduced FMN to acceptors. The close associations between control sites in a few regions of the molecule suggest that control of signal generation is modulated by multiple inputs interacting directly on the surface of eNOS via overlapping binding domains and tightly grouped targets.
Collapse
|
17
|
Volkmann N, Martásek P, Roman LJ, Xu XP, Page C, Swift M, Hanein D, Masters BS. Holoenzyme structures of endothelial nitric oxide synthase - an allosteric role for calmodulin in pivoting the FMN domain for electron transfer. J Struct Biol 2014; 188:46-54. [PMID: 25175399 DOI: 10.1016/j.jsb.2014.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/18/2014] [Indexed: 01/26/2023]
Abstract
While the three-dimensional structures of heme- and flavin-binding domains of the NOS isoforms have been determined, the structures of the holoenzymes remained elusive. Application of electron cryo-microscopy and structural modeling of the bovine endothelial nitric oxide synthase (eNOS) holoenzyme produced detailed models of the intact holoenzyme in the presence and absence of Ca(2+)/calmodulin (CaM). These models accommodate the cross-electron transfer from the reductase in one monomer to the heme in the opposite monomer. The heme domain acts as the anchoring dimeric structure for the entire enzyme molecule, while the FMN domain is activated by CaM to move flexibly to bridge the distance between the reductase and oxygenase domains. Our results indicate that the key regulatory role of CaM involves the stabilization of structural intermediates and precise positioning of the pivot for the FMN domain tethered shuttling motion to accommodate efficient and rapid electron transfer in the homodimer of eNOS.
Collapse
Affiliation(s)
- Niels Volkmann
- Bioinformatics and Systems Biology Program, Sanford Burnham Medical Research Institute, La Jolla, CA 92075, USA.
| | - Pavel Martásek
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Pediatrics, First School of Medicine, Charles University, 12109 Prague, Czech Republic
| | - Linda J Roman
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Xiao-Ping Xu
- Bioinformatics and Systems Biology Program, Sanford Burnham Medical Research Institute, La Jolla, CA 92075, USA
| | - Christopher Page
- Bioinformatics and Systems Biology Program, Sanford Burnham Medical Research Institute, La Jolla, CA 92075, USA
| | - Mark Swift
- Bioinformatics and Systems Biology Program, Sanford Burnham Medical Research Institute, La Jolla, CA 92075, USA
| | - Dorit Hanein
- Bioinformatics and Systems Biology Program, Sanford Burnham Medical Research Institute, La Jolla, CA 92075, USA.
| | - Bettie Sue Masters
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
18
|
Zheng D, Lu HP. Single-molecule enzymatic conformational dynamics: spilling out the product molecules. J Phys Chem B 2014; 118:9128-40. [PMID: 25025461 PMCID: PMC4126733 DOI: 10.1021/jp5014434] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 07/14/2014] [Indexed: 12/19/2022]
Abstract
Product releasing is an essential step of an enzymatic reaction, and a mechanistic understanding primarily depends on the active-site conformational changes and molecular interactions that are involved in this step of the enzymatic reaction. Here we report our work on the enzymatic product releasing dynamics and mechanism of an enzyme, horseradish peroxidase (HRP), using combined single-molecule time-resolved fluorescence intensity, anisotropy, and lifetime measurements. Our results have shown a wide distribution of the multiple conformational states involved in active-site interacting with the product molecules during the product releasing. We have identified that there is a significant pathway in which the product molecules are spilled out from the enzymatic active site, driven by a squeezing effect from a tight active-site conformational state, although the conventional pathway of releasing a product molecule from an open active-site conformational state is still a primary pathway. Our study provides new insight into the enzymatic reaction dynamics and mechanism, and the information is uniquely obtainable from our combined time-resolved single-molecule spectroscopic measurements and analyses.
Collapse
Affiliation(s)
- Desheng Zheng
- Center for Photochemical
Sciences, Department of Chemistry, Bowling
Green State University, Bowling
Green, Ohio 43403, United States
| | - H. Peter Lu
- Center for Photochemical
Sciences, Department of Chemistry, Bowling
Green State University, Bowling
Green, Ohio 43403, United States
| |
Collapse
|
19
|
Astashkin AV, Chen L, Zhou X, Li H, Poulos TL, Liu KJ, Guillemette JG, Feng C. Pulsed electron paramagnetic resonance study of domain docking in neuronal nitric oxide synthase: the calmodulin and output state perspective. J Phys Chem A 2014; 118:6864-72. [PMID: 25046446 PMCID: PMC4148148 DOI: 10.1021/jp503547w] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The binding of calmodulin (CaM) to neuronal nitric oxide synthase (nNOS) enables formation of the output state of nNOS for nitric oxide production. Essential to NOS function is the geometry and dynamics of CaM docking to the NOS oxygenase domain, but little is known about these details. In the present work, the domain docking in a CaM-bound oxygenase/FMN (oxyFMN) construct of nNOS was investigated using the relaxation-induced dipolar modulation enhancement (RIDME) technique, which is a pulsed electron paramagnetic resonance technique sensitive to the magnetic dipole interaction between the electron spins. A cysteine was introduced at position 110 of CaM, after which a nitroxide spin label was attached at the position. The RIDME study of the magnetic dipole interaction between the spin label and the ferric heme centers in the oxygenase domain of nNOS revealed that, with increasing [Ca(2+)], the concentration of nNOS·CaM complexes increases and reaches a maximum at [Ca(2+)]/[CaM] ≥ 4. The RIDME kinetics of CaM-bound nNOS represented monotonous decays without well-defined oscillations. The analysis of these kinetics based on the structural models for the open and docked states has shown that only about 15 ± 3% of the CaM-bound nNOS is in the docked state at any given time, while the remaining 85 ± 3% of the protein is in the open conformations characterized by a wide distribution of distances between the bound CaM and the oxygenase domain. The results of this investigation are consistent with a model that the Ca(2+)-CaM interaction causes CaM docking with the oxygenase domain. The low population of the docked state indicates that the CaM-controlled docking between the FMN and heme domains is highly dynamic.
Collapse
Affiliation(s)
- Andrei V Astashkin
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- Thomas L. Poulos
- Departments of Molecular Biology & Biochemistry, Pharmaceutical Sciences, and Chemistry, University of California Irvine, Irvine, California 92697-3900
| |
Collapse
|
21
|
Abstract
Learning and memory require the formation of new neural networks in the brain. A key mechanism underlying this process is synaptic plasticity at excitatory synapses, which connect neurons into networks. Excitatory synaptic transmission happens when glutamate, the excitatory neurotransmitter, activates receptors on the postsynaptic neuron. Synaptic plasticity is a higher-level process in which the strength of excitatory synapses is altered in response to the pattern of activity at the synapse. It is initiated in the postsynaptic compartment, where the precise pattern of influx of calcium through activated glutamate receptors leads either to the addition of new receptors and enlargement of the synapse (long-term potentiation) or the removal of receptors and shrinkage of the synapse (long-term depression). Calcium/calmodulin-regulated enzymes and small GTPases collaborate to control this highly tuned mechanism.
Collapse
Affiliation(s)
- Mary B Kennedy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
22
|
Panda SP, Li W, Venkatakrishnan P, Chen L, Astashkin AV, Masters BSS, Feng C, Roman LJ. Differential calmodulin-modulatory and electron transfer properties of neuronal nitric oxide synthase mu compared to the alpha variant. FEBS Lett 2013; 587:3973-8. [PMID: 24211446 DOI: 10.1016/j.febslet.2013.10.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 10/26/2022]
Abstract
Neuronal nitric oxide synthase μ (nNOSμ) contains 34 additional residues in an autoregulatory element compared to nNOSα. Cytochrome c and flavin reductions in the absence of calmodulin (CaM) were faster in nNOSμ than nNOSα, while rates in the presence of CaM were smaller. The magnitude of stimulation by CaM is thus notably lower in nNOSμ. No difference in NO production was observed, while electron transfer between the FMN and heme moieties and formation of an inhibitory ferrous-nitrosyl complex were slower in nNOSμ. Thus, the insert affects electron transfer rates, modulation of electron flow by CaM, and heme-nitrosyl complex formation.
Collapse
Affiliation(s)
- Satya P Panda
- Department of Biochemistry, University of Texas Health Science Center in San Antonio, San Antonio, TX 78229, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Feng C, Chen L, Li W, Elmore BO, Fan W, Sun X. Dissecting regulation mechanism of the FMN to heme interdomain electron transfer in nitric oxide synthases. J Inorg Biochem 2013; 130:130-40. [PMID: 24084585 DOI: 10.1016/j.jinorgbio.2013.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/12/2013] [Accepted: 09/05/2013] [Indexed: 11/25/2022]
Abstract
Nitric oxide synthase (NOS), a flavo-hemoprotein, is responsible for biosynthesis of nitric oxide (NO) in mammals. Three NOS isoforms, iNOS, eNOS and nNOS (inducible, endothelial, and neuronal NOS), achieve their biological functions by tight control of interdomain electron transfer (IET) process through interdomain interactions. In particular, the FMN-heme IET is essential in coupling electron transfer in the reductase domain with NO synthesis in the heme domain by delivery of electrons required for O2 activation at the catalytic heme site. Emerging evidence indicates that calmodulin (CaM) activates NO synthesis in eNOS and nNOS by a conformational change of the FMN domain from its shielded electron-accepting (input) state to a new electron-donating (output) state, and that CaM is also required for proper alignment of the FMN and heme domains in the three NOS isoforms. In the absence of a structure of full-length NOS, an integrated approach of spectroscopic, rapid kinetic and mutagenesis methods is required to unravel regulation mechanism of the FMN-heme IET process. This is to investigate the roles of the FMN domain motions and the docking between the primary functional FMN and heme domains in regulating NOS activity. The recent developments in this area that are driven by the combined approach are the focuses of this review. A better understanding of the roles of interdomain FMN/heme interactions and CaM binding may serve as a basis for the rational design of new selective modulators of the NOS enzymes.
Collapse
Affiliation(s)
- Changjian Feng
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Haque MM, Tejero J, Bayachou M, Wang ZQ, Fadlalla M, Stuehr DJ. Thermodynamic characterization of five key kinetic parameters that define neuronal nitric oxide synthase catalysis. FEBS J 2013; 280:4439-53. [PMID: 23789902 DOI: 10.1111/febs.12404] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 11/30/2022]
Abstract
NO synthase (NOS) enzymes convert L-arginine to NO in two sequential reactions whose rates (k(cat1) and k(cat2)) are both limited by the rate of ferric heme reduction (k(r)). An enzyme ferric heme-NO complex forms as an immediate product complex and then undergoes either dissociation (at a rate that we denote as k(d)) to release NO in a productive manner, or reduction (k(r)) to form a ferrous heme-NO complex that must react with O2 (at a rate that we denote as k(ox)) in a NO dioxygenase reaction that regenerates the ferric enzyme. The interplay of these five kinetic parameters (k(cat1), k(cat2), k(r), k(d) and k(ox)) determines NOS specific activity, O2 concentration response, and pulsatile versus steady-state NO generation. In the present study, we utilized stopped-flow spectroscopy and single catalytic turnover methods to characterize the individual temperature dependencies of the five kinetic parameters of rat neuronal NOS. We then incorporated the measured kinetic values into computer simulations of the neuronal NOS reaction using a global kinetic model to comprehensively model its temperature-dependent catalytic behaviours. The results obtained provide new mechanistic insights and also reveal that the different temperature dependencies of the five kinetic parameters significantly alter neuronal NOS catalytic behaviours and NO release efficiency as a function of temperature.
Collapse
|
25
|
Li W, Chen L, Lu C, Elmore BO, Astashkin AV, Rousseau DL, Yeh SR, Feng C. Regulatory role of Glu546 in flavin mononucleotide-heme electron transfer in human inducible nitric oxide synthase. Inorg Chem 2013; 52:4795-801. [PMID: 23570607 DOI: 10.1021/ic3020892] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nitric oxide (NO) production by mammalian NO synthase (NOS) is believed to be regulated by the docking of the flavin mononucleotide (FMN) domain in one subunit of the dimer onto the heme domain of the adjacent subunit. Glu546, a conserved charged surface residue of the FMN domain in human inducible NOS (iNOS), is proposed to participate in the interdomain FMN/heme interactions [Sempombe et al. Inorg. Chem.2011, 50, 6869-6861]. In the present work, we further investigated the role of the E546 residue in the FMN-heme interdomain electron transfer (IET), a catalytically essential step in the NOS enzymes. Laser flash photolysis was employed to directly measure the FMN-heme IET kinetics for the E546N mutant of human iNOS oxygenase/FMN (oxyFMN) construct. The temperature dependence of the IET kinetics was also measured over the temperature range of 283-304 K to determine changes in the IET activation parameters. The E546N mutation was found to retard the IET by significantly raising the activation entropic barrier. Moreover, pulsed electron paramagnetic resonance data showed that the geometry of the docked FMN/heme complex in the mutant is basically the same as in the wild type construct, whereas the probability of formation of such a complex is about twice lower. These results indicate that the retarded IET in the E546N mutant is not caused by an altered conformation of the docked FMN/heme complex, but by a lower population of the IET-active conformation. In addition, the negative activation entropy of the mutant is still substantially lower than that of the holoenzyme. This supports a mechanism by which the FMN domain can modify the IET through altering probability of the docked state formation.
Collapse
Affiliation(s)
- Wenbing Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ito E, Matsuo R, Okada R. Involvement of nitric oxide in memory formation in microbrains. Neurosci Lett 2013; 541:1-3. [PMID: 23473717 DOI: 10.1016/j.neulet.2013.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 02/11/2013] [Indexed: 01/09/2023]
Affiliation(s)
- Etsuro Ito
- Laboratory of Functional Biology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan.
| | | | | |
Collapse
|