1
|
Jiang H, Cao Z, Liu Y, Liu R, Zhou Y, Liu J. Bacteria-Based Living Probes: Preparation and the Applications in Bioimaging and Diagnosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306480. [PMID: 38032119 PMCID: PMC10811517 DOI: 10.1002/advs.202306480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Bacteria can colonize a variety of in vivo biointerfaces, particularly the skin, nasal, and oral mucosa, the gastrointestinal tract, and the reproductive tract, but also target specific lesion sites, such as tumor and wound. By virtue of their prominent characteristics in motility, editability, and targeting ability, bacteria carrying imageable agents are widely developed as living probes for bioimaging and diagnosis of different diseases. This review first introduces the strategies used for preparing bacteria-based living probes, including biological engineering, chemical modification, intracellular loading, and optical manipulation. It then summarizes the recent progress of these living probes for fluorescence imaging, near-infrared imaging, ultrasonic imaging, photoacoustic imaging, magnetic resonance imaging, and positron emission tomography imaging. The biomedical applications of bacteria-based living probes are also reviewed particularly in the bioimaging and diagnosis of bacterial infections, cancers, and intestine-associated diseases. In addition, the advantages and challenges of bacteria-based living probes are discussed and future perspectives are also proposed. This review provides an updated overview of bacteria-based living probes, highlighting their great potential as a unique yet versatile platform for developing next-generation imageable agents for intelligent bioimaging, diagnosis, and even therapy.
Collapse
Affiliation(s)
- Hejin Jiang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineInstitute of Molecular MedicineState Key Laboratory of Systems Medicine for CancerRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineInstitute of Molecular MedicineState Key Laboratory of Systems Medicine for CancerRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Ying Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineInstitute of Molecular MedicineState Key Laboratory of Systems Medicine for CancerRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Rui Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineInstitute of Molecular MedicineState Key Laboratory of Systems Medicine for CancerRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Yan Zhou
- Department of RadiologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineInstitute of Molecular MedicineState Key Laboratory of Systems Medicine for CancerRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| |
Collapse
|
2
|
Dan Q, Jiang X, Wang R, Dai Z, Sun D. Biogenic Imaging Contrast Agents. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207090. [PMID: 37401173 PMCID: PMC10477908 DOI: 10.1002/advs.202207090] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/08/2023] [Indexed: 07/05/2023]
Abstract
Imaging contrast agents are widely investigated in preclinical and clinical studies, among which biogenic imaging contrast agents (BICAs) are developing rapidly and playing an increasingly important role in biomedical research ranging from subcellular level to individual level. The unique properties of BICAs, including expression by cells as reporters and specific genetic modification, facilitate various in vitro and in vivo studies, such as quantification of gene expression, observation of protein interactions, visualization of cellular proliferation, monitoring of metabolism, and detection of dysfunctions. Furthermore, in human body, BICAs are remarkably helpful for disease diagnosis when the dysregulation of these agents occurs and can be detected through imaging techniques. There are various BICAs matched with a set of imaging techniques, including fluorescent proteins for fluorescence imaging, gas vesicles for ultrasound imaging, and ferritin for magnetic resonance imaging. In addition, bimodal and multimodal imaging can be realized through combining the functions of different BICAs, which helps overcome the limitations of monomodal imaging. In this review, the focus is on the properties, mechanisms, applications, and future directions of BICAs.
Collapse
Affiliation(s)
- Qing Dan
- Shenzhen Key Laboratory for Drug Addiction and Medication SafetyDepartment of UltrasoundInstitute of Ultrasonic MedicinePeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhen518036P. R. China
| | - Xinpeng Jiang
- Department of Biomedical EngineeringCollege of Future TechnologyPeking UniversityBeijing100871P. R. China
| | - Run Wang
- Shenzhen Key Laboratory for Drug Addiction and Medication SafetyDepartment of UltrasoundInstitute of Ultrasonic MedicinePeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhen518036P. R. China
| | - Zhifei Dai
- Department of Biomedical EngineeringCollege of Future TechnologyPeking UniversityBeijing100871P. R. China
| | - Desheng Sun
- Shenzhen Key Laboratory for Drug Addiction and Medication SafetyDepartment of UltrasoundInstitute of Ultrasonic MedicinePeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhen518036P. R. China
| |
Collapse
|
3
|
Maksymenko K, Maurer A, Aghaallaei N, Barry C, Borbarán-Bravo N, Ullrich T, Dijkstra TM, Hernandez Alvarez B, Müller P, Lupas AN, Skokowa J, ElGamacy M. The design of functional proteins using tensorized energy calculations. CELL REPORTS METHODS 2023; 3:100560. [PMID: 37671023 PMCID: PMC10475850 DOI: 10.1016/j.crmeth.2023.100560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/25/2023] [Accepted: 07/21/2023] [Indexed: 09/07/2023]
Abstract
In protein design, the energy associated with a huge number of sequence-conformer perturbations has to be routinely estimated. Hence, enhancing the throughput and accuracy of these energy calculations can profoundly improve design success rates and enable tackling more complex design problems. In this work, we explore the possibility of tensorizing the energy calculations and apply them in a protein design framework. We use this framework to design enhanced proteins with anti-cancer and radio-tracing functions. Particularly, we designed multispecific binders against ligands of the epidermal growth factor receptor (EGFR), where the tested design could inhibit EGFR activity in vitro and in vivo. We also used this method to design high-affinity Cu2+ binders that were stable in serum and could be readily loaded with copper-64 radionuclide. The resulting molecules show superior functional properties for their respective applications and demonstrate the generalizable potential of the described protein design approach.
Collapse
Affiliation(s)
- Kateryna Maksymenko
- Department of Protein Evolution, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - Andreas Maurer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies,” Eberhard Karls University, 72076 Tübingen, Germany
| | - Narges Aghaallaei
- Division of Translational Oncology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Caroline Barry
- Department of Protein Evolution, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Krieger School of Arts and Sciences, Johns Hopkins University, Washington, DC 20036, USA
| | - Natalia Borbarán-Bravo
- Division of Translational Oncology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Timo Ullrich
- Department of Protein Evolution, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - Tjeerd M.H. Dijkstra
- Department of Protein Evolution, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Department for Women’s Health, University Hospital Tübingen, 72076 Tübingen, Germany
- Translational Bioinformatics, University Hospital Tübingen, 72072 Tübingen, Germany
| | | | - Patrick Müller
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - Andrei N. Lupas
- Department of Protein Evolution, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Julia Skokowa
- Division of Translational Oncology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Mohammad ElGamacy
- Department of Protein Evolution, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
- Division of Translational Oncology, University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
4
|
Licciardi G, Rizzo D, Salobehaj M, Massai L, Geri A, Messori L, Ravera E, Fragai M, Parigi G. Large Protein Assemblies for High-Relaxivity Contrast Agents: The Case of Gadolinium-Labeled Asparaginase. Bioconjug Chem 2022; 33:2411-2419. [PMID: 36458591 PMCID: PMC9782335 DOI: 10.1021/acs.bioconjchem.2c00506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Biologics are emerging as the most important class of drugs and are used to treat a large variety of pathologies. Most of biologics are proteins administered in large amounts, either by intramuscular injection or by intravenous infusion. Asparaginase is a large tetrameric protein assembly, currently used against acute lymphoblastic leukemia. Here, a gadolinium(III)-DOTA derivative has been conjugated to asparaginase, and its relaxation properties have been investigated to assess its efficiency as a possible theranostic agent. The field-dependent 1H longitudinal relaxation measurements of water solutions of gadolinium(III)-labeled asparaginase indicate a very large increase in the relaxivity of this paramagnetic protein complex with respect to small gadolinium chelates, opening up the possibility of its use as an MRI contrast agent.
Collapse
Affiliation(s)
- Giulia Licciardi
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino50019, Italy,Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino50019, Italy,Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino50019, Italy
| | - Domenico Rizzo
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino50019, Italy,Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino50019, Italy,Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino50019, Italy
| | - Maria Salobehaj
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino50019, Italy,Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino50019, Italy,Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino50019, Italy
| | - Lara Massai
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino50019, Italy
| | - Andrea Geri
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino50019, Italy
| | - Luigi Messori
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino50019, Italy
| | - Enrico Ravera
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino50019, Italy,Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino50019, Italy,Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino50019, Italy
| | - Marco Fragai
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino50019, Italy,Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino50019, Italy,Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino50019, Italy
| | - Giacomo Parigi
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino50019, Italy,Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino50019, Italy,Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino50019, Italy,
| |
Collapse
|
5
|
Zheng N, Li M, Wu Y, Kaewborisuth C, Li Z, Gui Z, Wu J, Cai A, Lin K, Su KP, Xiang H, Tian X, Manyande A, Xu F, Wang J. A novel technology for in vivo detection of cell type-specific neural connection with AQP1-encoding rAAV2-retro vector and metal-free MRI. Neuroimage 2022; 258:119402. [PMID: 35732245 DOI: 10.1016/j.neuroimage.2022.119402] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/18/2022] [Accepted: 06/18/2022] [Indexed: 01/10/2023] Open
Abstract
A mammalian brain contains numerous neurons with distinct cell types for complex neural circuits. Virus-based circuit tracing tools are powerful in tracking the interaction among the different brain regions. However, detecting brain-wide neural networks in vivo remains challenging since most viral tracing systems rely on postmortem optical imaging. We developed a novel approach that enables in vivo detection of brain-wide neural connections based on metal-free magnetic resonance imaging (MRI). The recombinant adeno-associated virus (rAAV) with retrograde ability, the rAAV2-retro, encoding the human water channel aquaporin 1 (AQP1) MRI reporter gene was generated to label neural connections. The mouse was micro-injected with the virus at the Caudate Putamen (CPU) region and subjected to detection with Diffusion-weighted MRI (DWI). The prominent structure of the CPU-connected network was clearly defined. In combination with a Cre-loxP system, rAAV2-retro expressing Cre-dependent AQP1 provides a CPU-connected network of specific type neurons. Here, we established a sensitive, metal-free MRI-based strategy for in vivo detection of cell type-specific neural connections in the whole brain, which could visualize the dynamic changes of neural networks in rodents and potentially in non-human primates.
Collapse
Affiliation(s)
- Ning Zheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China
| | - Mei Li
- The Brain Cognition and Brain Disease Institute (BCBDI), NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yang Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Challika Kaewborisuth
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Zhen Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhu Gui
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfeng Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China
| | - Aoling Cai
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China
| | - Kangguang Lin
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kuan-Pin Su
- Department of Psychiatry, China Medical University Hospital, Taichung City, Taiwan, China
| | - Hongbing Xiang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuebi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, Middlesex, TW8 9GA, UK
| | - Fuqiang Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China; The Brain Cognition and Brain Disease Institute (BCBDI), NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China; Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
| |
Collapse
|
6
|
Ozbakir HF, Anderson NT, Fan KC, Mukherjee A. Beyond the Green Fluorescent Protein: Biomolecular Reporters for Anaerobic and Deep-Tissue Imaging. Bioconjug Chem 2020; 31:293-302. [PMID: 31794658 PMCID: PMC7033020 DOI: 10.1021/acs.bioconjchem.9b00688] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fluorescence imaging represents cornerstone technology for studying biological function at the cellular and molecular levels. The technology's centerpiece is a prolific collection of genetic reporters based on the green fluorescent protein (GFP) and related analogs. More than two decades of protein engineering have endowed the GFP repertoire with an incredible assortment of fluorescent proteins, allowing scientists immense latitude in choosing reporters tailored to various cellular and environmental contexts. Nevertheless, GFP and derivative reporters have specific limitations that hinder their unrestricted use for molecular imaging. These challenges have inspired the development of new reporter proteins and imaging mechanisms. Here, we review how these developments are expanding the frontiers of reporter gene techniques to enable nondestructive studies of cell function in anaerobic environments and deep inside intact animals-two important biological contexts that are fundamentally incompatible with the use of GFP-based reporters.
Collapse
Affiliation(s)
- Harun F. Ozbakir
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Nolan T. Anderson
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Kang-Ching Fan
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Arnab Mukherjee
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry, University of California, Santa Barbara, California 93106, United States
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106, United States
- Center for Bioengineering, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
7
|
Taylor SK, Tran TH, Liu MZ, Harris PE, Sun Y, Jambawalikar SR, Tong L, Stojanovic MN. Insulin Hexamer-Caged Gadolinium Ion as MRI Contrast-o-phore. Chemistry 2018; 24:10646-10652. [PMID: 29873848 DOI: 10.1002/chem.201801388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Indexed: 12/30/2022]
Abstract
High-relaxivity protein-complexes of GdIII are being pursued as MRI contrast agents in hope that they can be used at much lower doses that would minimize toxic-side effects of GdIII release from traditional contrast agents. We construct here a new type of protein-based MRI contrast agent, a proteinaceous cage based on a stable insulin hexamer in which GdIII is captured inside a water filled cavity. The macromolecular structure and the large number of "free" GdIII coordination sites available for water binding lead to exceptionally high relaxivities per one GdIII ion. The GdIII slowly diffuses out of this cage, but this diffusion can be prevented by addition of ligands that bind to the hexamer. The ligands that trigger structural changes in the hexamer, SCN- , Cl- and phenols, modulate relaxivities through an outside-in signaling that is allosterically transduced through the protein cage. Contrast-o-phores based on protein-caged metal ions have potential to become clinical contrast agents with environmentally-sensitive properties.
Collapse
Affiliation(s)
- Steven K Taylor
- Department of Medicine, Columbia University, 630 W. 168th St., Box 84, New York, NY, 10032, USA
| | - Timothy H Tran
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Michael Z Liu
- Department of Radiology, Columbia University, 177 Ft Washington Ave, New York, NY, 10032, USA
| | - Paul E Harris
- Department of Medicine, Columbia University, 630 W. 168th St., Box 84, New York, NY, 10032, USA
| | - Yanping Sun
- Irving Comprehensive Cancer Center, Columbia University, 622 W. 168th St., New York, NY, 10032, USA
| | - Sachin R Jambawalikar
- Department of Radiology, Columbia University, 177 Ft Washington Ave, New York, NY, 10032, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Milan N Stojanovic
- Departments of Medicine, Biomedical Engineering and Systems Biology, Columbia University, 630 W. 168th St., Box 84, New York, NY, 10032, USA
| |
Collapse
|
8
|
Hyodo F, Sho T, Maity B, Fujita K, Tachibana Y, Akashi S, Mano M, Hishikawa Y, Matsuo M, Ueno T. Photoinduced in Vivo Magnetic Resonance Imaging (MRI) with Rapid CO Release from an MnCO‐Protein Needle Composite. Chemistry 2018; 24:11578-11583. [DOI: 10.1002/chem.201802445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Fuminori Hyodo
- Innovation Center for Medical Redox NavigationKyushu University 3-1-1 Maidashi Higashi-ku Fukuoka 812-8582 Japan
- Department of radiologySchool of MedicineGifu University 1-1 Yanagido Gifu 501-1194 Japan
| | - Takeya Sho
- School of Life Science and TechnologyTokyo Institute of Technology B55-4259 Nagatsuta-cho Midori-ku Yokohama 226-8501 Japan
| | - Basudev Maity
- School of Life Science and TechnologyTokyo Institute of Technology B55-4259 Nagatsuta-cho Midori-ku Yokohama 226-8501 Japan
| | - Kenta Fujita
- School of Life Science and TechnologyTokyo Institute of Technology B55-4259 Nagatsuta-cho Midori-ku Yokohama 226-8501 Japan
| | - Yoko Tachibana
- Innovation Center for Medical Redox NavigationKyushu University 3-1-1 Maidashi Higashi-ku Fukuoka 812-8582 Japan
| | - Satoko Akashi
- Graduate School of Medical Life ScienceYokohama City University 1-7-29 Suehiro-cho, Tsurumi-ku Yokohama Kanagawa 230-0045 Japan
| | - Megumi Mano
- School of Life Science and TechnologyTokyo Institute of Technology B55-4259 Nagatsuta-cho Midori-ku Yokohama 226-8501 Japan
| | - Yuki Hishikawa
- School of Life Science and TechnologyTokyo Institute of Technology B55-4259 Nagatsuta-cho Midori-ku Yokohama 226-8501 Japan
| | - Masayuki Matsuo
- Department of radiologySchool of MedicineGifu University 1-1 Yanagido Gifu 501-1194 Japan
| | - Takafumi Ueno
- School of Life Science and TechnologyTokyo Institute of Technology B55-4259 Nagatsuta-cho Midori-ku Yokohama 226-8501 Japan
| |
Collapse
|
9
|
Ou Y, Wilson RE, Weber SG. Methods of Measuring Enzyme Activity Ex Vivo and In Vivo. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:509-533. [PMID: 29505726 PMCID: PMC6147230 DOI: 10.1146/annurev-anchem-061417-125619] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Enzymes catalyze a variety of biochemical reactions in the body and, in conjunction with transporters and receptors, control virtually all physiological processes. There is great value in measuring enzyme activity ex vivo and in vivo. Spatial and temporal differences or changes in enzyme activity can be related to a variety of natural and pathological processes. Several analytical approaches have been developed to meet this need. They can be classified broadly as methods either based on artificial substrates, with the goal of creating images of diseased tissue, or based on natural substrates, with the goal of understanding natural processes. This review covers a selection of these methods, including optical, magnetic resonance, mass spectrometry, and physical sampling approaches, with a focus on creative chemistry and method development that make ex vivo and in vivo measurements of enzyme activity possible.
Collapse
Affiliation(s)
| | - Rachael E Wilson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA;
| | - Stephen G Weber
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA;
| |
Collapse
|
10
|
Slavcev RA, Sum CH, St Jean J, Huh H, Nafissi N. Specific Systems for Evaluation. EXPERIENTIA SUPPLEMENTUM (2012) 2018; 110:99-123. [PMID: 30536228 DOI: 10.1007/978-3-319-78259-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fluorescent-based visualization techniques have long been used to monitor biological activity. This chapter explores the delivery of reporter genes as a means to assay and track activity in biological systems. Bioluminescence is the production of light due to biochemical processes. By encoding genes for bioluminescence, biological processes can be visualized based on gene expression. This chapter also discusses the primary applications of bioluminescence as seen through bioluminescent imaging techniques, flow cytometry, and PCR-based methods of gene detection. These techniques are described in terms of researching gene expression, cancer therapy, and protein interactions.
Collapse
Affiliation(s)
| | - Chi Hong Sum
- University of Waterloo, School of Pharmacy, Waterloo, ON, Canada
| | - Jesse St Jean
- University of Waterloo, School of Pharmacy, Waterloo, ON, Canada
| | - Haein Huh
- University of Waterloo, School of Pharmacy, Waterloo, ON, Canada
| | - Nafiseh Nafissi
- University of Waterloo, School of Pharmacy, Waterloo, ON, Canada
| |
Collapse
|
11
|
Mukherjee A, Davis HC, Ramesh P, Lu GJ, Shapiro MG. Biomolecular MRI reporters: Evolution of new mechanisms. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 102-103:32-42. [PMID: 29157492 PMCID: PMC5726449 DOI: 10.1016/j.pnmrs.2017.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/23/2017] [Accepted: 05/28/2017] [Indexed: 05/08/2023]
Abstract
Magnetic resonance imaging (MRI) is a powerful technique for observing the function of specific cells and molecules inside living organisms. However, compared to optical microscopy, in which fluorescent protein reporters are available to visualize hundreds of cellular functions ranging from gene expression and chemical signaling to biomechanics, to date relatively few such reporters are available for MRI. Efforts to develop MRI-detectable biomolecules have mainly focused on proteins transporting paramagnetic metals for T1 and T2 relaxation enhancement or containing large numbers of exchangeable protons for chemical exchange saturation transfer. While these pioneering developments established several key uses of biomolecular MRI, such as imaging of gene expression and functional biosensing, they also revealed that low molecular sensitivity poses a major challenge for broader adoption in biology and medicine. Recently, new classes of biomolecular reporters have been developed based on alternative contrast mechanisms, including enhancement of spin diffusivity, interactions with hyperpolarized nuclei, and modulation of blood flow. These novel reporters promise to improve sensitivity and enable new forms of multiplexed and functional imaging.
Collapse
Affiliation(s)
- Arnab Mukherjee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hunter C Davis
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pradeep Ramesh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - George J Lu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
12
|
Non-invasive imaging using reporter genes altering cellular water permeability. Nat Commun 2016; 7:13891. [PMID: 28008959 PMCID: PMC5196229 DOI: 10.1038/ncomms13891] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 11/10/2016] [Indexed: 12/19/2022] Open
Abstract
Non-invasive imaging of gene expression in live, optically opaque animals is important for multiple applications, including monitoring of genetic circuits and tracking of cell-based therapeutics. Magnetic resonance imaging (MRI) could enable such monitoring with high spatiotemporal resolution. However, existing MRI reporter genes based on metalloproteins or chemical exchange probes are limited by their reliance on metals or relatively low sensitivity. Here we introduce a new class of MRI reporters based on the human water channel aquaporin 1. We show that aquaporin overexpression produces contrast in diffusion-weighted MRI by increasing tissue water diffusivity without affecting viability. Low aquaporin levels or mixed populations comprising as few as 10% aquaporin-expressing cells are sufficient to produce MRI contrast. We characterize this new contrast mechanism through experiments and simulations, and demonstrate its utility in vivo by imaging gene expression in tumours. Our results establish an alternative class of sensitive, metal-free reporter genes for non-invasive imaging. Magnetic resonance imaging combined with molecular reporters can visualise cellular functions in intact organisms. Here Mukherjee et al. present a cellular imaging approach based on intracellular changes in water diffusion using human aquaporin 1 gene as a genetically encoded reporter for MRI.
Collapse
|
13
|
Abstract
UNLABELLED Comprehensive analysis of brain function depends on understanding the dynamics of diverse neural signaling processes over large tissue volumes in intact animals and humans. Most existing approaches to measuring brain signaling suffer from limited tissue penetration, poor resolution, or lack of specificity for well-defined neural events. Here we discuss a new brain activity mapping method that overcomes some of these problems by combining MRI with contrast agents sensitive to neural signaling. The goal of this "molecular fMRI" approach is to permit noninvasive whole-brain neuroimaging with specificity and resolution approaching current optical neuroimaging methods. In this article, we describe the context and need for molecular fMRI as well as the state of the technology today. We explain how major types of MRI probes work and how they can be sensitized to neurobiological processes, such as neurotransmitter release, calcium signaling, and gene expression changes. We comment both on past work in the field and on challenges and promising avenues for future development. SIGNIFICANCE STATEMENT Brain researchers currently have a choice between measuring neural activity using cellular-level recording techniques, such as electrophysiology and optical imaging, or whole-brain imaging methods, such as fMRI. Cellular level methods are precise but only address a small portion of mammalian brains; on the other hand, whole-brain neuroimaging techniques provide very little specificity for neural pathways or signaling components of interest. The molecular fMRI techniques we discuss have particular potential to combine the specificity of cellular-level measurements with the noninvasive whole-brain coverage of fMRI. On the other hand, molecular fMRI is only just getting off the ground. This article aims to offer a snapshot of the status and future prospects for development of molecular fMRI techniques.
Collapse
|
14
|
Murphy SV, Hale A, Reid T, Olson J, Kidiyoor A, Tan J, Zhou Z, Jackson J, Atala A. Use of trimetasphere metallofullerene MRI contrast agent for the non-invasive longitudinal tracking of stem cells in the lung. Methods 2015; 99:99-111. [PMID: 26546729 DOI: 10.1016/j.ymeth.2015.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 10/18/2015] [Accepted: 11/03/2015] [Indexed: 12/31/2022] Open
Abstract
Magnetic Resonance Imaging (MRI) is a commonly used, non-invasive imaging technique that provides visualization of soft tissues with high spatial resolution. In both a research and clinical setting, the major challenge has been identifying a non-invasive and safe method for longitudinal tracking of delivered cells in vivo. The labeling and tracking of contrast agent labeled cells using MRI has the potential to fulfill this need. Contrast agents are often used to enhance the image contrast between the tissue of interest and surrounding tissues with MRI. The most commonly used MRI contrast agents contain Gd(III) ions. However, Gd(III) ions are highly toxic in their ionic form, as they tend to accumulate in the liver, spleen, kidney and bones and block calcium channels. Endohedral metallofullerenes such as trimetallic nitride endohedral metallofullerenes (Trimetasphere®) are one unique class of fullerene molecules where a Gd3N cluster is encapsulated inside a C80 carbon cage referred to as Gd3N@C80. These endohedral metallofullerenes have several advantages over small chelated Gd(III) complexes such as increased stability of the Gd(III) ion, minimal toxic effects, high solubility in water and high proton relativity. In this study, we describe the evaluation of gadolinium-based Trimetasphere® positive contrast agent for the in vitro labeling and in vivo tracking of human amniotic fluid-derived stem cells within lung tissue. In addition, we conducted a 'proof-of-concept' experiment demonstrating that this methodology can be used to track the homing of stem cells to injured lung tissue and provide longitudinal analysis of cell localization over an extended time course.
Collapse
Affiliation(s)
- Sean V Murphy
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA.
| | - Austin Hale
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA.
| | - Tanya Reid
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA.
| | - John Olson
- Center for Biomolecular Imaging, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | - Amritha Kidiyoor
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA.
| | - Josh Tan
- Center for Biomolecular Imaging, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | - Zhiguo Zhou
- Luna nanoWorks Division, Luna Innovations, Incorporated, Danville, VA 24541, USA.
| | - John Jackson
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA.
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA.
| |
Collapse
|
15
|
3D bioprinting of tissues and organs. Nat Biotechnol 2015; 32:773-85. [PMID: 25093879 DOI: 10.1038/nbt.2958] [Citation(s) in RCA: 3454] [Impact Index Per Article: 383.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 06/12/2014] [Indexed: 02/07/2023]
Abstract
Additive manufacturing, otherwise known as three-dimensional (3D) printing, is driving major innovations in many areas, such as engineering, manufacturing, art, education and medicine. Recent advances have enabled 3D printing of biocompatible materials, cells and supporting components into complex 3D functional living tissues. 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. Compared with non-biological printing, 3D bioprinting involves additional complexities, such as the choice of materials, cell types, growth and differentiation factors, and technical challenges related to the sensitivities of living cells and the construction of tissues. Addressing these complexities requires the integration of technologies from the fields of engineering, biomaterials science, cell biology, physics and medicine. 3D bioprinting has already been used for the generation and transplantation of several tissues, including multilayered skin, bone, vascular grafts, tracheal splints, heart tissue and cartilaginous structures. Other applications include developing high-throughput 3D-bioprinted tissue models for research, drug discovery and toxicology.
Collapse
|
16
|
|
17
|
Xue S, Qiao J, Jiang J, Hubbard K, White N, Wei L, Li S, Liu ZR, Yang JJ. Design of ProCAs (protein-based Gd(3+) MRI contrast agents) with high dose efficiency and capability for molecular imaging of cancer biomarkers. Med Res Rev 2014; 34:1070-99. [PMID: 24615853 DOI: 10.1002/med.21313] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Magnetic resonance imaging (MRI) is the leading imaging technique for disease diagnostics, providing high resolution, three-dimensional images noninvasively. MRI contrast agents are designed to improve the contrast and sensitivity of MRI. However, current clinically used MRI contrast agents have relaxivities far below the theoretical upper limit, which largely prevent advancing molecular imaging of biomarkers with desired sensitivity and specificity. This review describes current progress in the development of a new class of protein-based MRI contrast agents (ProCAs) with high relaxivity using protein design to optimize the parameters that govern relaxivity. Further, engineering with targeting moiety allows these contrast agents to be applicable for molecular imaging of prostate cancer biomarkers by MRI. The developed protein-based contrast agents also exhibit additional in vitro and in vivo advantages for molecular imaging of disease biomarkers, such as high metal-binding stability and selectivity, reduced toxicity, proper blood circulation time, and higher permeability in tumor tissue in addition to improved relaxivities.
Collapse
Affiliation(s)
- Shenghui Xue
- Departments of Chemistry and Biology, Georgia State University, Atlanta, Georgia; Center for Diagnostics & Therapeutics (CDT), Georgia State University, Atlanta, Georgia; Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lan SM, Wu YN, Wu PC, Sun CK, Shieh DB, Lin RM. Advances in noninvasive functional imaging of bone. Acad Radiol 2014; 21:281-301. [PMID: 24439341 DOI: 10.1016/j.acra.2013.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/20/2013] [Accepted: 11/26/2013] [Indexed: 02/03/2023]
Abstract
The demand for functional imaging in clinical medicine is comprehensive. Although the gold standard for the functional imaging of human bones in clinical settings is still radionuclide-based imaging modalities, nonionizing noninvasive imaging technology in small animals has greatly advanced in recent decades, especially the diffuse optical imaging to which Britton Chance made tremendous contributions. The evolution of imaging probes, instruments, and computation has facilitated exploration in the complicated biomedical research field by allowing longitudinal observation of molecular events in live cells and animals. These research-imaging tools are being used for clinical applications in various specialties, such as oncology, neuroscience, and dermatology. The Bone, a deeply located mineralized tissue, presents a challenge for noninvasive functional imaging in humans. Using nanoparticles (NP) with multiple favorable properties as bioimaging probes has provided orthopedics an opportunity to benefit from these noninvasive bone-imaging techniques. This review highlights the historical evolution of radionuclide-based imaging, computed tomography, positron emission tomography, and magnetic resonance imaging, diffuse optics-enabled in vivo technologies, vibrational spectroscopic imaging, and a greater potential for using NPs for biomedical imaging.
Collapse
|
19
|
Molecular imaging of EGFR/HER2 cancer biomarkers by protein MRI contrast agents. J Biol Inorg Chem 2013; 19:259-70. [PMID: 24366655 DOI: 10.1007/s00775-013-1076-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/06/2013] [Indexed: 12/22/2022]
Abstract
Epidermal growth factor receptor (EGFR) and HER2 are major prognosis biomarkers and drug targets overexpressed in various types of cancer cells. There is a pressing need to develop MRI contrast agents capable of enhancing the contrast between normal tissues and tumors with high relaxivity, capable of targeting tumors, and with high intratumoral distribution and minimal toxicity. In this review, we first discuss EGFR signaling and its role in tumor progression as a major drug target. We then report our progress in the development of protein contrast agents with significant improvement of both r1 and r2 relaxivities, pharmacokinetics, in vivo retention time, and in vivo dose efficiency. Finally, we report our effort in the development of EGFR-targeted protein contrast agents with the capability to cross the endothelial boundary and with good tissue distribution across the entire tumor mass. The noninvasive capability of MRI to visualize spatially and temporally the intratumoral distribution as well as quantify the levels of EGFR and HER2 would greatly improve our ability to track changes of the biomarkers during tumor progression, monitor treatment efficacy, aid in patient selection, and further develop novel targeted therapies for clinical application.
Collapse
|
20
|
The many faces of proteins. FEBS Lett 2013; 587:995-6. [DOI: 10.1016/j.febslet.2013.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|