1
|
Çağan E, Kızmaz MA, Akalın EH, Oral HB, Tezcan G, Budak F. New biological markers in diagnosis and follow-up of brucellosis cases. Diagn Microbiol Infect Dis 2025; 111:116587. [PMID: 39550977 DOI: 10.1016/j.diagmicrobio.2024.116587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024]
Abstract
Brucellosis remains a significant public health issue in some parts of the world. It is clear that new laboratory methods are needed to diagnose brucellosis. Currently, no test method meets the criteria of high specificity, sensitivity, reliability, and low cost for the diagnosis of brucellosis, which could also predict chronicity. This study was conducted based on the data from a study conducted in 2015, which aimed to reveal genes with different transcript levels in chronic and acute patients and to evaluate their effects on the progression to chronicity by studying mRNA microarray and miRNA array in peripheral blood mononuclear cells in acute, chronic brucellosis and healthy control groups. According to the data obtained in this study, a second study was conducted to determine new markers that could aid in diagnosis and/or predict chronicity, with the most prominent gene products being [ABI3 (ABL interactor), PIAS4 (Protein Inhibitor of Activated STAT 4), PPP2R4 (Protein Phosphatase 2 Phosphatase Activator), DDIT4L (DNA Damage Inducible Transcript 4 Like), WDR33 (WD Repeat-Containing Protein 33), and IDO (Indoleamine 2,3-Dioxygenase)]. The study speculates that increased levels of ABI3, CLEC12B, PPP2R4 and decreased levels of DDIT4L, PIAS4, and IDO may be used as markers for the diagnosis of acute brucellosis, decreased levels of ABI3, CLEC12B, PPP2R4 and increased levels of DDIT4L, PIAS4, IDO may be assessed for treatment response. The study also suggested that maintaining consistent levels of ABI3, CLEC12B, PIAS4, PPP2R4, and IDO in subsequent titers may serve as a potential marker to predict chronic progression.
Collapse
Affiliation(s)
- E Çağan
- Department of Pediatric Infectious Diseases, Bursa Yuksek Ihtisas Training and Research Hospital, University of Health Sciences, Bursa, Turkey; Department of Immunology, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
| | - M A Kızmaz
- Department of Immunology, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
| | - E H Akalın
- Department of Infectious Diseases and Clinical Microbiology, Bursa Uludag University School of Medicine, Bursa, Turkey
| | - H B Oral
- Department of Immunology, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
| | - G Tezcan
- Department of Fundamental Sciences, Faculty of Dentistry, Bursa Uludag University, Bursa, Turkey
| | - F Budak
- Department of Immunology, Bursa Uludag University Faculty of Medicine, Bursa, Turkey.
| |
Collapse
|
2
|
Bhatt A, Mishra BP, Gu W, Sorbello M, Xu H, Ve T, Kobe B. Structural characterization of TIR-domain signalosomes through a combination of structural biology approaches. IUCRJ 2024; 11:695-707. [PMID: 39190506 PMCID: PMC11364022 DOI: 10.1107/s2052252524007693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
The TIR (Toll/interleukin-1 receptor) domain represents a vital structural element shared by proteins with roles in immunity signalling pathways across phyla (from humans and plants to bacteria). Decades of research have finally led to identifying the key features of the molecular basis of signalling by these domains, including the formation of open-ended (filamentous) assemblies (responsible for the signalling by cooperative assembly formation mechanism, SCAF) and enzymatic activities involving the cleavage of nucleotides. We present a historical perspective of the research that led to this understanding, highlighting the roles that different structural methods played in this process: X-ray crystallography (including serial crystallography), microED (micro-crystal electron diffraction), NMR (nuclear magnetic resonance) spectroscopy and cryo-EM (cryogenic electron microscopy) involving helical reconstruction and single-particle analysis. This perspective emphasizes the complementarity of different structural approaches.
Collapse
Affiliation(s)
- Akansha Bhatt
- Institute for GlycomicsGriffith UniversitySouthportQLD4222Australia
- School of Pharmacy and Medical SciencesGriffith UniversitySouthportQLD4222Australia
| | - Biswa P. Mishra
- Institute for GlycomicsGriffith UniversitySouthportQLD4222Australia
| | - Weixi Gu
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbaneQLD4072Australia
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
- Australian Infectious Diseases Research CentreThe University of QueenslandBrisbaneQLD4072Australia
| | - Mitchell Sorbello
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbaneQLD4072Australia
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
- Australian Infectious Diseases Research CentreThe University of QueenslandBrisbaneQLD4072Australia
| | - Hongyi Xu
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbaneQLD4072Australia
- Department of Materials and Environmental ChemistryStockholm UniversityStockholmSweden
| | - Thomas Ve
- Institute for GlycomicsGriffith UniversitySouthportQLD4222Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbaneQLD4072Australia
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
- Australian Infectious Diseases Research CentreThe University of QueenslandBrisbaneQLD4072Australia
| |
Collapse
|
3
|
Zheng M, Lin R, Zhu J, Dong Q, Chen J, Jiang P, Zhang H, Liu J, Chen Z. Effector Proteins of Type IV Secretion System: Weapons of Brucella Used to Fight Against Host Immunity. Curr Stem Cell Res Ther 2024; 19:145-153. [PMID: 36809969 DOI: 10.2174/1574888x18666230222124529] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/15/2022] [Accepted: 12/29/2022] [Indexed: 02/24/2023]
Abstract
Brucella is an intracellular bacterial pathogen capable of long-term persistence in the host, resulting in chronic infections in livestock and wildlife. The type IV secretion system (T4SS) is an important virulence factor of Brucella and is composed of 12 protein complexes encoded by the VirB operon. T4SS exerts its function through its secreted 15 effector proteins. The effector proteins act on important signaling pathways in host cells, inducing host immune responses and promoting the survival and replication of Brucella in host cells to promote persistent infection. In this article, we describe the intracellular circulation of Brucella-infected cells and survey the role of Brucella VirB T4SS in regulating inflammatory responses and suppressing host immune responses during infection. In addition, the important mechanisms of these 15 effector proteins in resisting the host immune response during Brucella infection are elucidated. For example, VceC and VceA assist in achieving sustained survival of Brucella in host cells by affecting autophagy and apoptosis. BtpB, together with BtpA, controls the activation of dendritic cells during infection, induces inflammatory responses, and controls host immunity. This article reviews the effector proteins secreted by Brucella T4SS and their involvement in immune responses, which can provide a reliable theoretical basis for the subsequent mechanism of hijacking the host cell signaling pathway by bacteria and contribute to the development of better vaccines to effectively treat Brucella bacterial infection.
Collapse
Affiliation(s)
- Min Zheng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Ruiqi Lin
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Jinying Zhu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Qiao Dong
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Jingjing Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Pengfei Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Huan Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Jinling Liu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Zeliang Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| |
Collapse
|
4
|
Klontz E, Obi JO, Wang Y, Glendening G, Carr J, Tsibouris C, Buddula S, Nallar S, Soares AS, Beckett D, Redzic JS, Eisenmesser E, Palm C, Schmidt K, Scudder AH, Obiorah T, Essuman K, Milbrandt J, Diantonio A, Ray K, Snyder MLD, Deredge D, Snyder GA. The structure of NAD + consuming protein Acinetobacter baumannii TIR domain shows unique kinetics and conformations. J Biol Chem 2023; 299:105290. [PMID: 37758001 PMCID: PMC10641520 DOI: 10.1016/j.jbc.2023.105290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Toll-like and interleukin-1/18 receptor/resistance (TIR) domain-containing proteins function as important signaling and immune regulatory molecules. TIR domain-containing proteins identified in eukaryotic and prokaryotic species also exhibit NAD+ hydrolase activity in select bacteria, plants, and mammalian cells. We report the crystal structure of the Acinetobacter baumannii TIR domain protein (AbTir-TIR) with confirmed NAD+ hydrolysis and map the conformational effects of its interaction with NAD+ using hydrogen-deuterium exchange-mass spectrometry. NAD+ results in mild decreases in deuterium uptake at the dimeric interface. In addition, AbTir-TIR exhibits EX1 kinetics indicative of large cooperative conformational changes, which are slowed down upon substrate binding. Additionally, we have developed label-free imaging using the minimally invasive spectroscopic method 2-photon excitation with fluorescence lifetime imaging, which shows differences in bacteria expressing native and mutant NAD+ hydrolase-inactivated AbTir-TIRE208A protein. Our observations are consistent with substrate-induced conformational changes reported in other TIR model systems with NAD+ hydrolase activity. These studies provide further insight into bacterial TIR protein mechanisms and their varying roles in biology.
Collapse
Affiliation(s)
- Erik Klontz
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Juliet O Obi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Yajing Wang
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA; Department of Physiology, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Gabrielle Glendening
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Jahid Carr
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Constantine Tsibouris
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Sahthi Buddula
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Shreeram Nallar
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA; Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Alexei S Soares
- Brookhaven National Laboratory, National Synchrotron Light Source II, Structural Biology Program, Upton, New York, USA
| | - Dorothy Beckett
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Jasmina S Redzic
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, Colorado, USA
| | - Elan Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, Colorado, USA
| | - Cheyenne Palm
- Department of Biological Sciences, Towson University, Towson, Maryland, USA
| | - Katrina Schmidt
- Department of Biological Sciences, Towson University, Towson, Maryland, USA
| | - Alexis H Scudder
- Department of Biological Sciences, Towson University, Towson, Maryland, USA
| | - Trinity Obiorah
- Department of Biological Sciences, Towson University, Towson, Maryland, USA
| | - Kow Essuman
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri, USA; Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jeffrey Milbrandt
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Aaron Diantonio
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Krishanu Ray
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA; Department of Biochemistry and Molecular Biology at the University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | | | - Daniel Deredge
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Greg A Snyder
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA; Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA.
| |
Collapse
|
5
|
Manik MK, Shi Y, Li S, Zaydman MA, Damaraju N, Eastman S, Smith TG, Gu W, Masic V, Mosaiab T, Weagley JS, Hancock SJ, Vasquez E, Hartley-Tassell L, Kargios N, Maruta N, Lim BYJ, Burdett H, Landsberg MJ, Schembri MA, Prokes I, Song L, Grant M, DiAntonio A, Nanson JD, Guo M, Milbrandt J, Ve T, Kobe B. Cyclic ADP ribose isomers: Production, chemical structures, and immune signaling. Science 2022; 377:eadc8969. [PMID: 36048923 DOI: 10.1126/science.adc8969] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cyclic adenosine diphosphate (ADP)-ribose (cADPR) isomers are signaling molecules produced by bacterial and plant Toll/interleukin-1 receptor (TIR) domains via nicotinamide adenine dinucleotide (oxidized form) (NAD+) hydrolysis. We show that v-cADPR (2'cADPR) and v2-cADPR (3'cADPR) isomers are cyclized by O-glycosidic bond formation between the ribose moieties in ADPR. Structures of 2'cADPR-producing TIR domains reveal conformational changes that lead to an active assembly that resembles those of Toll-like receptor adaptor TIR domains. Mutagenesis reveals a conserved tryptophan that is essential for cyclization. We show that 3'cADPR is an activator of ThsA effector proteins from the bacterial antiphage defense system termed Thoeris and a suppressor of plant immunity when produced by the effector HopAM1. Collectively, our results reveal the molecular basis of cADPR isomer production and establish 3'cADPR in bacteria as an antiviral and plant immunity-suppressing signaling molecule.
Collapse
Affiliation(s)
- Mohammad K Manik
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yun Shi
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Sulin Li
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mark A Zaydman
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63100, USA
| | - Neha Damaraju
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63100, USA
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63100, USA
| | - Samuel Eastman
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Thomas G Smith
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Weixi Gu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Veronika Masic
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Tamim Mosaiab
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - James S Weagley
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Steven J Hancock
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Eduardo Vasquez
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | | | - Nestoras Kargios
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Natsumi Maruta
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Bryan Y J Lim
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hayden Burdett
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michael J Landsberg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ivan Prokes
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Lijiang Song
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Murray Grant
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Aaron DiAntonio
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63100, USA
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63100, USA
| | - Jeffrey D Nanson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ming Guo
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Jeffrey Milbrandt
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63100, USA
| | - Thomas Ve
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia
| |
Collapse
|
6
|
Tarrahimofrad H, Zamani J, Hamblin MR, Darvish M, Mirzaei H. A designed peptide-based vaccine to combat Brucella melitensis, B. suis and B. abortus: Harnessing an epitope mapping and immunoinformatics approach. Biomed Pharmacother 2022; 155:113557. [PMID: 36115112 DOI: 10.1016/j.biopha.2022.113557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/08/2022] [Accepted: 08/14/2022] [Indexed: 11/19/2022] Open
Abstract
Vaccines against Brucella abortus, B. melitensis and B. suis have been based on weakened or killed bacteria, however there is no recombinant vaccine for disease prevention or therapy. This study attempted to predict IFN-γ epitopes, T cell cytotoxicity, and T lymphocytes in order to produce a multiepitope vaccine based on BtpA, Omp16, Omp28, virB10, Omp25, and Omp31 antigens against B. melitensis, B. abortus, and B. suis. AAY, GPGPG, and EAAAK peptides were used as epitope linkers, while the PADRE sequence was used as a Toll-like receptor 2 (TLR2) and TLR4 agonist. The final construct included 389 amino acids, and was a soluble protein with a molecular weight of 41.3 kDa, and nonallergenic and antigenic properties. Based on molecular docking studies, molecular dynamics simulations such as Gyration, RMSF, and RMSD, as well as tertiary structure validation methods, the modeled protein had a stable structure capable of interacting with TLR2/4. As a result, this novel vaccine may stimulate immune responses in B and T cells, and could prevent infection by B. suis, B. abortus, and B. melitensis.
Collapse
Affiliation(s)
- Hossein Tarrahimofrad
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Javad Zamani
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Maryam Darvish
- Department of Medical Biotechnology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
7
|
Zhang H, Wang Y, Wang Y, Deng X, Ji T, Ma Z, Yang N, Xu M, Li H, Yi J, Wang Y, Wang Y, Sheng J, Wang Z, Chen C. Using a Relative Quantitative Proteomic Method to Identify Differentially Abundant Proteins in Brucella melitensis Biovar 3 and Brucella melitensis M5-90. Front Immunol 2022; 13:929040. [PMID: 35928811 PMCID: PMC9343586 DOI: 10.3389/fimmu.2022.929040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Brucellosis, caused by Brucella spp., is one of the most widespread bacterial zoonoses worldwide. Vaccination is still considered the best way to control brucellosis. An investigation into the differential proteome expression patterns of wild and vaccine strains may help researchers and clinicians differentiate between the strains to diagnose and better understand the mechanism(s) underlying differences in virulence. In the present study, a mass spectrometry-based, label-free relative quantitative proteomics approach was used to investigate the proteins expressed by the wild strain, B. melitensis biovar 3 and compare it with those expressed by B. melitensis M5-90. The higher level of virulence for B. melitensis biovar 3 compared to B. melitensis M5-90 was validated in vitro and in vivo. A total of 2133 proteins, encompassing 68% of the theoretical proteome, were identified and quantified by proteomic analysis, resulting in broad coverage of the B. melitensis proteome. A total of 147 proteins were identified as differentially expressed (DE) between these two strains. In addition, 9 proteins and 30 proteins were identified as unique to B. melitensis M5-90 and B. melitensis biovar 3, respectively. Pathway analysis revealed that the majority of the DE proteins were involved in iron uptake, quorum sensing, pyrimidine metabolism, glycine betaine biosynthetic and metabolic processes, thiamine-containing compound metabolism and ABC transporters. The expression of BtpA and VjbR proteins (two well-known virulence factors) in B. melitensis biovar 3 was 8-fold and 2-fold higher than in B. melitensis M5-90. In summary, our results identified many unique proteins that could be selected as candidate markers for differentiating vaccinated animals from animals with wild-type infections. BtpA and VjbR proteins might be responsible for the residual virulence of B. melitensis M5-90, while ABC transporters and thiamine metabolism associated proteins may be newly identified Brucella virulence factors. All of the identified DE proteins provide valuable information for the development of vaccines and the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Huan Zhang
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
| | - Yueli Wang
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
| | - Yifan Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine Huazhong Agricultural University, Wuhan, China
| | - Xiaoyu Deng
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
| | - Taiwang Ji
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
| | - Zhongchen Ma
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
| | - Ningning Yang
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
| | - Mingguo Xu
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
| | - Honghuan Li
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
| | - Jihai Yi
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
| | - Yong Wang
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
| | - Yuanzhi Wang
- School of Medicine, Shihezi University, Shihezi City, China
- *Correspondence: Yuanzhi Wang, ; Zhen Wang, ; Chuangfu Chen,
| | - Jinliang Sheng
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
| | - Zhen Wang
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
- *Correspondence: Yuanzhi Wang, ; Zhen Wang, ; Chuangfu Chen,
| | - Chuangfu Chen
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
- *Correspondence: Yuanzhi Wang, ; Zhen Wang, ; Chuangfu Chen,
| |
Collapse
|
8
|
Zhou J, Xiao Y, Ren Y, Ge J, Wang X. Structural basis of the IL-1 receptor TIR domain-mediated IL-1 signaling. iScience 2022; 25:104508. [PMID: 35754719 PMCID: PMC9213720 DOI: 10.1016/j.isci.2022.104508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 05/02/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022] Open
Abstract
The cytoplasmic Toll/interleukin-1 receptor (TIR) domains of IL-1 receptors (IL-1Rs) are evolutionally conserved and essential for transmitting signals. IL-1RAcP is a shared co-receptor in the IL-1R family for signaling. Its splicing form IL-1RAcPb contains a different TIR domain and is unable to transduce NF-κB signaling. Here, we determined crystal structures of TIR domains of IL-1RAcPb and other IL-1Rs including IL-18Rβ, IL-1RAPL2, and zebrafish SIGIRR (zSIGIRR). Structurally variant regions in the TIR domain important for signaling were revealed by structural comparisons. Taking advantage of the IL-1RAcP/IL-1RAcPb pair, we demonstrated that differential TIR domain determines signaling discrepancies between IL-1RAcP and IL-1RAcPb. We also proved the functional importance of two helices (αC and αD) in the structurally variable regions and pinpointed critical residues in αC and αD for signaling. These results collectively provide additional and important knowledge for fully understanding the molecular basis of IL-1R TIR domain in mediating signaling. The crystal structures of several IL-1R TIR domains were determinated Structurally variant regions in TIR domains were revealed by structural comparisons Differential TIR domain determines signaling discrepancy between IL-1RAcP and IL-1RAcPb αC/αD regions and several residues there were proved to be vital for IL-1 signaling
Collapse
Affiliation(s)
- Jianjie Zhou
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yu Xiao
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yifei Ren
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiwan Ge
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Jiao H, Zhou Z, Li B, Xiao Y, Li M, Zeng H, Guo X, Gu G. The Mechanism of Facultative Intracellular Parasitism of Brucella. Int J Mol Sci 2021; 22:ijms22073673. [PMID: 33916050 PMCID: PMC8036852 DOI: 10.3390/ijms22073673] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is a highly prevalent zoonotic disease characterized by abortion and reproductive dysfunction in pregnant animals. Although the mortality rate of Brucellosis is low, it is harmful to human health, and also seriously affects the development of animal husbandry, tourism and international trade. Brucellosis is caused by Brucella, which is a facultative intracellular parasitic bacteria. It mainly forms Brucella-containing vacuoles (BCV) in the host cell to avoid the combination with lysosome (Lys), so as to avoid the elimination of it by the host immune system. Brucella not only has the ability to resist the phagocytic bactericidal effect, but also can make the host cells form a microenvironment which is conducive to its survival, reproduction and replication, and survive in the host cells for a long time, which eventually leads to the formation of chronic persistent infection. Brucella can proliferate and replicate in cells, evade host immune response and induce persistent infection, which are difficult problems in the treatment and prevention of Brucellosis. Therefore, the paper provides a preliminary overview of the facultative intracellular parasitic and immune escape mechanisms of Brucella, which provides a theoretical basis for the later study on the pathogenesis of Brucella.
Collapse
Affiliation(s)
- Hanwei Jiao
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
- Veterinary Scientific Engineering Research Center, Chongqing 402460, China
- Correspondence:
| | - Zhixiong Zhou
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Bowen Li
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Yu Xiao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Mengjuan Li
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Hui Zeng
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Xiaoyi Guo
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Guojing Gu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| |
Collapse
|
10
|
Alaidarous M. In silico structural homology modeling and characterization of multiple N-terminal domains of selected bacterial Tcps. PeerJ 2020; 8:e10143. [PMID: 33194392 PMCID: PMC7646307 DOI: 10.7717/peerj.10143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/19/2020] [Indexed: 11/20/2022] Open
Abstract
Several bacterial pathogens produce Toll/interleukin-1 receptor (TIR) domain-containing protein homologs that are important for subverting the Toll-like receptor (TLR) signaling cascades in hosts. Consequently, promoting the persistence and survival of the bacterial pathogens. However, the exact molecular mechanisms elucidating the functional characteristics of these bacterial proteins are not clear. Physicochemical and homology modeling characterization studies have been conducted to predict the conditions suitable for the stability and purification of these proteins and to predict their structural properties. The outcomes of these studies have provided important preliminary data for the drug discovery pipeline projects. Here, using in silico physicochemical and homology modeling tools, we have reported the primary, secondary and tertiary structural characteristics of multiple N-terminal domains of selected bacterial TIR domain-containing proteins (Tcps). The results show variations between the primary amino acid sequences, secondary structural components and three-dimensional models of the proteins, suggesting the role of different molecular mechanisms in the functioning of these proteins in subverting the host immune system. This study could form the basis of future experimental studies advancing our understanding of the molecular basis of the inhibition of the host immune response by the bacterial Tcps.
Collapse
Affiliation(s)
- Mohammed Alaidarous
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia.,Health and Basic Sciences Research Center, Majmaah University, Majmaah, Saudi Arabia
| |
Collapse
|
11
|
Zhou Y, Bu Z, Qian J, Chen Y, Qiao L, Yang S, Chen S, Wang X, Ren L, Yang Y. The UTP-glucose-1-phosphate uridylyltransferase of Brucella melitensis inhibits the activation of NF-κB via regulating the bacterial type IV secretion system. Int J Biol Macromol 2020; 164:3098-3104. [PMID: 32827613 DOI: 10.1016/j.ijbiomac.2020.08.134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023]
Abstract
UDP-glucose pyrophosphorylase (UGPase) is an important pyrophosphatase that reversibly catalyzes the synthesis of UDP-glucose during glucose metabolism. We previously found that the deletion of UGPase may affect structure, growth, the virulence of Brucella, and the activation of cellular NF-κB. However, the exact mechanism of activation of NF-κB regulated by Brucella UGPase is still unclear. Here, we found for the first time that UGPase can regulate the expression of virB proteins (virB3, virB4, virB5, virB6, virB8, virB9, virB10, and virB11) of type IV secretion system (T4SS) as well as effectors (vceC, btpA, btpB, ricA, bspB, bspC, and bspF) of Brucella by promoting the expression of ribosomal S12 protein (rpsL), BMEI1825, and quinone of 2,4,5-trihydroxyphenylalanine (topA) proteins, and further inhibits the activation of cellular NF-κB and affects the virulence of Brucella. Our findings provide new insights into the mechanism used by Brucella to escape the immune recognition, which is expected to be of great value in the designing of Brucella vaccines and the screening of drug targets.
Collapse
Affiliation(s)
- Yucheng Zhou
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Zhaoyang Bu
- Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130112, China
| | - Jing Qian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yuening Chen
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Lianjiang Qiao
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Sen Yang
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Shipeng Chen
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Xinglong Wang
- Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130112, China
| | - Linzhu Ren
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Yanling Yang
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China; Jilin Academy of Agricultural Sciences, Changchun 130033, China.
| |
Collapse
|
12
|
The TIR-domain containing effectors BtpA and BtpB from Brucella abortus impact NAD metabolism. PLoS Pathog 2020; 16:e1007979. [PMID: 32298382 PMCID: PMC7188309 DOI: 10.1371/journal.ppat.1007979] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 04/28/2020] [Accepted: 03/26/2020] [Indexed: 12/20/2022] Open
Abstract
Brucella species are facultative intracellular Gram-negative bacteria relevant to animal and human health. Their ability to establish an intracellular niche and subvert host cell pathways to their advantage depends on the delivery of bacterial effector proteins through a type IV secretion system. Brucella Toll/Interleukin-1 Receptor (TIR)-domain-containing proteins BtpA (also known as TcpB) and BtpB are among such effectors. Although divergent in primary sequence, they interfere with Toll-like receptor (TLR) signaling to inhibit the innate immune responses. However, the molecular mechanisms implicated still remain unclear. To gain insight into the functions of BtpA and BtpB, we expressed them in the budding yeast Saccharomyces cerevisiae as a eukaryotic cell model. We found that both effectors were cytotoxic and that their respective TIR domains were necessary and sufficient for yeast growth inhibition. Growth arrest was concomitant with actin depolymerization, endocytic block and a general decrease in kinase activity in the cell, suggesting a failure in energetic metabolism. Indeed, levels of ATP and NAD+ were low in yeast cells expressing BtpA and BtpB TIR domains, consistent with the recently described enzymatic activity of some TIR domains as NAD+ hydrolases. In human epithelial cells, both BtpA and BtpB expression reduced intracellular total NAD levels. In infected cells, both BtpA and BtpB contributed to reduction of total NAD, indicating that their NAD+ hydrolase functions are active intracellularly during infection. Overall, combining the yeast model together with mammalian cells and infection studies our results show that BtpA and BtpB modulate energy metabolism in host cells through NAD+ hydrolysis, assigning a novel role for these TIR domain-containing effectors in Brucella pathogenesis. Brucella is a genus of zoonotic bacteria that cause severe disease in a variety of mammals, ranging from farm animals (as bovines, swine and ovine) to marine mammals. Transmission to humans, often by ingestion of non-treated dairy products, leads to serious systemic infection. Brucella abortus invades host cells and replicates intracellularly. Such behavior relies on the injection of bacterial proteins into the host cytoplasm via specialized secretion systems. Our work focuses on the study of two of these factors, BtpA and BtpB, previously described to contain Toll/Interleukin-1 Receptor (TIR)-domains that modulate innate immunity. We use here two biological models: the yeast Saccharomyces cerevisiae and human cell lines. We found that the TIR domains of both Brucella proteins were necessary and sufficient to collapse energy metabolism in yeast by depleting ATP and NAD+. This result was translatable to higher cells and consistent with the recently described NADase activity of some TIR domains both in mammalian and bacterial proteins. Importantly, we demonstrate that Brucella down-regulates total NAD levels in host cells by using both BtpA and BtpB effectors. Our results show that NAD+ is targeted by Brucella during infection, which may constitute a novel mechanism for its pathogenicity.
Collapse
|
13
|
A Yersinia ruckeri TIR Domain-Containing Protein (STIR-2) Mediates Immune Evasion by Targeting the MyD88 Adaptor. Int J Mol Sci 2019; 20:ijms20184409. [PMID: 31500298 PMCID: PMC6769684 DOI: 10.3390/ijms20184409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/07/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023] Open
Abstract
TIR domain-containing proteins are essential for bacterial pathogens to subvert host defenses. This study describes a fish pathogen, Yersinia ruckeri SC09 strain, with a novel TIR domain-containing protein (STIR-2) that affects Toll-like receptor (TLR) function. STIR-2 was identified in Y. ruckeri by bioinformatics analysis. The toxic effects of this gene on fish were determined by in vivo challenge experiments in knockout mutants and complement mutants of the stir-2 gene. In vitro, STIR-2 downregulated the expression and secretion of IL-6, IL-1β, and TNF-α. Furthermore, the results of NF-κB-dependent luciferase reporter system, co-immunoprecipitation, GST pull-down assays, and yeast two-hybrid assay indicated that STIR-2 inhibited the TLR signaling pathway by interacting with myeloid differentiation factor 88 (MyD88). In addition, STIR-2 promoted the intracellular survival of pathogenic Yersinia ruckeri SC09 strain by binding to the TIR adaptor protein MyD88 and inhibiting the pre-inflammatory signal of immune cells. These results showed that STIR-2 increased virulence in Y. ruckeri and suppressed the innate immune response by inhibiting TLR and MyD88-mediated signaling, serving as a novel strategy for innate immune evasion.
Collapse
|
14
|
Enterococcus faecium TIR-Domain Genes Are Part of a Gene Cluster Which Promotes Bacterial Survival in Blood. Int J Microbiol 2019; 2018:1435820. [PMID: 30631364 PMCID: PMC6304867 DOI: 10.1155/2018/1435820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/14/2018] [Indexed: 11/29/2022] Open
Abstract
Enterococcus faecium has undergone a transition to a multidrug-resistant nosocomial pathogen. The population structure of E. faecium is characterized by a sharp distinction of clades, where the hospital-adapted lineage is primarily responsible for bacteremia. So far, factors that were identified in hospital-adapted strains and that promoted pathogenesis of nosocomial E. faecium mainly play a role in adherence and biofilm production, while less is known about factors contributing to survival in blood. This study identified a gene cluster, which includes genes encoding bacterial Toll/interleukin-1 receptor- (TIR-) domain-containing proteins (TirEs). The cluster was found to be unique to nosocomial strains and to be located on a putative mobile genetic element of phage origin. The three genes within the cluster appeared to be expressed as an operon. Expression was detected in bacterial culture media and in the presence of human blood. TirEs are released into the bacterial supernatant, and TirE2 is associated with membrane vesicles. Furthermore, the tirE-gene cluster promotes bacterial proliferation in human blood, indicating that TirE may contribute to the pathogenesis of bacteremia.
Collapse
|
15
|
Nanson JD, Kobe B, Ve T. Death, TIR, and RHIM: Self-assembling domains involved in innate immunity and cell-death signaling. J Leukoc Biol 2018; 105:363-375. [PMID: 30517972 DOI: 10.1002/jlb.mr0318-123r] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 12/14/2022] Open
Abstract
The innate immune system consists of pattern recognition receptors (PRRs) that detect pathogen- and endogenous danger-associated molecular patterns (PAMPs and DAMPs), initiating signaling pathways that lead to the induction of cytokine expression, processing of pro-inflammatory cytokines, and induction of cell-death responses. An emerging concept in these pathways and associated processes is signaling by cooperative assembly formation (SCAF), which involves formation of higher order oligomeric complexes, and enables rapid and strongly amplified signaling responses to minute amounts of stimulus. Many of these signalosomes assemble through homotypic interactions of members of the death-fold (DF) superfamily, Toll/IL-1 receptor (TIR) domains, or the RIP homotypic interaction motifs (RHIM). We review the current understanding of the structure and function of these domains and their molecular interactions with a particular focus on higher order assemblies.
Collapse
Affiliation(s)
- Jeffrey D Nanson
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Thomas Ve
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, 4072, Australia.,Institute for Glycomics, Griffith University, Southport, Queensland, 4222, Australia
| |
Collapse
|
16
|
Boggiatto PM, Fitzsimmons D, Bayles DO, Alt D, Vrentas CE, Olsen SC. Coincidence cloning recovery of Brucella melitensis RNA from goat tissues: advancing the in vivo analysis of pathogen gene expression in brucellosis. BMC Mol Biol 2018; 19:10. [PMID: 30068312 PMCID: PMC6071331 DOI: 10.1186/s12867-018-0111-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 07/24/2018] [Indexed: 11/10/2022] Open
Abstract
Background Brucella melitensis bacteria cause persistent, intracellular infections in small ruminants as well as in humans, leading to significant morbidity and economic loss worldwide. The majority of experiments on the transcriptional responses of Brucella to conditions inside the host have been performed following invasion of cultured mammalian cells, and do not address gene expression patterns during long-term infection. Results Here, we examine the application of the previously developed coincidence cloning methodology to recover and characterize B. melitensis RNA from the supramammary lymph node of experimentally-infected goats. Using coincidence cloning, we successfully recovered Brucella RNA from supramammary lymph nodes of B. melitensis-infected goats at both short-term (4 weeks) and long-term (38 weeks) infection time points. Amplified nucleic acid levels were sufficient for analysis of Brucella gene expression patterns by RNA-sequencing, providing evidence of metabolic activity in both the short-term and the long-term samples. We developed a workflow for the use of sequence polymorphism analysis to confirm recovery of the inoculated strain in the recovered reads, and utilized clustering analysis to demonstrate a distinct transcriptional profile present in samples recovered in long-term infection. In this first look at B. melitensis gene expression patterns in vivo, the subset of Brucella genes that was highly upregulated in long-term as compared to short-term infection included genes linked to roles in murine infection, such as genes involved in proline utilization and signal transduction. Finally, we demonstrated the challenges of qPCR validation of samples with very low ratios of pathogen:host RNA, as is the case during in vivo brucellosis, and alternatively characterized intermediate products of the coincidence cloning reaction. Conclusions Overall, this study provides the first example of recovery plus characterization of B. melitensis RNA from in vivo lymph node infection, and demonstrates that the coincidence cloning technique is a useful tool for characterizing in vivo transcriptional changes in Brucella species. Genes upregulated in long-term infection in this data set, including many genes not previously demonstrated to be virulence factors in mice or macrophage experiments, are candidates of future interest for potential roles in Brucella persistence in natural host systems. Electronic supplementary material The online version of this article (10.1186/s12867-018-0111-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paola M Boggiatto
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA, 50010, USA
| | - Daniel Fitzsimmons
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA, 50010, USA
| | - Darrell O Bayles
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA, 50010, USA
| | - David Alt
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA, 50010, USA
| | - Catherine E Vrentas
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA, 50010, USA.
| | - Steven C Olsen
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA, 50010, USA
| |
Collapse
|
17
|
Nanson JD, Rahaman MH, Ve T, Kobe B. Regulation of signaling by cooperative assembly formation in mammalian innate immunity signalosomes by molecular mimics. Semin Cell Dev Biol 2018; 99:96-114. [PMID: 29738879 DOI: 10.1016/j.semcdb.2018.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/18/2018] [Accepted: 05/04/2018] [Indexed: 12/16/2022]
Abstract
Innate immunity pathways constitute the first line of defense against infections and cellular damage. An emerging concept in these pathways is that signaling involves the formation of finite (e.g. rings in NLRs) or open-ended higher-order assemblies (e.g. filamentous assemblies by members of the death-fold family and TIR domains). This signaling by cooperative assembly formation (SCAF) mechanism allows rapid and strongly amplified responses to minute amounts of stimulus. While the characterization of the molecular mechanisms of SCAF has seen rapid progress, little is known about its regulation. One emerging theme involves proteins produced both in host cells and by pathogens that appear to mimic the signaling components. Recently characterized examples involve the capping of the filamentous assemblies formed by caspase-1 CARDs by the CARD-only protein INCA, and those formed by caspase-8 by the DED-containing protein MC159. By contrast, the CARD-only protein ICEBERG and the DED-containing protein cFLIP incorporate into signaling filaments and presumably interfere with proximity based activation of caspases. We review selected examples of SCAF in innate immunity pathways and focus on the current knowledge on signaling component mimics produced by mammalian and pathogen cells and what is known about their mechanisms of action.
Collapse
Affiliation(s)
- Jeffrey D Nanson
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Md Habibur Rahaman
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Thomas Ve
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia; Institute for Glycomics, Griffith University, Southport, QLD, 4222, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
18
|
Abstract
Hundreds of different species colonize multicellular organisms making them "metaorganisms". A growing body of data supports the role of microbiota in health and in disease. Grasping the principles of host-microbiota interactions (HMIs) at the molecular level is important since it may provide insights into the mechanisms of infections. The crosstalk between the host and the microbiota may help resolve puzzling questions such as how a microorganism can contribute to both health and disease. Integrated superorganism networks that consider host and microbiota as a whole-may uncover their code, clarifying perhaps the most fundamental question: how they modulate immune surveillance. Within this framework, structural HMI networks can uniquely identify potential microbial effectors that target distinct host nodes or interfere with endogenous host interactions, as well as how mutations on either host or microbial proteins affect the interaction. Furthermore, structural HMIs can help identify master host cell regulator nodes and modules whose tweaking by the microbes promote aberrant activity. Collectively, these data can delineate pathogenic mechanisms and thereby help maximize beneficial therapeutics. To date, challenges in experimental techniques limit large-scale characterization of HMIs. Here we highlight an area in its infancy which we believe will increasingly engage the computational community: predicting interactions across kingdoms, and mapping these on the host cellular networks to figure out how commensal and pathogenic microbiota modulate the host signaling and broadly cross-species consequences.
Collapse
Affiliation(s)
- Emine Guven-Maiorov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
19
|
Structural basis of TIR-domain-assembly formation in MAL- and MyD88-dependent TLR4 signaling. Nat Struct Mol Biol 2017; 24:743-751. [PMID: 28759049 DOI: 10.1038/nsmb.3444] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
Abstract
Toll-like receptor (TLR) signaling is a key innate immunity response to pathogens. Recruitment of signaling adapters such as MAL (TIRAP) and MyD88 to the TLRs requires Toll/interleukin-1 receptor (TIR)-domain interactions, which remain structurally elusive. Here we show that MAL TIR domains spontaneously and reversibly form filaments in vitro. They also form cofilaments with TLR4 TIR domains and induce formation of MyD88 assemblies. A 7-Å-resolution cryo-EM structure reveals a stable MAL protofilament consisting of two parallel strands of TIR-domain subunits in a BB-loop-mediated head-to-tail arrangement. Interface residues that are important for the interaction are conserved among different TIR domains. Although large filaments of TLR4, MAL or MyD88 are unlikely to form during cellular signaling, structure-guided mutagenesis, combined with in vivo interaction assays, demonstrated that the MAL interactions defined within the filament represent a template for a conserved mode of TIR-domain interaction involved in both TLR and interleukin-1 receptor signaling.
Collapse
|
20
|
Kaplan-Türköz B. A putative Toll/interleukin-1 receptor domain protein fromHelicobacter pyloriis dimeric in solution and interacts with human Toll-like receptor adaptor myeloid differentiation primary response 88. Microbiol Immunol 2017; 61:85-91. [DOI: 10.1111/1348-0421.12469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/03/2017] [Accepted: 02/10/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Burcu Kaplan-Türköz
- Department of Food Engineering; Faculty of Engineering; Ege University; 35100, Bornova İzmir Turkey
| |
Collapse
|
21
|
Hashemifar I, Yadegar A, Jazi FM, Amirmozafari N. Molecular prevalence of putative virulence-associated genes in Brucella melitensis and Brucella abortus isolates from human and livestock specimens in Iran. Microb Pathog 2017; 105:334-339. [PMID: 28284850 DOI: 10.1016/j.micpath.2017.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 01/08/2023]
Abstract
Molecular prevalence of nine putative virulence factors in two more prevalent Brucella species in Iranian patients and livestock was investigated. During five years (2010-2015), 120 human and animal specimens were collected from three geographical areas of Iran. All samples were cultured in blood culture media and subcultured into Brucella agar medium. Nine primer pairs were designed for detection of VirB2, VirB5, VceC, BtpA, BtpB, PrpA, BetB, BPE275 and BSPB virulence factors using PCR and sequence analysis. Totally, 68 Brucella isolates including 60 B. melitensis and 8 B. abortus were isolated from the human and animal specimens examined. Approximately, all B. melitensis and B. abortus strains were positive (100%) regarding btpA, btpB, virB5, vceC, bpe275, bspB, and virB2 genes except for prpA and betB that were detected in 86% and 97% of the strains, respectively. Significant relationships were found between the presence of prpA and human B. melitensis isolates (P = 0.04), and also between the presence of betB and human isolates of B. abortus (P = 0.03). In conclusion, our results revealed that Iranian Brucella strains, regardless of human or animal sources, are extremely virulent due to high prevalence of virulence attributes in almost all strains studied.
Collapse
Affiliation(s)
- Iman Hashemifar
- Microbiology Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Faramarz Masjedian Jazi
- Microbiology Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nour Amirmozafari
- Microbiology Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Nimma S, Ve T, Williams SJ, Kobe B. Towards the structure of the TIR-domain signalosome. Curr Opin Struct Biol 2017; 43:122-130. [PMID: 28092811 DOI: 10.1016/j.sbi.2016.12.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/23/2016] [Accepted: 12/24/2016] [Indexed: 11/17/2022]
Abstract
TIR (Toll/interleukin-1 receptor/resistance protein) domains feature in animal, plant and bacterial proteins involved in innate immunity pathways and associated processes. They function through protein:protein interactions, in particular self-association and homotypic association with other TIR domains. Structures of TIR domains from all phyla have been determined, but common association modes have only emerged for plant and bacterial TIR domains, and not for mammalian TIR domains. Numerous attempts involving hybrid approaches, which have combined structural, computational, mutagenesis and biophysical data, have failed to converge onto common models of how these domains associate and function. We propose that the available data can be reconciled in the context of higher-order assembly formation, and that TIR domains function through signaling by cooperative assembly formation (SCAF).
Collapse
Affiliation(s)
- Surekha Nimma
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Ve
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia; Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Simon J Williams
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia; Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
23
|
Guven-Maiorov E, Tsai CJ, Nussinov R. Pathogen mimicry of host protein-protein interfaces modulates immunity. Semin Cell Dev Biol 2016; 58:136-45. [DOI: 10.1016/j.semcdb.2016.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 12/21/2022]
|
24
|
Brucella TIR-like protein TcpB/Btp1 specifically targets the host adaptor protein MAL/TIRAP to promote infection. Biochem Biophys Res Commun 2016; 477:509-14. [PMID: 27311859 DOI: 10.1016/j.bbrc.2016.06.064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 06/13/2016] [Indexed: 02/06/2023]
Abstract
Brucella spp. are known to avoid host immune recognition and weaken the immune response to infection. Brucella like accomplish this by employing two clever strategies, called the stealth strategy and hijacking strategy. The TIR domain-containing protein (TcpB/Btp1) of Brucella melitensis is thought to be involved in inhibiting host NF-κB activation by binding to adaptors downstream of Toll-like receptors. However, of the five TIR domain-containing adaptors conserved in mammals, whether MyD88 or MAL, even other three adaptors, are specifically targeted by TcpB has not been identified. Here, we confirmed the effect of TcpB on B.melitensis virulence in mice and found that TcpB selectively targets MAL. By using siRNA against MAL, we found that TcpB from B.melitensis is involved in intracellular survival and that MAL affects intracellular replication of B.melitensis. Our results confirm that TcpB specifically targets MAL/TIRAP to disrupt downstream signaling pathways and promote intra-host survival of Brucella spp.
Collapse
|
25
|
Ke Y, Li W, Wang Y, Yang M, Guo J, Zhan S, Du X, Wang Z, Yang M, Li J, Li W, Chen Z. Inhibition of TLR4 signaling by Brucella TIR-containing protein TcpB-derived decoy peptides. Int J Med Microbiol 2016; 306:391-400. [PMID: 27289452 DOI: 10.1016/j.ijmm.2016.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 05/04/2016] [Accepted: 05/08/2016] [Indexed: 02/06/2023] Open
Abstract
Brucella spp. avoid host immune recognition and thus, weaken the immune response to infection. The Toll/interleukin-1 receptor (TIR) domain-containing protein (TcpB/Btp1) of Brucella spp. is thought to be involved in blocking host innate immune responses by binding to adaptors downstream of Toll-like receptors. In this study, based on the observation that TcpB binds to the host target proteins, MAL, through the TIR domain, we examined decoy peptides from TcpB TIR domains and found that TB-8 and TB-9 substantially inhibit lipopolysaccharide (LPS)-induced signaling in vitro and in vivo. Both these peptides share a common loop, the DD loop, indicating a novel structural region mediating TIR interactions. The inhibition of LPS signaling by TB-8 and TB-9 shows no preference to MyD88-dependent cytokines, such as TNF-α and IL-1β or TRIF-dependent cytokines including IFN-β and IL-6. Furthermore, these two peptides rescue the virulence of Brucella ΔtcpB mutants at the cellular level, indicating key roles of the DD loop in Brucella pathogenesis. In conclusion, identification of inhibitors from the bacterial TIR domains is helpful not only for illustrating interacting mechanisms between TIR domains and bacterial pathogenesis, but also for developing novel signaling inhibitors and therapeutics for human inflammatory diseases.
Collapse
Affiliation(s)
- Yuehua Ke
- Institute of Disease Control and Prevention, AMMS, Beijing 100071, People's Republic of China
| | - Wenna Li
- Institute of Disease Control and Prevention, AMMS, Beijing 100071, People's Republic of China; School of Public Health, Jilin University, Changchun 130021, People's Republic of China
| | - Yufei Wang
- General Hospital of People's Armed Police Forces, Beijing 100039, People's Republic of China
| | - Mingjuan Yang
- Institute of Disease Control and Prevention, AMMS, Beijing 100071, People's Republic of China
| | - Jinpeng Guo
- Institute of Disease Control and Prevention, AMMS, Beijing 100071, People's Republic of China
| | - Shaoxia Zhan
- Institute of Disease Control and Prevention, AMMS, Beijing 100071, People's Republic of China
| | - Xinying Du
- Institute of Disease Control and Prevention, AMMS, Beijing 100071, People's Republic of China
| | - Zhoujia Wang
- Institute of Disease Control and Prevention, AMMS, Beijing 100071, People's Republic of China
| | - Min Yang
- Construction Engineering Research Institute, Xi'an 71000, Shanxi Province, People's Republic of China
| | - Juan Li
- School of Public Health, Jilin University, Changchun 130021, People's Republic of China.
| | - Wenfeng Li
- Department of Orthopedics, The First Affiliated Hospital of General Hospital of People's Liberation Army, Beijing 100048, People's Republic of China.
| | - Zeliang Chen
- Institute of Disease Control and Prevention, AMMS, Beijing 100071, People's Republic of China; College of Medicine, Shihezi University, Shihezi, People's Republic of China; Research Center of Molecular Biology, Inner Mongolia Medical University, Hohhot, People's Republic of China.
| |
Collapse
|
26
|
A Comparative Analysis of the Mechanism of Toll-Like Receptor-Disruption by TIR-Containing Protein C from Uropathogenic Escherichia coli. Pathogens 2016; 5:pathogens5010025. [PMID: 26938564 PMCID: PMC4810146 DOI: 10.3390/pathogens5010025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 11/17/2022] Open
Abstract
The TIR-containing protein C (TcpC) of uropathogenic Escherichia coli strains is a powerful virulence factor by impairing the signaling cascade of Toll-like receptors (TLRs). Several other bacterial pathogens like Salmonella, Yersinia, Staphylococcus aureus but also non-pathogens express similar proteins. We discuss here the pathogenic potential of TcpC and its interaction with TLRs and TLR-adapter proteins on the molecular level and compare its activity with the activity of other bacterial TIR-containing proteins. Finally, we analyze and compare the structure of bacterial TIR-domains with the TIR-domains of TLRs and TLR-adapters.
Collapse
|
27
|
Abstract
The Toll/interleukin-1 receptor/resistance protein (TIR) domain is a protein-protein interaction domain consisting of 125-200 residues, widely distributed in animals, plants and bacteria but absent from fungi, archea and viruses. In plants and animals, these domains are found in proteins with functions in innate immune pathways, while in bacteria, some TIR domain-containing proteins interfere with the innate immune pathways in the host. TIR domains function as protein scaffolds, mostly involving self-association and homotypic interactions with other TIR domains. In the last 15 years, the three-dimensional structures of TIR domains from several mammalian, plant and bacterial proteins have been reported. These structures, jointly with functional data including the identification of interacting proteins, have started to provide insight into the molecular basis of the assembly of animal and plant immune signaling complexes, and for host immunosuppression by bacterial pathogens. This review focuses on the current knowledge of the structures of the TIR domains and how the structure relates to function.
Collapse
|
28
|
de Figueiredo P, Ficht TA, Rice-Ficht A, Rossetti CA, Adams LG. Pathogenesis and immunobiology of brucellosis: review of Brucella-host interactions. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1505-17. [PMID: 25892682 DOI: 10.1016/j.ajpath.2015.03.003] [Citation(s) in RCA: 289] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 02/10/2015] [Accepted: 03/02/2015] [Indexed: 01/18/2023]
Abstract
This review of Brucella-host interactions and immunobiology discusses recent discoveries as the basis for pathogenesis-informed rationales to prevent or treat brucellosis. Brucella spp., as animal pathogens, cause human brucellosis, a zoonosis that results in worldwide economic losses, human morbidity, and poverty. Although Brucella spp. infect humans as an incidental host, 500,000 new human infections occur annually, and no patient-friendly treatments or approved human vaccines are reported. Brucellae display strong tissue tropism for lymphoreticular and reproductive systems with an intracellular lifestyle that limits exposure to innate and adaptive immune responses, sequesters the organism from the effects of antibiotics, and drives clinical disease manifestations and pathology. Stealthy brucellae exploit strategies to establish infection, including i) evasion of intracellular destruction by restricting fusion of type IV secretion system-dependent Brucella-containing vacuoles with lysosomal compartments, ii) inhibition of apoptosis of infected mononuclear cells, and iii) prevention of dendritic cell maturation, antigen presentation, and activation of naive T cells, pathogenesis lessons that may be informative for other intracellular pathogens. Data sets of next-generation sequences of Brucella and host time-series global expression fused with proteomics and metabolomics data from in vitro and in vivo experiments now inform interactive cellular pathways and gene regulatory networks enabling full-scale systems biology analysis. The newly identified effector proteins of Brucella may represent targets for improved, safer brucellosis vaccines and therapeutics.
Collapse
Affiliation(s)
- Paul de Figueiredo
- Department of Veterinary Pathobiology, Texas A&M University and Texas AgriLife Research, College Station, Texas; Norman Borlaug Center, Texas A&M University, College Station, Texas; Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas
| | - Thomas A Ficht
- Department of Veterinary Pathobiology, Texas A&M University and Texas AgriLife Research, College Station, Texas
| | - Allison Rice-Ficht
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Bryan, Texas
| | - Carlos A Rossetti
- Institute of Pathobiology, CICVyA-CNIA, National Institute of Animal Agriculture Technology (INTA), Buenos Aires, Argentina
| | - L Garry Adams
- Department of Veterinary Pathobiology, Texas A&M University and Texas AgriLife Research, College Station, Texas.
| |
Collapse
|
29
|
Immune responses of bison and efficacy after booster vaccination with Brucella abortus strain RB51. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:440-7. [PMID: 25673305 DOI: 10.1128/cvi.00746-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Thirty-one bison heifers were randomly assigned to receive saline or a single vaccination with 10(10) CFU of Brucella abortus strain RB51. Some vaccinated bison were randomly selected for booster vaccination with RB51 at 11 months after the initial vaccination. Mean antibody responses to RB51 were greater (P < 0.05) in vaccinated bison after initial and booster vaccination than in nonvaccinated bison. The proliferative responses by peripheral blood mononuclear cells (PBMC) from the vaccinated bison were greater (P < 0.05) than those in the nonvaccinated bison at 16 and 24 weeks after the initial vaccination but not after the booster vaccination. The relative gene expression of gamma interferon (IFN-γ) was increased (P < 0.05) in the RB51-vaccinated bison at 8, 16, and 24 weeks after the initial vaccination and at 8 weeks after the booster vaccination. The vaccinated bison had greater (P < 0.05) in vitro production of IFN-γ at all sampling times, greater interleukin-1β (IL-1β) production in various samplings after the initial and booster vaccinations, and greater IL-6 production at one sampling time after the booster vaccination. Between 170 and 180 days of gestation, the bison were intraconjunctivally challenged with approximately 1 × 10(7) CFU of B. abortus strain 2308. The incidences of abortion and infection were greater (P < 0.05) in the nonvaccinated bison after experimental challenge than in the bison receiving either vaccination treatment. Booster-vaccinated, but not single-vaccinated bison, had a reduced (P < 0.05) incidence of infection in fetal tissues and maternal tissues compared to that in the controls. Compared to the nonvaccinated bison, both vaccination treatments lowered the colonization (measured as the CFU/g of tissue) of Brucella organisms in all tissues, except in retropharyngeal and supramammary lymph nodes. Our study suggests that RB51 booster vaccination is an effective vaccination strategy for enhancing herd immunity against brucellosis in bison.
Collapse
|
30
|
Dyrka W, Lamacchia M, Durrens P, Kobe B, Daskalov A, Paoletti M, Sherman DJ, Saupe SJ. Diversity and variability of NOD-like receptors in fungi. Genome Biol Evol 2014; 6:3137-58. [PMID: 25398782 PMCID: PMC4986451 DOI: 10.1093/gbe/evu251] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are intracellular receptors that control innate immunity and other biotic interactions in animals and plants. NLRs have been characterized in plant and animal lineages, but in fungi, this gene family has not been systematically described. There is however previous indications of the involvement of NLR-like genes in nonself recognition and programmed cell death in fungi. We have analyzed 198 fungal genomes for the presence of NLRs and have annotated a total of 5,616 NLR candidates. We describe their phylogenetic distribution, domain organization, and evolution. Fungal NLRs are characterized by a great diversity of domain organizations, suggesting frequently occurring combinatorial assortments of different effector, NOD and repeat domains. The repeat domains are of the WD, ANK, and TPR type; no LRR motifs were found. As previously documented for WD-repeat domains of fungal NLRs, TPR, and ANK repeats evolve under positive selection and show highly conserved repeats and repeat length polymorphism, suggesting the possibility of concerted evolution of these repeats. We identify novel effector domains not previously found associated with NLRs, whereas others are related to effector domains of plant or animals NLRs. In particular, we show that the HET domain found in fungal NLRs may be related to Toll/interleukin-1 receptor domains found in animal and plant immune receptors. This description of fungal NLR repertoires reveals both similarities and differences with plant and animals NLR collections, highlights the importance of domain reassortment and repeat evolution and provides a novel entry point to explore the evolution of NLRs in eukaryotes.
Collapse
Affiliation(s)
- Witold Dyrka
- INRIA-Université Bordeaux-CNRS, MAGNOME, Talence, France
| | - Marina Lamacchia
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095, CNRS-Université de Bordeaux, France
| | - Pascal Durrens
- INRIA-Université Bordeaux-CNRS, MAGNOME, Talence, France
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Centre for Infectious Disease Research, University of Queensland, Brisbane, Queensland, Australia
| | - Asen Daskalov
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095, CNRS-Université de Bordeaux, France
| | - Matthieu Paoletti
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095, CNRS-Université de Bordeaux, France
| | | | - Sven J Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095, CNRS-Université de Bordeaux, France
| |
Collapse
|
31
|
Felix C, Kaplan Türköz B, Ranaldi S, Koelblen T, Terradot L, O'Callaghan D, Vergunst AC. The Brucella TIR domain containing proteins BtpA and BtpB have a structural WxxxE motif important for protection against microtubule depolymerisation. Cell Commun Signal 2014; 12:53. [PMID: 25304327 PMCID: PMC4203976 DOI: 10.1186/s12964-014-0053-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 08/27/2014] [Indexed: 01/12/2023] Open
Abstract
Background The TIR domain-containing proteins BtpA/Btp1/TcpB and BtpB are translocated into host cells by the facultative intracellular bacterial pathogen Brucella. Here, they interfere with Toll like receptor signalling to temper the host inflammatory response. BtpA has also been found to modulate microtubule dynamics. In both proteins we identified a WxxxE motif, previously shown to be an essential structural component in a family of bacterial type III secretion system effectors that modulate host actin dynamics by functioning as guanine nucleotide exchange factors of host GTPases. We analysed a role for the WxxxE motif in association of BtpA and BtpB with the cytoskeleton. Results Unlike BtpA, ectopically expressed BtpB did not show a tubular localisation, but was found ubiquitously in the cytoplasm and the nucleus, and often appeared in discrete punctae in HeLa cells. BtpB was able to protect microtubules from drug-induced destabilisation similar to BtpA. The WxxxE motif was important for the ability of BtpA and BtpB to protect microtubules against destabilising drugs. Surprisingly, ectopic expression of BtpA, although not BtpB, in HeLa cells induced the formation of filopodia. This process was invariably dependent of the WxxxE motif. Our recent resolution of the crystal structure of the BtpA TIR domain reveals that the motif positions a glycine residue that has previously been shown to be essential for interaction of BtpA with microtubules. Conclusions Our results suggest a structural role for the WxxxE motif in the association of BtpA and BtpB with microtubules, as with the WxxxE GEF family proteins where the motif positions an adjacent catalytic loop important for interaction with specific Rho GTPases. In addition, the ability of ectopically expressed BtpA to induce filopodia in a WxxxE-dependent manner suggests a novel property for BtpA. A conserved WxxxE motif is found in most bacterial and several eukaryotic TIR domain proteins. Despite the similarity between ectopically expressed BtpA and WxxxE GEFs to modulate host actin dynamics, our results suggest that BtpA is not part of this WxxxE GEF family. The WxxxE motif may therefore be a more common structural motif than thus far described. BtpA may provide clues to cross-talk between the TLR and GTPase signalling pathways. Electronic supplementary material The online version of this article (doi:10.1186/s12964-014-0053-y) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Snyder GA, Deredge D, Waldhuber A, Fresquez T, Wilkins DZ, Smith PT, Durr S, Cirl C, Jiang J, Jennings W, Luchetti T, Snyder N, Sundberg EJ, Wintrode P, Miethke T, Xiao TS. Crystal structures of the Toll/Interleukin-1 receptor (TIR) domains from the Brucella protein TcpB and host adaptor TIRAP reveal mechanisms of molecular mimicry. J Biol Chem 2013; 289:669-79. [PMID: 24275656 DOI: 10.1074/jbc.m113.523407] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Toll/IL-1 receptor (TIR) domains are crucial innate immune signaling modules. Microbial TIR domain-containing proteins inhibit Toll-like receptor (TLR) signaling through molecular mimicry. The TIR domain-containing protein TcpB from Brucella inhibits TLR signaling through interaction with host adaptor proteins TIRAP/Mal and MyD88. To characterize the microbial mimicry of host proteins, we have determined the X-ray crystal structures of the TIR domains from the Brucella protein TcpB and the host adaptor protein TIRAP. We have further characterized homotypic interactions of TcpB using hydrogen/deuterium exchange mass spectrometry and heterotypic TcpB and TIRAP interaction by co-immunoprecipitation and NF-κB reporter assays. The crystal structure of the TcpB TIR domain reveals the microtubule-binding site encompassing the BB loop as well as a symmetrical dimer mediated by the DD and EE loops. This dimerization interface is validated by peptide mapping through hydrogen/deuterium exchange mass spectrometry. The human TIRAP TIR domain crystal structure reveals a unique N-terminal TIR domain fold containing a disulfide bond formed by Cys(89) and Cys(134). A comparison between the TcpB and TIRAP crystal structures reveals substantial conformational differences in the region that encompasses the BB loop. These findings underscore the similarities and differences in the molecular features found in the microbial and host TIR domains, which suggests mechanisms of bacterial mimicry of host signaling adaptor proteins, such as TIRAP.
Collapse
Affiliation(s)
- Greg A Snyder
- From the Laboratory of Immunology, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Alaidarous M, Ve T, Casey LW, Valkov E, Ericsson DJ, Ullah MO, Schembri MA, Mansell A, Sweet MJ, Kobe B. Mechanism of bacterial interference with TLR4 signaling by Brucella Toll/interleukin-1 receptor domain-containing protein TcpB. J Biol Chem 2013; 289:654-68. [PMID: 24265315 DOI: 10.1074/jbc.m113.523274] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Upon activation of Toll-like receptors (TLRs), cytoplasmic Toll/interleukin-1 receptor (TIR) domains of the receptors undergo homo- or heterodimerization. This in turn leads to the recruitment of adaptor proteins, activation of transcription factors, and the secretion of pro-inflammatory cytokines. Recent studies have described the TIR domain-containing protein from Brucella melitensis, TcpB (BtpA/Btp1), to be involved in virulence and suppression of host innate immune responses. TcpB interferes with TLR4 and TLR2 signaling pathways by a mechanism that remains controversial. In this study, we show using co-immunoprecipitation analyses that TcpB interacts with MAL, MyD88, and TLR4 but interferes only with the MAL-TLR4 interaction. We present the crystal structure of the TcpB TIR domain, which reveals significant structural differences in the loop regions compared with other TIR domain structures. We demonstrate that TcpB forms a dimer in solution, and the crystal structure reveals the dimerization interface, which we validate by mutagenesis and biophysical studies. Our study advances the understanding of the molecular mechanisms of host immunosuppression by bacterial pathogens.
Collapse
|