1
|
Ko YJ, Lee ME, Cho BH, Kim M, Hyeon JE, Han JH, Han SO. Bioproduction of porphyrins, phycobilins, and their proteins using microbial cell factories: engineering, metabolic regulations, challenges, and perspectives. Crit Rev Biotechnol 2024; 44:373-387. [PMID: 36775664 DOI: 10.1080/07388551.2023.2168512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/21/2022] [Accepted: 01/03/2023] [Indexed: 02/14/2023]
Abstract
Porphyrins, phycobilins, and their proteins have abundant π-electrons and strongly absorb visible light, some of which bind a metal ion in the center. Because of the structural and optical properties, they not only play critical roles as an essential component in natural systems but also have attracted much attention as a high value specialty chemical in various fields, including renewable energy, cosmetics, medicines, and foods. However, their commercial application seems to be still limited because the market price of porphyrins and phycobilins is generally expensive to apply them easily. Furthermore, their petroleum-based chemical synthesis is energy-intensive and emits a pollutant. Recently, to replace petroleum-based production, many studies on the bioproduction of metalloporphyrins, including Zn-porphyrin, Co-porphyrin, and heme, porphyrin derivatives including chlorophyll, biliverdin, and phycobilins, and their proteins including hemoproteins, phycobiliproteins, and phytochromes from renewable carbon sources using microbial cell factories have been reported. This review outlines recent advances in the bioproduction of porphyrins, phycobilins, and their proteins using microbial cell factories developed by various microbial biotechnology techniques, provides well-organized information on metabolic regulations of the porphyrin metabolism, and then critically discusses challenges and future perspectives. Through these, it is expected to be able to achieve possible solutions and insights and to develop an outstanding platform to be applied to the industry in future research.
Collapse
Affiliation(s)
- Young Jin Ko
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
- Institute of Life Science and Natural Resources, Korea University, Seoul, Korea
| | - Myeong-Eun Lee
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Byeong-Hyeon Cho
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Minhye Kim
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jeong Eun Hyeon
- Department of Next Generation Applied Sciences, The Graduate School of Sungshin University, Seoul, Korea
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul, Korea
| | - Joo Hee Han
- Department of Next Generation Applied Sciences, The Graduate School of Sungshin University, Seoul, Korea
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul, Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Mei J, Han Y, Zhuang S, Yang Z, Yi Y, Ying G. Production of biliverdin by biotransformation of exogenous heme using recombinant Pichia pastoris cells. BIORESOUR BIOPROCESS 2024; 11:19. [PMID: 38647967 PMCID: PMC10992137 DOI: 10.1186/s40643-024-00736-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/22/2024] [Indexed: 04/25/2024] Open
Abstract
Biliverdin, a bile pigment hydrolyzed from heme by heme oxygenase (HO), serves multiple functions in the human body, including antioxidant, anti-inflammatory, and immune response inhibitory activities. Biliverdin has great potential as a clinical drug; however, no economic and efficient production method is available currently. Therefore, the production of biliverdin by the biotransformation of exogenous heme using recombinant HO-expressing yeast cells was studied in this research. First, the heme oxygenase-1 gene (HO1) encoding the inducible plastidic isozyme from Arabidopsis thaliana, with the plastid transport peptide sequence removed, was recombined into Pichia pastoris GS115 cells. This resulted in the construction of a recombinant P. pastoris GS115-HO1 strain that expressed active HO1 in the cytoplasm. After that, the concentration of the inducer methanol, the induction culture time, the pH of the medium, and the concentration of sorbitol supplied in the medium were optimized, resulting in a significant improvement in the yield of HO1. Subsequently, the whole cells of GS115-HO1 were employed as catalysts to convert heme chloride (hemin) into biliverdin. The results showed that the yield of biliverdin was 132 mg/L when hemin was added to the culture of GS115-HO1 and incubated for 4 h at 30 °C. The findings of this study have laid a good foundation for future applications of this method for the economical production of biliverdin.
Collapse
Affiliation(s)
- Jianfeng Mei
- College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Gongshu District, Hangzhou, 310014, Zhejiang, China
| | - Yanchao Han
- College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Gongshu District, Hangzhou, 310014, Zhejiang, China
| | - Shihang Zhuang
- College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Gongshu District, Hangzhou, 310014, Zhejiang, China
| | - Zhikai Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Gongshu District, Hangzhou, 310014, Zhejiang, China
| | - Yu Yi
- College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Gongshu District, Hangzhou, 310014, Zhejiang, China
| | - Guoqing Ying
- College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Gongshu District, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
3
|
Sakai K, Kondo Y, Fujioka H, Kamiya M, Aoki K, Goto Y. Near-infrared imaging in fission yeast using a genetically encoded phycocyanobilin biosynthesis system. J Cell Sci 2021; 134:273759. [PMID: 34806750 DOI: 10.1242/jcs.259315] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022] Open
Abstract
Near-infrared fluorescent protein (iRFP) is a bright and stable fluorescent protein with near-infrared excitation and emission maxima. Unlike the other conventional fluorescent proteins, iRFP requires biliverdin (BV) as a chromophore. Here, we report that phycocyanobilin (PCB) functions as a brighter chromophore for iRFP than BV, and that biosynthesis of PCB allows live-cell imaging with iRFP in the fission yeast Schizosaccharomyces pombe. We initially found that fission yeast cells did not produce BV and therefore did not show any iRFP fluorescence. The brightness of iRFP-PCB was higher than that of iRFP-BV both in vitro and in fission yeast. We introduced SynPCB2.1, a PCB biosynthesis system, into fission yeast, resulting in the brightest iRFP fluorescence. To make iRFP readily available in fission yeast, we developed an endogenous gene tagging system with iRFP and all-in-one integration plasmids carrying the iRFP-fused marker proteins together with SynPCB2.1. These tools not only enable the easy use of multiplexed live-cell imaging in fission yeast with a broader color palette, but also open the door to new opportunities for near-infrared fluorescence imaging in a wider range of living organisms. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Keiichiro Sakai
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Yohei Kondo
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Hiroyoshi Fujioka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mako Kamiya
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuhiro Aoki
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Yuhei Goto
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
4
|
Pérez ALA, Piva LC, Fulber JPC, de Moraes LMP, De Marco JL, Vieira HLA, Coelho CM, Reis VCB, Torres FAG. Optogenetic strategies for the control of gene expression in yeasts. Biotechnol Adv 2021; 54:107839. [PMID: 34592347 DOI: 10.1016/j.biotechadv.2021.107839] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 12/18/2022]
Abstract
Optogenetics involves the use of light to control cellular functions and has become increasingly popular in various areas of research, especially in the precise control of gene expression. While this technology is already well established in neurobiology and basic research, its use in bioprocess development is still emerging. Some optogenetic switches have been implemented in yeasts for different purposes, taking advantage of a wide repertoire of biological parts and relatively easy genetic manipulation. In this review, we cover the current strategies used for the construction of yeast strains to be used in optogenetically controlled protein or metabolite production, as well as the operational aspects to be considered for the scale-up of this type of process. Finally, we discuss the main applications of optogenetic switches in yeast systems and highlight the main advantages and challenges of bioprocess development considering future directions for this field.
Collapse
Affiliation(s)
- Ana Laura A Pérez
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Bloco K, 1° andar, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Luiza C Piva
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Bloco K, 1° andar, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Julia P C Fulber
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Bloco K, 1° andar, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Lidia M P de Moraes
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Bloco K, 1° andar, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Janice L De Marco
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Bloco K, 1° andar, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Hugo L A Vieira
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Bloco K, 1° andar, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Cintia M Coelho
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Bloco K, 1° andar, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Viviane C B Reis
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Bloco K, 1° andar, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Fernando A G Torres
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Bloco K, 1° andar, Universidade de Brasília, Brasília 70910-900, Brazil.
| |
Collapse
|
5
|
Burgie ES, Gannam ZTK, McLoughlin KE, Sherman CD, Holehouse AS, Stankey RJ, Vierstra RD. Differing biophysical properties underpin the unique signaling potentials within the plant phytochrome photoreceptor families. Proc Natl Acad Sci U S A 2021; 118:e2105649118. [PMID: 34039713 PMCID: PMC8179155 DOI: 10.1073/pnas.2105649118] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Many aspects of photoperception by plants and microorganisms are initiated by the phytochrome (Phy) family of photoreceptors that detect light through interconversion between red light- (Pr) and far-red light-absorbing (Pfr) states. Plants synthesize a small family of Phy isoforms (PhyA to PhyE) that collectively regulate photomorphogenesis and temperature perception through redundant and unique actions. While the selective roles of these isoforms have been partially attributed to their differing abundances, expression patterns, affinities for downstream partners, and turnover rates, we show here from analysis of recombinant Arabidopsis chromoproteins that the Phy isoforms also display distinct biophysical properties. Included are a hypsochromic shift in the Pr absorption for PhyC and varying rates of Pfr to Pr thermal reversion, part of which can be attributed to the core photosensory module in each. Most strikingly, PhyB combines strong temperature dependence of thermal reversion with an order-of-magnitude faster rate to likely serve as the main physiological thermosensor, whereby thermal reversion competes with photoconversion. In addition, comparisons of Pfr occupancies for PhyA and PhyB under a range of red- and white-light fluence rates imply that low-light environments are effectively sensed by PhyA, while high-light environments, such as full sun, are effectively sensed by PhyB. Parallel analyses of the Phy isoforms from potato and maize showed that the unique features within the Arabidopsis family are conserved, thus indicating that the distinct biophysical properties among plant Phy isoforms emerged early in Phy evolution, likely to enable full interrogation of their light and temperature environments.
Collapse
Affiliation(s)
- E Sethe Burgie
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
- Department of Genetics, University of Wisconsin, Madison, WI 53706
| | - Zira T K Gannam
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | | | | | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
- Center for Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63110
| | - Robert J Stankey
- Department of Genetics, University of Wisconsin, Madison, WI 53706
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130;
- Department of Genetics, University of Wisconsin, Madison, WI 53706
| |
Collapse
|
6
|
Uda Y, Miura H, Goto Y, Yamamoto K, Mii Y, Kondo Y, Takada S, Aoki K. Improvement of Phycocyanobilin Synthesis for Genetically Encoded Phytochrome-Based Optogenetics. ACS Chem Biol 2020; 15:2896-2906. [PMID: 33164485 DOI: 10.1021/acschembio.0c00477] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Optogenetics is a powerful technique using photoresponsive proteins, and the light-inducible dimerization (LID) system, an optogenetic tool, allows to manipulate intracellular signaling pathways. One of the red/far-red responsive LID systems, phytochrome B (PhyB)-phytochrome interacting factor (PIF), has a unique property of controlling both association and dissociation by light on the second time scale, but PhyB requires a linear tetrapyrrole chromophore such as phycocyanobilin (PCB), and such chromophores are present only in higher plants and cyanobacteria. Here, we report that we further improved our previously developed PCB synthesis system (SynPCB) and successfully established a stable cell line containing a genetically encoded PhyB-PIF LID system. First, four genes responsible for PCB synthesis, namely, PcyA, HO1, Fd, and Fnr, were replaced with their counterparts derived from thermophilic cyanobacteria. Second, Fnr was truncated, followed by fusion with Fd to generate a chimeric protein, tFnr-Fd. Third, these genes were concatenated with P2A peptide cDNAs for polycistronic expression, resulting in an approximately 4-fold increase in PCB synthesis compared with the previous version. Finally, we incorporated the PhyB, PIF, and SynPCB system into drug inducible lentiviral and transposon vectors, which enabled us to induce PCB synthesis and the PhyB-PIF LID system by doxycycline treatment. These tools provide a new opportunity to advance our understanding of the causal relationship between intracellular signaling and cellular functions.
Collapse
Affiliation(s)
- Youichi Uda
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Haruko Miura
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Yuhei Goto
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Kei Yamamoto
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Yusuke Mii
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Yohei Kondo
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Shinji Takada
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Kazuhiro Aoki
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
7
|
Paik I, Chen F, Ngoc Pham V, Zhu L, Kim JI, Huq E. A phyB-PIF1-SPA1 kinase regulatory complex promotes photomorphogenesis in Arabidopsis. Nat Commun 2019; 10:4216. [PMID: 31527679 PMCID: PMC6746701 DOI: 10.1038/s41467-019-12110-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 08/22/2019] [Indexed: 01/20/2023] Open
Abstract
CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) is a highly conserved E3 ubiquitin ligase from plants to animals and acts as a central repressor of photomorphogenesis in plants. SUPPRESSOR OF PHYA-105 1 family members (SPA1-SPA4) directly interact with COP1 and enhance COP1 activity. Despite the presence of a kinase domain at the N-terminus, no COP1-independent role of SPA proteins has been reported. Here we show that SPA1 acts as a serine/threonine kinase and directly phosphorylates PIF1 in vitro and in vivo. SPAs are necessary for the light-induced phosphorylation, ubiquitination and subsequent degradation of PIF1. Moreover, the red/far-red light photoreceptor phyB interacts with SPA1 through its C-terminus and enhances the recruitment of PIF1 for phosphorylation. These data provide a mechanistic view on how the COP1-SPA complexes serve as an example of a cognate kinase-E3 ligase complex that selectively triggers rapid phosphorylation and removal of its substrates, and how phyB modulates this process to promote photomorphogenesis. SPA proteins repress plant photomorphogenesis by promoting the E3 ligase activity of COP1. Here the authors show that SPAs also act as serine/threonine kinase and are required for phyB-mediated light-dependent phosphorylation and degradation of the PIF1 transcription factor.
Collapse
Affiliation(s)
- Inyup Paik
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Fulu Chen
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA.,MOA Key Laboratory of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Vinh Ngoc Pham
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Ling Zhu
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA.,Syngenta Crop Protection, LLC., Research Triangle Park, NC, 27709, USA
| | - Jeong-Il Kim
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA.,Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, 61186, Korea
| | - Enamul Huq
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
8
|
Abstract
Expression and purification of recombinant proteins are important for the structure-function study of phytochromes. However, it is difficult to purify phytochrome proteins from natural sources or using a bacterial expression system, due to the presence of multiple phytochrome species and low expression and solubility, respectively. Here we describe the expression of recombinant full-length plant phytochromes in the yeast Pichia pastoris, and the spectral analysis of chromophore-assembled phytochromes before and after the purification by streptavidin affinity chromatography.
Collapse
|
9
|
Blain-Hartung M, Rockwell NC, Moreno MV, Martin SS, Gan F, Bryant DA, Lagarias JC. Cyanobacteriochrome-based photoswitchable adenylyl cyclases (cPACs) for broad spectrum light regulation of cAMP levels in cells. J Biol Chem 2018; 293:8473-8483. [PMID: 29632072 DOI: 10.1074/jbc.ra118.002258] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/02/2018] [Indexed: 12/18/2022] Open
Abstract
Class III adenylyl cyclases generate the ubiquitous second messenger cAMP from ATP often in response to environmental or cellular cues. During evolution, soluble adenylyl cyclase catalytic domains have been repeatedly juxtaposed with signal-input domains to place cAMP synthesis under the control of a wide variety of these environmental and endogenous signals. Adenylyl cyclases with light-sensing domains have proliferated in photosynthetic species depending on light as an energy source, yet are also widespread in nonphotosynthetic species. Among such naturally occurring light sensors, several flavin-based photoactivated adenylyl cyclases (PACs) have been adopted as optogenetic tools to manipulate cellular processes with blue light. In this report, we report the discovery of a cyanobacteriochrome-based photoswitchable adenylyl cyclase (cPAC) from the cyanobacterium Microcoleus sp. PCC 7113. Unlike flavin-dependent PACs, which must thermally decay to be deactivated, cPAC exhibits a bistable photocycle whose adenylyl cyclase could be reversibly activated and inactivated by blue and green light, respectively. Through domain exchange experiments, we also document the ability to extend the wavelength-sensing specificity of cPAC into the near IR. In summary, our work has uncovered a cyanobacteriochrome-based adenylyl cyclase that holds great potential for the design of bistable photoswitchable adenylyl cyclases to fine-tune cAMP-regulated processes in cells, tissues, and whole organisms with light across the visible spectrum and into the near IR.
Collapse
Affiliation(s)
- Matthew Blain-Hartung
- From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Nathan C Rockwell
- From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Marcus V Moreno
- From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Shelley S Martin
- From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Fei Gan
- the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and
| | - Donald A Bryant
- the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and.,the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - J Clark Lagarias
- From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616,
| |
Collapse
|
10
|
Kyriakakis P, Catanho M, Hoffner N, Thavarajah W, Hu VJ, Chao SS, Hsu A, Pham V, Naghavian L, Dozier LE, Patrick GN, Coleman TP. Biosynthesis of Orthogonal Molecules Using Ferredoxin and Ferredoxin-NADP + Reductase Systems Enables Genetically Encoded PhyB Optogenetics. ACS Synth Biol 2018; 7:706-717. [PMID: 29301067 PMCID: PMC5820651 DOI: 10.1021/acssynbio.7b00413] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transplanting metabolic reactions from one species into another has many uses as a research tool with applications ranging from optogenetics to crop production. Ferredoxin (Fd), the enzyme that most often supplies electrons to these reactions, is often overlooked when transplanting enzymes from one species to another because most cells already contain endogenous Fd. However, we have shown that the production of chromophores used in Phytochrome B (PhyB) optogenetics is greatly enhanced in mammalian cells by expressing bacterial and plant Fds with ferredoxin-NADP+ reductases (FNR). We delineated the rate limiting factors and found that the main metabolic precursor, heme, was not the primary limiting factor for producing either the cyanobacterial or plant chromophores, phycocyanobilin or phytochromobilin, respectively. In fact, Fd is limiting, followed by Fd+FNR and finally heme. Using these findings, we optimized the PCB production system and combined it with a tissue penetrating red/far-red sensing PhyB optogenetic gene switch in animal cells. We further characterized this system in several mammalian cell lines using red and far-red light. Importantly, we found that the light-switchable gene system remains active for several hours upon illumination, even with a short light pulse, and requires very small amounts of light for maximal activation. Boosting chromophore production by matching metabolic pathways with specific ferredoxin systems will enable the unparalleled use of the many PhyB optogenetic tools and has broader implications for optimizing synthetic metabolic pathways.
Collapse
Affiliation(s)
- Phillip Kyriakakis
- Department
of Bioengineering, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0412, United States
| | - Marianne Catanho
- Department
of Bioengineering, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0412, United States
| | - Nicole Hoffner
- Neurosciences
Graduate Program, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0412, United States
| | - Walter Thavarajah
- Department
of Bioengineering, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0412, United States
| | - Vincent J. Hu
- Department
of Bioengineering, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0412, United States
| | - Syh-Shiuan Chao
- Frank
H. Better School of Medicine, Quinnipiac University, 370 Bassett Road, North Haven, Connecticut 06473, United States
| | - Athena Hsu
- School
of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0412, United States
| | - Vivian Pham
- Roy J. and
Lucille A. Carver College of Medicine, University of Iowa, 451 Newton Road, Iowa City, Iowa 52242, United States
| | - Ladan Naghavian
- Department
of Bioengineering, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0412, United States
| | - Lara E. Dozier
- Section
of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0347, United States
| | - Gentry N. Patrick
- Section
of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0347, United States
| | - Todd P. Coleman
- Department
of Bioengineering, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0412, United States
| |
Collapse
|
11
|
Hochrein L, Machens F, Messerschmidt K, Mueller-Roeber B. PhiReX: a programmable and red light-regulated protein expression switch for yeast. Nucleic Acids Res 2017; 45:9193-9205. [PMID: 28911120 PMCID: PMC5587811 DOI: 10.1093/nar/gkx610] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/05/2017] [Indexed: 12/11/2022] Open
Abstract
Highly regulated induction systems enabling dose-dependent and reversible fine-tuning of protein expression output are beneficial for engineering complex biosynthetic pathways. To address this, we developed PhiReX, a novel red/far-red light-regulated protein expression system for use in Saccharomyces cerevisiae. PhiReX is based on the combination of a customizable synTALE DNA-binding domain, the VP64 activation domain and the light-sensitive dimerization of the photoreceptor PhyB and its interacting partner PIF3 from Arabidopsis thaliana. Robust gene expression and high protein levels are achieved by combining genome integrated red light-sensing components with an episomal high-copy reporter construct. The gene of interest as well as the synTALE DNA-binding domain can be easily exchanged, allowing the flexible regulation of any desired gene by targeting endogenous or heterologous promoter regions. To allow low-cost induction of gene expression for industrial fermentation processes, we engineered yeast to endogenously produce the chromophore required for the effective dimerization of PhyB and PIF3. Time course experiments demonstrate high-level induction over a period of at least 48 h.
Collapse
Affiliation(s)
- Lena Hochrein
- University of Potsdam, Cell2Fab Research Unit, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Fabian Machens
- University of Potsdam, Cell2Fab Research Unit, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Katrin Messerschmidt
- University of Potsdam, Cell2Fab Research Unit, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Bernd Mueller-Roeber
- University of Potsdam, Department of Molecular Biology, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.,Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
12
|
Lee HJ, Park YJ, Ha JH, Baldwin IT, Park CM. Multiple Routes of Light Signaling during Root Photomorphogenesis. TRENDS IN PLANT SCIENCE 2017; 22:803-812. [PMID: 28705537 DOI: 10.1016/j.tplants.2017.06.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 06/08/2017] [Accepted: 06/12/2017] [Indexed: 05/06/2023]
Abstract
Plants dynamically adjust their architecture to optimize growth and performance under fluctuating light environments, a process termed photomorphogenesis. A variety of photomorphogenic responses have been studied extensively in the shoots, where diverse photoreceptors and signaling molecules have been functionally characterized. Notably, accumulating evidence demonstrates that the underground roots also undergo photomorphogenesis, raising the question of how roots perceive and respond to aboveground light. Recent findings indicate that root photomorphogenesis is mediated by multiple signaling routes, including shoot-to-root transmission of mobile signaling molecules, direct sensing of light by the roots, and light channeling through the plant body. In this review we discuss recent advances in how light signals are transmitted to the roots to trigger photomorphogenic responses.
Collapse
Affiliation(s)
- Hyo-Jun Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; These authors contributed equally to this work
| | - Young-Joon Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; These authors contributed equally to this work
| | - Jun-Ho Ha
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
13
|
Evidence that phytochrome functions as a protein kinase in plant light signalling. Nat Commun 2016; 7:11545. [PMID: 27173885 PMCID: PMC4869175 DOI: 10.1038/ncomms11545] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 04/07/2016] [Indexed: 11/15/2022] Open
Abstract
It has been suggested that plant phytochromes are autophosphorylating serine/threonine kinases. However, the biochemical properties and functional roles of putative phytochrome kinase activity in plant light signalling are largely unknown. Here, we describe the biochemical and functional characterization of Avena sativa phytochrome A (AsphyA) as a potential protein kinase. We provide evidence that phytochrome-interacting factors (PIFs) are phosphorylated by phytochromes in vitro. Domain mapping of AsphyA shows that the photosensory core region consisting of PAS-GAF-PHY domains in the N-terminal is required for the observed kinase activity. Moreover, we demonstrate that transgenic plants expressing mutant versions of AsphyA, which display reduced activity in in vitro kinase assays, show hyposensitive responses to far-red light. Further analysis reveals that far-red light-induced phosphorylation and degradation of PIF3 are significantly reduced in these transgenic plants. Collectively, these results suggest a positive relationship between phytochrome kinase activity and photoresponses in plants. Phytochromes regulate plant responses to environmental light conditions but despite extensive research the initial events in phytochrome signaling remain uncertain. Here, Shin et al. provide evidence that phytochrome phosphorylates target proteins via kinase activity in the N-terminal core domain.
Collapse
|
14
|
Nagano S. From photon to signal in phytochromes: similarities and differences between prokaryotic and plant phytochromes. JOURNAL OF PLANT RESEARCH 2016; 129:123-135. [PMID: 26818948 DOI: 10.1007/s10265-016-0789-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/03/2016] [Indexed: 06/05/2023]
Abstract
Phytochromes represent a diverse family of red/far-red-light absorbing chromoproteins which are widespread across plants, cyanobacteria, non-photosynthetic bacteria, and more. Phytochromes play key roles in regulating physiological activities in response to light, a critical element in the acclimatization to the environment. The discovery of prokaryotic phytochromes facilitated structural studies which deepened our understanding on the general mechanisms of phytochrome action. An extrapolation of this information to plant phytochromes is justified for universally conserved functional aspects, but it is also true that there are many aspects which are unique to plant phytochromes. Here I summarize some structural studies carried out to date on both prokaryotic and plant phytochromes. I also attempt to identify aspects which are common or unique to plant and prokaryotic phytochromes. Phytochrome themselves, as well as the downstream signaling pathway in plants are more complex than in their prokaryotic counterparts. Thus many structural and functional aspects of plant phytochrome remain unresolved.
Collapse
Affiliation(s)
- Soshichiro Nagano
- Institute for Plant Physiology, Justus Liebig University Giessen, Senckenbergstrasse 3, 35390, Giessen, Germany.
| |
Collapse
|