1
|
Chen YS, Harn HJ, Hong ZX, Huang YC, Lin YT, Zheng HX, Chen PY, Yang HH, Chen PR, Tsai HC, Lin SZ, Ho TJ, Chiou TW. Preconditioning of exosomes derived from human olfactory ensheathing cells improved motor coordination and balance in an SCA3/MJD mouse model: A new therapeutic approach. Eur J Pharm Sci 2023; 191:106608. [PMID: 37832855 DOI: 10.1016/j.ejps.2023.106608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Exosome therapy is a novel trend in regeneration medicine. However, identifying a suitable biomarker that can associate the therapeutic efficacy of exosomes with SCA3/MJD is essential. In this study, parental cells were preconditioned with butylidenephthalide (Bdph) for exosome preparation to evaluate the therapeutic effect of SCA3/MJD. The therapeutic agent hsa-miRNA-6780-5p was enriched up to 98-fold in exosomes derived from butylidenephthalide (Bdph)-preconditioned human olfactory ensheathing cells (hOECs) compared with that in naïve hOECs exosomes. The particle sizes of exosomes derived from naïve hOECs and those derived from hOECs preconditioned with Bdph were approximately 113.0 ± 3.5 nm and 128.9 ± 0.7 nm, respectively. A liposome system was used to demonstrate the role of hsa-miRNA-6780-5p, wherein hsa-miRNA-6780-5p was found to enhance autophagy and inhibit the expression of spinocerebellar ataxia type 3 (SCA3) disease proteins with the polyglutamine (polyQ) tract. Exosomes with enriched hsa-miRNA-6780-5p were further applied to HEK-293-84Q cells, leading to decreased expression of polyQ and increased autophagy. The results were reversed when 3MA, an autophagy inhibitor, was added to the cells treated with hsa-miRNA-6780-5p-enriched exosomes, indicating that the decreased polyQ expression was modulated via autophagy. SCA3 mice showed improved motor coordination behavior when they intracranially received exosomes enriched with hsa-miRNA-6780-5p. SCA3 mouse cerebellar tissues treated with hsa-miRNA-6780-5p-enriched exosomes showed decreased expression of polyQ and increased expression of LC3II/I, an autophagy marker. In conclusion, our findings can serve as a basis for developing an alternative therapeutic strategy for SCA3 disease treatment using miRNA-enriched exosomes derived from chemically preconditioned cells.
Collapse
Affiliation(s)
- Yu-Shuan Chen
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Taiwan, ROC; Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC; Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Horng-Jyh Harn
- Department of Pathology, Hualien Tzu Chi Hospital, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC
| | - Zhen-Xiang Hong
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Taiwan, ROC
| | - Yi-Chen Huang
- Department of Life Science, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd, Shoufeng, Hualien 974301, Taiwan, ROC
| | - Yi-Tung Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Taiwan, ROC
| | - Hui-Xuan Zheng
- Department of Life Science, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd, Shoufeng, Hualien 974301, Taiwan, ROC
| | - Pei-Yu Chen
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Taiwan, ROC
| | - Hsueh-Hui Yang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC
| | - Peir-Rong Chen
- Department of Otolaryngology, Hualien Tzu Chi Hospital and Tzu Chi University, Hualien, Taiwan, ROC
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Shinn-Zong Lin
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 707, Sec. 3, Chung-Yang Rd., Hualien, Taiwan, ROC.
| | - Tzyy-Wen Chiou
- Department of Life Science, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd, Shoufeng, Hualien 974301, Taiwan, ROC.
| |
Collapse
|
2
|
Tang Z, Hu S, Wu Z, He M. Therapeutic effects of engineered exosome-based miR-25 and miR-181a treatment in spinocerebellar ataxia type 3 mice by silencing ATXN3. Mol Med 2023; 29:96. [PMID: 37438701 DOI: 10.1186/s10020-023-00695-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Spinocerebellar ataxia type 3 (SCA3) is the most common autosomal dominant hereditary ataxia worldwide, which is however in a lack of effective treatment. In view of that engineered exosomes are a promising non-invasive gene therapy transporter that can overcome the traditional problem of poor drug delivery, the aim of this study was to evaluate, for the first time, the value of exosome-based microRNA therapy in SCA3 and the therapeutic effects of intravenously administrated ATXN3 targeting microRNAs in transgenic SCA3 mouse models. METHODS The rabies virus glycoprotein (RVG) peptide-modified exosomes loaded with miR-25 or miR-181a were peripherally injected to enable targeted delivery of miRNAs to the brain of SCA3 mice. The behaviors, ATXN3 level, purkinje cell and other neuronal loss, and neuroinflammation were evaluated 4 weeks after initial treatment. RESULTS The targeted and efficient delivery of miR-25 and miR-181a by modified exosomes substantially inhibited the mutant ATXN3 expression, reduced neuron apoptosis and induced motor improvements in SCA3 mouse models without increasing the neuroinflammatory response. CONCLUSIONS Our study confirmed the therapeutic potential of engineered exosome-based miR-25 and miR-181a treatment in substantially reducing ATXN3 aggregation and cytotoxicity by relying on its targeted and efficient drug delivery performance in SCA3 mice. This treatment method shows a promising prospect for future clinical applications in SCA3.
Collapse
Affiliation(s)
- Zhenchu Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
| | - Shenglan Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
| | - Ziwei Wu
- Department of Neurology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
| | - Miao He
- Department of Neurology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China.
| |
Collapse
|
3
|
Segherlou ZH, Saldarriaga L, Azizi E, Vo KA, Reddy R, Siyanaki MRH, Lucke-Wold B. MicroRNAs' Role in Diagnosis and Treatment of Subarachnoid Hemorrhage. Diseases 2023; 11:77. [PMID: 37366865 DOI: 10.3390/diseases11020077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) is most commonly seen in patients over 55 years of age and often results in a loss of many productive years. SAH has a high mortality rate, and survivors often suffer from early and secondary brain injuries. Understanding the pathophysiology of the SAH is crucial in identifying potential therapeutic agents. One promising target for the diagnosis and prognosis of SAH is circulating microRNAs, which regulate gene expression and are involved in various physiological and pathological processes. In this review, we discuss the potential of microRNAs as a target for diagnosis, treatment, and prognosis in SAH.
Collapse
Affiliation(s)
| | | | - Esaan Azizi
- College of Medicine, University of Florida, Gainesville, FL 32661, USA
| | - Kim-Anh Vo
- College of Medicine, University of Florida, Gainesville, FL 32661, USA
| | - Ramya Reddy
- College of Medicine, University of Florida, Gainesville, FL 32661, USA
| | | | - Brandon Lucke-Wold
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL 32661, USA
| |
Collapse
|
4
|
Genetic Variation in ATXN3 (Ataxin-3) 3'UTR: Insights into the Downstream Regulatory Elements of the Causative Gene of Machado-Joseph Disease/Spinocerebellar Ataxia Type 3. CEREBELLUM (LONDON, ENGLAND) 2023; 22:37-45. [PMID: 35034258 DOI: 10.1007/s12311-021-01358-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 02/01/2023]
Abstract
Untranslated regions are involved in the regulation of transcriptional and post-transcriptional processes. Characterization of these regions remains poorly explored for ATXN3, the causative gene of Machado-Joseph disease (MJD). Although a few genetic modifiers have been identified for MJD age at onset (AO), they only explain a small fraction of the AO variance. Our aim was to analyse variation at the 3'UTR of ATXN3 in MJD patients, analyse its impact on AO and attempt to build haplotypes that might discriminate between normal and expanded alleles.After assessing ATXN3 3'UTR variants in molecularly confirmed MJD patients, an in silico analysis was conducted to predict their functional impact (e.g. their effect on miRNA-binding sites). Alleles in cis with the expanded (CAG)n were inferred from family data, and haplotypes were built. The effect of the alternative alleles on the AO and on SARA and NESSCA ataxia scales was tested.Nine variants, all previously described, were found. For eight variants, in silico analyses predicted (a) deleterious effects (rs10151135; rs55966267); (b) changes on miRNA-binding sites (rs11628764; rs55966267; rs709930) and (c) alterations of RNA-binding protein (RBP)-binding sites (rs1055996; rs910369; rs709930; rs10151135; rs3092822; rs7158733). Patients harbouring the alternative allele at rs10151135 had significantly higher SARA Axial subscores (p = 0.023), comparatively with those homozygous for the reference allele. Ten different haplotypes were obtained, one of which was exclusively found in cis with the expanded and four with the normal allele. These findings, which are relevant for the design of allele-specific therapies, warrant further investigation in independent MJD cohorts.
Collapse
|
5
|
Breuer P, Rasche T, Han X, Faber J, Haustein K, Klockgether T, Wüllner U. The Ratio of Expanded to Normal Ataxin 3 in Peripheral Blood Mononuclear Cells Correlates with the Age at Onset in Spinocerebellar Ataxia Type 3. Mov Disord 2022; 37:1098-1099. [DOI: 10.1002/mds.28962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 11/07/2022] Open
Affiliation(s)
- Peter Breuer
- Department of Neurology University of Bonn Bonn Germany
| | - Tim Rasche
- Department of Neurology University of Bonn Bonn Germany
| | - Xinyu Han
- Department of Neurology University of Bonn Bonn Germany
| | | | | | - Thomas Klockgether
- Department of Neurology University of Bonn Bonn Germany
- DZNE Bonn Germany
| | - Ullrich Wüllner
- Department of Neurology University of Bonn Bonn Germany
- DZNE Bonn Germany
| |
Collapse
|
6
|
Zhou X, Qiao B. Inhibition of HDAC3 and ATXN3 by miR-25 prevents neuronal loss and ameliorates neurological recovery in cerebral stroke experimental rats. J Physiol Biochem 2022; 78:139-149. [PMID: 35025075 DOI: 10.1007/s13105-021-00848-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/14/2021] [Indexed: 11/26/2022]
Abstract
HDAC3 plays important role in regulating memory and plasticity of neurons. We studied the role of miR-25 against HDAC3-induced neuronal injury in acute ischemic stroke. Subjects reported for acute stroke were included in the study. The rat model of middle cerebral artery occlusion was developed and received miR-25 agomir and antagomir treatments via intra-cerebroventricular injection. The brain tissues were processed and neuronal cells were isolated and submitted to oxygen glucose derivation-mediated injury. mRNA levels were studied by RT-PCR and protein levels by ELISA method. TUNEL and nuclear protein staining was done to find the ischemic area. Behavioral studies were carried out by Morris water maze test and beam balance test. Results suggested a significant increase in plasma miR-25 levels observed in acute ischemic stroke subjects. The levels of miR-25 were increased in the tissues of infarcted area of brain tissues of rats. However, the expression of miR-25 decreased in neuronal cells but increased in supernatant post-oxygen glucose deprivation. The treatment of miR-25 agomir decreased the infarct volume and apoptosis of neurons in MCAO rats, and it also improved the plasticity of neurons and axons, down-regulated ATXN3 and HDAC3 levels, and improved acetyl-H3K9 expression. In vitro outcomes suggested that miR-25 inhibited HDAC3 neurons and modulated the oxygen glucose deprivation injury in neurons. The treatment of RGFP966 increased the acetyl-H3K9 levels and prevented the miR-25 antagomir-induced injury. The study suggested miR-25 as an important predicting biomarker in acute ischemia injury. KEY POINTS: • HDAC3 is key regulator for neuronal health. • miR-25 was overexpressed in acute ischemic stroke condition. • miR-25 inhibits loss of neurons and provides neuronal recovery in animal model of stroke via inhibiting HDAC3 and ATXN3.
Collapse
Affiliation(s)
- Xiaomei Zhou
- Department of Neurology, The First People's Hospital of Lianyungang, Lianyungang, 222002, Jiangsu, China
| | - Benyu Qiao
- Department of Neurology, Lianyungang Hospital of Traditional Chinese Medicine, No.160 Chaoyang Road, Haizhou District, Lianyungang, 222001, Jiangsu, China.
| |
Collapse
|
7
|
Borbolla-Jiménez FV, Del Prado-Audelo ML, Cisneros B, Caballero-Florán IH, Leyva-Gómez G, Magaña JJ. New Perspectives of Gene Therapy on Polyglutamine Spinocerebellar Ataxias: From Molecular Targets to Novel Nanovectors. Pharmaceutics 2021; 13:1018. [PMID: 34371710 PMCID: PMC8309146 DOI: 10.3390/pharmaceutics13071018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 01/03/2023] Open
Abstract
Seven of the most frequent spinocerebellar ataxias (SCAs) are caused by a pathological expansion of a cytosine, adenine and guanine (CAG) trinucleotide repeat located in exonic regions of unrelated genes, which in turn leads to the synthesis of polyglutamine (polyQ) proteins. PolyQ proteins are prone to aggregate and form intracellular inclusions, which alter diverse cellular pathways, including transcriptional regulation, protein clearance, calcium homeostasis and apoptosis, ultimately leading to neurodegeneration. At present, treatment for SCAs is limited to symptomatic intervention, and there is no therapeutic approach to prevent or reverse disease progression. This review provides a compilation of the experimental advances obtained in cell-based and animal models toward the development of gene therapy strategies against polyQ SCAs, providing a discussion of their potential application in clinical trials. In the second part, we describe the promising potential of nanotechnology developments to treat polyQ SCA diseases. We describe, in detail, how the design of nanoparticle (NP) systems with different physicochemical and functionalization characteristics has been approached, in order to determine their ability to evade the immune system response and to enhance brain delivery of molecular tools. In the final part of this review, the imminent application of NP-based strategies in clinical trials for the treatment of polyQ SCA diseases is discussed.
Collapse
Affiliation(s)
- Fabiola V. Borbolla-Jiménez
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico;
- Programa de Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - María Luisa Del Prado-Audelo
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey Campus Ciudad de México, Ciudad de México 14380, Mexico;
| | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México 07360, Mexico;
| | - Isaac H. Caballero-Florán
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
- Departamento de Farmacia, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México 07360, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Jonathan J. Magaña
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico;
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey Campus Ciudad de México, Ciudad de México 14380, Mexico;
| |
Collapse
|
8
|
Prudencio M, Garcia-Moreno H, Jansen-West KR, Al-Shaikh RH, Gendron TF, Heckman MG, Spiegel MR, Carlomagno Y, Daughrity LM, Song Y, Dunmore JA, Byron N, Oskarsson B, Nicholson KA, Staff NP, Gorcenco S, Puschmann A, Lemos J, Januário C, LeDoux MS, Friedman JH, Polke J, Labrum R, Shakkottai V, McLoughlin HS, Paulson HL, Konno T, Onodera O, Ikeuchi T, Tada M, Kakita A, Fryer JD, Karremo C, Gomes I, Caviness JN, Pittelkow MR, Aasly J, Pfeiffer RF, Veerappan V, Eggenberger ER, Freeman WD, Huang JF, Uitti RJ, Wierenga KJ, Marin Collazo IV, Tipton PW, van Gerpen JA, van Blitterswijk M, Bu G, Wszolek ZK, Giunti P, Petrucelli L. Toward allele-specific targeting therapy and pharmacodynamic marker for spinocerebellar ataxia type 3. Sci Transl Med 2021; 12:12/566/eabb7086. [PMID: 33087504 DOI: 10.1126/scitranslmed.abb7086] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
Spinocerebellar ataxia type 3 (SCA3), caused by a CAG repeat expansion in the ataxin-3 gene (ATXN3), is characterized by neuronal polyglutamine (polyQ) ATXN3 protein aggregates. Although there is no cure for SCA3, gene-silencing approaches to reduce toxic polyQ ATXN3 showed promise in preclinical models. However, a major limitation in translating putative treatments for this rare disease to the clinic is the lack of pharmacodynamic markers for use in clinical trials. Here, we developed an immunoassay that readily detects polyQ ATXN3 proteins in human biological fluids and discriminates patients with SCA3 from healthy controls and individuals with other ataxias. We show that polyQ ATXN3 serves as a marker of target engagement in human fibroblasts, which may bode well for its use in clinical trials. Last, we identified a single-nucleotide polymorphism that strongly associates with the expanded allele, thus providing an exciting drug target to abrogate detrimental events initiated by mutant ATXN3. Gene-silencing strategies for several repeat diseases are well under way, and our results are expected to improve clinical trial preparedness for SCA3 therapies.
Collapse
Affiliation(s)
- Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Hector Garcia-Moreno
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.,Ataxia Centre, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London WC1N 3BG, UK
| | | | | | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Michael G Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Matthew R Spiegel
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yari Carlomagno
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | | | - Yuping Song
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Judith A Dunmore
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Natalie Byron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Björn Oskarsson
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Katharine A Nicholson
- Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital (MGH), Boston, MA 02114, USA
| | - Nathan P Staff
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sorina Gorcenco
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Neurology, Lund 22185, Sweden
| | - Andreas Puschmann
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Neurology, Lund 22185, Sweden
| | - João Lemos
- Coimbra University Hospital Centre, Coimbra University, Coimbra 3000-075, Portugal
| | - Cristina Januário
- Coimbra University Hospital Centre, Coimbra University, Coimbra 3000-075, Portugal
| | - Mark S LeDoux
- University of Memphis and Veracity Neuroscience LLC, Memphis, TN 38152, USA
| | - Joseph H Friedman
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI 02906, USA
| | - James Polke
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.,Ataxia Centre, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London WC1N 3BG, UK
| | - Robin Labrum
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.,Ataxia Centre, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London WC1N 3BG, UK
| | - Vikram Shakkottai
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Takuya Konno
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Mari Tada
- Department of Pathology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - John D Fryer
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA.,Department of Neuroscience, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Christin Karremo
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Neurology, Lund 22185, Sweden
| | - Inês Gomes
- Coimbra University Hospital Centre, Coimbra University, Coimbra 3000-075, Portugal
| | - John N Caviness
- Department of Neurology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Mark R Pittelkow
- Department of Dermatology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Jan Aasly
- Norwegian University of Science and Technology, 7006 Trondheim, Norway
| | - Ronald F Pfeiffer
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Venka Veerappan
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | | - Ryan J Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Klaas J Wierenga
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Philip W Tipton
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Marka van Blitterswijk
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | | | - Paola Giunti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK. .,Ataxia Centre, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London WC1N 3BG, UK
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA. .,Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| |
Collapse
|
9
|
Gandhi G, Abdullah S, Foead AI, Yeo WWY. The potential role of miRNA therapies in spinal muscle atrophy. J Neurol Sci 2021; 427:117485. [PMID: 34015517 DOI: 10.1016/j.jns.2021.117485] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/14/2021] [Accepted: 05/10/2021] [Indexed: 01/15/2023]
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by low levels of full-length survival motor neuron (SMN) protein due to the loss of the survival motor neuron 1 (SMN1) gene and inefficient splicing of the survival motor neuron 2 (SMN2) gene, which mostly affects alpha motor neurons of the lower spinal cord. Despite the U.S. Food and Drug Administration (FDA) approved SMN-dependent therapies including Nusinersen, Zolgensma® and Evrysdi™, SMA is still a devastating disease as these existing expensive drugs may not be sufficient and thus, remains a need for additional therapies. The involvement of microRNAs (miRNAs) in SMA is expanding because miRNAs are important mediators of gene expression as each miRNA could target a number of genes. Hence, miRNA-based therapy could be utilized in treating this genetic disorder. However, the delivery of miRNAs into the target cells remains an obstacle in SMA, as there is no effective delivery system to date. This review highlights the potential strategies for intracellular miRNA delivery into target cells and current challenges in miRNA delivery. Furthermore, we provide the future prospects of miRNA-based therapeutic strategies in SMA.
Collapse
Affiliation(s)
- Gayatri Gandhi
- Perdana University Graduate School of Medicine, Perdana University, Wisma Chase Perdana, Changkat Semantan, Damansara Heights, 50490 Kuala Lumpur, Malaysia
| | - Syahril Abdullah
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM, Selangor, Malaysia; Genetics & Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Selangor, Malaysia; UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Selangor, Malaysia
| | - Agus Iwan Foead
- Department of Orthopedics, Perdana University-Royal College of Surgeons in Ireland, Perdana University, Wisma Chase Perdana, Changkat Semantan, Damansara Heights, 50490 Kuala Lumpur, Malaysia
| | - Wendy Wai Yeng Yeo
- Perdana University Graduate School of Medicine, Perdana University, Wisma Chase Perdana, Changkat Semantan, Damansara Heights, 50490 Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
Current Status of Gene Therapy Research in Polyglutamine Spinocerebellar Ataxias. Int J Mol Sci 2021; 22:ijms22084249. [PMID: 33921915 PMCID: PMC8074016 DOI: 10.3390/ijms22084249] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 12/26/2022] Open
Abstract
Polyglutamine spinocerebellar ataxias (PolyQ SCAs) are a group of 6 rare autosomal dominant diseases, which arise from an abnormal CAG repeat expansion in the coding region of their causative gene. These neurodegenerative ataxic disorders are characterized by progressive cerebellar degeneration, which translates into progressive ataxia, the main clinical feature, often accompanied by oculomotor deficits and dysarthria. Currently, PolyQ SCAs treatment is limited only to symptomatic mitigation, and no therapy is available to stop or delay the disease progression, which culminates with death. Over the last years, many promising gene therapy approaches were investigated in preclinical studies and could lead to a future treatment to stop or delay the disease development. Here, we summed up the most promising of these therapies, categorizing them in gene augmentation therapy, gene silencing strategies, and gene edition approaches. While several of the reviewed strategies are promising, there is still a gap from the preclinical results obtained and their translation to clinical studies. However, there is an increase in the number of approved gene therapies, as well as a constant development in their safety and efficacy profiles. Thus, it is expected that in a near future some of the promising strategies reviewed here could be tested in a clinical setting and if successful provide hope for SCAs patients.
Collapse
|
11
|
Gonsior K, Kaucher GA, Pelz P, Schumann D, Gansel M, Kuhs S, Klockgether T, Forlani S, Durr A, Hauser S, Rattay TW, Synofzik M, Hengel H, Schöls L, Rieß OH, Hübener-Schmid J. PolyQ-expanded ataxin-3 protein levels in peripheral blood mononuclear cells correlate with clinical parameters in SCA3: a pilot study. J Neurol 2020; 268:1304-1315. [PMID: 33106888 PMCID: PMC7990753 DOI: 10.1007/s00415-020-10274-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
In view of upcoming clinical trials, quantitative molecular markers accessible in peripheral blood are of critical importance as prognostic or pharmacodynamic markers in genetic neurodegenerative diseases such as Spinocerebellar Ataxia Type 3 (SCA3), in particular for signaling target engagement. In this pilot study, we focused on the quantification of ataxin-3, the protein altered in SCA3, in human peripheral blood mononuclear cells (PBMCs) acquired from preataxic and ataxic SCA3 mutation carriers as well as healthy controls, as a molecular marker directly related to SCA3 pathophysiology. We established two different highly sensitive TR-FRET-based immunoassays to measure the protein levels of either total full-length, non-expanded and expanded, ataxin-3 or specifically polyQ-expanded ataxin-3. In PBMCs, a clear discrimination between SCA3 mutation carrier and controls were seen measuring polyQ-expanded ataxin-3 protein level. Additionally, polyQ-expanded ataxin-3 protein levels correlated with disease progression and clinical severity as assessed by the Scale for the Assessment and Rating of Ataxia. Total full-length ataxin-3 protein levels were directly influenced by the expression levels of the polyQ-expanded ataxin-3 protein, but were not correlated with clinical parameters. Assessment of ataxin-3 levels in fibroblasts or induced pluripotent stem cells allowed to distinguish mutation carriers from controls, thus providing proof-of-principle validation of our PBMC findings across cell lines. Total full-length or polyQ-expanded ataxin-3 protein was not detectable by TR-FRET assays in other biofluids like plasma or cerebrospinal fluid, indicating the need for ultra-sensitive assays for these biofluids. Standardization studies revealed that tube systems, blood sampling, and PBMC preparation may influence ataxin-3 protein levels indicating a high demand for standardized protocols in biomarker studies. In conclusion, the polyQ-expanded ataxin-3 protein is a promising candidate as a molecular target engagement marker in SCA3 in future clinical trials, determinable even in—easily accessible—peripheral blood biomaterials. These results, however, require validation in a larger cohort and further standardization of modifying conditions.
Collapse
Affiliation(s)
- Kathrin Gonsior
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Gabriele Anna Kaucher
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Patrik Pelz
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Dorothea Schumann
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Melanie Gansel
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Sandra Kuhs
- Department of Neurology, University of Bonn, Sigmund-Freud-Straße 25, 53127, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Thomas Klockgether
- Department of Neurology, University of Bonn, Sigmund-Freud-Straße 25, 53127, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Sylvie Forlani
- Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Paris, France
| | - Alexandra Durr
- Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Paris, France
| | - Stefan Hauser
- Center for Neurology, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Tim W Rattay
- Center for Neurology, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Matthis Synofzik
- Center for Neurology, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Holger Hengel
- Center for Neurology, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Ludger Schöls
- Center for Neurology, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Olaf H Rieß
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany.,DFG NGS Competence Center Tübingen, Tübingen, Germany
| | - Jeannette Hübener-Schmid
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany. .,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
12
|
Chen YS, Hong ZX, Lin SZ, Harn HJ. Identifying Therapeutic Targets for Spinocerebellar Ataxia Type 3/Machado-Joseph Disease through Integration of Pathological Biomarkers and Therapeutic Strategies. Int J Mol Sci 2020; 21:ijms21093063. [PMID: 32357546 PMCID: PMC7246822 DOI: 10.3390/ijms21093063] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is a progressive motor disease with no broadly effective treatment. However, most current therapies are based on symptoms rather than the underlying disease mechanisms. In this review, we describe potential therapeutic strategies based on known pathological biomarkers and related pathogenic processes. The three major conclusions from the current studies are summarized as follows: (i) for the drugs currently being tested in clinical trials; a weak connection was observed between drugs and SCA3/MJD biomarkers. The only two exceptions are the drugs suppressing glutamate-induced calcium influx and chemical chaperon. (ii) For most of the drugs that have been tested in animal studies, there is a direct association with pathological biomarkers. We further found that many drugs are associated with inducing autophagy, which is supported by the evidence of deficient autophagy biomarkers in SCA3/MJD, and that there may be more promising therapeutics. (iii) Some reported biomarkers lack relatively targeted drugs. Low glucose utilization, altered amino acid metabolism, and deficient insulin signaling are all implicated in SCA3/MJD, but there have been few studies on treatment strategies targeting these abnormalities. Therapeutic strategies targeting multiple pathological SCA3/MJD biomarkers may effectively block disease progression and preserve neurological function.
Collapse
Affiliation(s)
- Yu-Shuan Chen
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
- Correspondence: (Y.-S.C.); (H.-J.H.); Tel.: +886-3-856-1825 (Y.-S.C. & H.-J.H.); Fax: +886-3-856-0977 (H.-J.H.)
| | - Zhen-Xiang Hong
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
| | - Horng-Jyh Harn
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
- Department of Pathology, Hualien Tzu Chi Hospital, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
- Correspondence: (Y.-S.C.); (H.-J.H.); Tel.: +886-3-856-1825 (Y.-S.C. & H.-J.H.); Fax: +886-3-856-0977 (H.-J.H.)
| |
Collapse
|
13
|
Madadi S, Schwarzenbach H, Saidijam M, Mahjub R, Soleimani M. Potential microRNA-related targets in clearance pathways of amyloid-β: novel therapeutic approach for the treatment of Alzheimer's disease. Cell Biosci 2019; 9:91. [PMID: 31749959 PMCID: PMC6852943 DOI: 10.1186/s13578-019-0354-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
Imbalance between amyloid-beta (Aβ) peptide synthesis and clearance results in Aβ deregulation. Failure to clear these peptides appears to cause the development of Alzheimer's disease (AD). In recent years, microRNAs have become established key regulators of biological processes that relate among others to the development and progression of neurodegenerative diseases, such as AD. This review article gives an overview on microRNAs that are involved in the Aβ cascade and discusses their inhibitory impact on their target mRNAs whose products participate in Aβ clearance. Understanding of the mechanism of microRNA in the associated signal pathways could identify novel therapeutic targets for the treatment of AD.
Collapse
Affiliation(s)
- Soheil Madadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heidi Schwarzenbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Massoud Saidijam
- Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Mahjub
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
14
|
Dong X, Cong S. The Emerging Role of microRNAs in Polyglutamine Diseases. Front Mol Neurosci 2019; 12:156. [PMID: 31275113 PMCID: PMC6593396 DOI: 10.3389/fnmol.2019.00156] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/04/2019] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding molecules that regulate a large amount of post-transcriptional repressor genes by recognizing semi-complementary target sequences that are normally located in the 3' UTR of the mRNA. Altered expression of miRNA has been related to several pathological processes, including polyglutamine (Poly Q) diseases. Specific expression patterns in the circulating fluids and brain parenchyma have been speculated as potential biomarkers for Poly Q disease diagnosis and prognosis. Several miRNAs have been consistently identified in diseases including Huntington's disease (HD) and spinocerebellar ataxia (SCA). In our review, we describe the emerging role of miRNAs in Poly Q diseases and provide an overview on general miRNA biology, implications in pathophysiology, and their potential roles as future biomarkers and applications for therapy.
Collapse
Affiliation(s)
| | - Shuyan Cong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
Hou X, Gong X, Zhang L, Li T, Yuan H, Xie Y, Peng Y, Qiu R, Xia K, Tang B, Jiang H. Identification of a potential exosomal biomarker in spinocerebellar ataxia Type 3/Machado-Joseph disease. Epigenomics 2019; 11:1037-1056. [PMID: 31144508 DOI: 10.2217/epi-2019-0081] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: To identify spinocerebellar ataxia Type 3 (SCA3)-related exosomal biomarkers and the underlying mechanisms. Materials & methods: Exosomal RNAs from plasma and cerebrospinal fluid (CSF) were extracted from 24 SCA3 patients and 22 controls, respectively. Small RNA sequencing and quantitative PCR verification were performed. Gene ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathway analyses of the results were carried out. Results: One novel miRNA is notably downregulated in plasma-derived exosomes, while upregulated in CSF-derived exosomes of SCA3 patients. Besides, it is successively upregulated in CSF-derived exosomes from Type 1, Type 2 and Type 3 groups. The downstream target genes were enriched in protein processing in endoplasmic reticulum and axon guidance. Conclusion: One exosomal biomarker was identified in SCA3, and this is the first time to report an exosomal miRNA as a biomarker in SCA3 internationally.
Collapse
Affiliation(s)
- Xiaocan Hou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Xuan Gong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Longbo Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Tianjiao Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Hongyu Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Yue Xie
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Yun Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Rong Qiu
- School of Information Science & Engineering, Central South University, Changsha, Hunan 410008, PR China
| | - Kun Xia
- Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410008, PR China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.,Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410008, PR China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, PR China.,National Clinical Research Center for Geriatrics Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.,Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410008, PR China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, PR China.,National Clinical Research Center for Geriatrics Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| |
Collapse
|
16
|
Li D, Zhang T, Lai J, Zhang J, Wang T, Ling Y, He S, Hu Z. MicroRNA‑25/ATXN3 interaction regulates human colon cancer cell growth and migration. Mol Med Rep 2019; 19:4213-4221. [PMID: 30942397 PMCID: PMC6471560 DOI: 10.3892/mmr.2019.10090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 09/06/2018] [Indexed: 12/08/2022] Open
Abstract
The present study aimed to investigate the function of microRNA-25 (miR-25) in human colon cancer cell viability and migration in addition to the underlying possible mechanisms. miR-25 expression was upregulated in patients with colon cancer compared with the control group. Reverse transcription-quantitative polymerase chain reaction and gene chip technology were used to analyze the alterations of miR-25 in patients with colon cancer. Cell viability and cell migration were analyzed using MTT and wound healing assays, respectively, apoptosis was analyzed using flow cytometry, and western blot analysis was conducted to determine the protein expression of ataxin-3 (ATXN3), apoptosis regulator Bax (Bax) and cyclin D1. Overexpression of miR-25 increased cell viability and migration, decreased apoptosis, decreased caspase-3/9 activity level in addition to decreased Bax protein expression, and increased cyclin D1 protein expression in colon cancer cells. Furthermore, miR-25 was demonstrated to target ATXN3 and suppress ATXN3 protein expression. Downregulation of miR-25 induced apoptosis of colon cancer cells via increased expression ATXN3. Small interfering-ATXN3 inhibited the anti-cancer effects of miR-25 downregulation in colon cancer. Collectively, the present results demonstrated that miR-25 promoted human colon cancer cell viability and migration by regulating ATXN3 expression.
Collapse
Affiliation(s)
- Dingyun Li
- Department of Gastrointestinal Surgery, Yue Bei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Tao Zhang
- Department of Gastrointestinal Surgery, Yue Bei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Jiajun Lai
- Department of Gastrointestinal Surgery, Yue Bei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Jian Zhang
- Department of Gastrointestinal Surgery, Yue Bei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Ting Wang
- Department of Gastrointestinal Surgery, Yue Bei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Yafei Ling
- Department of Gastrointestinal Surgery, Yue Bei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Shengquan He
- Department of Gastrointestinal Surgery, Yue Bei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Zhiwei Hu
- Department of Gastrointestinal Surgery, Yue Bei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| |
Collapse
|
17
|
Wide Profiling of Circulating MicroRNAs in Spinocerebellar Ataxia Type 7. Mol Neurobiol 2019; 56:6106-6120. [PMID: 30721448 DOI: 10.1007/s12035-019-1480-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/10/2019] [Indexed: 12/28/2022]
Abstract
Spinocerebellar ataxia type 7 (SCA7), a neurodegenerative disease characterized by cerebellar ataxia and retinal degeneration, is caused by a CAG repeat expansion in the ATXN7 gene coding region. Disease onset and progression are highly variable between patients, thus identification of specific/sensitive biomarkers that can improve the monitoring of disease progression is an immediate need. Because altered expression of circulating microRNAs (miRNAs) has been shown in various neurological diseases, they could be useful biomarkers for SCA7. In this study, we showed, to our knowledge for the first time, the expression profile of circulating miRNAs in SCA7. Using the TaqMan profiling low density array (TLDA), we found 71 differentially expressed miRNAs in the plasma of SCA7 patients, compared with healthy controls. The reliability of TLDA data was validated independently by quantitative real-time polymerase chain reaction in an independent cohort of patients and controls. We identified four validated miRNAs that possesses the diagnostic value to discriminate between healthy controls and patients (hsa-let-7a-5p, hsa-let7e-5p, hsa-miR-18a-5p, and hsa-miR-30b-5p). The target genes of these four miRNAs were significantly enriched in cellular processes that are relevant to central nervous system function, including Fas-mediated cell-death, heparansulfate biosynthesis, and soluble-N-ethylmaleimide-sensitive factor activating protein receptor pathways. Finally, we identify a signature of four miRNAs associated with disease severity that discriminate between early onset and adult onset, highlighting their potential utility to surveillance disease progression. In summary, circulating miRNAs might provide accessible biomarkers for disease stage and progression and help to identify novel cellular processes involved in SCA7.
Collapse
|
18
|
Krauss S, Nalavade R, Weber S, Carter K, Evert BO. Upregulation of miR-25 and miR-181 Family Members Correlates with Reduced Expression of ATXN3 in Lymphocytes from SCA3 Patients. Microrna 2019; 8:76-85. [PMID: 30147021 DOI: 10.2174/2211536607666180821162403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/03/2018] [Accepted: 08/20/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Spinocerebellar ataxia type 3 (SCA3), the most common spinocerebellar ataxia, is caused by a polyglutamine (polyQ) expansion in the protein ataxin-3 (ATXN3). Silencing the expression of polyQ-expanded ATXN3 rescues the cellular disease phenotype. OBJECTIVE This study investigated the differential expression of microRNAs (miRNAs), small noncoding RNAs targeting gene expression, in lymphoblastoid cells (LCs) from SCA3 patients and the capability of identified deregulated miRNAs to target and alter ATXN3 expression. METHODS MiRNA profiling was performed by microarray hybridization of total RNA from control and SCA3-LCs. The capability of the identified miRNAs and their target sites to suppress ATXN3 expression was analyzed using mutagenesis, reverse transcription PCR, immunoblotting, luciferase reporter assays, mimics and precursors of the identified miRNAs. RESULTS SCA3-LCs showed significantly decreased expression levels of ATXN3 and a significant upregulation of the ATXN3-3'UTR targeting miRNAs, miR-32 and miR-181c and closely related members of the miR-25 and miR-181 family, respectively. MiR-32 and miR-181c effectively targeted the 3'UTR of ATXN3 and suppressed the expression of ATXN3. CONCLUSIONS The simultaneous upregulation of closely related miRNAs targeting the 3'UTR of ATXN3 and the significantly reduced ATXN3 expression levels in SCA3-LCs suggests that miR-25 and miR-181 family members cooperatively bind to the 3'UTR to suppress the expression of ATXN3. The findings further suggest that the upregulation of miR-25 and miR-181 family members in SCA3- LCs reflects a cell type-specific, protective mechanism to diminish polyQ-mediated cytotoxic effects. Thus, miRNA mimics of miR-25 and miR-181 family members may prove useful for the treatment of SCA3.
Collapse
Affiliation(s)
- Sybille Krauss
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Street 27, 53127 Bonn, Germany
| | - Rohit Nalavade
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Street 27, 53127 Bonn, Germany
| | - Stephanie Weber
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Street 27, 53127 Bonn, Germany
| | - Katlynn Carter
- Department of Neurology, University of Bonn, Sigmund-Freud-Street 25, 53127 Bonn, Germany
| | - Bernd O Evert
- Department of Neurology, University of Bonn, Sigmund-Freud-Street 25, 53127 Bonn, Germany
| |
Collapse
|
19
|
Krauss S, Evert BO. The Role of MicroRNAs in Spinocerebellar Ataxia Type 3. J Mol Biol 2019; 431:1729-1742. [PMID: 30664869 DOI: 10.1016/j.jmb.2019.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/05/2019] [Accepted: 01/11/2019] [Indexed: 02/07/2023]
Abstract
More than 90% of the human genome are transcribed as non-coding RNAs. While it is still under debate if all these non-coding transcripts are functional, there is emerging evidence that RNA has several important functions in addition to coding for proteins. For example, microRNAs (miRNAs) are important regulatory RNAs that control gene expression in various biological processes and human diseases. In spinocerebellar ataxia type 3 (SCA3), a devastating neurodegenerative disease, miRNAs are involved in the disease process at different levels, including the deregulation of components of the general miRNA biogenesis machinery, as well as in the cell type-specific control of the expression of the SCA3 disease protein and other SCA3 disease-relevant proteins. However, it remains difficult to predict whether these changes are a cause or a consequence of the neurodegenerative process in SCA3. Further studies using standardized procedures for the analysis of miRNA expression and larger sample numbers are required to enhance our understanding of the miRNA-mediated processes involved in SCA3 disease and may enable the development of miRNA-based therapeutics. In this review, we summarize the findings of independent studies highlighting both the disease-related and cytoprotective roles of miRNAs that have been implicated so far in the disease process of SCA3.
Collapse
Affiliation(s)
- Sybille Krauss
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Street 27, 53127 Bonn, Germany
| | - Bernd O Evert
- Department of Neurology, University of Bonn, Sigmund-Freud-Street 25, 53127 Bonn, Germany.
| |
Collapse
|
20
|
Matos CA, de Almeida LP, Nóbrega C. Machado-Joseph disease/spinocerebellar ataxia type 3: lessons from disease pathogenesis and clues into therapy. J Neurochem 2018; 148:8-28. [PMID: 29959858 DOI: 10.1111/jnc.14541] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/05/2018] [Accepted: 06/27/2018] [Indexed: 12/25/2022]
Abstract
Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is an incurable disorder, widely regarded as the most common form of spinocerebellar ataxia in the world. MJD/SCA3 arises from mutation of the ATXN3 gene, but this simple monogenic cause contrasts with the complexity of the pathogenic mechanisms that are currently admitted to underlie neuronal dysfunction and death. The aberrantly expanded protein product - ataxin-3 - is known to aggregate and generate toxic species that disrupt several cell systems, including autophagy, proteostasis, transcription, mitochondrial function and signalling. Over the years, research into putative therapeutic approaches has often been devoted to the development of strategies that counteract disease at different stages of cellular pathogenesis. Silencing the pathogenic protein, blocking aggregation, inhibiting toxic proteolytic processing and counteracting dysfunctions of the cellular systems affected have yielded promising ameliorating results in studies with cellular and animal models. The current review analyses the available studies dedicated to the investigation of MJD/SCA3 pathogenesis and the exploration of possible therapeutic strategies, focusing primarily on gene therapy and pharmacological approaches rooted on the molecular and cellular mechanisms of disease.
Collapse
Affiliation(s)
- Carlos A Matos
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Clévio Nóbrega
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Department of Biomedical Sciences and Medicine, University of Algarve, Coimbra, Portugal.,Centre for Biomedical Research (CBMR), University of Algarve, Coimbra, Portugal.,Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
| |
Collapse
|
21
|
Pourshafie N, Lee PR, Chen KL, Harmison GG, Bott LC, Fischbeck KH, Rinaldi C. Systemic Delivery of MicroRNA Using Recombinant Adeno-associated Virus Serotype 9 to Treat Neuromuscular Diseases in Rodents. J Vis Exp 2018. [PMID: 30148479 PMCID: PMC6126683 DOI: 10.3791/55724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
RNA interference via the endogenous miRNA pathway regulates gene expression by controlling protein synthesis through post-transcriptional gene silencing. In recent years, miRNA-mediated gene regulation has shown potential for treatment of neurological disorders caused by a toxic gain of function mechanism. However, efficient delivery to target tissues has limited its application. Here we used a transgenic mouse model for spinal and bulbar muscular atrophy (SBMA), a neuromuscular disease caused by polyglutamine expansion in the androgen receptor (AR), to test gene silencing by a newly identified AR-targeting miRNA, miR-298. We overexpressed miR-298 using a recombinant adeno-associated virus (rAAV) serotype 9 vector to facilitate transduction of non-dividing cells. A single tail-vein injection in SBMA mice induced sustained and widespread overexpression of miR-298 in skeletal muscle and motor neurons and resulted in amelioration of the neuromuscular phenotype in the mice.
Collapse
Affiliation(s)
- Naemeh Pourshafie
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health
| | - Philip R Lee
- Section on Nervous System Development and Plasticity, The Eunice Kennedy Shriver National Institute of Child and Human Development, National Institutes of Health
| | - Ke-Lian Chen
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health
| | - George G Harmison
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health
| | - Laura C Bott
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health; Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health
| | - Carlo Rinaldi
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health; Department of Physiology, Anatomy and Genetics, University of Oxford;
| |
Collapse
|
22
|
Abstract
Polyglutamine diseases are hereditary degenerative disorders of the nervous system that have remained, to this date, untreatable. Promisingly, investigation into their molecular etiology and the development of increasingly perfected tools have contributed to the design of novel strategies with therapeutic potential. Encouraging studies have explored gene therapy as a means to counteract cell demise and loss in this context. The current chapter addresses the two main focuses of research in the area: the characteristics of the systems used to deliver nucleic acids to cells and the molecular and cellular actions of the therapeutic agents. Vectors used in gene therapy have to satisfyingly reach the tissues and cell types of interest, while eliciting the lowest toxicity possible. Both viral and non-viral systems have been developed for the delivery of nucleic acids to the central nervous system, each with its respective advantages and shortcomings. Since each polyglutamine disease is caused by mutation of a single gene, many gene therapy strategies have tried to halt degeneration by silencing the corresponding protein products, usually recurring to RNA interference. The potential of small interfering RNAs, short hairpin RNAs and microRNAs has been investigated. Overexpression of protective genes has also been evaluated as a means of decreasing mutant protein toxicity and operate beneficial alterations. Recent gene editing tools promise yet other ways of interfering with the disease-causing genes, at the most upstream points possible. Results obtained in both cell and animal models encourage further delving into this type of therapeutic strategies and support the future use of gene therapy in the treatment of polyglutamine diseases.
Collapse
|
23
|
Chen H, Liu S, Zhao C, Zong Z, Ma C, Qi G. Cardiac contractility modulation improves left ventricular systolic function partially via miR-25 mediated SERCA2A expression in rabbit trans aortic constriction heart failure model. J Thorac Dis 2018; 10:3899-3908. [PMID: 30069393 DOI: 10.21037/jtd.2018.06.22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The purpose of this study was to investigate the underlying mechanism of cardiac contractility modulation (CCM) in improving trans aortic constriction (TAC)-induced heart failure (HF) left ventricular (LV) systolic function. A total of 25 New Zealand white rabbits were randomly divided into 5 groups: sham operation group (SHM), TAC-induced HF group (HF), TAC-induced HF followed by CCM stimulation group (HF + CCM), TAC-induced HF followed by injection of anti-miR-25 group (HF + anti-miR-25), TAC-induced HF followed by CCM stimulation and AAV9-miR-25 injection group (HF + CCM + miR-25). CCM current was performed 6 hours a day for 4 weeks. The left ventricle ejection fraction (LVEF) was measured by ultrasound. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot were used for measuring RNA and protein levels. The sarcoplasmic reticulum calcium ATPase (SERCA2A) and LVEF were reduced, while the miR-25 expression was improved in HF group compared to SHM group. Conversely, the SERCA2A and LVEF were improved, and the miR-25 reduced in the HF + CCM and the HF + anti-miR-25 groups compared to the HF group. Moreover, the SERCA2A and LVEF were reduced, while the miR-25 was improved in the HF + CCM + miR-25 group compared to the HF + CCM group. CCM is a potentially effective procedure for improving LV systolic function, which might partially by inhibiting miR-25 expression, further improved SERCA2A expression in TAC HF models.
Collapse
Affiliation(s)
- Hongyun Chen
- Department of Geriatric Cardiology, First Hospital of China Medical University, Shenyang 110001, China
| | - Shuang Liu
- Department of Cardiovascular Ultrasound, First Hospital of China Medical University, Shenyang 110001, China
| | - Cuiting Zhao
- Department of Cardiovascular Ultrasound, First Hospital of China Medical University, Shenyang 110001, China
| | - Zhihong Zong
- Department of Biochemistry, China Medical University, Shenyang 110001, China
| | - Chunyan Ma
- Department of Cardiovascular Ultrasound, First Hospital of China Medical University, Shenyang 110001, China
| | - Guoxian Qi
- Department of Geriatric Cardiology, First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
24
|
Sárközy M, Kahán Z, Csont T. A myriad of roles of miR-25 in health and disease. Oncotarget 2018; 9:21580-21612. [PMID: 29765562 PMCID: PMC5940376 DOI: 10.18632/oncotarget.24662] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/30/2018] [Indexed: 02/06/2023] Open
Abstract
Small non-coding RNAs including microRNAs (miRNAs) have been recently recognized as important regulators of gene expression. MicroRNAs play myriads of roles in physiological processes as well as in the pathogenesis of a number of diseases by translational repression or mRNA destabilization of numerous target genes. The miR-106b-25 cluster is highly conserved in vertebrates and consists of three members including miR-106b, miR-93 and miR-25. MiR-106b and miR-93 share the same seed sequences; however, miR-25 has only a similar seed sequence resulting in different predicted target mRNAs. In this review, we specifically focus on the role of miR-25 in healthy and diseased conditions. Many of miR-25 target mRNAs are involved in biological processes such as cell proliferation, differentiation, and migration, apoptosis, oxidative stress, inflammation, calcium handling, etc. Therefore, it is no surprise that miR-25 has been reported as a key regulator of common cancerous and non-cancerous diseases. MiR-25 plays an important role in the pathogenesis of acute myocardial infarction, left ventricular hypertrophy, heart failure, diabetes mellitus, diabetic nephropathy, tubulointerstitial nephropathy, asthma bronchiale, cerebral ischemia/reperfusion injury, neurodegenerative diseases, schizophrenia, multiple sclerosis, etc. MiR-25 is also a well-described oncogenic miRNA playing a crucial role in the development of many tumor types including brain tumors, lung, breast, ovarian, prostate, thyroid, oesophageal, gastric, colorectal, hepatocellular cancers, etc. In this review, our aim is to discuss the translational therapeutic role of miR-25 in common diseased conditions based on relevant basic research and clinical studies.
Collapse
Affiliation(s)
- Márta Sárközy
- Department of Biochemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Zsuzsanna Kahán
- Department of Oncotherapy, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Tamás Csont
- Department of Biochemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
25
|
Abstract
The dominant polyglutamine (polyQ) disorders are a group of progressive and incurable neurodegenerative disorders, which are caused by unstable expanded CAG trinucleotide repeats in the coding regions of their respective causative genes. The most prevalent polyQ disorders worldwide are Huntington’s disease and spinocerebellar ataxia type 3. Epigenetic mechanisms, such as DNA methylation, histone modifications and chromatin remodeling and noncoding RNA regulation, regulate gene expression or genome function. Epigenetic dysregulation has been suggested to play a pivotal role in the pathogenesis of polyQ disorders. Here, we summarize the current knowledge of epigenetic changes present in several representative polyQ disorders and discuss the potentiality of miRNAs as therapeutic targets for the clinic therapy of these disorders.
Collapse
Affiliation(s)
- Hongmei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Caixia Guo
- CAS Key Laboratory of Genomics & Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
26
|
Protein Misfolding and Aggregation as a Therapeutic Target for Polyglutamine Diseases. Brain Sci 2017; 7:brainsci7100128. [PMID: 29019918 PMCID: PMC5664055 DOI: 10.3390/brainsci7100128] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/30/2017] [Accepted: 10/10/2017] [Indexed: 11/17/2022] Open
Abstract
The polyglutamine (polyQ) diseases, such as Huntington’s disease and several types of spinocerebellar ataxias, are a group of inherited neurodegenerative diseases that are caused by an abnormal expansion of the polyQ tract in disease-causative proteins. Proteins with an abnormally expanded polyQ stretch undergo a conformational transition to β-sheet rich structure, which assemble into insoluble aggregates with β-sheet rich amyloid fibrillar structures and accumulate as inclusion bodies in neurons, eventually leading to neurodegeneration. Since misfolding and aggregation of the expanded polyQ proteins are the most upstream event in the most common pathogenic cascade of the polyQ diseases, they are proposed to be one of the most ideal targets for development of disease-modifying therapies for polyQ diseases. In this review, we summarize the current understanding of the molecular pathogenic mechanisms of the polyQ diseases, and introduce therapeutic approaches targeting misfolding and aggregation of the expanded polyQ proteins, which are not only effective on a wide spectrum of polyQ diseases, but also broadly correct the functional abnormalities of multiple downstream cellular processes affected in the aggregation process of polyQ proteins. We hope that in the near future, effective therapies are developed, to bring hope to many patients suffering from currently intractable polyQ diseases.
Collapse
|
27
|
van der Stijl R, Withoff S, Verbeek DS. Spinocerebellar ataxia: miRNAs expose biological pathways underlying pervasive Purkinje cell degeneration. Neurobiol Dis 2017; 108:148-158. [PMID: 28823930 DOI: 10.1016/j.nbd.2017.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/21/2017] [Accepted: 08/16/2017] [Indexed: 01/09/2023] Open
Abstract
Recent work has demonstrated the importance of miRNAs in the pathogenesis of various brain disorders including the neurodegenerative disorder spinocerebellar ataxia (SCA). This review focuses on the role of miRNAs in the shared pathogenesis of the different SCA types. We examine the novel findings of a recent cell-type-specific RNA-sequencing study in mouse brain and discuss how the identification of Purkinje-cell-enriched miRNAs highlights biological pathways that expose the mechanisms behind pervasive Purkinje cell degeneration in SCA. These key pathways are likely to contain targets for therapeutic development and represent potential candidate genes for genetically unsolved SCAs.
Collapse
Affiliation(s)
- Rogier van der Stijl
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Sebo Withoff
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Dineke S Verbeek
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.
| |
Collapse
|
28
|
Huang F, Yi J, Zhou T, Gong X, Jiang H, Yao X. Toward Understanding Non-coding RNA Roles in Intracranial Aneurysms and Subarachnoid Hemorrhage. Transl Neurosci 2017; 8:54-64. [PMID: 28729919 PMCID: PMC5516590 DOI: 10.1515/tnsci-2017-0010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/25/2017] [Indexed: 12/11/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a common and frequently life-threatening cerebrovascular disease, which is mostly related with a ruptured intracranial aneurysm. Its complications include rebleeding, early brain injury, cerebral vasospasm, delayed cerebral ischemia, chronic hydrocephalus, and also non neurological problems. Non-coding RNAs (ncRNAs), comprising of microRNAs (miRNAs), small interfering RNAs (siRNAs) and long non-coding RNAs (lncRNAs), play an important role in intracranial aneurysms and SAH. Here, we review the non-coding RNAs expression profile and their related mechanisms in intracranial aneurysms and SAH. Moreover, we suggest that these non-coding RNAs function as novel molecular biomarkers to predict intracranial aneurysms and SAH, and may yield new therapies after SAH in the future.
Collapse
Affiliation(s)
- Fengzhen Huang
- Department of Neurology, the First People's Hospital of Chenzhou, Chenzhou, Hunan, 423000, P. R.China
| | - Jiping Yi
- Department of Neurology, the First People's Hospital of Chenzhou, Chenzhou, Hunan, 423000, P. R.China
| | - Tieqiao Zhou
- Department of Laboratory Medicine, the First People's Hospital of Chenzhou, Chenzhou, Hunan, 423000, P. R.China
| | - Xiaoxiang Gong
- Pediatrics, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011 P. R.China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R.China.,State Key Laboratory of Medical Genetics of China, Central South University, Changsha, Hunan, 410078, P. R.China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, 410008, P. R.China
| | - Xiaoxi Yao
- Department of Neurology, the First People's Hospital of Chenzhou, Chenzhou, Hunan, 423000, P. R.China
| |
Collapse
|
29
|
Wang C, Peng H, Li J, Ding D, Chen Z, Long Z, Peng Y, Zhou X, Ye W, Li K, Xu Q, Ai S, Song C, Weng L, Qiu R, Xia K, Tang B, Jiang H. Alteration of methylation status in the ATXN3 gene promoter region is linked to the SCA3/MJD. Neurobiol Aging 2017; 53:192.e5-192.e10. [DOI: 10.1016/j.neurobiolaging.2016.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/14/2016] [Accepted: 12/11/2016] [Indexed: 12/13/2022]
|
30
|
Carmona V, Cunha-Santos J, Onofre I, Simões AT, Vijayakumar U, Davidson BL, Pereira de Almeida L. Unravelling Endogenous MicroRNA System Dysfunction as a New Pathophysiological Mechanism in Machado-Joseph Disease. Mol Ther 2017; 25:1038-1055. [PMID: 28236575 DOI: 10.1016/j.ymthe.2017.01.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/28/2016] [Accepted: 01/24/2017] [Indexed: 01/07/2023] Open
Abstract
Machado-Joseph disease (MJD) is a genetic neurodegenerative disease caused by an expanded polyglutamine tract within the protein ataxin-3 (ATXN3). Despite current efforts, MJD's mechanism of pathogenesis remains unclear and no disease-modifying treatment is available. Therefore, in this study, we investigated (1) the role of the 3' UTR of ATXN3, a putative microRNA (miRNA) target, (2) whether miRNA biogenesis and machinery are dysfunctional in MJD, and (3) which specific miRNAs target ATXN3-3' UTR and whether they can alleviate MJD neuropathology in vivo. Our results demonstrate that endogenous miRNAs, by targeting sequences in the 3' UTR, robustly reduce ATXN3 expression and aggregation in vitro and neurodegeneration and neuroinflammation in vivo. Importantly, we found an abnormal MJD-associated downregulation of genes involved in miRNA biogenesis and silencing activity. Finally, we identified three miRNAs-mir-9, mir-181a, and mir-494-that interact with the ATXN3-3' UTR and whose expression is dysregulated in human MJD neurons and in other MJD cell and animal models. Furthermore, overexpression of these miRNAs in mice resulted in reduction of mutATXN3 levels, aggregate counts, and neuronal dysfunction. Altogether, these findings indicate that endogenous miRNAs and the 3' UTR of ATXN3 play a crucial role in MJD pathogenesis and provide a promising opportunity for MJD treatment.
Collapse
Affiliation(s)
- Vitor Carmona
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Coimbra 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Janete Cunha-Santos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Coimbra 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Isabel Onofre
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Coimbra 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Ana Teresa Simões
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Coimbra 3004-504, Portugal
| | - Udaya Vijayakumar
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Coimbra 3004-504, Portugal
| | - Beverly L Davidson
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luís Pereira de Almeida
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Coimbra 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal.
| |
Collapse
|
31
|
Esteves S, Duarte-Silva S, Maciel P. Discovery of Therapeutic Approaches for Polyglutamine Diseases: A Summary of Recent Efforts. Med Res Rev 2016; 37:860-906. [PMID: 27870126 DOI: 10.1002/med.21425] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/01/2016] [Accepted: 10/05/2016] [Indexed: 12/19/2022]
Abstract
Polyglutamine (PolyQ) diseases are a group of neurodegenerative disorders caused by the expansion of cytosine-adenine-guanine (CAG) trinucleotide repeats in the coding region of specific genes. This leads to the production of pathogenic proteins containing critically expanded tracts of glutamines. Although polyQ diseases are individually rare, the fact that these nine diseases are irreversibly progressive over 10 to 30 years, severely impairing and ultimately fatal, usually implicating the full-time patient support by a caregiver for long time periods, makes their economic and social impact quite significant. This has led several researchers worldwide to investigate the pathogenic mechanism(s) and therapeutic strategies for polyQ diseases. Although research in the field has grown notably in the last decades, we are still far from having an effective treatment to offer patients, and the decision of which compounds should be translated to the clinics may be very challenging. In this review, we provide a comprehensive and critical overview of the most recent drug discovery efforts in the field of polyQ diseases, including the most relevant findings emerging from two different types of approaches-hypothesis-based candidate molecule testing and hypothesis-free unbiased drug screenings. We hereby summarize and reflect on the preclinical studies as well as all the clinical trials performed to date, aiming to provide a useful framework for increasingly successful future drug discovery and development efforts.
Collapse
Affiliation(s)
- Sofia Esteves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, University of Minho, Guimarães, Braga, Portugal
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, University of Minho, Guimarães, Braga, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, University of Minho, Guimarães, Braga, Portugal
| |
Collapse
|
32
|
MiR-298 Counteracts Mutant Androgen Receptor Toxicity in Spinal and Bulbar Muscular Atrophy. Mol Ther 2016; 24:937-45. [PMID: 26755334 PMCID: PMC4881766 DOI: 10.1038/mt.2016.13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/04/2016] [Indexed: 01/18/2023] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a currently untreatable adult-onset neuromuscular disease caused by expansion of a polyglutamine repeat in the androgen receptor (AR). In SBMA, as in other polyglutamine diseases, a toxic gain of function in the mutant protein is an important factor in the disease mechanism; therefore, reducing the mutant protein holds promise as an effective treatment strategy. In this work, we evaluated a microRNA (miRNA) to reduce AR expression. From a list of predicted miRNAs that target human AR, we selected microRNA-298 (miR-298) for its ability to downregulate AR mRNA and protein levels when transfected in cells overexpressing wild-type and mutant AR and in SBMA patient-derived fibroblasts. We showed that miR-298 directly binds to the 3'-untranslated region of the human AR transcript, and counteracts AR toxicity in vitro. Intravenous delivery of miR-298 with adeno-associated virus serotype 9 vector resulted in efficient transduction of muscle and spinal cord and amelioration of the disease phenotype in SBMA mice. Our findings support the development of miRNAs as a therapeutic strategy for SBMA and other neurodegenerative disorders caused by toxic proteins.
Collapse
|
33
|
miRNA profiling in autism spectrum disorder in China. GENOMICS DATA 2015; 6:108-9. [PMID: 26697346 PMCID: PMC4664689 DOI: 10.1016/j.gdata.2015.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 12/31/2022]
Abstract
Autism spectrum disorder (ASD) is a clinically complex and heterogeneous disorder. It is characterized by impaired social abilities, disordered language, isolated areas of interest, and repetitive behaviors. Evidence suggested that the neuropathology of ASD is widely distributed, involving epigenetic regulation in the brain. MiRNAs are a group of endogenous non-coding RNAs that play a critical role in neurodevelopment, neuroplasticity, and other fundamental neurobiological processes. To study miRNA profiling in Autism spectrum disorder in China, we performed miRNA microarray followed quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Here, we describe detailed methods and analysis on these microarray data which has been deposited in Gene Expression Omnibus (GEO): GSE67979.
Collapse
|