1
|
Mafiana MO, Kang XH, Leng Y, He LF, Li SW. Petroleum contamination significantly changes soil microbial communities in three oilfield locations in Delta State, Nigeria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31447-31461. [PMID: 33604834 DOI: 10.1007/s11356-021-12955-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/10/2021] [Indexed: 05/25/2023]
Abstract
Soil microbial community structure is altered by petroleum contamination in response to compound toxicity and degradation. Understanding the relation between petroleum contamination and soil microbial community structure is crucial to determine the amenability of contaminated soils to bacterial- and fungal-aided remediation. To understand how petroleum contamination and soil physicochemical properties jointly shaped the microbial structure of soils from different oilfields, high-throughput sequencing of 16S and ITS amplicons were used to evaluate the shifts of microbial communities in the petroleum-contaminated soils in Ughelli East (UE), Utorogu (UT), and Ughelli West (UW) oilfields located in Delta State, Nigeria. The results showed 1515 bacteria and 919 fungal average OTU number, and community richness and diversity, trending as AL > UT > UW > UE and AL > UW > UT > UE for bacteria, and AL > UW > UT > UE and UW > UT > AL > UE for fungi, respectively. The bacterial taxa KCM-B-112, unclassified Saccharibacteria, unclassified Rhizobiales, Desulfurellaceae, and Acidobacteriaceae and fungal Trichocomaceae, unclassified Ascomycota, unclassified Sporidiobolales, and unclassified Fungi were found to be the dominant families in petroleum-contaminated soils. Redundancy analysis (RDA) and Spearman's correlation analysis revealed that total carbon (TC), electric conductivity (EC), pH, and moisture content (MO) were the major drivers of bacterial and fungal communities, respectively. Gas chromatography-mass spectrophotometer (GC-MS) analysis exhibited that the differences in C7-C10, C11-C16, and C12-C29 compounds in the crude oil composition and soil MO content jointly constituted the microbial community variance among the contaminated soils. This study revealed the bacterial and fungal communities responsible for the biodegradation of petroleum contamination from these oilfields, which could serve as biomarkers to monitor oil spill site restoration within these areas. Further studies on these contaminated sites could offer useful insights into other contributing factors such as heavy metals.
Collapse
Affiliation(s)
- Macdonald Ogorm Mafiana
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, 730070, Lanzhou, People's Republic of China.
| | - Xiao-Hu Kang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, 730070, Lanzhou, People's Republic of China
| | - Yan Leng
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, 730070, Lanzhou, People's Republic of China
| | - Li-Fang He
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, 730070, Lanzhou, People's Republic of China
| | - Shi-Weng Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, 730070, Lanzhou, People's Republic of China.
| |
Collapse
|
2
|
Sheng Y, Liu Y, Yang J, Dong H, Liu B, Zhang H, Li A, Wei Y, Li G, Zhang D. History of petroleum disturbance triggering the depth-resolved assembly process of microbial communities in the vadose zone. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:124060. [PMID: 33254835 DOI: 10.1016/j.jhazmat.2020.124060] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/12/2020] [Accepted: 09/20/2020] [Indexed: 06/12/2023]
Abstract
Biogeochemical gradient forms in vadose zone, yet little is known about the assembly processes of microbial communities in this zone under petroleum disturbance. This study collected vadose zone soils at three sites with 0, 5, and 30 years of petroleum contamination to unravel the vertical microbial community successions and their assembly mechanisms. The results showed that petroleum hydrocarbons exhibited higher concentrations at the long-term contaminated site, showing negative impacts on some soil properties, retarding in the surface soils and decreasing along soil depth. Cultivable fraction of heterotrophic bacteria and microbial α-diversity decreased along depth in vadose zones with short-term/no contamination history, but exhibited an opposite trend with long-term contamination history. Petroleum contamination intensified the vertical heterogeneity of microbial communities based on the contamination time. Microbial co-occurrence network revealed the lowest species co-occurrence pattern at the long-term contaminated site. The distance-decay patterns and null model analysis together suggested distinct assembly mechanisms at three sites, where dispersal limitation (42-45%) was higher and variable and homogenizing selections were lower (37-38%) in vadose zones under petroleum disturbance than those in the uncontaminated vadose zone. Our findings help to better understand the subsurface biogeochemical cycles and bioremediation of petroleum-contaminated vadose zones.
Collapse
Affiliation(s)
- Yizhi Sheng
- School of Environment & State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China; Department of Geology and Environmental Earth Science, Miami University, Oxford OH 45056, USA
| | - Ying Liu
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Juejie Yang
- School of Environment & State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Hailiang Dong
- Department of Geology and Environmental Earth Science, Miami University, Oxford OH 45056, USA
| | - Bo Liu
- School of Environment & State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Hao Zhang
- School of Environment & State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Aiyang Li
- School of Environment & State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Yuquan Wei
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guanghe Li
- School of Environment & State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.
| | - Dayi Zhang
- School of Environment & State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, China.
| |
Collapse
|
3
|
Chavan S, Nadanathangam V. Shifts in metabolic patterns of soil bacterial communities on exposure to metal engineered nanomaterials. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:110012. [PMID: 31812019 DOI: 10.1016/j.ecoenv.2019.110012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/27/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
The explosive growth in nanomaterial use will bring about their increased release into terrestrial ecosystems. Metal engineered nanomaterials (ENMs) that gain entry into these environments may alter the composition and activities of resident natural bacterial communities. To assess changes in community level physiological profiles (CLPP) of microbial communities in soils exposed to metal ENMs, Biolog EcoPlates were used in this exploratory comparative study. The CLPP is a rapid screening technique to characterise functional differences among heterotrophic microbial communities based on variable substrate utilization. The impacts of three metal ENMs, silver, titanium dioxide and zinc oxide, on bacterial communities were investigated using three soil types from Maharashtra, India. Metabolic diversity of bacterial communities was impacted in the soils in presence of silver and zinc oxide, but not in presence of titanium dioxide nanoparticles. Diversity indices, viz., Shannon's index, Evenness index and Simpson's index also showed significant differences in the presence of silver and zinc oxide nanoparticles. Principal component analysis revealed changes in metabolic profiles in the presence of silver nanoparticles. This study also shows that testing ecotoxicity of nanoparticles using readily culturable bacteria is a practical approach.
Collapse
Affiliation(s)
- Sangeeta Chavan
- Caius Research Laboratory, St. Xavier's College, Mumbai, 400 001, India.
| | - Vigneshwaran Nadanathangam
- Nanotechnology Research Group, Central Institute for Research on Cotton Technology, Mumbai, 400 019, India.
| |
Collapse
|
4
|
Guimbaud C, Noel C, Chartier M, Catoire V, Blessing M, Gourry JC, Robert C. A quantum cascade laser infrared spectrometer for CO2 stable isotope analysis: Field implementation at a hydrocarbon contaminated site under bio-remediation. J Environ Sci (China) 2016; 40:60-74. [PMID: 26969546 DOI: 10.1016/j.jes.2015.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/07/2015] [Accepted: 11/27/2015] [Indexed: 06/05/2023]
Abstract
Real-time methods to monitor stable isotope ratios of CO2 are needed to identify biogeochemical origins of CO2 emissions from the soil-air interface. An isotope ratio infra-red spectrometer (IRIS) has been developed to measure CO2 mixing ratio with δ(13)C isotopic signature, in addition to mixing ratios of other greenhouse gases (CH4, N2O). The original aspects of the instrument as well as its precision and accuracy for the determination of the isotopic signature δ(13)C of CO2 are discussed. A first application to biodegradation of hydrocarbons is presented, tested on a hydrocarbon contaminated site under aerobic bio-treatment. CO2 flux measurements using closed chamber method is combined with the determination of the isotopic signature δ(13)C of the CO2 emission to propose a non-intrusive method to monitor in situ biodegradation of hydrocarbons. In the contaminated area, high CO2 emissions have been measured with an isotopic signature δ(13)C suggesting that CO2 comes from petroleum hydrocarbon biodegradation. This first field implementation shows that rapid and accurate measurement of isotopic signature of CO2 emissions is particularly useful in assessing the contribution of contaminant degradation to the measured CO2 efflux and is promising as a monitoring tool for aerobic bio-treatment.
Collapse
Affiliation(s)
- Christophe Guimbaud
- Laboratoire de Physique et de Chimie de l'Environnement et de l'Espace (LPC2E), CNRS et Université d'Orléans (UMR 7328), 45071 Orléans cedex 2, France.
| | - Cécile Noel
- Laboratoire de Physique et de Chimie de l'Environnement et de l'Espace (LPC2E), CNRS et Université d'Orléans (UMR 7328), 45071 Orléans cedex 2, France; Bureau de Recherches Géologiques et Minières (BRGM), 45060 Orléans cedex 2, France
| | - Michel Chartier
- Laboratoire de Physique et de Chimie de l'Environnement et de l'Espace (LPC2E), CNRS et Université d'Orléans (UMR 7328), 45071 Orléans cedex 2, France
| | - Valéry Catoire
- Laboratoire de Physique et de Chimie de l'Environnement et de l'Espace (LPC2E), CNRS et Université d'Orléans (UMR 7328), 45071 Orléans cedex 2, France
| | - Michaela Blessing
- Bureau de Recherches Géologiques et Minières (BRGM), 45060 Orléans cedex 2, France
| | | | - Claude Robert
- Laboratoire de Physique et de Chimie de l'Environnement et de l'Espace (LPC2E), CNRS et Université d'Orléans (UMR 7328), 45071 Orléans cedex 2, France
| |
Collapse
|
5
|
Long-term oil contamination causes similar changes in microbial communities of two distinct soils. Appl Microbiol Biotechnol 2015; 99:10299-310. [PMID: 26254788 DOI: 10.1007/s00253-015-6880-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 07/21/2015] [Accepted: 07/24/2015] [Indexed: 10/23/2022]
Abstract
Since total petroleum hydrocarbons (TPH) are toxic and persistent in environments, studying the impact of oil contamination on microbial communities in different soils is vital to oil production engineering, effective soil management and pollution control. This study analyzed the impact of oil contamination on the structure, activity and function in carbon metabolism of microbial communities of Chernozem soil from Daqing oil field and Cinnamon soil from Huabei oil field through both culture-dependent techniques and a culture-independent technique-pyrosequencing. Results revealed that pristine microbial communities in these two soils presented disparate patterns, where Cinnamon soil showed higher abundance of alkane, (polycyclic aromatic hydrocarbons) PAHs and TPH degraders, number of cultivable microbes, bacterial richness, bacterial biodiversity, and stronger microbial activity and function in carbon metabolism than Chernozem soil. It suggested that complicated properties of microbes and soils resulted in the difference in soil microbial patterns. However, the changes of microbial communities caused by oil contamination were similar in respect of two dominant phenomena. Firstly, the microbial community structures were greatly changed, with higher abundance, higher bacterial biodiversity, occurrence of Candidate_division_BRC1 and TAO6, disappearance of BD1-5 and Candidate_division_OD1, dominance of Streptomyces, higher percentage of hydrocarbon-degrading groups, and lower percentage of nitrogen-transforming groups. Secondly, microbial activity and function in carbon metabolism were significantly enhanced. Based on the characteristics of microbial communities in the two soils, appropriate strategy for in situ bioremediation was provided for each oil field. This research underscored the usefulness of combination of culture-dependent techniques and next-generation sequencing techniques both to unravel the microbial patterns and understand the ecological impact of contamination.
Collapse
|
6
|
Manchola L, Dussán J. Lysinibacillus sphaericusandGeobacillussp Biodegradation of Petroleum Hydrocarbons and Biosurfactant Production. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/rem.21416] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
7
|
Bacterial communities in polluted seabed sediments: a molecular biology assay in Leghorn Harbor. ScientificWorldJournal 2013; 2013:165706. [PMID: 24227997 PMCID: PMC3817660 DOI: 10.1155/2013/165706] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 08/22/2013] [Indexed: 11/28/2022] Open
Abstract
Seabed sediments of commercial ports are often characterized by high pollution levels. Differences in number and distribution of bacteria in such areas can be related to distribution of pollutants in the port and to sediment conditions. In this study, the bacterial communities of five sites from Leghorn Harbor seabed were characterized, and the main bacterial groups were identified. T-RFLP was used for all samples; two 16S rRNA libraries and in silico digestion of clones were used to identify fingerprint profiles. Library data, phylogenetic analysis, and T-RFLP coupled with in silico digestion of the obtained sequences evidenced the dominance of Proteobacteria and the high percentage of Bacteroidetes in all sites. The approach highlighted similar bacterial communities between samples coming from the five sites, suggesting a modest differentiation among bacterial communities of different harbor seabed sediments and hence the capacity of bacterial communities to adapt to different levels and types of pollution.
Collapse
|
8
|
Höhener P, Ponsin V. In situ vadose zone bioremediation. Curr Opin Biotechnol 2013; 27:1-7. [PMID: 24863890 DOI: 10.1016/j.copbio.2013.08.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/06/2013] [Accepted: 08/26/2013] [Indexed: 10/26/2022]
Abstract
Contamination of the vadose zone with various pollutants is a world-wide problem, and often technical or economic constraints impose remediation without excavation. In situ bioremediation in the vadose zone by bioventing has become a standard remediation technology for light spilled petroleum products. In this review, focus is given on new in situ bioremediation strategies in the vadose zone targeting a variety of other pollutants such as perchlorate, nitrate, uranium, chromium, halogenated solvents, explosives and pesticides. The techniques for biostimulation of either oxidative or reductive degradation pathways are presented, and biotransformations to immobile pollutants are discussed in cases of non-degradable pollutants. Furthermore, research on natural attenuation in the vadose zone is presented.
Collapse
Affiliation(s)
- Patrick Höhener
- Aix-Marseille Université-CNRS, Laboratoire Chimie Environnement FRE 3416, Marseille, France.
| | - Violaine Ponsin
- Aix-Marseille Université-CNRS, Laboratoire Chimie Environnement FRE 3416, Marseille, France; French Environment and Energy Management Agency, 20 avenue du Grésillé, BP 90406, Angers Cedex 01, France
| |
Collapse
|
9
|
Paissé S, Goñi-Urriza M, Stadler T, Budzinski H, Duran R. Ring-hydroxylating dioxygenase (RHD) expression in a microbial community during the early response to oil pollution. FEMS Microbiol Ecol 2012; 80:77-86. [DOI: 10.1111/j.1574-6941.2011.01270.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/08/2011] [Accepted: 11/24/2011] [Indexed: 11/27/2022] Open
Affiliation(s)
- Sandrine Paissé
- Equipe Environnement et Microbiologie; UMR CNRS IPREM 5254; Université de Pau; Pau Cedex; France
| | - Marisol Goñi-Urriza
- Equipe Environnement et Microbiologie; UMR CNRS IPREM 5254; Université de Pau; Pau Cedex; France
| | - Thibault Stadler
- Equipe Environnement et Microbiologie; UMR CNRS IPREM 5254; Université de Pau; Pau Cedex; France
| | - Hélène Budzinski
- Institut des Sciences Moléculaires; UMR CNRS 5255; Université Bordeaux; Talence; France
| | - Robert Duran
- Equipe Environnement et Microbiologie; UMR CNRS IPREM 5254; Université de Pau; Pau Cedex; France
| |
Collapse
|
10
|
Rivett MO, Wealthall GP, Dearden RA, McAlary TA. Review of unsaturated-zone transport and attenuation of volatile organic compound (VOC) plumes leached from shallow source zones. JOURNAL OF CONTAMINANT HYDROLOGY 2011; 123:130-156. [PMID: 21316792 DOI: 10.1016/j.jconhyd.2010.12.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 12/29/2010] [Accepted: 12/30/2010] [Indexed: 05/30/2023]
Abstract
Reliable prediction of the unsaturated zone transport and attenuation of dissolved-phase VOC (volatile organic compound) plumes leached from shallow source zones is a complex, multi-process, environmental problem. It is an important problem as sources, which include solid-waste landfills, aqueous-phase liquid discharge lagoons and NAPL releases partially penetrating the unsaturated zone, may persist for decades. Natural attenuation processes operating in the unsaturated zone that, uniquely for VOCs includes volatilisation, may, however, serve to protect underlying groundwater and potentially reduce the need for expensive remedial actions. Review of the literature indicates that only a few studies have focused upon the overall leached VOC source and plume scenario as a whole. These are mostly modelling studies that often involve high strength, non-aqueous phase liquid (NAPL) sources for which density-induced and diffusive vapour transport is significant. Occasional dissolved-phase aromatic hydrocarbon controlled infiltration field studies also exist. Despite this lack of focus on the overall problem, a wide range of process-based unsaturated zone - VOC research has been conducted that may be collated to build good conceptual model understanding of the scenario, particularly for the much studied aromatic hydrocarbons and chlorinated aliphatic hydrocarbons (CAHs). In general, the former group is likely to be attenuated in the unsaturated zone due to their ready aerobic biodegradation, albeit with rate variability across the literature, whereas the fate of the latter is far less likely to be dominated by a single mechanism and dependent upon the relative importance of the various attenuation processes within individual site - VOC scenarios. Analytical and numerical modelling tools permit effective process representation of the whole scenario, albeit with potential for inclusion of additional processes - e.g., multi-mechanistic sorption phase partitioning, and provide good opportunity for further sensitivity analysis and development to practitioner use. There remains a significant need to obtain intermediate laboratory-scale and particularly field-scale (actual site and controlled release) datasets that address the scenario as a whole and permit validation of the available models. Integrated assessment of the range of simultaneous processes that combine to influence leached plume generation, transport and attenuation in the unsaturated zone is required. Component process research needs are required across the problem scenario and include: the simultaneous volatilisation and dissolution of source zones; development of appropriate field-scale dispersion estimates for the unsaturated zone; assessment of transient VOC exchanges between aqueous, vapour and sorbed phases and their influence upon plume attenuation; development of improved field methods to recognise and quantify biodegradation of CAHs; establishment of the influence of co-contaminants; and, finally, translation of research findings into more robust practitioner practice.
Collapse
Affiliation(s)
- Michael O Rivett
- Water Sciences Group, School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | | | | | | |
Collapse
|
11
|
Kristensen AH, Poulsen TG, Mortensen L, Moldrup P. Variability of soil potential for biodegradation of petroleum hydrocarbons in a heterogeneous subsurface. JOURNAL OF HAZARDOUS MATERIALS 2010; 179:573-580. [PMID: 20363074 DOI: 10.1016/j.jhazmat.2010.03.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 02/15/2010] [Accepted: 03/09/2010] [Indexed: 05/29/2023]
Abstract
Quantifying the spatial variability of factors affecting natural attenuation of hydrocarbons in the unsaturated zone is important to (i) performing a reliable risk assessment and (ii) evaluating the possibility for bioremediation of petroleum-polluted sites. Most studies to date have focused on the shallow unsaturated zone. Based on a data set comprising analysis of about 100 soil samples taken in a 16 m-deep unsaturated zone polluted with volatile petroleum compounds, we statistically and geostatistically analysed values of essential soil properties. The subsurface of the site was highly layered, resulting in an accumulation of pollution within coarse sandy lenses. Air-filled porosity, readily available phosphorous, and the first-order rate constant (k(1)) of benzene obtained from slurry biodegradation experiments were found to depend on geologic sample characterization (P<0.05), while inorganic nitrogen was homogenously distributed across the soil stratigraphy. Semivariogram analysis showed a spatial continuity of 4-8.6 m in the vertical direction, while it was 2-5 times greater in the horizontal direction. Values of k(1) displayed strong spatial autocorrelation. Even so, the soil potential for biodegradation was highly variable, which from autoregressive state-space modeling was partly explained by changes in soil air-filled porosity and gravimetric water content. The results suggest considering biological heterogeneity when evaluating the fate of contaminants in the subsurface.
Collapse
Affiliation(s)
- Andreas H Kristensen
- Aalborg University, Department of Biotechnology, Chemistry, and Environmental Engineering, Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark.
| | | | | | | |
Collapse
|
12
|
Misic C, Covazzi Harriague A. Organic matter characterisation and turnover in the sediment and seawater of a tourist harbour. MARINE ENVIRONMENTAL RESEARCH 2009; 68:227-235. [PMID: 19596149 DOI: 10.1016/j.marenvres.2009.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 06/10/2009] [Accepted: 06/15/2009] [Indexed: 05/28/2023]
Abstract
A survey of a Ligurian tourist harbour was carried out during winter 2006 and summer 2007 in order to study the organic matter (OM) turnover through extracellular enzymatic activity. Seawater and sediments were sampled at six stations, three inside the port boundaries, one outside the port and two in an area influenced by the outflow of a minor river (Boate). The seawater showed OM turnover times similar to other oligo-mesotrophic coastal areas, and low concentrations of chlorophyll-a and inorganic nutrients. The sediments, instead, revealed high OM loads and a predominance of proteolysis. A significant reduction of the OM loads was observed in the outside station, indicating that the OM accumulation was due to the structures and activities of the harbour and to the Boate influence. The OM biotic recycling via enzymatic activity was enhanced especially during summer. Although the carbohydrates were probably highly refractory, their turnover was notably faster, due to glycolytic enzymatic activity that was enhanced more than the proteolytic in both the sediment and in the seawater. This suggested that the removal and recycling of OM were potentially efficient, and prevented the shift to eutrophication of the Rapallo harbour area.
Collapse
Affiliation(s)
- Cristina Misic
- Dipartimento per lo Studio del Territorio e delle sue Risorse, Università di Genova, C.so Europa 26, 16132 Genova, Italy.
| | | |
Collapse
|
13
|
Bordenave S, Goñi-Urriza M, Vilette C, Blanchard S, Caumette P, Duran R. Diversity of ring-hydroxylating dioxygenases in pristine and oil contaminated microbial mats at genomic and transcriptomic levels. Environ Microbiol 2008; 10:3201-11. [PMID: 18662307 DOI: 10.1111/j.1462-2920.2008.01707.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of this work was to characterize bacterial ring-hydroxylating dioxygenase (RHD) diversity in a pristine microbial mat and follow their diversity changes in response to heavy fuel oil contamination. In order to describe the RHDs diversity, new degenerate primers were designed and a nested-PCR approach was developed to gain sensitivity and wider diversity. RHD diversity in artificially contaminated mats maintained in microcosms and in chronically contaminated mats was analysed by clone libraries and terminal restriction fragment length polymorphism (T-RFLP) at genomic and transcriptomic levels. The RHD diversity in the pristine microbial mat was represented by Pseudomonas putida nahAc-like genes and no increase of diversity was detected after 1 year of oil contamination. The diversity observed in a 30 year chronically polluted microbial mat was represented by four main RHD clusters and two new genes revealing higher polyaromatic hydrocarbon (PAH) degradation capacity. This study illustrates that a single petroleum contamination (such as oil spill) is not enough to involve a detectable modification of RHD diversity. The new degenerate primers described here allowed RHD gene amplification from pristine and contaminated samples thereby showing their diversity. The proposed approach solves one of the main problems of functional gene analysis providing effective amplification of the environmental diversity of the targeted genes.
Collapse
Affiliation(s)
- Sylvain Bordenave
- Equipe Environnement et Microbiologie, Institut Pluridisciplinaire de Recherche Environnement et Matériaux, UMR CNRS 5254, Université de Pau BP1155-64013 Pau cedex, France
| | | | | | | | | | | |
Collapse
|
14
|
Slater GF, Cowie BR, Harper N, Droppo IG. Variation in PAH inputs and microbial community in surface sediments of Hamilton Harbour: implications to remediation and monitoring. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2008; 153:60-70. [PMID: 17920174 DOI: 10.1016/j.envpol.2007.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 07/11/2007] [Accepted: 08/01/2007] [Indexed: 05/25/2023]
Abstract
Variations in concentrations of polycyclic aromatic hydrocarbons (PAHs) and microbial community indicators were investigated in representative highly contaminated and less contaminated surface sediment sites of Hamilton Harbour. Inputs of PAH to the upper 3cm of sediments up to four times the average upper sediment concentrations were observed. Associated PAH fingerprint profiles indicated that the source was consistent with the PAH source to the industrial region of the harbour. Increased PAH loadings were associated with decreased bacterial populations as indicated by phospholipid fatty acid (PLFA) concentrations. However, relatively minor impacts on overall community composition were indicated. Porewater methane concentrations and isotopic data indicated a difference in the occurrence of methane oxidation between the two sites. This study confirms temporally limited transport of contaminants from highly impacted regions as a vector for contaminants within the harbour and the impact on microbial carbon cycling and bed stability.
Collapse
Affiliation(s)
- G F Slater
- School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada.
| | | | | | | |
Collapse
|
15
|
Bouchard D, Hunkeler D, Gaganis P, Aravena R, Höhener P, Broholm MM, Kjeldsen P. Carbon isotope fractionation during diffusion and biodegradation of petroleum hydrocarbons in the unsaturated zone: field experiment at Vaerløse Airbase, Denmark, and modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:596-601. [PMID: 18284168 DOI: 10.1021/es070718f] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A field experiment was conducted in Denmark in order to evaluate the fate of 13 volatile organic compounds (VOCs) that were buried as an artificial fuel source in the unsaturated zone. Compound-specific isotope analysis showed distinct phases in the 13C/12C ratio evolution in VOC vapors within 3 m from the source over 114 days. At day 3 and to a lesser extent at day 6, the compounds were depleted in 13C by up to -5.7% per hundred with increasing distance from the source compared to the initial source values. This trend can be explained by faster outward diffusion of the molecules with 12C only compared to molecules with a 13C. Then, the isotope profile leveled out, and several compounds started to become enriched in 13C by up to 9.5% per hundred with increasing distance from the source, due to preferential removal of the molecules with 12C only, through biodegradation. Finally, as the amount of a compound diminished in the source, a 13C enrichment was also observed close to the source. The magnitude of isotope fractionation tended to be larger the smaller the mass of the molecule was. This study demonstrates that, in the unsaturated zone, carbon isotope ratios of hydrocarbons are affected by gas-phase diffusion in addition to biodegradation, which was confirmed using a numerical model. Gas-phase diffusion led to shifts in delta(13)C >1% per hundred during the initial days after the spill, and again during the final stages of source volatilization after >75% of a compound had been removed. In between, diffusion has less of an effect, and thus isotope data can be used as an indicator for hydrocarbon biodegradation.
Collapse
Affiliation(s)
- Daniel Bouchard
- Center for Hydrogeology, University of Neuchâtel, Rue Emile Argand 11, 2009 Neuchâtel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
16
|
Bordenave S, Goñi-Urriza MS, Caumette P, Duran R. Effects of heavy fuel oil on the bacterial community structure of a pristine microbial mat. Appl Environ Microbiol 2007; 73:6089-97. [PMID: 17704271 PMCID: PMC2075027 DOI: 10.1128/aem.01352-07] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of petroleum contamination on the bacterial community of a pristine microbial mat from Salins-de-Giraud (Camargue, France) have been investigated. Mats were maintained as microcosms and contaminated with no. 2 fuel oil from the wreck of the Erika. The evolution of the complex bacterial community was monitored by combining analyses based on 16S rRNA genes and their transcripts. 16S rRNA gene-based terminal restriction fragment length polymorphism (T-RFLP) analyses clearly showed the effects of the heavy fuel oil after 60 days of incubation. At the end of the experiment, the initial community structure was recovered, illustrating the resilience of this microbial ecosystem. In addition, the responses of the metabolically active bacterial community were evaluated by T-RFLP and clone library analyses based on 16S rRNA. Immediately after the heavy fuel oil was added to the microcosms, the structure of the active bacterial community was modified, indicating a rapid microbial mat response. Members of the Gammaproteobacteria were initially dominant in the contaminated microcosms. Pseudomonas and Acinetobacter were the main genera representative of this class. After 90 days of incubation, the Gammaproteobacteria were superseded by "Bacilli" and Alphaproteobacteria. This study shows the major changes that occur in the microbial mat community at different time periods following contamination. At the conclusion of the experiment, the RNA approach also demonstrated the resilience of the microbial mat community in resisting environmental stress resulting from oil pollution.
Collapse
Affiliation(s)
- Sylvain Bordenave
- Equipe Environnement et Microbiologie, IPREM UMR5254, IBEAS, Université de Pau, BP1155, 64013 Pau Cedex, France
| | | | | | | |
Collapse
|
17
|
Höhener P, Dakhel N, Christophersen M, Broholm M, Kjeldsen P. Biodegradation of hydrocarbons vapors: Comparison of laboratory studies and field investigations in the vadose zone at the emplaced fuel source experiment, Airbase Vaerløse, Denmark. JOURNAL OF CONTAMINANT HYDROLOGY 2006; 88:337-58. [PMID: 16963155 DOI: 10.1016/j.jconhyd.2006.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 07/07/2006] [Accepted: 07/21/2006] [Indexed: 05/11/2023]
Abstract
The natural attenuation of volatile organic compounds (VOCs) in the unsaturated zone can only be predicted when information about microbial biodegradation rates and kinetics are known. This study aimed at determining first-order rate coefficients for the aerobic biodegradation of 13 volatile petroleum hydrocarbons which were artificially emplaced as a liquid mixture during a field experiment in an unsaturated sandy soil. Apparent first-order biodegradation rate coefficients were estimated by comparing the spatial evolution of the resulting vapor plumes to an analytical reactive transport model. Two independent reactive numerical model approaches have been used to simulate the diffusive migration of VOC vapors and to estimate degradation rate coefficients. Supplementary laboratory column and microcosm experiments were performed with the sandy soil at room temperature under aerobic conditions. First-order kinetics adequately matched the lab column profiles for most of the compounds. Consistent compound-specific apparent first-order rate coefficients were obtained by the three models and the lab column experiment, except for benzene. Laboratory microcosm experiments lacked of sensitivity for slowly degrading compounds and underestimated degradation rates by up to a factor of 5. Addition of NH3 vapor was shown to increase the degradation rates for some VOCs in the laboratory microcosms. All field models suggested a significantly higher degradation rate for benzene than the rates measured in the lab, suggesting that the field microbial community was superior in developing benzene degrading activity.
Collapse
Affiliation(s)
- Patrick Höhener
- Laboratoire de Chimie et Environnement, Université de Provence, Case 29, 3, Place Victor Hugo, F-13331 Marseille Cedex 3, France.
| | | | | | | | | |
Collapse
|
18
|
Cao Y, Cherr GN, Córdova-Kreylos AL, Fan TWM, Green PG, Higashi RM, Lamontagne MG, Scow KM, Vines CA, Yuan J, Holden PA. Relationships between sediment microbial communities and pollutants in two California salt marshes. MICROBIAL ECOLOGY 2006; 52:619-33. [PMID: 17072678 DOI: 10.1007/s00248-006-9093-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2005] [Revised: 04/18/2006] [Accepted: 04/21/2006] [Indexed: 05/12/2023]
Abstract
Salt marshes are important ecosystems whose plant and microbial communities can alter terrestrially derived pollutants prior to coastal water discharge. However, knowledge regarding relationships between anthropogenic pollutant levels and salt marsh microbial communities is limited, and salt marshes on the West Coast of the United States are rarely examined. In this study, we investigated the relationships between microbial community composition and 24 pollutants (20 metals and 4 organics) in two California salt marshes. Multivariate ordination techniques were used to assess how bacterial community composition, as determined by terminal restriction fragment length polymorphism and phospholipid fatty acid analyses, was related to pollution. Sea urchin embryo toxicity measurements and plant tissue metabolite profiles were considered two other biometrics of pollution. Spatial effects were strongly manifested across marshes and across channel elevations within marshes. Utilizing partial canonical correspondence analysis, an ordination technique new to microbial ecology, we found that several metals were strongly associated with microbial community composition after accounting for spatial effects. The major patterns in plant metabolite profiles were consistent with patterns across microbial community profiles, but sea urchin embryo assays, which are commonly used to evaluate ecological toxicity, had no identifiable relationships with pollution. Whereas salt marshes are generally dynamic and complex habitats, microbial communities in these marshes appear to be relatively sensitive indicators of toxic pollutants.
Collapse
Affiliation(s)
- Y Cao
- Donald Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106-5131, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Salminen JM, Hänninen PJ, Leveinen J, Lintinen PTJ, Jørgensen KS. Occurrence and rates of terminal electron-accepting processes and recharge processes in petroleum hydrocarbon-contaminated subsurface. JOURNAL OF ENVIRONMENTAL QUALITY 2006; 35:2273-82. [PMID: 17071898 DOI: 10.2134/jeq2006.0075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The occurrence and rates of terminal electron acceptor processes, and recharge processes in the unsaturated zone of a boreal site contaminated with petroleum hydrocarbons in the range C(10) to C(40) were examined. Soil microcosms were used to determine the rates of denitrification, iron (Fe) reduction, sulfate (SO(4)) reduction, and methanogenesis in two vertical soil profiles contaminated with oil, and in a noncontaminated reference sample. Furthermore, the abundances of the 16S rRNA genes belonging to Geobacteracaea in the samples were determined by real-time quantitative polymerase chain reaction (PCR). Analyses of ground water chemistry and soil gas composition were also performed together with continuous in situ monitoring of soil water and ground water chemistry. Several lines of evidence were obtained to demonstrate that both Fe reduction and methanogenesis played significant roles in the vertical profiles: Fe reduction rates up to 3.7 nmol h(-1) g(-1) were recorded and they correlated with the abundances of the Geobacteracaea 16S rRNA genes (range: 2.3 x 10(5) to 4.9 x 10(7) copies g(-1)). In the ground water, ferrous iron (Fe(2+)) concentration up to 55 mg L(-1) was measured. Methane production rates up to 2.5 nmol h(-1) g(-1) were obtained together with methane content up to 15% (vol/vol) in the soil gas. The continuous monitoring of soil water and ground water chemistry, microcosm experiments, and soil gas monitoring together demonstrated that the high microbial activity in the unsaturated zone resulted in rapid removal of oxygen from the infiltrating recharge thus leaving the anaerobic microbial processes dominant below 1.5 m depth both in the unsaturated and the saturated zones of the subsurface.
Collapse
Affiliation(s)
- Jani M Salminen
- Finnish Environment Institute, P.O. Box 140, FI-00251 Helsinki, Finland.
| | | | | | | | | |
Collapse
|
20
|
Christophersen M, Broholm MM, Mosbaek H, Karapanagioti HK, Burganos VN, Kjeldsen P. Transport of hydrocarbons from an emplaced fuel source experiment in the vadose zone at Airbase Vaerløse, Denmark. JOURNAL OF CONTAMINANT HYDROLOGY 2005; 81:1-33. [PMID: 16102873 DOI: 10.1016/j.jconhyd.2005.06.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Revised: 06/14/2005] [Accepted: 06/20/2005] [Indexed: 05/04/2023]
Abstract
An emplaced hydrocarbon source field experiment was conducted in the relatively homogeneous sandy geology of the vadose zone at Airbase Vaerløse, Denmark. The source (10.2 l of NAPL) consisted of 13 hydrocarbons (n-, iso- and cyclo-alkanes and aromates) and CFC-113 as a tracer. Monitoring in the 107 soil gas probes placed out to 20 m from the centre of the source showed spreading of all the compounds in the pore air and all compounds were measured in the pore air within a few hours after source emplacement. Seven of the fourteen compounds were depleted from the source within the 1 year of monitoring. The organic vapours in the pore air migrated radially from the source. The CFC-113 concentrations seemed to be higher in the deeper soil gas probes compared with the hydrocarbons, indicating a high loss of CFC-113 to the atmosphere and the lack of degradation of CFC-113. For the first days after source emplacement, the transport of CFC-113, hexane and toluene was successfully simulated using a radial gas-phase diffusion model for the unsaturated zone. Groundwater pollution caused by the vadose zone hydrocarbon vapours was only detected in the upper 30 cm of the underlying groundwater and only during the first 3 months of the experiment. Only the most water-soluble compounds were detected in the groundwater and concentrations decreased sharply with depth (approximately one order of magnitude within 10 cm depth) to non-detect at 30 cm depth. The groundwater table varied more than 1 m within the measurement period. However that did not influence the direction of the groundwater flow. Approximately 7 months after source emplacement the groundwater table rose more than 1 m within 1 month. That did not cause additional pollution of the groundwater.
Collapse
Affiliation(s)
- Mette Christophersen
- Institute of Environment and Resources, Technical University of Denmark, Building 115, DK-2800 Kgs. Lyngby, Denmark
| | | | | | | | | | | |
Collapse
|
21
|
Broholm MM, Christophersen M, Maier U, Stenby EH, Höhener P, Kjeldsen P. Compositional evolution of the emplaced fuel source in the vadose zone field experiment at Airbase Verløse, Denmark. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005; 39:8251-63. [PMID: 16294861 DOI: 10.1021/es048557s] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A field experiment was performed in a sandy vadose zone, studying the fate of an emplaced fuel-NAPL source, composed of 13 hydrocarbons and a tracer. The UNIFAC model was used to testthe nonideal behavior of the source, and the numerical model MIN3P was used for assessing the effect of biodegradation on source evolution. The diffusive loss to the surrounding vadose zone and the atmosphere created temporary gradients in mole fractions of the individual compounds within the source NAPL. The evolution of the source composition corresponded in general with expectations based on Raoult's Law, with the exception thatthe mole fractions of aromatic compounds in the source NAPL decreased faster than fractions of aliphatic compounds of similar volatility. Calculation of activity coefficients (y) using the UNIFAC model implied nonideal conditions, with composition-dependent gammas different from 1. Positive deviations were calculated for the aromatic compounds. The effect of biodegradation on source depletion, evaluated by numerical modeling, was greater for the aromatic as compared to the aliphatic compounds. Hence, the faster depletion of the aromatic relative to aliphatic compounds of similar volatility is both a result of the nonideality of the mixture and a result of partitioning and biodegradation in the pore-water. Vapor concentrations of the compounds in the source were in reasonable agreement with predictions based on the modified Raoult's Law with the UNIFAC predicted gammas and the NAPL composition for the most volatile compounds. For the less volatile compounds, the measured vapor concentrations were lower than predicted with the largest deviations for the least volatile compounds. This field experiment illustrated that nonideal behavior and bioenhanced source depletion need to be considered at multicomponent NAPL spill sites.
Collapse
Affiliation(s)
- Mette M Broholm
- Institute of Environment and Resources DTU, Technical University of Denmark, Bygningstorvet B115, DTU, DK-2800 Kgs. Lyngby, Denmark.
| | | | | | | | | | | |
Collapse
|
22
|
Leflaive J, Céréghino R, Danger M, Lacroix G, Ten-Hage L. Assessment of self-organizing maps to analyze sole-carbon source utilization profiles. J Microbiol Methods 2005; 62:89-102. [PMID: 15823397 DOI: 10.1016/j.mimet.2005.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 02/07/2005] [Accepted: 02/07/2005] [Indexed: 11/16/2022]
Abstract
The use of community-level physiological profiles obtained with Biolog microplates is widely employed to consider the functional diversity of bacterial communities. Biolog produces a great amount of data which analysis has been the subject of many studies. In most cases, after some transformations, these data were investigated with classical multivariate analyses. Here we provided an alternative to this method, that is the use of an artificial intelligence technique, the Self-Organizing Maps (SOM, unsupervised neural network). We used data from a microcosm study of algae-associated bacterial communities placed in various nutritive conditions. Analyses were carried out on the net absorbances at two incubation times for each substrates and on the chemical guild categorization of the total bacterial activity. Compared to Principal Components Analysis and cluster analysis, SOM appeared as a valuable tool for community classification, and to establish clear relationships between clusters of bacterial communities and sole-carbon sources utilization. Specifically, SOM offered a clear bidimensional projection of a relatively large volume of data and were easier to interpret than plots commonly obtained with multivariate analyses. They would be recommended to pattern the temporal evolution of communities' functional diversity.
Collapse
Affiliation(s)
- Joséphine Leflaive
- Laboratoire d'Ecologie des Hydrosystèmes, UMR CNRS 5177, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex 04, France
| | | | | | | | | |
Collapse
|