1
|
Kubik BC, Holden JF. Non-thermodynamic factors affect competition between thermophilic chemolithoautotrophs from deep-sea hydrothermal vents. Appl Environ Microbiol 2024; 90:e0029224. [PMID: 39012100 PMCID: PMC11337833 DOI: 10.1128/aem.00292-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Various environmental factors, including H2 availability, metabolic tradeoffs, optimal growth temperature, stochasticity, and hydrology, were examined to determine if they affect microbial competition between three autotrophic thermophiles. The thiosulfate reducer Desulfurobacterium thermolithotrophum (Topt72°C) was grown in mono- and coculture separately with the methanogens Methanocaldococcus jannaschii (Topt82°C) at 72°C and Methanothermococcus thermolithotrophicus (Topt65°C) at 65°C at high and low H2 concentrations. Both methanogens showed a metabolic tradeoff shifting from high growth rate-low cell yield at high H2 concentrations to low growth rate-high cell yield at low H2 concentrations and when grown in coculture with the thiosulfate reducer. In 1:1 initial ratios, D. thermolithotrophum outcompeted both methanogens at high and low H2, no H2S was detected on low H2, and it grew with only CO2 as the electron acceptor indicating a similar metabolic tradeoff with low H2. When the initial methanogen-to-thiosulfate reducer ratio varied from 1:1 to 104:1 with high H2, D. thermolithotrophum always outcompeted M. jannaschii at 72°C. However, M. thermolithotrophicus outcompeted D. thermolithotrophum at 65°C when the ratio was 103:1. A reactive transport model that mixed pure hydrothermal fluid with cold seawater showed that hyperthermophilic methanogens dominated in systems where the residence time of the mixed fluid above 72°C was sufficiently high. With shorter residence times, thermophilic thiosulfate reducers dominated. If residence times increased with decreasing fluid temperature along the flow path, then thermophilic methanogens could dominate. Thermophilic methanogen dominance spread to previously thiosulfate-reducer-dominated conditions if the initial ratio of thermophilic methanogen-to-thiosulfate reducer increased. IMPORTANCE The deep subsurface is the largest reservoir of microbial biomass on Earth and serves as an analog for life on the early Earth and extraterrestrial environments. Methanogenesis and sulfur reduction are among the more common chemolithoautotrophic metabolisms found in hot anoxic hydrothermal vent environments. Competition between H2-oxidizing sulfur reducers and methanogens is primarily driven by the thermodynamic favorability of redox reactions with the former outcompeting methanogens. This study demonstrated that competition between the hydrothermal vent chemolithoautotrophs Methanocaldococcus jannaschii, Methanothermococcus thermolithotrophicus, and Desulfurobacterium thermolithotrophum is also influenced by other overlapping factors such as staggered optimal growth temperatures, stochasticity, and hydrology. By modeling all aspects of microbial competition coupled with field data, a better understanding is gained on how methanogens can outcompete thiosulfate reducers in hot anoxic environments and how the deep subsurface contributes to biogeochemical cycling.
Collapse
Affiliation(s)
- Briana C. Kubik
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - James F. Holden
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
2
|
Miyazaki U, Mizutani D, Hashimoto Y, Tame A, Sawayama S, Miyazaki J, Takai K, Nakagawa S. Helicovermis profundi gen. nov., sp. nov., a novel mesophilic, asporogenous bacterium within the Clostridia isolated from a deep-sea hydrothermal vent chimney. Antonie Van Leeuwenhoek 2024; 117:24. [PMID: 38217723 DOI: 10.1007/s10482-023-01919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/12/2023] [Indexed: 01/15/2024]
Abstract
A novel mesophilic bacterial strain, designated S502T, was isolated from a deep-sea hydrothermal vent at Suiyo Seamount, Japan. Cells were Gram-positive, asporogenous, motile, and curved rods, measuring 1.6-5.6 µm in length. The strain was an obligate anaerobe that grew fermentatively on complex substrates such as yeast extract and Bacto peptone. Elemental sulfur stimulated the growth of the strain, and was reduced to hydrogen sulfide. The strain grew within a temperature range of 10-23 °C (optimum at 20 °C), pH range of 4.8-8.3 (optimum at 7.4), and a NaCl concentration range of 1.0-4.0% (w/v) (optimum at 3.0%, w/v). Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the isolate was a member of the class Clostridia, with Fusibacter paucivorans strain SEBR 4211T (91.1% sequence identity) being its closest relative. The total size of the genome of the strain was 3.12 Mbp, and a G + C content was 28.2 mol%. The highest values for average nucleotide identity (ANI), average amino acid identity (AAI), and digital DNA-DNA hybridization (dDDH) value of strain S502T with relatives were 67.5% (with Marinisporobacter balticus strain 59.4MT), 51.5% (with M. balticus strain 59.4MT), and 40.9% (with Alkaliphilus serpentinus strain LacTT), respectively. Based on a combination of phylogenetic, genomic, and phenotypic characteristics, we propose strain S502T to represent a novel genus and species, Helicovermis profundi gen. nov., sp. nov., with the type strain S502T (= DSM 112048T = JCM 39167T).
Collapse
Affiliation(s)
- Urara Miyazaki
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Daiki Mizutani
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Yurina Hashimoto
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Akihiro Tame
- Depertment of Marine and Earth Sciences, Marine Works Japan Ltd, 3-54-1 Oppamahigashi, Yokosuka, 237-0063, Japan
- General Affairs Department, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-Cho, Yokosuka, 237-0061, Japan
| | - Shigeki Sawayama
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Junichi Miyazaki
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-Cho, Yokosuka, 237-0061, Japan
| | - Ken Takai
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-Cho, Yokosuka, 237-0061, Japan
- Section for Exploration of Life in Extreme Environments, Exploratory Research Center On Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji-Cho, Okazaki, 444-8787, Japan
| | - Satoshi Nakagawa
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan.
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-Cho, Yokosuka, 237-0061, Japan.
- Section for Exploration of Life in Extreme Environments, Exploratory Research Center On Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji-Cho, Okazaki, 444-8787, Japan.
| |
Collapse
|
3
|
Miyazaki U, Sanari M, Tame A, Kitajima M, Okamoto A, Sawayama S, Miyazaki J, Takai K, Nakagawa S. Pyrofollis japonicus gen. nov. sp. nov., a novel member of the family Pyrodictiaceae isolated from the Iheya North hydrothermal field. Extremophiles 2023; 27:28. [PMID: 37843723 DOI: 10.1007/s00792-023-01316-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023]
Abstract
A novel hyperthermophilic, heterotrophic archaeon, strain YC29T, was isolated from a deep-sea hydrothermal vent in the Mid-Okinawa Trough, Japan. Cells of strain YC29T were non-motile, irregular cocci with diameters of 1.2-3.0 µm. The strain was an obligatory fermentative anaerobe capable of growth on complex proteinaceous substrates. Growth was observed between 85 and 100 °C (optimum 90-95 °C), pH 4.9-6.4 (optimum 5.1), and in the presence of 1.4-4.0% (w/v) NaCl (optimum 3.0%). Inorganic carbon was required as a carbon source. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the isolate was a member of the family Pyrodictiaceae. The genome size was 2.02 Mbp with a G+C content of 49.4%. The maximum values for average nucleotide identity (ANI), average amino acid identity (AAI), and in silico DNA-DNA hybridization (dDDH) value of strain YC29T with relatives were 67.9% (with Pyrodictium abyssi strain AV2T), 61.1% (with Pyrodictium occultum strain PL-19T), and 33.8% (with Pyrolobus fumarii strain 1AT), respectively. Based on the phylogenetic, genomic, and phenotypic characteristics, we propose that strain YC29T represents a novel genus and species, Pyrofollis japonicus gen. nov., sp. (type strain YC29T = DSM 113394T = JCM 39171T).
Collapse
Affiliation(s)
- Urara Miyazaki
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Kyoto, 606-8502, Japan
| | - Masaru Sanari
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Kyoto, 606-8502, Japan
| | - Akihiro Tame
- Department of Marine and Earth Sciences, Marine Works Japan Ltd., 3-54-1 Oppamahigashi, Yokosuka, 237-0063, Japan
- General Affairs Department, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-Cho, Yokosuka, 237-0061, Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-Ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Akihiro Okamoto
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, North 13 West 8, Kita-Ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Shigeki Sawayama
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Kyoto, 606-8502, Japan
| | - Junichi Miyazaki
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-Cho, Yokosuka, 237-0061, Japan
| | - Ken Takai
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-Cho, Yokosuka, 237-0061, Japan
- Section for Exploration of Life in Extreme Environments, Exploratory Research Center On Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji-Cho, Okazaki, 444-8787, Japan
| | - Satoshi Nakagawa
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Kyoto, 606-8502, Japan.
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-Cho, Yokosuka, 237-0061, Japan.
- Section for Exploration of Life in Extreme Environments, Exploratory Research Center On Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji-Cho, Okazaki, 444-8787, Japan.
| |
Collapse
|
4
|
Arcadi E, Rizzo C, Calogero R, Sciutteri V, Fabiano F, Consoli P, Andaloro F, Romeo T. Microbial communities inhabiting shallow hydrothermal vents as sentinels of acidification processes. Front Microbiol 2023; 14:1233893. [PMID: 37727286 PMCID: PMC10505797 DOI: 10.3389/fmicb.2023.1233893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/09/2023] [Indexed: 09/21/2023] Open
Abstract
Introduction Shallow hydrothermal vents are considered natural laboratories to study the effects of acidification on biota, due to the consistent CO2 emissions with a consequent decrease in the local pH. Methods Here the microbial communities of water and sediment samples from Levante Bay (Vulcano Island) with different pH and redox conditions were explored by Next Generation Sequencing techniques. The taxonomic structure was elucidated and compared with previous studies from the same area in the last decades. Results and discussion The results revealed substantial shifts in the taxonomic structure of both bacterial and archaeal communities, with special relevance in the sediment samples, where the effects of external parameters probably act for a long time. The study demonstrates that microbial communities could be used as indicators of acidification processes, by shaping the entire biogeochemical balance of the ecosystem in response to stress factors. The study contributes to understanding how much these communities can tell us about future changes in marine ecosystems.
Collapse
Affiliation(s)
- Erika Arcadi
- Department of Biology and Evolution of Marine Organism, Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Messina, Italy
| | - Carmen Rizzo
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn–, Sicily Marine Centre, Messina, Italy
- Institute of Polar Sciences, National Research Council (CNR-ISP), Messina, Italy
| | - Rosario Calogero
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Messina, Italy
| | - Valentina Sciutteri
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Messina, Italy
| | - Francesco Fabiano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn–, Sicily Marine Centre, Messina, Italy
| | - Pierpaolo Consoli
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Messina, Italy
| | - Franco Andaloro
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Messina, Italy
| | - Teresa Romeo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Messina, Italy
- National Institute for Environmental Protection and Research, Milazzo, Italy
| |
Collapse
|
5
|
Fernandes-Martins MC, Colman DR, Boyd ES. Relationships between fluid mixing, biodiversity, and chemosynthetic primary productivity in Yellowstone hot springs. Environ Microbiol 2023; 25:1022-1040. [PMID: 36651919 DOI: 10.1111/1462-2920.16340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
The factors that influence biodiversity and productivity of hydrothermal ecosystems are not well understood. Here we investigate the relationship between fluid mixing, biodiversity, and chemosynthetic primary productivity in three co-localized hot springs (RSW, RSN, and RSE) in Yellowstone National Park that have different geochemistry. All three springs are sourced by reduced hydrothermal fluid, but RSE and RSN receive input of vapour phase gas and oxidized groundwaters, with input of both being substantially higher in RSN. Metagenomic sequencing revealed that communities in RSN were more biodiverse than those of RSE and RSW in all dimensions evaluated. Microcosm activity assays indicate that rates of dissolved inorganic carbon (DIC) uptake were also higher in RSN than in RSE and RSW. Together, these results suggest that increased mixing of reduced volcanic fluid with oxidized fluids generates additional niche space capable of supporting increasingly biodiverse communities that are more productive. These results provide insight into the factors that generate and maintain chemosynthetic biodiversity in hydrothermal systems and that influence the distribution, abundance, and diversity of microbial life in communities supported by chemosynthesis. These factors may also extend to other ecosystems not supported by photosynthesis, including the vast subterranean biosphere and biospheres beneath ice sheets and glaciers.
Collapse
Affiliation(s)
| | - Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
6
|
Muto H, Miyazaki J, Sawayama S, Takai K, Nakagawa S. A Simple and Effective Method for Solid Medium Cultivation of Strictly Hydrogen- and Sulfur-oxidizing Chemolithoautotrophs Predominant in Deep-sea Hydrothermal Fields. Microbes Environ 2023; 38:ME23072. [PMID: 38104970 PMCID: PMC10728628 DOI: 10.1264/jsme2.me23072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/23/2023] [Indexed: 12/19/2023] Open
Abstract
Strictly hydrogen- and sulfur-oxidizing chemolithoautotrophic bacteria, particularly members of the phyla Campylobacterota and Aquificota, have a cosmopolitan distribution in deep-sea hydrothermal fields. The successful cultivation of these microorganisms in liquid media has provided insights into their physiological, evolutionary, and ecological characteristics. Notably, recent population genetic studies on Sulfurimonas (Campylobacterota) and Persephonella (Aquificota) revealed geographic separation in their populations. Advances in this field of research are largely dependent on the availability of pure cultures, which demand labor-intensive liquid cultivation procedures, such as dilution-to-extinction, given the longstanding assumption that many strictly or facultatively anaerobic chemolithoautotrophs cannot easily form colonies on solid media. We herein describe a simple and cost-effective approach for cultivating these chemolithoautotrophs on solid media. The results obtained suggest that not only the choice of gelling agent, but also the gas phase composition significantly affect the colony-forming ratio of diverse laboratory strains. The use of gellan gum as a gelling agent combined with high concentrations of H2 and CO2 in a pouch bag promoted the formation of colonies. This contrasted with the absence of colony formation on an agar-solidified medium, in which thiosulfate served as an electron donor, nitrate as an electron acceptor, and bicarbonate as a carbon source, placed in anaerobic jars under an N2 atmosphere. Our method efficiently isolated chemolithoautotrophs from a deep-sea vent sample, underscoring its potential value in research requiring pure cultures of hydrogen- and sulfur-oxidizing chemolithoautotrophs.
Collapse
Affiliation(s)
- Hisashi Muto
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606–8502, Japan
| | - Junichi Miyazaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka 237–0061, Japan
| | - Shigeki Sawayama
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606–8502, Japan
| | - Ken Takai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka 237–0061, Japan
- Deep-Sea and Deep Subsurface Life Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences (NINS), 5–1 Higashiyama Myodaiji, Okazaki 444–8787, Japan
| | - Satoshi Nakagawa
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606–8502, Japan
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka 237–0061, Japan
- Deep-Sea and Deep Subsurface Life Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences (NINS), 5–1 Higashiyama Myodaiji, Okazaki 444–8787, Japan
| |
Collapse
|
7
|
Zhou Z, St John E, Anantharaman K, Reysenbach AL. Global patterns of diversity and metabolism of microbial communities in deep-sea hydrothermal vent deposits. MICROBIOME 2022; 10:241. [PMID: 36572924 PMCID: PMC9793634 DOI: 10.1186/s40168-022-01424-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/11/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND When deep-sea hydrothermal fluids mix with cold oxygenated fluids, minerals precipitate out of solution and form hydrothermal deposits. These actively venting deep-sea hydrothermal deposits support a rich diversity of thermophilic microorganisms which are involved in a range of carbon, sulfur, nitrogen, and hydrogen metabolisms. Global patterns of thermophilic microbial diversity in deep-sea hydrothermal ecosystems have illustrated the strong connectivity between geological processes and microbial colonization, but little is known about the genomic diversity and physiological potential of these novel taxa. Here we explore this genomic diversity in 42 metagenomes from four deep-sea hydrothermal vent fields and a deep-sea volcano collected from 2004 to 2018 and document their potential implications in biogeochemical cycles. RESULTS Our dataset represents 3635 metagenome-assembled genomes encompassing 511 novel and recently identified genera from deep-sea hydrothermal settings. Some of the novel bacterial (107) and archaeal genera (30) that were recently reported from the deep-sea Brothers volcano were also detected at the deep-sea hydrothermal vent fields, while 99 bacterial and 54 archaeal genera were endemic to the deep-sea Brothers volcano deposits. We report some of the first examples of medium- (≥ 50% complete, ≤ 10% contaminated) to high-quality (> 90% complete, < 5% contaminated) MAGs from phyla and families never previously identified, or poorly sampled, from deep-sea hydrothermal environments. We greatly expand the novel diversity of Thermoproteia, Patescibacteria (Candidate Phyla Radiation, CPR), and Chloroflexota found at deep-sea hydrothermal vents and identify a small sampling of two potentially novel phyla, designated JALSQH01 and JALWCF01. Metabolic pathway analysis of metagenomes provides insights into the prevalent carbon, nitrogen, sulfur, and hydrogen metabolic processes across all sites and illustrates sulfur and nitrogen metabolic "handoffs" in community interactions. We confirm that Campylobacteria and Gammaproteobacteria occupy similar ecological guilds but their prevalence in a particular site is driven by shifts in the geochemical environment. CONCLUSION Our study of globally distributed hydrothermal vent deposits provides a significant expansion of microbial genomic diversity associated with hydrothermal vent deposits and highlights the metabolic adaptation of taxonomic guilds. Collectively, our results illustrate the importance of comparative biodiversity studies in establishing patterns of shared phylogenetic diversity and physiological ecology, while providing many targets for enrichment and cultivation of novel and endemic taxa. Video Abstract.
Collapse
Affiliation(s)
- Zhichao Zhou
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Emily St John
- Center for Life in Extreme Environments, Biology Department, Portland State University, Portland, OR, 97201, USA
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Anna-Louise Reysenbach
- Center for Life in Extreme Environments, Biology Department, Portland State University, Portland, OR, 97201, USA.
| |
Collapse
|
8
|
Ares Á, Sakai S, Sasaki T, Shimamura S, Mitarai S, Nunoura T. Sequestration and efflux largely account for cadmium and copper resistance in the deep-sea Nitratiruptor sp. SB155-2 (phylum Campylobacterota). Environ Microbiol 2022; 24:6144-6163. [PMID: 36284406 PMCID: PMC10092412 DOI: 10.1111/1462-2920.16255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/20/2022] [Indexed: 01/12/2023]
Abstract
In deep-sea hydrothermal vent environments, metal-enriched fluids and sediments abound, making these habitats ideal to study metal resistance in prokaryotes. In this investigation, we employed transcriptomics and shotgun proteomics with scanning transmission electron microscopy and energy-dispersive x-ray spectroscopy (STEM-EDX) to better understand mechanisms of tolerance for cadmium (Cd) and copper (Cu) at stress-inducing concentrations in Nitratiruptor sp. SB155-2 (phylum Campylobacterota). Transcriptomic profiles were remarkably different in the presence of these two metals, displaying 385 (19%) and 629 (31%) differentially transcribed genes (DTG) in the presence of Cd(II) and Cu(II), respectively, while only 7% of differentially transcribed (DT) genes were shared, with genes for non-specific metal transporters and genes involved in oxidative stress-response predominating. Transcriptomic and proteomic analyses confirmed that metal-specific DT pathways under Cu(II) stress, including those involving sulfur, cysteine, and methionine, are likely required for high-affinity efflux systems, while flagella formation and chemotaxis were over-represented under Cd(II) stress. Consistent with these differences, STEM-EDX analysis revealed that polyphosphate-like granules (pPLG), the formation of CdS particles, and the periplasmic space are crucial for Cd(II) sequestration. Overall, this study provides new insights regarding metal-specific adaptations of Campylobacterota to deep-sea hydrothermal vent environments.
Collapse
Affiliation(s)
- Ángela Ares
- Marine Biophysics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Sanae Sakai
- Super-Cutting-Edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Toshio Sasaki
- Imaging section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Shigeru Shimamura
- Super-Cutting-Edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Satoshi Mitarai
- Marine Biophysics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Takuro Nunoura
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| |
Collapse
|
9
|
Baumgartner RJ, Hu S, Van Kranendonk MJ, Verrall M. Taphonomy of microorganisms and microbial microtextures at sulfidic hydrothermal vents: A case study from the Roman Ruins black smokers, Eastern Manus Basin. GEOBIOLOGY 2022; 20:479-497. [PMID: 35315208 PMCID: PMC9310909 DOI: 10.1111/gbi.12490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 02/01/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Biological activity at deep-sea hydrothermal chimneys is driven by chemotrophic microorganisms that metabolize chemicals from the venting high-temperature fluids. Understanding taphonomy and microbial microtextures in such environments is a necessity for micropaleontological and palaeoecological research. This study examines fossilized microorganisms and related microtextures in a recent black smoker from the Roman Ruins hydrothermal vent site, Eastern Manus Basin offshore of Papua New Guinea. Whereas the center of the examined sulfide chimney is dominated by high-temperature mineralogy (chalcopyrite and dendritic sphalerite), filamentous and coccoidal biomorphs occur in an outer, warm zone of mixing between hydrothermal fluids and seawater, which is indicated by their occurrence within colloform and botryoidal pyrite of barite-pyrite coprecipitates. Both morphotypes can be interpreted as thermophilic microorganisms based on their occurrence in a high-temperature habitat. Their separate (non-commensal) occurrence hints at sensitivities to microenvironmental conditions, which is expectable for strong temperature, pH, and redox gradients at the walls of deep-sea hydrothermal chimneys. Whereas both morphotypes experienced mild thermal overprint, taphonomic differences exist: (i) spaces left by cells in filamentous fossils are predominately filled by silica, whereas inter/extracellular features (crosswalls/septae and outer sheaths) are pyritized; (ii) coccoidal fossils show both silica- and pyrite-infilled interiors, and generally better preservation of cell walls. These different manifestations presumably relate to an interplay between microenvironmental and biological factors, potentially contrasting metabolisms, and differences in cell wall chemistries of distinct bacteria and/or archaea. A further hypothesis is that the coccoidal features represent biofilm-forming organisms, whose organic matter derivates contributed to the formation of intimately associated wavy and wrinkly carbonaceous laminations that are at least locally distinguishable from the texture of the surrounding pyrite. Hence, the presented data provide evidence that microtextures of microbiota from hydrothermal systems can have a similar significance for palaeobiological research as those from sedimentary environments.
Collapse
Affiliation(s)
- Raphael J. Baumgartner
- CSIRO Mineral ResourcesAustralian Resources Research CentreKensingtonWestern AustraliaAustralia
- Australian Centre for Astrobiology, and School of Biological, Earth and Environmental SciencesThe University of New South WalesKensingtonNew South WalesAustralia
| | - Siyu Hu
- CSIRO Mineral ResourcesAustralian Resources Research CentreKensingtonWestern AustraliaAustralia
| | - Martin J. Van Kranendonk
- Australian Centre for Astrobiology, and School of Biological, Earth and Environmental SciencesThe University of New South WalesKensingtonNew South WalesAustralia
| | - Michael Verrall
- CSIRO Mineral ResourcesAustralian Resources Research CentreKensingtonWestern AustraliaAustralia
| |
Collapse
|
10
|
Cario A, Oliver GC, Rogers KL. Characterizing the Piezosphere: The Effects of Decompression on Microbial Growth Dynamics. Front Microbiol 2022; 13:867340. [PMID: 35663870 PMCID: PMC9157427 DOI: 10.3389/fmicb.2022.867340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/20/2022] [Indexed: 12/04/2022] Open
Abstract
The extent to which the full diversity of the subsurface microbiome can be captured via cultivation is likely hindered by the inevitable loss of cellular viability from decompression during sampling, enrichment, and isolation. Furthermore, the pressure tolerance of previously isolated strains that span surface and subsurface ecosystems can shed light into microbial activity and pressure adaptation in these transition zones. However, assessments of the effects of elevated pressure on the physiology of piezotolerant and piezosensitive species may be biased by high-pressure enrichment techniques. Here, we compared two high-pressure cultivation techniques-one that requires decompression of the whole cultures during sampling and one that employs the previously described isobaric PUSH devices-to explore the effects of repeated decompression during incubations performed to characterize isolates from deep environments. Two model sulfate-reducing prokaryotes were used to test the effects of decompression/repressurization cycles on growth rates, cell yields, and pressure tolerance. The mesophilic bacterium Desulfovibrio salexigens was cultivated from 0.1 to 50 MPa, and the hyperthermophilic archaeon Archaeoglobus fulgidus was tested from 0.1 to 98 MPa. For both cultivation methods, D. salexigens showed exponential growth up to 20 MPa, but faster growth rates were observed for isobaric cultivation. Furthermore, at 30 MPa minor growth was observed in D. salexigens cultures only for isobaric conditions. Isobaric conditions also extended exponential growth of A. fulgidus to 60 MPa, compared to 50 MPa when cultures were decompressed during subsampling. For both strains, growth rates and cell yields decreased with increasing pressures, and the most pronounced effects of decompression were observed at the higher end of the pressure ranges. These results highlight that repeated decompression can have a significant negative impact on cell viability, suggesting that decompression tolerance may depend on habitat depth. Furthermore, sampling, enrichment, and cultivation in isobaric devices is critical not only to explore the portion of the deep biosphere that is sensitive to decompression, but also to better characterize the pressure limits and growth characteristics of piezotolerant and piezosensitive species that span surface and subsurface ecosystems.
Collapse
Affiliation(s)
- Anaïs Cario
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Gina C. Oliver
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Karyn L. Rogers
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
- Rensselaer Astrobiology Research and Education Center, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
11
|
Chemical and Isotopic Composition of Sulfide Minerals from the Noho Hydrothermal Field in the Okinawa Trough. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10050678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Studies of the element contents and isotopic characteristics of sulfide minerals from seafloor hydrothermal sulfide deposits are a significant method of investigating seawater-fluid mixing and fluid-rock and/or sediment interactions in hydrothermal systems. The seafloor hydrothermal sulfide ores from the Noho hydrothermal field (NHF) in the Okinawa Trough (OT) consist of pyrrhotite, isocubanite, sphalerite, galena, and amorphous silica. The Rh, Ag, Sb, and Tl contents mostly increase in galena as the fluid temperature decreases in the late ore-forming stage. In the sulfide minerals, the rare earth elements are mainly derived from the hydrothermal fluids, while the volcanic rocks and/or sediments are the sources of the sulfur and lead in the sulfide minerals. After the precipitation of galena, the redox state becomes oxidizing, and the pH value of the fluid increases, which is accompanied by the formation of amorphous silica. Finally, neither pyrite nor marcasite has been observed in association with pyrrhotite in the NHF sulfides, likely indicating that the amount of sulfur was limited in this hydrothermal system, and most of the residual Fe was incorporated into the sphalerite. This suggests that the later pyrite and/or marcasite precipitation in the seafloor hydrothermal sulfide deposit is controlled by the sulfur content of the fluid. Furthermore, it is possible to use hydrothermal sulfides and their inclusions to trace subseafloor fluid circulation processes.
Collapse
|
12
|
Two Processes of Anglesite Formation and a Model of Secondary Supergene Enrichment of Bi and Ag in Seafloor Hydrothermal Sulfide Deposits. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse10010035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The in situ element concentrations and the sulfur (S), and lead (Pb) isotopic compositions in anglesite were investigated for samples from seafloor hydrothermal fields in the Okinawa Trough (OT), Western Pacific. The anglesite grains are of two kinds: (1) low Pb/high S primary hydrothermal anglesite (PHA), which is formed by mixing of fluid and seawater, and (2) high Pb/low S secondary supergene anglesite (SSA), which is the product of low-temperature (<100 °C) alteration of galena in the seawater environment. The Ag and Bi in the SSA go through a second enrichment process during the formation of high Pb/low S anglesite by galena alteration, indicating that the SSA and galena, which may be the major minerals host for considerable quantities of Ag and Bi, are potentially Ag-Bi-enriched in the back-arc hydrothermal field. Moreover, REEs, S and Pb in the OT anglesite are likely to have been leached by fluids from local sub-seafloor volcanic rocks and/or sediments. A knowledge of the anglesite is useful for understanding the influence of volcanic rocks, sediments and altered subducted oceanic plate in hydrothermal systems, showing how trace metals behave during the formation of secondary minerals.
Collapse
|
13
|
Multispecies populations of methanotrophic Methyloprofundus and cultivation of a likely dominant species from the Iheya North deep-sea hydrothermal field. Appl Environ Microbiol 2021; 88:e0075821. [PMID: 34788070 PMCID: PMC8788690 DOI: 10.1128/aem.00758-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Methyloprofundus clade is represented by uncultivated methanotrophic bacterial endosymbionts of deep-sea bathymodiolin mussels, but only a single free-living species has been cultivated to date. This study reveals the existence of free-living Methyloprofundus variants in the Iheya North deep-sea hydrothermal field in the mid-Okinawa Trough. A clade-targeted amplicon analysis of the particulate methane monooxygenase gene (pmoA) detected 647 amplicon sequence variants (ASVs) of the Methyloprofundus clade in microbial communities newly formed in in situ colonization systems. Such systems were deployed at colonies of bathymodiolin mussels and a galatheoid crab in diffuse-flow areas. These ASVs were classified into 161 species-like groups. The proportion of the species-like groups representing endosymbionts of mussels was unexpectedly low. A methanotrophic bacterium designated INp10, a likely dominant species in the Methyloprofundus population in this field, was enriched in a biofilm formed in a methane-fed cultivation system operated at 10°C. Genomic characterization with the gene transcription data set of INp10 from the biofilm suggested traits advantageous to niche competition in environments, such as mobility, chemotaxis, biofilm formation, offensive and defensive systems, and hypoxia tolerance. The notable metabolic traits that INp10 shares with some Methyloprofundus members are the use of lanthanide-dependent XoxF as the sole methanol dehydrogenase due to the absence of the canonical MxaFI, the glycolytic pathway using fructose-6-phosphate aldolase instead of fructose-1,6-bisphosphate aldolase, and the potential to perform partial denitrification from nitrate under oxygen-limited conditions. These findings help us better understand the ecological strategies of this possibly widespread marine-specific methanotrophic clade. IMPORTANCE The Iheya North deep-sea hydrothermal field in the mid-Okinawa Trough is characterized by abundant methane derived from organic-rich sediments and diverse chemosynthetic animal species, including those harboring methanotrophic bacterial symbionts, such as bathymodiolin mussels Bathymodiolus japonicus and “Bathymodiolus” platifrons and a galatheoid crab, Shinkaia crosnieri. Symbiotic methanotrophs have attracted significant attention, and yet free-living methanotrophs in this environment have not been studied in detail. We focused on the free-living Methyloprofundus spp. that thrive in this hydrothermal field and identified an unexpectedly large number of species-like groups in this clade. Moreover, we enriched and characterized a methanotroph whose genome sequence indicated that it corresponds to a new species in the genus Methyloprofundus. This species might be a dominant member of the indigenous Methyloprofundus population. New information on free-living Methyloprofundus populations suggests that the hydrothermal field is a promising locale at which to investigate the adaptive capacity and associated genetic diversity of Methyloprofundus spp.
Collapse
|
14
|
Yanrong W, Zhu C, Sha Z, Ren X. Liuomelita mollipalma, a new genus and species of Melitidae (Amphipoda: Hadzioidea) from hydrothermal vents of the Okinawa Trough, North-West Pacific. J NAT HIST 2021. [DOI: 10.1080/00222933.2021.1947535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Wang Yanrong
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chaodong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhongli Sha
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xianqiu Ren
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
15
|
François DX, Godfroy A, Mathien C, Aubé J, Cathalot C, Lesongeur F, L'Haridon S, Philippon X, Roussel EG. Persephonella atlantica sp. nov.: How to adapt to physico-chemical gradients in high temperature hydrothermal habitats. Syst Appl Microbiol 2020; 44:126176. [PMID: 33422731 DOI: 10.1016/j.syapm.2020.126176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
A novel thermophilic, microaerophilic and anaerobic, hydrogen- sulphur- and thiosulphate-oxidising bacterium, designated MO1340T, was isolated from a deep-sea hydrothermal chimney collected from the Lucky Strike hydrothermal vent field on the Mid-Atlantic Ridge. Cells were short, motile rods of 1.4-2.2μm length and 0.5-0.8μm width. Optimal growth was observed for a NaCl concentration of 2.5 % (w/v) at pH 6.5. As for other members of the genus Persephonella, strain MO1340T was strictly chemolithoautotrophic and could oxidise hydrogen, elemental sulphur or thiosulphate using oxygen as electron acceptor. Anaerobic nitrate reduction using hydrogen could also be performed. Each catabolic reaction had a different optimal growth temperature (65 to 75°C) and an optimal dissolved oxygen concentration (11.4 to 119.7 μM at 70°C for aerobic reactions) that varied according to the electron donors utilised. These experimental results are consistent with the distribution of these catabolic substrates along the temperature gradient observed in active hydrothermal systems. They strongly suggest that this adaptive strategy could confer a selective advantage for strain MO1340T in the dynamic part of the ecosystem where hot, reduced hydrothermal fluid mixes with cold, oxygenated seawater. Phylogenetic analysis indicated that strain MO1340T was a member of the genus Persephonella within the order Hydrogenothermales as it shared a 16S rRNA gene sequence similarity <95.5 % and ANI respectively 75.66 % with closest described Persephonella (P. hydrogeniphila 29WT). On the basis of the physiological and genomic properties of the new isolate, the name Persephonella atlantica sp. nov. is proposed. The type strain is MO1340T (=UBOCC-M-3359T =JCM 34026T).
Collapse
Affiliation(s)
- David X François
- Univ Brest, Ifremer, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes UMR6197, F-29280, Plouzané, France
| | - Anne Godfroy
- Univ Brest, Ifremer, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes UMR6197, F-29280, Plouzané, France
| | - Clémentine Mathien
- Univ Brest, Ifremer, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes UMR6197, F-29280, Plouzané, France
| | - Johanne Aubé
- Univ Brest, Ifremer, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes UMR6197, F-29280, Plouzané, France
| | - Cécile Cathalot
- Ifremer, Laboratoire Cycle Géochimique et Ressources (LCG/GM/REM), F-29280, Plouzané, France
| | - Françoise Lesongeur
- Univ Brest, Ifremer, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes UMR6197, F-29280, Plouzané, France
| | - Stéphane L'Haridon
- Univ Brest, Ifremer, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes UMR6197, F-29280, Plouzané, France
| | - Xavier Philippon
- Univ Brest, Ifremer, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes UMR6197, F-29280, Plouzané, France
| | - Erwan G Roussel
- Univ Brest, Ifremer, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes UMR6197, F-29280, Plouzané, France.
| |
Collapse
|
16
|
Complex subsurface hydrothermal fluid mixing at a submarine arc volcano supports distinct and highly diverse microbial communities. Proc Natl Acad Sci U S A 2020; 117:32627-32638. [PMID: 33277434 PMCID: PMC7768687 DOI: 10.1073/pnas.2019021117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hydrothermally active submarine volcanoes are mineral-rich biological oases contributing significantly to chemical fluxes in the deep sea, yet little is known about the microbial communities inhabiting these systems. Here we investigate the diversity of microbial life in hydrothermal deposits and their metagenomics-inferred physiology in light of the geological history and resulting hydrothermal fluid paths in the subsurface of Brothers submarine volcano north of New Zealand on the southern Kermadec arc. From metagenome-assembled genomes we identified over 90 putative bacterial and archaeal genomic families and nearly 300 previously unknown genera, many potentially endemic to this submarine volcanic environment. While magmatically influenced hydrothermal systems on the volcanic resurgent cones of Brothers volcano harbor communities of thermoacidophiles and diverse members of the superphylum "DPANN," two distinct communities are associated with the caldera wall, likely shaped by two different types of hydrothermal circulation. The communities whose phylogenetic diversity primarily aligns with that of the cone sites and magmatically influenced hydrothermal systems elsewhere are characterized predominately by anaerobic metabolisms. These populations are probably maintained by fluids with greater magmatic inputs that have interacted with different (deeper) previously altered mineral assemblages. However, proximal (a few meters distant) communities with gene-inferred aerobic, microaerophilic, and anaerobic metabolisms are likely supported by shallower seawater-dominated circulation. Furthermore, mixing of fluids from these two distinct hydrothermal circulation systems may have an underlying imprint on the high microbial phylogenomic diversity. Collectively our results highlight the importance of considering geologic evolution and history of subsurface processes in studying microbial colonization and community dynamics in volcanic environments.
Collapse
|
17
|
Oliver GC, Cario A, Rogers KL. Rate and Extent of Growth of a Model Extremophile, Archaeoglobus fulgidus, Under High Hydrostatic Pressures. Front Microbiol 2020; 11:1023. [PMID: 32595611 PMCID: PMC7303961 DOI: 10.3389/fmicb.2020.01023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 04/27/2020] [Indexed: 11/28/2022] Open
Abstract
High hydrostatic pressure (HHP) batch cultivation of a model extremophile, Archaeoglobus fulgidus type strain VC-16, was performed to explore how elevated pressures might affect microbial growth and physiology in the deep marine biosphere. Though commonly identified in high-temperature and high-pressure marine environments (up to 2-5 km below sea level, 20-50 MPa pressures), A. fulgidus growth at elevated pressure has not been characterized previously. Here, exponential growth of A. fulgidus was observed up to 60 MPa when supported by the heterotrophic metabolism of lactate oxidation coupled to sulfate reduction, and up to 40 MPa for autotrophic CO2 fixation coupled to thiosulfate reduction via H2. Maximum growth rates for this heterotrophic metabolism were observed at 20 MPa, suggesting that A. fulgidus is a moderate piezophile under these conditions. However, only piezotolerance was observed for autotrophy, as growth rates remained nearly constant from 0.3 to 40 MPa. Experiments described below show that A. fulgidus continues both heterotrophic sulfate reduction and autotrophic thiosulfate reduction nearly unaffected by increasing pressure up to 30 MPa and 40 MPa, respectively. As these pressures encompass a variety of subsurface marine environments, A. fulgidus serves as a model extremophile for exploring the effects of elevated pressure on microbial metabolisms in the deep subsurface. Further, these results exemplify the need for high-pressure cultivation of deep-sea and subsurface microorganisms to better reflect in situ physiological conditions.
Collapse
Affiliation(s)
- Gina C. Oliver
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Anaïs Cario
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Karyn L. Rogers
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
- Rensselaer Astrobiology Research and Education Center, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
18
|
Ramírez GA, Garber AI, Lecoeuvre A, D’Angelo T, Wheat CG, Orcutt BN. Ecology of Subseafloor Crustal Biofilms. Front Microbiol 2019; 10:1983. [PMID: 31551949 PMCID: PMC6736579 DOI: 10.3389/fmicb.2019.01983] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/13/2019] [Indexed: 11/26/2022] Open
Abstract
The crustal subseafloor is the least explored and largest biome on Earth. Interrogating crustal life is difficult due to habitat inaccessibility, low-biomass and contamination challenges. Subseafloor observatories have facilitated the study of planktonic life in crustal aquifers, however, studies of life in crust-attached biofilms are rare. Here, we investigate biofilms grown on various minerals at different temperatures over 1-6 years at subseafloor observatories in the Eastern Pacific. To mitigate potential sequence contamination, we developed a new bioinformatics tool - TaxonSluice. We explore ecological factors driving community structure and potential function of biofilms by comparing our sequence data to previous amplicon and metagenomic surveys of this habitat. We reveal that biofilm community structure is driven by temperature rather than minerology, and that rare planktonic lineages colonize the crustal biofilms. Based on 16S rRNA gene overlap, we partition metagenome assembled genomes into planktonic and biofilm fractions and suggest that there are functional differences between these community types, emphasizing the need to separately examine each to accurately describe subseafloor microbe-rock-fluid processes. Lastly, we report that some rare lineages present in our warm and anoxic study site are also found in cold and oxic crustal fluids in the Mid-Atlantic Ridge, suggesting global crustal biogeography patterns.
Collapse
Affiliation(s)
- Gustavo A. Ramírez
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, United States
| | - Arkadiy I. Garber
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Aurélien Lecoeuvre
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
- Université de Bretagne Occidentale, UFR Sciences et Techniques, Brest, France
| | - Timothy D’Angelo
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - C. Geoffrey Wheat
- Institute of Marine Science, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Beth N. Orcutt
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| |
Collapse
|
19
|
Topçuoğlu BD, Meydan C, Nguyen TB, Lang SQ, Holden JF. Growth Kinetics, Carbon Isotope Fractionation, and Gene Expression in the Hyperthermophile Methanocaldococcus jannaschii during Hydrogen-Limited Growth and Interspecies Hydrogen Transfer. Appl Environ Microbiol 2019; 85:e00180-19. [PMID: 30824444 PMCID: PMC6495749 DOI: 10.1128/aem.00180-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/15/2019] [Indexed: 11/20/2022] Open
Abstract
Hyperthermophilic methanogens are often H2 limited in hot subseafloor environments, and their survival may be due in part to physiological adaptations to low H2 conditions and interspecies H2 transfer. The hyperthermophilic methanogen Methanocaldococcus jannaschii was grown in monoculture at high (80 to 83 μM) and low (15 to 27 μM) aqueous H2 concentrations and in coculture with the hyperthermophilic H2 producer Thermococcus paralvinellae The purpose was to measure changes in growth and CH4 production kinetics, CH4 fractionation, and gene expression in M. jannaschii with changes in H2 flux. Growth and cell-specific CH4 production rates of M. jannaschii decreased with decreasing H2 availability and decreased further in coculture. However, cell yield (cells produced per mole of CH4 produced) increased 6-fold when M. jannaschii was grown in coculture rather than monoculture. Relative to high H2 concentrations, isotopic fractionation of CO2 to CH4 (εCO2-CH4) was 16‰ larger for cultures grown at low H2 concentrations and 45‰ and 56‰ larger for M. jannaschii growth in coculture on maltose and formate, respectively. Gene expression analyses showed H2-dependent methylene-tetrahydromethanopterin (H4MPT) dehydrogenase expression decreased and coenzyme F420-dependent methylene-H4MPT dehydrogenase expression increased with decreasing H2 availability and in coculture growth. In coculture, gene expression decreased for membrane-bound ATP synthase and hydrogenase. The results suggest that H2 availability significantly affects the CH4 and biomass production and CH4 fractionation by hyperthermophilic methanogens in their native habitats.IMPORTANCE Hyperthermophilic methanogens and H2-producing heterotrophs are collocated in high-temperature subseafloor environments, such as petroleum reservoirs, mid-ocean ridge flanks, and hydrothermal vents. Abiotic flux of H2 can be very low in these environments, and there is a gap in our knowledge about the origin of CH4 in these habitats. In the hyperthermophile Methanocaldococcus jannaschii, growth yields increased as H2 flux, growth rates, and CH4 production rates decreased. The same trend was observed increasingly with interspecies H2 transfer between M. jannaschii and the hyperthermophilic H2 producer Thermococcus paralvinellae With decreasing H2 availability, isotopic fractionation of carbon during methanogenesis increased, resulting in isotopically more negative CH4 with a concomitant decrease in H2-dependent methylene-tetrahydromethanopterin dehydrogenase gene expression and increase in F420-dependent methylene-tetrahydromethanopterin dehydrogenase gene expression. The significance of our research is in understanding the nature of hyperthermophilic interspecies H2 transfer and identifying biogeochemical and molecular markers for assessing the physiological state of methanogens and possible source of CH4 in natural environments.
Collapse
Affiliation(s)
- Begüm D Topçuoğlu
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Cem Meydan
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, USA
| | - Tran B Nguyen
- School of the Earth, Ocean, and Environment, University of South Carolina, Columbia, South Carolina, USA
| | - Susan Q Lang
- School of the Earth, Ocean, and Environment, University of South Carolina, Columbia, South Carolina, USA
| | - James F Holden
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
20
|
Colman DR, Lindsay MR, Boyd ES. Mixing of meteoric and geothermal fluids supports hyperdiverse chemosynthetic hydrothermal communities. Nat Commun 2019; 10:681. [PMID: 30737379 PMCID: PMC6368606 DOI: 10.1038/s41467-019-08499-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/15/2019] [Indexed: 12/28/2022] Open
Abstract
Little is known of how mixing of meteoric and geothermal fluids supports biodiversity in non-photosynthetic ecosystems. Here, we use metagenomic sequencing to investigate a chemosynthetic microbial community in a hot spring (SJ3) of Yellowstone National Park that exhibits geochemistry consistent with mixing of a reduced volcanic gas-influenced end member with an oxidized near-surface meteoric end member. SJ3 hosts an exceptionally diverse community with representatives from ~50% of known higher-order archaeal and bacterial lineages, including several divergent deep-branching lineages. A comparison of functional potential with other available chemosynthetic community metagenomes reveals similarly high diversity and functional potentials (i.e., incorporation of electron donors supplied by volcanic gases) in springs sourced by mixed fluids. Further, numerous closely related SJ3 populations harbor differentiated metabolisms that may function to minimize niche overlap, further increasing endemic diversity. We suggest that dynamic mixing of waters generated by subsurface and near-surface geological processes may play a key role in the generation and maintenance of chemosynthetic biodiversity in hydrothermal and other similar environments. Chemosynthetic microbial communities in hydrothermal environments receiving meteoric and geothermal fluids are understudied. Here, Colman et al. use metagenomics to study one such community from a hot spring at Yellowstone National Park, revealing exceptional biodiversity and unique functional potential.
Collapse
Affiliation(s)
- Daniel R Colman
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59718, USA
| | - Melody R Lindsay
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59718, USA
| | - Eric S Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59718, USA. .,NASA Astrobiology Institute, Ames Research Center, Mountain View, CA, USA.
| |
Collapse
|
21
|
Miyazaki J, Kawagucci S, Makabe A, Takahashi A, Kitada K, Torimoto J, Matsui Y, Tasumi E, Shibuya T, Nakamura K, Horai S, Sato S, Ishibashi JI, Kanzaki H, Nakagawa S, Hirai M, Takaki Y, Okino K, Watanabe HK, Kumagai H, Chen C. Deepest and hottest hydrothermal activity in the Okinawa Trough: the Yokosuka site at Yaeyama Knoll. ROYAL SOCIETY OPEN SCIENCE 2017; 4:171570. [PMID: 29308272 PMCID: PMC5750039 DOI: 10.1098/rsos.171570] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
Since the initial discovery of hydrothermal vents in 1977, these 'extreme' chemosynthetic systems have been a focus of interdisciplinary research. The Okinawa Trough (OT), located in the semi-enclosed East China Sea between the Eurasian continent and the Ryukyu arc, hosts more than 20 known vent sites but all within a relatively narrow depth range (600-1880 m). Depth is a significant factor in determining fluid temperature and chemistry, as well as biological composition. However, due to the narrow depth range of known sites, the actual influence of depth here has been poorly resolved. Here, the Yokosuka site (2190 m), the first OT vent exceeding 2000 m depth is reported. A highly active hydrothermal vent site centred around four active vent chimneys reaching 364°C in temperature, it is the hottest in the OT. Notable Cl depletion (130 mM) and both high H2 and CH4 concentrations (approx. 10 mM) probably result from subcritical phase separation and thermal decomposition of sedimentary organic matter. Microbiota and fauna were generally similar to other sites in the OT, although with some different characteristics. In terms of microbiota, the H2-rich vent fluids in Neuschwanstein chimney resulted in the dominance of hydrogenotrophic chemolithoautotrophs such as Thioreductor and Desulfobacterium. For fauna, the dominance of the deep-sea mussel Bathymodiolus aduloides is surprising given other nearby vent sites are usually dominated by B. platifrons and/or B. japonicus, and a sponge field in the periphery dominated by Poecilosclerida is unusual for OT vents. Our insights from the Yokosuka site implies that although the distribution of animal species may be linked to depth, the constraint is perhaps not water pressure and resulting chemical properties of the vent fluid but instead physical properties of the surrounding seawater. The potential significance of these preliminary results and prospect for future research on this unique site are discussed.
Collapse
Affiliation(s)
- Junichi Miyazaki
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Research and Development Center for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Project Team for Development of New-generation Research Protocol for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Shinsuke Kawagucci
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Research and Development Center for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Project Team for Development of New-generation Research Protocol for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Institute of Geochemistry and Petrology, ETH Zürich, Clausiusstrasse 25, 8092 Zürich, Switzerland
| | - Akiko Makabe
- Project Team for Development of New-generation Research Protocol for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Ayu Takahashi
- Research and Development Center for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Project Team for Development of New-generation Research Protocol for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Kazuya Kitada
- Research and Development Center for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Project Team for Development of New-generation Research Protocol for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Junji Torimoto
- Project Team for Development of New-generation Research Protocol for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Yohei Matsui
- Research and Development Center for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Project Team for Development of New-generation Research Protocol for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Eiji Tasumi
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Takazo Shibuya
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Research and Development Center for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Project Team for Development of New-generation Research Protocol for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Kentaro Nakamura
- Research and Development Center for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Department of Systems Innovation, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shunsuke Horai
- Department of Earth and Planetary Sciences, School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shun Sato
- Department of Earth and Planetary Sciences, School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jun-ichiro Ishibashi
- Department of Earth and Planetary Sciences, School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hayato Kanzaki
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Satoshi Nakagawa
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Miho Hirai
- Research and Development Center for Marine Biosciences, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Yoshihiro Takaki
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Research and Development Center for Marine Biosciences, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Kyoko Okino
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8564, Japan
| | - Hiromi Kayama Watanabe
- Research and Development Center for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Project Team for Development of New-generation Research Protocol for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Department of Marine Biodiversity Research (BIO-DIVE), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Hidenori Kumagai
- Research and Development Center for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Project Team for Development of New-generation Research Protocol for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Chong Chen
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| |
Collapse
|
22
|
Muto H, Takaki Y, Hirai M, Mino S, Sawayama S, Takai K, Nakagawa S. A Simple and Efficient RNA Extraction Method from Deep-Sea Hydrothermal Vent Chimney Structures. Microbes Environ 2017; 32:330-335. [PMID: 29187693 PMCID: PMC5745017 DOI: 10.1264/jsme2.me17048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RNA-based microbiological analyses, e.g., transcriptome and reverse transcription-quantitative PCR, require a relatively large amount of high quality RNA. RNA-based analyses on microbial communities in deep-sea hydrothermal environments often encounter methodological difficulties with RNA extraction due to the presence of unique minerals in and the low biomass of samples. In the present study, we assessed RNA extraction methods for deep-sea vent chimneys that had complex mineral compositions. Mineral-RNA adsorption experiments were conducted using mock chimney minerals and Escherichia coli total RNA solution, and showed that detectable RNA significantly decreased possibly due to adsorption onto minerals. This decrease in RNA was prevented by the addition of sodium tripolyphosphate (STPP), deoxynucleotide triphosphates (dNTPs), salmon sperm DNA, and NaOH. The addition of STPP was also effective for RNA extraction from the mixture of E. coli cells and mock chimney minerals when TRIzol reagent and the RNeasy column were used, but not when the RNeasy PowerSoil total RNA kit was used. A combination of STPP, TRIzol reagent, the RNeasy column, and sonication resulted in the highest RNA yield from a natural chimney. This indirect extraction procedure is simple, rapid, inexpensive, and may be used for large-scale RNA extraction.
Collapse
Affiliation(s)
- Hisashi Muto
- Laboratory of Marine Environmental Microbiology, Graduate School of Agriculture, Kyoto University
| | - Yoshihiro Takaki
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| | - Miho Hirai
- Research and Development (R&D) Center for Marine Biosciences, Marine Functional Biology Group (MFbio), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University
| | - Shigeki Sawayama
- Laboratory of Marine Environmental Microbiology, Graduate School of Agriculture, Kyoto University
| | - Ken Takai
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| | - Satoshi Nakagawa
- Laboratory of Marine Environmental Microbiology, Graduate School of Agriculture, Kyoto University.,Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| |
Collapse
|
23
|
Abstract
Viruses are believed to be responsible for the mortality of host organisms. However, some recent investigations reveal that viruses may be essential for host survival. To date, it remains unclear whether viruses are beneficial or harmful to their hosts. To reveal the roles of viruses in the virus-host interactions, viromes and microbiomes of sediment samples from three deep-sea hydrothermal vents were explored in this study. To exclude the influence of exogenous DNAs on viromes, the virus particles were purified with nuclease (DNase I and RNase A) treatments and cesium chloride density gradient centrifugation. The metagenomic analysis of viromes without exogenous DNA contamination and microbiomes of vent samples indicated that viruses had compensation effects on the metabolisms of their host microorganisms. Viral genes not only participated in most of the microbial metabolic pathways but also formed branched pathways in microbial metabolisms, including pyrimidine metabolism; alanine, aspartate, and glutamate metabolism; nitrogen metabolism and assimilation pathways of the two-component system; selenocompound metabolism; aminoacyl-tRNA biosynthesis; and amino sugar and nucleotide sugar metabolism. As is well known, deep-sea hydrothermal vent ecosystems exist in relatively isolated environments which are barely influenced by other ecosystems. The metabolic compensation of hosts mediated by viruses might represent a very important aspect of virus-host interactions. Viruses are the most abundant biological entities in the oceans and have very important roles in regulating microbial community structure and biogeochemical cycles. The relationship between virus and host microbes is broadly thought to be that of predator and prey. Viruses can lyse host cells to control microbial population sizes and affect community structures of hosts by killing specific microbes. However, viruses also influence their hosts through manipulation of bacterial metabolism. We found that viral genes not only participated in most microbial metabolic pathways but also formed branched pathways in microbial metabolisms. The metabolic compensation of hosts mediated by viruses may help hosts to adapt to extreme environments and may be essential for host survival.
Collapse
|
24
|
Barco RA, Hoffman CL, Ramírez GA, Toner BM, Edwards KJ, Sylvan JB. In-situincubation of iron-sulfur mineral reveals a diverse chemolithoautotrophic community and a new biogeochemical role forThiomicrospira. Environ Microbiol 2017; 19:1322-1337. [DOI: 10.1111/1462-2920.13666] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 12/15/2016] [Accepted: 01/06/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Roman A. Barco
- Department of Biological Sciences; University of Southern California; Los Angeles CA USA
| | - Colleen L. Hoffman
- Department of Earth Sciences; University of Minnesota-Twin Cities; St. Paul MN USA
| | - Gustavo A. Ramírez
- Department of Biological Sciences; University of Southern California; Los Angeles CA USA
| | - Brandy M. Toner
- Department of Earth Sciences; University of Minnesota-Twin Cities; St. Paul MN USA
- Department of Soil; Water, and Climate, University of Minnesota-Twin Cities; St. Paul MN USA
| | - Katrina J. Edwards
- Department of Biological Sciences; University of Southern California; Los Angeles CA USA
| | - Jason B. Sylvan
- Department of Oceanography; Texas A&M University; College Station TX USA
| |
Collapse
|
25
|
Yanagawa K, Ijiri A, Breuker A, Sakai S, Miyoshi Y, Kawagucci S, Noguchi T, Hirai M, Schippers A, Ishibashi JI, Takaki Y, Sunamura M, Urabe T, Nunoura T, Takai K. Defining boundaries for the distribution of microbial communities beneath the sediment-buried, hydrothermally active seafloor. THE ISME JOURNAL 2017; 11:529-542. [PMID: 27754478 PMCID: PMC5270560 DOI: 10.1038/ismej.2016.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/26/2016] [Accepted: 08/05/2016] [Indexed: 02/07/2023]
Abstract
Subseafloor microbes beneath active hydrothermal vents are thought to live near the upper temperature limit for life on Earth. We drilled and cored the Iheya North hydrothermal field in the Mid-Okinawa Trough, and examined the phylogenetic compositions and the products of metabolic functions of sub-vent microbial communities. We detected microbial cells, metabolic activities and molecular signatures only in the shallow sediments down to 15.8 m below the seafloor at a moderately distant drilling site from the active hydrothermal vents (450 m). At the drilling site, the profiles of methane and sulfate concentrations and the δ13C and δD isotopic compositions of methane suggested the laterally flowing hydrothermal fluids and the in situ microbial anaerobic methane oxidation. In situ measurements during the drilling constrain the current bottom temperature of the microbially habitable zone to ~45 °C. However, in the past, higher temperatures of 106-198 °C were possible at the depth, as estimated from geochemical thermometry on hydrothermally altered clay minerals. The 16S rRNA gene phylotypes found in the deepest habitable zone are related to those of thermophiles, although sequences typical of known hyperthermophilic microbes were absent from the entire core. Overall our results shed new light on the distribution and composition of the boundary microbial community close to the high-temperature limit for habitability in the subseafloor environment of a hydrothermal field.
Collapse
Affiliation(s)
- Katsunori Yanagawa
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Department of Earth and Planetary Science, University of Tokyo, Tokyo, Japan
- Faculty of Social and Cultural Studies, Kyushu University, Fukuoka, Japan
| | - Akira Ijiri
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kochi, Japan
| | - Anja Breuker
- Geomicrobiology, Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany
| | - Sanae Sakai
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Youko Miyoshi
- Department of Earth and Planetary Sciences, Faculty of Science, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Shinsuke Kawagucci
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Takuroh Noguchi
- Interdisciplinary Science Unit, Multidisciplinary Science Cluster, Research and Education Faculty, Kochi University, Kochi, Japan
| | - Miho Hirai
- Marine Functional Biology Group, Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Axel Schippers
- Geomicrobiology, Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany
| | - Jun-ichiro Ishibashi
- Department of Earth and Planetary Sciences, Faculty of Science, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Yoshihiro Takaki
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Michinari Sunamura
- Department of Earth and Planetary Science, University of Tokyo, Tokyo, Japan
| | - Tetsuro Urabe
- Department of Earth and Planetary Science, University of Tokyo, Tokyo, Japan
| | - Takuro Nunoura
- Marine Functional Biology Group, Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Ken Takai
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| |
Collapse
|
26
|
Topçuoğlu BD, Stewart LC, Morrison HG, Butterfield DA, Huber JA, Holden JF. Hydrogen Limitation and Syntrophic Growth among Natural Assemblages of Thermophilic Methanogens at Deep-sea Hydrothermal Vents. Front Microbiol 2016; 7:1240. [PMID: 27547206 PMCID: PMC4974244 DOI: 10.3389/fmicb.2016.01240] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/26/2016] [Indexed: 11/13/2022] Open
Abstract
Thermophilic methanogens are common autotrophs at hydrothermal vents, but their growth constraints and dependence on H2 syntrophy in situ are poorly understood. Between 2012 and 2015, methanogens and H2-producing heterotrophs were detected by growth at 80°C and 55°C at most diffuse (7-40°C) hydrothermal vent sites at Axial Seamount. Microcosm incubations of diffuse hydrothermal fluids at 80°C and 55°C demonstrated that growth of thermophilic and hyperthermophilic methanogens is primarily limited by H2 availability. Amendment of microcosms with NH4 (+) generally had no effect on CH4 production. However, annual variations in abundance and CH4 production were observed in relation to the eruption cycle of the seamount. Microcosm incubations of hydrothermal fluids at 80°C and 55°C supplemented with tryptone and no added H2 showed CH4 production indicating the capacity in situ for methanogenic H2 syntrophy. 16S rRNA genes were found in 80°C microcosms from H2-producing archaea and H2-consuming methanogens, but not for any bacteria. In 55°C microcosms, sequences were found from H2-producing bacteria and H2-consuming methanogens and sulfate-reducing bacteria. A co-culture of representative organisms showed that Thermococcus paralvinellae supported the syntrophic growth of Methanocaldococcus bathoardescens at 82°C and Methanothermococcus sp. strain BW11 at 60°C. The results demonstrate that modeling of subseafloor methanogenesis should focus primarily on H2 availability and temperature, and that thermophilic H2 syntrophy can support methanogenesis within natural microbial assemblages and may be an important energy source for thermophilic autotrophs in marine geothermal environments.
Collapse
Affiliation(s)
| | - Lucy C. Stewart
- Department of Microbiology, University of Massachusetts, AmherstMA, USA
| | - Hilary G. Morrison
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods HoleMA, USA
| | - David A. Butterfield
- Joint Institute for the Study of Atmosphere and Ocean, University of Washington, SeattleWA, USA
- Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, SeattleWA, USA
| | - Julie A. Huber
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods HoleMA, USA
| | - James F. Holden
- Department of Microbiology, University of Massachusetts, AmherstMA, USA
| |
Collapse
|
27
|
Sun QL, Zeng ZG, Chen S, Sun L. First Comparative Analysis of the Community Structures and Carbon Metabolic Pathways of the Bacteria Associated with Alvinocaris longirostris in a Hydrothermal Vent of Okinawa Trough. PLoS One 2016; 11:e0154359. [PMID: 27111851 PMCID: PMC4844111 DOI: 10.1371/journal.pone.0154359] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/12/2016] [Indexed: 11/19/2022] Open
Abstract
Alvinocaris longirostris is a species of shrimp existing in the hydrothermal fields of Okinawa Trough. To date the structure and function of the microbial community associated with A. longirostris are essentially unknown. In this study, by employment of the techniques of high through-put sequencing and clone library construction and analysis, we compared for the first time the community structures and metabolic profiles of microbes associated with the gill and gut of A. longirostris in a hydrothermal field of Okinawa Trough. Fourteen phyla were detected in the gill and gut communities, of which 11 phyla were shared by both tissues. Proteobacteria made up a substantial proportion in both tissues, while Firmicutes was abundant only in gut. Although gill and gut communities were similar in bacterial diversities, the bacterial community structures in these two tissues were significantly different. Further, we discovered for the first time the existence in the gill and gut communities of A. longirostris the genes (cbbM and aclB) encoding the key enzymes of Calvin-Benson-Bassham (CBB) cycle and the reductive tricarboxylic acid (rTCA) cycle, and that both cbbM and aclB were significantly more abundant in gill than in gut. Taken together, these results provide the first evidence that at least two carbon fixation pathways are present in both the gill and the gut communities of A. longirostris, and that the communities in different tissues likely differ in autotrophic productivity.
Collapse
Affiliation(s)
- Qing-lei Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-gang Zeng
- Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Shuai Chen
- Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- * E-mail:
| |
Collapse
|
28
|
He T, Zhang X. Characterization of Bacterial Communities in Deep-Sea Hydrothermal Vents from Three Oceanic Regions. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:232-241. [PMID: 26626941 DOI: 10.1007/s10126-015-9683-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 11/15/2015] [Indexed: 06/05/2023]
Abstract
Deep-sea hydrothermal vents are considered to be one of the most spectacular ecosystems on Earth. Microorganisms form the basis of the food chain in vents controlling the vent communities. However, the diversity of bacterial communities in deep-sea hydrothermal vents from different oceans remains largely unknown. In this study, the pyrosequencing of 16S rRNA gene was used to characterize the bacterial communities of the venting sulfide, seawater, and tubeworm trophosome from East Pacific Rise, South Atlantic Ridge, and Southwest Indian Ridge, respectively. A total of 23,767 operational taxonomic units (OTUs) were assigned into 42 different phyla. Although Proteobacteria, Actinobacteria, and Bacteroidetes were the predominant phyla in all vents, differences of bacterial diversity were observed among different vents from three oceanic regions. The sulfides of East Pacific Rise possessed the most diverse bacterial communities. The bacterial diversities of venting seawater were much lower than those of vent sulfides. The symbiotic bacteria of tubeworm Ridgeia piscesae were included in the bacterial community of vent sulfides, suggesting their significant ecological functions as the primary producers in the deep-sea hydrothermal vent ecosystems. Therefore, our study presented a comprehensive view of bacterial communities in deep-sea hydrothermal vents from different oceans.
Collapse
Affiliation(s)
- Tianliang He
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xiaobo Zhang
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
29
|
Baquiran JPM, Ramírez GA, Haddad AG, Toner BM, Hulme S, Wheat CG, Edwards KJ, Orcutt BN. Temperature and Redox Effect on Mineral Colonization in Juan de Fuca Ridge Flank Subsurface Crustal Fluids. Front Microbiol 2016; 7:396. [PMID: 27064928 PMCID: PMC4815438 DOI: 10.3389/fmicb.2016.00396] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 03/14/2016] [Indexed: 02/01/2023] Open
Abstract
To examine microbe-mineral interactions in subsurface oceanic crust, we evaluated microbial colonization on crustal minerals that were incubated in borehole fluids for 1 year at the seafloor wellhead of a crustal borehole observatory (IODP Hole U1301A, Juan de Fuca Ridge flank) as compared to an experiment that was not exposed to subsurface crustal fluids (at nearby IODP Hole U1301B). In comparison to previous studies at these same sites, this approach allowed assessment of the effects of temperature, fluid chemistry, and/or mineralogy on colonization patterns of different mineral substrates, and an opportunity to verify the approach of deploying colonization experiments at an observatory wellhead at the seafloor instead of within the borehole. The Hole U1301B deployment did not have biofilm growth, based on microscopy and DNA extraction, thereby confirming the integrity of the colonization design against bottom seawater intrusion. In contrast, the Hole U1301A deployment supported biofilms dominated by Epsilonproteobacteria (43.5% of 370 16S rRNA gene clone sequences) and Gammaproteobacteria (29.3%). Sequence analysis revealed overlap in microbial communities between different minerals incubated at the Hole U1301A wellhead, indicating that mineralogy did not separate biofilm structure within the 1-year colonization experiment. Differences in the Hole U1301A wellhead biofilm community composition relative to previous studies from within the borehole using similar mineral substrates suggest that temperature and the diffusion of dissolved oxygen through plastic components influenced the mineral colonization experiments positioned at the wellhead. This highlights the capacity of low abundance crustal fluid taxa to rapidly establish communities on diverse mineral substrates under changing environmental conditions such as from temperature and oxygen.
Collapse
Affiliation(s)
- Jean-Paul M Baquiran
- Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| | - Gustavo A Ramírez
- Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| | - Amanda G Haddad
- Department of Earth Sciences, University of Southern California Los Angeles, CA, USA
| | - Brandy M Toner
- Department of Soil, Water and Climate, University of Minnesota St. Paul, MN, USA
| | - Samuel Hulme
- Moss Landing Marine Laboratories Moss Landing, CA, USA
| | - Charles G Wheat
- School of Fisheries and Ocean Sciences, University of Alaska Fairbanks Fairbanks, AK, USA
| | - Katrina J Edwards
- Department of Biological Sciences, University of Southern CaliforniaLos Angeles, CA, USA; Department of Earth Sciences, University of Southern CaliforniaLos Angeles, CA, USA
| | - Beth N Orcutt
- Bigelow Laboratory for Ocean Sciences East Boothbay, ME, USA
| |
Collapse
|
30
|
Diversity of methane-cycling archaea in hydrothermal sediment investigated by general and group-specific PCR primers. Appl Environ Microbiol 2016; 81:1426-41. [PMID: 25527539 DOI: 10.1128/aem.03588-14] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The zonation of anaerobic methane-cycling Archaea in hydrothermal sediment of Guaymas Basin was studied by general primerpairs (mcrI, ME1/ME2, mcrIRD) targeting the alpha subunit of methyl coenzyme M reductase gene (mcrA) and by new group specific mcrA and 16S rRNA gene primer pairs. The mcrIRD primer pair outperformed the other general mcrA primer pairs indetection sensitivity and phylogenetic coverage. Methanotrophic ANME-1 Archaea were the only group detected with group specific primers only. The detection of 14 mcrA lineages surpasses the diversity previously found in this location. Most phylotypes have high sequence similarities to hydrogenotrophs, methylotrophs, and anaerobic methanotrophs previously detected at Guaymas Basin or at hydrothermal vents, cold seeps, and oil reservoirs worldwide. Additionally, five mcrA phylotypes belonging to newly defined lineages are detected. Two of these belong to deeply branching new orders, while the others are new species or genera of Methanopyraceae and Methermicoccaceae. Downcore diversity decreases from all groups detected in the upper 6 cm(2 to 40 °C, sulfate measurable to 4 cm) to only two groups below 6 cm (>40 °C). Despite the presence of hyperthermophilic genera (Methanopyrus, Methanocaldococcus) in cooler surface strata, no genes were detected below 10 cm (>60 °C). While mcrAbased and 16S rRNA gene-based community compositions are generally congruent, the deeply branching mcrA cannot be assigned to specific 16S rRNA gene lineages. Our study indicates that even among well-studied metabolic groups and in previously characterized model environments, major evolutionary branches are overlooked. Detecting these groups by improved molecular biological methods is a crucial first step toward understanding their roles in nature.
Collapse
|
31
|
Characteristics of the cultivable bacteria from sediments associated with two deep-sea hydrothermal vents in Okinawa Trough. World J Microbiol Biotechnol 2015; 31:2025-37. [PMID: 26410427 DOI: 10.1007/s11274-015-1953-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 09/23/2015] [Indexed: 10/23/2022]
Abstract
In this study, different culture-dependent methods were used to examine the cultivable heterotrophic bacteria in the sediments associated with two deep-sea hydrothermal vents (named HV1 and HV2) located at Iheya Ridge and Iheya North in Okinawa Trough. The two vents differed in morphology, with HV1 exhibiting diffuse flows while HV2 being a black smoker with a chimney-like structure. A total of 213 isolates were identified by near full-length 16S rRNA gene sequence analysis. Of these isolates, 128 were from HV1 and 85 were from HV2. The bacterial community structures were, in large parts, similar between HV1 and HV2. Nevertheless, differences between HV1 and HV2 were observed in one phylum, one class, 4 orders, 10 families, and 20 genera. Bioactivity analysis revealed that 25 isolates belonging to 9 different genera exhibited extracellular protease activities, 21 isolates from 11 genera exhibited extracellular lipase activities, and 13 isolates of 8 genera displayed antimicrobial activities. This is the first observation of a large population of bacteria with extracellular bioactivities existing in deep-sea hydrothermal vents. Taken together, the results of this study provide new insights into the characteristics of the cultivable heterotrophic bacteria in deep-sea hydrothermal ecosystems.
Collapse
|
32
|
Han Y, Perner M. The globally widespread genus Sulfurimonas: versatile energy metabolisms and adaptations to redox clines. Front Microbiol 2015; 6:989. [PMID: 26441918 PMCID: PMC4584964 DOI: 10.3389/fmicb.2015.00989] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 09/04/2015] [Indexed: 01/11/2023] Open
Abstract
Sulfurimonas species are commonly isolated from sulfidic habitats and numerous 16S rRNA sequences related to Sulfurimonas species have been identified in chemically distinct environments, such as hydrothermal deep-sea vents, marine sediments, the ocean's water column, and terrestrial habitats. In some of these habitats, Sulfurimonas have been demonstrated to play an important role in chemoautotrophic processes. Sulfurimonas species can grow with a variety of electron donors and acceptors, which may contribute to their widespread distribution. Multiple copies of one type of enzyme (e.g., sulfide:quinone reductases and hydrogenases) may play a pivotal role in Sulfurimonas' flexibility to colonize disparate environments. Many of these genes appear to have been acquired through horizontal gene transfer which has promoted adaptations to the distinct habitats. Here we summarize Sulfurimonas' versatile energy metabolisms and link their physiological properties to their global distribution.
Collapse
Affiliation(s)
| | - Mirjam Perner
- Molecular Biology of Microbial Consortia, Biocenter Klein Flottbek, University of HamburgHamburg, Germany
| |
Collapse
|
33
|
Zhang J, Sun QL, Zeng ZG, Chen S, Sun L. Microbial diversity in the deep-sea sediments of Iheya North and Iheya Ridge, Okinawa Trough. Microbiol Res 2015. [DOI: 10.1016/j.micres.2015.05.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Fujiyoshi S, Tateno H, Watsuji T, Yamaguchi H, Fukushima D, Mino S, Sugimura M, Sawabe T, Takai K, Sawayama S, Nakagawa S. Effects of Hemagglutination Activity in the Serum of a Deep-Sea Vent Endemic Crab, Shinkaia Crosnieri, on Non-Symbiotic and Symbiotic Bacteria. Microbes Environ 2015. [PMID: 26212518 PMCID: PMC4567561 DOI: 10.1264/jsme2.me15066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In deep-sea hydrothermal environments, most invertebrates associate with dense populations of symbiotic microorganisms in order to obtain nutrition. The molecular interactions between deep-sea animals and environmental microbes, including their symbionts, have not yet been elucidated in detail. Hemagglutinins/lectins, which are carbohydrate-binding proteins, have recently been reported to play important roles in a wide array of biological processes, including the recognition and control of non-self materials. We herein assessed hemagglutination activity in the serum of a deep-sea vent endemic crab, Shinkaia crosnieri, which harbors chemosynthetic epibionts on its plumose setae. Horse and rabbit erythrocytes were agglutinated using this serum (opt. pH 7.5 and opt. temperature 15°C). Agglutinating activity was inhibited by eight kinds of sugars and several divalent cations, did not require any divalent metal ions, and remained detectable even after heating the serum at 100°C for 30 min. By using fluorescently labeled serum, we demonstrated that deep-sea crab serum components bound to the epibionts even in the presence of sugars. This study represents the first immunological assessment of a deep-sea vent endemic crab and demonstrated the possibility of a non-lectin-mediated symbiont-host interaction.
Collapse
Affiliation(s)
- So Fujiyoshi
- Laboratory of Marine Environmental Microbiology, Graduate School of Agriculture, Kyoto University
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wu X, Ge T, Wang W, Yuan H, Wegner CE, Zhu Z, Whiteley AS, Wu J. Cropping systems modulate the rate and magnitude of soil microbial autotrophic CO2 fixation in soil. Front Microbiol 2015; 6:379. [PMID: 26005435 PMCID: PMC4424977 DOI: 10.3389/fmicb.2015.00379] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 04/13/2015] [Indexed: 11/26/2022] Open
Abstract
The effect of different cropping systems on CO2 fixation by soil microorganisms was studied by comparing soils from three exemplary cropping systems after 10 years of agricultural practice. Studied cropping systems included: continuous cropping of paddy rice (rice-rice), rotation of paddy rice and rapeseed (rice-rapeseed), and rotated cropping of rapeseed and corn (rapeseed-corn). Soils from different cropping systems were incubated with continuous 14C-CO2 labeling for 110 days. The CO2-fixing bacterial communities were investigated by analyzing the cbbL gene encoding ribulose-1,5-bisphosphate carboxylase oxygenase (RubisCO). Abundance, diversity and activity of cbbL-carrying bacteria were analyzed by quantitative PCR, cbbL clone libraries and enzyme assays. After 110 days incubation, substantial amounts of 14C-CO2 were incorporated into soil organic carbon (14C-SOC) and microbial biomass carbon (14C-MBC). Rice-rice rotated soil showed stronger incorporation rates when looking at 14C-SOC and 14C-MBC contents. These differences in incorporation rates were also reflected by determined RubisCO activities. 14C-MBC, cbbL gene abundances and RubisCO activity were found to correlate significantly with 14C-SOC, indicating cbbL-carrying bacteria to be key players for CO2 fixation in these soils. The analysis of clone libraries revealed distinct cbbL-carrying bacterial communities for the individual soils analyzed. Most of the identified operational taxonomic units (OTU) were related to Nitrobacter hamburgensis, Methylibium petroleiphilum, Rhodoblastus acidophilus, Bradyrhizobium, Cupriavidus metallidurans, Rubrivivax, Burkholderia, Stappia, and Thiobacillus thiophilus. OTUs related to Rubrivivax gelatinosus were specific for rice-rice soil. OTUs linked to Methylibium petroleiphilum were exclusively found in rice-rapeseed soil. Observed differences could be linked to differences in soil parameters such as SOC. We conclude that the long-term application of cropping systems alters underlying soil parameters, which in turn selects for distinct autotrophic communities.
Collapse
Affiliation(s)
- Xiaohong Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region and Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences Changsha, China ; ISA-CAS and UWA Joint Laboratory for Soil Systems Biology Changsha, China
| | - Tida Ge
- Key Laboratory of Agro-ecological Processes in Subtropical Region and Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences Changsha, China ; ISA-CAS and UWA Joint Laboratory for Soil Systems Biology Changsha, China
| | - Wei Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region and Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences Changsha, China
| | - Hongzhao Yuan
- Key Laboratory of Agro-ecological Processes in Subtropical Region and Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences Changsha, China
| | - Carl-Eric Wegner
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology Marburg, Germany
| | - Zhenke Zhu
- Key Laboratory of Agro-ecological Processes in Subtropical Region and Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences Changsha, China ; ISA-CAS and UWA Joint Laboratory for Soil Systems Biology Changsha, China
| | - Andrew S Whiteley
- ISA-CAS and UWA Joint Laboratory for Soil Systems Biology Changsha, China ; School of Earth and Environment, The University of Western Australia Crawley, WA, Australia
| | - Jinshui Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region and Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences Changsha, China ; ISA-CAS and UWA Joint Laboratory for Soil Systems Biology Changsha, China
| |
Collapse
|
36
|
Nakajima R, Yamamoto H, Kawagucci S, Takaya Y, Nozaki T, Chen C, Fujikura K, Miwa T, Takai K. Post-drilling changes in seabed landscape and megabenthos in a deep-sea hydrothermal system, the Iheya North field, Okinawa Trough. PLoS One 2015; 10:e0123095. [PMID: 25902075 PMCID: PMC4406493 DOI: 10.1371/journal.pone.0123095] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/27/2015] [Indexed: 11/19/2022] Open
Abstract
There has been an increasing interest in seafloor exploitation such as mineral mining in deep-sea hydrothermal fields, but the environmental impact of anthropogenic disturbance to the seafloor is poorly known. In this study, the effect of such anthropogenic disturbance by scientific drilling operations (IODP Expedition 331) on seabed landscape and megafaunal habitation was surveyed for over 3 years using remotely operated vehicle video observation in a deep-sea hydrothermal field, the Iheya North field, in the Okinawa Trough. We focused on observations from a particular drilling site (Site C0014) where the most dynamic change of landscape and megafaunal habitation was observed among the drilling sites of IODP Exp. 331. No visible hydrothermal fluid discharge had been observed at the sedimentary seafloor at Site C0014, where Calyptogena clam colonies were known for more than 10 years, before the drilling event. After drilling commenced, the original Calyptogena colonies were completely buried by the drilling deposits. Several months after the drilling, diffusing high-temperature hydrothermal fluid began to discharge from the sedimentary subseafloor in the area of over 20 m from the drill holes, 'artificially' creating a new hydrothermal vent habitat. Widespread microbial mats developed on the seafloor with the diffusing hydrothermal fluids and the galatheid crab Shinkaia crosnieri endemic to vents dominated the new vent community. The previously soft, sedimentary seafloor was hardened probably due to barite/gypsum mineralization or silicification, becoming rough and undulated with many fissures after the drilling operation. Although the effects of the drilling operation on seabed landscape and megafaunal composition are probably confined to an area of maximally 30 m from the drill holes, the newly established hydrothermal vent ecosystem has already lasted 2 years and is like to continue to exist until the fluid discharge ceases and thus the ecosystem in the area has been altered for long-term.
Collapse
Affiliation(s)
- Ryota Nakajima
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa, 237-0061, Japan
| | - Hiroyuki Yamamoto
- Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa, 237-0061, Japan
| | - Shinsuke Kawagucci
- Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa, 237-0061, Japan; Laboratory of Ocean-Earth Life Evolution Research (OELE), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa, 237-0061, Japan; Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa, 237-0061, Japan
| | - Yutaro Takaya
- Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa, 237-0061, Japan
| | - Tatsuo Nozaki
- Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa, 237-0061, Japan; Department of Systems Innovation, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Chong Chen
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, United Kingdom
| | - Katsunori Fujikura
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa, 237-0061, Japan
| | - Tetsuya Miwa
- Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa, 237-0061, Japan; Marine Technology and Engineering Center (MARITEC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa, 237-0061, Japan
| | - Ken Takai
- Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa, 237-0061, Japan; Laboratory of Ocean-Earth Life Evolution Research (OELE), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa, 237-0061, Japan; Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa, 237-0061, Japan
| |
Collapse
|
37
|
Nunoura T, Takaki Y, Kazama H, Kakuta J, Shimamura S, Makita H, Hirai M, Miyazaki M, Takai K. Physiological and genomic features of a novel sulfur-oxidizing gammaproteobacterium belonging to a previously uncultivated symbiotic lineage isolated from a hydrothermal vent. PLoS One 2014; 9:e104959. [PMID: 25133584 PMCID: PMC4136832 DOI: 10.1371/journal.pone.0104959] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/15/2014] [Indexed: 12/04/2022] Open
Abstract
Strain Hiromi 1, a sulfur-oxidizing gammaproteobacterium was isolated from a hydrothermal vent chimney in the Okinawa Trough and represents a novel genus that may include a phylogenetic group found as endosymbionts of deep-sea gastropods. The SSU rRNA gene sequence similarity between strain Hiromi 1 and the gastropod endosymbionts was approximately 97%. The strain was shown to grow both chemolithoautotrophically and chemolithoheterotrophically with an energy metabolism of sulfur oxidation and O2 or nitrate reduction. Under chemolithoheterotrophic growth conditions, the strain utilized organic acids and proteinaceous compounds as the carbon and/or nitrogen sources but not the energy source. Various sugars did not support growth as a sole carbon source. The observation of chemolithoheterotrophy in this strain is in line with metagenomic analyses of endosymbionts suggesting the occurrence of chemolithoheterotrophy in gammaproteobacterial symbionts. Chemolithoheterotrophy and the presence of homologous genes for virulence- and quorum sensing-related functions suggest that the sulfur-oxidizing chomolithotrophic microbes seek animal bodies and microbial biofilm formation to obtain supplemental organic carbons in hydrothermal ecosystems.
Collapse
Affiliation(s)
- Takuro Nunoura
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
- * E-mail:
| | - Yoshihiro Takaki
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Hiromi Kazama
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Jungo Kakuta
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Shigeru Shimamura
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Hiroko Makita
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Miho Hirai
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Masayuki Miyazaki
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Ken Takai
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| |
Collapse
|
38
|
Microbial community stratification controlled by the subseafloor fluid flow and geothermal gradient at the Iheya North hydrothermal field in the Mid-Okinawa Trough (Integrated Ocean Drilling Program Expedition 331). Appl Environ Microbiol 2014; 80:6126-35. [PMID: 25063666 DOI: 10.1128/aem.01741-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The impacts of lithologic structure and geothermal gradient on subseafloor microbial communities were investigated at a marginal site of the Iheya North hydrothermal field in the Mid-Okinawa Trough. Subsurface marine sediments composed of hemipelagic muds and volcaniclastic deposits were recovered through a depth of 151 m below the seafloor at site C0017 during Integrated Ocean Drilling Program Expedition 331. Microbial communities inferred from 16S rRNA gene clone sequencing in low-temperature hemipelagic sediments were mainly composed of members of the Chloroflexi and deep-sea archaeal group. In contrast, 16S rRNA gene sequences of marine group I Thaumarchaeota dominated the microbial phylotype communities in the coarse-grained pumiceous gravels interbedded between the hemipelagic sediments. Based on the physical properties of sediments such as temperature and permeability, the porewater chemistry, and the microbial phylotype compositions, the shift in the physical properties of the sediments is suggested to induce a potential subseafloor recharging flow of oxygenated seawater in the permeable zone, leading to the generation of variable chemical environments and microbial communities in the subseafloor habitats. In addition, the deepest section of sediments under high-temperature conditions (∼90°C) harbored the sequences of an uncultivated archaeal lineage of hot water crenarchaeotic group IV that may be associated with the high-temperature hydrothermal fluid flow. These results indicate that the subseafloor microbial community compositions and functions at the marginal site of the hydrothermal field are highly affected by the complex fluid flow structure, such as recharging seawater and underlying hydrothermal fluids, coupled with the lithologic transition of sediments.
Collapse
|
39
|
Lin TJ, Breves EA, Dyar MD, Ver Eecke HC, Jamieson JW, Holden JF. Magnetite formation from ferrihydrite by hyperthermophilic archaea from Endeavour Segment, Juan de Fuca Ridge hydrothermal vent chimneys. GEOBIOLOGY 2014; 12:200-211. [PMID: 24612368 DOI: 10.1111/gbi.12083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 01/29/2014] [Indexed: 06/03/2023]
Abstract
Hyperthermophilic iron reducers are common in hydrothermal chimneys found along the Endeavour Segment in the northeastern Pacific Ocean based on culture-dependent estimates. However, information on the availability of Fe(III) (oxyhydr) oxides within these chimneys, the types of Fe(III) (oxyhydr) oxides utilized by the organisms, rates and environmental constraints of hyperthermophilic iron reduction, and mineral end products is needed to determine their biogeochemical significance and are addressed in this study. Thin-section petrography on the interior of a hydrothermal chimney from the Dante edifice at Endeavour showed a thin coat of Fe(III) (oxyhydr) oxide associated with amorphous silica on the exposed outer surfaces of pyrrhotite, sphalerite, and chalcopyrite in pore spaces, along with anhydrite precipitation in the pores that is indicative of seawater ingress. The iron sulfide minerals were likely oxidized to Fe(III) (oxyhydr) oxide with increasing pH and Eh due to cooling and seawater exposure, providing reactants for bioreduction. Culture-dependent estimates of hyperthermophilic iron reducer abundances in this sample were 1740 and 10 cells per gram (dry weight) of material from the outer surface and the marcasite-sphalerite-rich interior, respectively. Two hyperthermophilic iron reducers, Hyperthermus sp. Ro04 and Pyrodictium sp. Su06, were isolated from other active hydrothermal chimneys on the Endeavour Segment. Strain Ro04 is a neutrophilic (pH opt 7-8) heterotroph, while strain Su06 is a mildly acidophilic (pH opt 5), hydrogenotrophic autotroph, both with optimal growth temperatures of 90-92 °C. Mössbauer spectroscopy of the iron oxides before and after growth demonstrated that both organisms form nanophase (<12 nm) magnetite [Fe3 O4 ] from laboratory-synthesized ferrihydrite [Fe10 O14 (OH)2 ] with no detectable mineral intermediates. They produced up to 40 mm Fe(2+) in a growth-dependent manner, while all abiotic and biotic controls produced <3 mm Fe(2+) . Hyperthermophilic iron reducers may have a growth advantage over other hyperthermophiles in hydrothermal systems that are mildly acidic where mineral weathering at increased temperatures occurs.
Collapse
Affiliation(s)
- T Jennifer Lin
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | | | | | | | | | | |
Collapse
|
40
|
Watsuji TO, Yamamoto A, Takaki Y, Ueda K, Kawagucci S, Takai K. Diversity and methane oxidation of active epibiotic methanotrophs on live Shinkaia crosnieri. ISME JOURNAL 2014; 8:1020-31. [PMID: 24401859 DOI: 10.1038/ismej.2013.226] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 11/12/2013] [Accepted: 11/17/2013] [Indexed: 11/09/2022]
Abstract
Shinkaia crosnieri is a galatheid crab that predominantly dwells in deep-sea hydrothermal systems in the Okinawa Trough, Japan. In this study, the phylogenetic diversity of active methanotrophs in the epibiotic microbial community on the setae of S. crosnieri was characterized by reverse transcription-polymerase chain reaction (RT-PCR) of a functional gene (pmoA) encoding a subunit of particulate methane monooxygenase. Phylogenetic analysis of pmoA transcript sequences revealed that the active epibiotic methanotrophs on S. crosnieri setae consisted of gammaproteobacterial type Ia and Ib methanotrophs. The effect of different RNA stabilization procedures on the abundance of pmoA and 16S rRNA transcripts in the epibiotic community was estimated by quantitative RT-PCR. Our novel RNA fixation method performed immediately after sampling effectively preserved cellular RNA assemblages, particularly labile mRNA populations, including pmoA mRNA. Methane consumption in live S. crosnieri was also estimated by continuous-flow incubation under atmospheric and in situ hydrostatic pressures, and provided a clear evidence of methane oxidation activity of the epibiotic microbial community, which was not significantly affected by hydrostatic pressure. Our study revealed the significant ecological function and nutritional contribution of epibiotic methanotrophs to the predominant S. crosnieri populations in the Okinawa Trough deep-sea hydrothermal systems. In conclusion, our study gave clear facts about diversity and methane oxidation of active methanotrophs in the epibiotic community associated with invertebrates.
Collapse
Affiliation(s)
- Tomo-o Watsuji
- Subsurface Geobiology Advanced Research (SUGAR) Project, Extremobiosphere Research Program (XBR), Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Asami Yamamoto
- 1] Subsurface Geobiology Advanced Research (SUGAR) Project, Extremobiosphere Research Program (XBR), Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan [2] Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Yoshihiro Takaki
- Chemosymbiosis System Genomics Team, XBR, Institute of Biogeosciences, JAMSTEC, Yokosuka, Kanagawa, Japan
| | - Kenji Ueda
- Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Shinsuke Kawagucci
- Subsurface Geobiology Advanced Research (SUGAR) Project, Extremobiosphere Research Program (XBR), Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Ken Takai
- Subsurface Geobiology Advanced Research (SUGAR) Project, Extremobiosphere Research Program (XBR), Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| |
Collapse
|
41
|
Jørgensen SL, Thorseth IH, Pedersen RB, Baumberger T, Schleper C. Quantitative and phylogenetic study of the Deep Sea Archaeal Group in sediments of the Arctic mid-ocean spreading ridge. Front Microbiol 2013; 4:299. [PMID: 24109477 PMCID: PMC3790079 DOI: 10.3389/fmicb.2013.00299] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/17/2013] [Indexed: 11/17/2022] Open
Abstract
In marine sediments archaea often constitute a considerable part of the microbial community, of which the Deep Sea Archaeal Group (DSAG) is one of the most predominant. Despite their high abundance no members from this archaeal group have so far been characterized and thus their metabolism is unknown. Here we show that the relative abundance of DSAG marker genes can be correlated with geochemical parameters, allowing prediction of both the potential electron donors and acceptors of these organisms. We estimated the abundance of 16S rRNA genes from Archaea, Bacteria, and DSAG in 52 sediment horizons from two cores collected at the slow-spreading Arctic Mid-Ocean Ridge, using qPCR. The results indicate that members of the DSAG make up the entire archaeal population in certain horizons and constitute up to ~50% of the total microbial community. The quantitative data were correlated to 30 different geophysical and geochemical parameters obtained from the same sediment horizons. We observed a significant correlation between the relative abundance of DSAG 16S rRNA genes and the content of organic carbon (p < 0.0001). Further, significant co-variation with iron oxide, and dissolved iron and manganese (all p < 0.0000), indicated a direct or indirect link to iron and manganese cycling. Neither of these parameters correlated with the relative abundance of archaeal or bacterial 16S rRNA genes, nor did any other major electron donor or acceptor measured. Phylogenetic analysis of DSAG 16S rRNA gene sequences reveals three monophyletic lineages with no apparent habitat-specific distribution. In this study we support the hypothesis that members of the DSAG are tightly linked to the content of organic carbon and directly or indirectly involved in the cycling of iron and/or manganese compounds. Further, we provide a molecular tool to assess their abundance in environmental samples and enrichment cultures.
Collapse
Affiliation(s)
- Steffen L Jørgensen
- Department of Biology, Centre for Geobiology, University of Bergen , Bergen, Norway
| | | | | | | | | |
Collapse
|
42
|
Price RE, Lesniewski R, Nitzsche KS, Meyerdierks A, Saltikov C, Pichler T, Amend JP. Archaeal and bacterial diversity in an arsenic-rich shallow-sea hydrothermal system undergoing phase separation. Front Microbiol 2013; 4:158. [PMID: 23847597 PMCID: PMC3705188 DOI: 10.3389/fmicb.2013.00158] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/30/2013] [Indexed: 11/13/2022] Open
Abstract
Phase separation is a ubiquitous process in seafloor hydrothermal vents, creating a large range of salinities. Toxic elements (e.g., arsenic) partition into the vapor phase, and thus can be enriched in both high and low salinity fluids. However, investigations of microbial diversity at sites associated with phase separation are rare. We evaluated prokaryotic diversity in arsenic-rich shallow-sea vents off Milos Island (Greece) by comparative analysis of 16S rRNA clone sequences from two vent sites with similar pH and temperature but marked differences in salinity. Clone sequences were also obtained for aioA-like functional genes (AFGs). Bacteria in the surface sediments (0–1.5 cm) at the high salinity site consisted of mainly Epsilonproteobacteria (Arcobacter sp.), which transitioned to almost exclusively Firmicutes (Bacillus sp.) at ~10 cm depth. However, the low salinity site consisted of Bacteroidetes (Flavobacteria) in the surface and Epsilonproteobacteria (Arcobacter sp.) at ~10 cm depth. Archaea in the high salinity surface sediments were dominated by the orders Archaeoglobales and Thermococcales, transitioning to Thermoproteales and Desulfurococcales (Staphylothermus sp.) in the deeper sediments. In contrast, the low salinity site was dominated by Thermoplasmatales in the surface and Thermoproteales at depth. Similarities in gas and redox chemistry suggest that salinity and/or arsenic concentrations may select for microbial communities that can tolerate these parameters. Many of the archaeal 16S rRNA sequences contained inserts, possibly introns, including members of the Euryarchaeota. Clones containing AFGs affiliated with either Alpha- or Betaproteobacteria, although most were only distantly related to published representatives. Most clones (89%) originated from the deeper layer of the low salinity, highest arsenic site. This is the only sample with overlap in 16S rRNA data, suggesting arsenotrophy as an important metabolism in similar environments.
Collapse
Affiliation(s)
- Roy E Price
- Department of Earth Sciences, University of Southern California Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Evolutionary dynamics of the prokaryotic adaptive immunity system CRISPR-Cas in an explicit ecological context. J Bacteriol 2013; 195:3834-44. [PMID: 23794616 DOI: 10.1128/jb.00412-13] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A stochastic, agent-based mathematical model of the coevolution of the archaeal and bacterial adaptive immunity system, CRISPR-Cas, and lytic viruses shows that CRISPR-Cas immunity can stabilize the virus-host coexistence rather than leading to the extinction of the virus. In the model, CRISPR-Cas immunity does not specifically promote viral diversity, presumably because the selection pressure on each single proto-spacer is too weak. However, the overall virus diversity in the presence of CRISPR-Cas grows due to the increase of the host and, accordingly, the virus population size. Above a threshold value of total viral diversity, which is proportional to the viral mutation rate and population size, the CRISPR-Cas system becomes ineffective and is lost due to the associated fitness cost. Our previous modeling study has suggested that the ubiquity of CRISPR-Cas in hyperthermophiles, which contrasts its comparative low prevalence in mesophiles, is due to lower rates of mutation fixation in thermal habitats. The present findings offer a complementary, simpler perspective on this contrast through the larger population sizes of mesophiles compared to hyperthermophiles, because of which CRISPR-Cas can become ineffective in mesophiles. The efficacy of CRISPR-Cas sharply increases with the number of proto-spacers per viral genome, potentially explaining the low information content of the proto-spacer-associated motif (PAM) that is required for spacer acquisition by CRISPR-Cas because a higher specificity would restrict the number of spacers available to CRISPR-Cas, thus hampering immunity. The very existence of the PAM might reflect the tradeoff between the requirement of diverse spacers for efficient immunity and avoidance of autoimmunity.
Collapse
|
44
|
Mino S, Makita H, Toki T, Miyazaki J, Kato S, Watanabe H, Imachi H, Watsuji TO, Nunoura T, Kojima S, Sawabe T, Takai K, Nakagawa S. Biogeography of Persephonella in deep-sea hydrothermal vents of the Western Pacific. Front Microbiol 2013; 4:107. [PMID: 23630523 PMCID: PMC3635849 DOI: 10.3389/fmicb.2013.00107] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 04/13/2013] [Indexed: 11/30/2022] Open
Abstract
Deep-sea hydrothermal vent fields are areas on the seafloor with high biological productivity fueled by microbial chemosynthesis. Members of the Aquificales genus Persephonella are obligately chemosynthetic bacteria, and appear to be key players in carbon, sulfur, and nitrogen cycles in high temperature habitats at deep-sea vents. Although this group of bacteria has cosmopolitan distribution in deep-sea hydrothermal ecosystem around the world, little is known about their population structure such as intraspecific genomic diversity, distribution pattern, and phenotypic diversity. We developed the multi-locus sequence analysis (MLSA) scheme for their genomic characterization. Sequence variation was determined in five housekeeping genes and one functional gene of 36 Persephonella hydrogeniphila strains originated from the Okinawa Trough and the South Mariana Trough (SNT). Although the strains share >98.7% similarities in 16S rRNA gene sequences, MLSA revealed 35 different sequence types (ST), indicating their extensive genomic diversity. A phylogenetic tree inferred from all concatenated gene sequences revealed the clustering of isolates according to the geographic origin. In addition, the phenotypic clustering pattern inferred from whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis can be correlated to their MLSA clustering pattern. This study represents the first MLSA combined with phenotypic analysis indicative of allopatric speciation of deep-sea hydrothermal vent bacteria.
Collapse
Affiliation(s)
- Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University Hakodate, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Modeling the Impact of Diffuse Vent Microorganisms Along Mid-Ocean Ridges and Flanks. ACTA ACUST UNITED AC 2013. [DOI: 10.1029/178gm11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
|
46
|
Forget NL, Kim Juniper S. Free-living bacterial communities associated with tubeworm (Ridgeia piscesae) aggregations in contrasting diffuse flow hydrothermal vent habitats at the Main Endeavour Field, Juan de Fuca Ridge. Microbiologyopen 2013; 2:259-75. [PMID: 23401293 PMCID: PMC3633350 DOI: 10.1002/mbo3.70] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/19/2012] [Accepted: 01/07/2013] [Indexed: 02/01/2023] Open
Abstract
We systematically studied free-living bacterial diversity within aggregations of the vestimentiferan tubeworm Ridgeia piscesae sampled from two contrasting flow regimes (High Flow and Low Flow) in the Endeavour Hydrothermal Vents Marine Protected Area (MPA) on the Juan de Fuca Ridge (Northeast Pacific). Eight samples of particulate detritus were recovered from paired tubeworm grabs from four vent sites. Most sequences (454 tag and Sanger methods) were affiliated to the Epsilonproteobacteria, and the sulfur-oxidizing genus Sulfurovum was dominant in all samples. Gammaproteobacteria were also detected, mainly in Low Flow sequence libraries, and were affiliated with known methanotrophs and decomposers. The cooccurrence of sulfur reducers from the Deltaproteobacteria and the Epsilonproteobacteria suggests internal sulfur cycling within these habitats. Other phyla detected included Bacteroidetes, Actinobacteria, Chloroflexi, Firmicutes, Planctomycetes, Verrucomicrobia, and Deinococcus–Thermus. Statistically significant relationships between sequence library composition and habitat type suggest a predictable pattern for High Flow and Low Flow environments. Most sequences significantly more represented in High Flow libraries were related to sulfur and hydrogen oxidizers, while mainly heterotrophic groups were more represented in Low Flow libraries. Differences in temperature, available energy for metabolism, and stability between High Flow and Low Flow habitats potentially explain their distinct bacterial communities.
Collapse
Affiliation(s)
- Nathalie L Forget
- Department of Biology, University of Victoria, 3800 Finnerty Rd, Victoria, British Columbia, Canada V8P 5C2.
| | | |
Collapse
|
47
|
Hydrogen-limited growth of hyperthermophilic methanogens at deep-sea hydrothermal vents. Proc Natl Acad Sci U S A 2012; 109:13674-9. [PMID: 22869718 DOI: 10.1073/pnas.1206632109] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microbial productivity at hydrothermal vents is among the highest found anywhere in the deep ocean, but constraints on microbial growth and metabolism at vents are lacking. We used a combination of cultivation, molecular, and geochemical tools to verify pure culture H(2) threshold measurements for hyperthermophilic methanogenesis in low-temperature hydrothermal fluids from Axial Volcano and Endeavour Segment in the northeastern Pacific Ocean. Two Methanocaldococcus strains from Axial and Methanocaldococcus jannaschii showed similar Monod growth kinetics when grown in a bioreactor at varying H(2) concentrations. Their H(2) half-saturation value was 66 μM, and growth ceased below 17-23 μM H(2), 10-fold lower than previously predicted. By comparison, measured H(2) and CH(4) concentrations in fluids suggest that there was generally sufficient H(2) for Methanocaldococcus growth at Axial but not at Endeavour. Fluids from one vent at Axial (Marker 113) had anomalously high CH(4) concentrations and contained various thermal classes of methanogens based on cultivation and mcrA/mrtA analyses. At Endeavour, methanogens were largely undetectable in fluid samples based on cultivation and molecular screens, although abundances of hyperthermophilic heterotrophs were relatively high. Where present, Methanocaldococcus genes were the predominant mcrA/mrtA sequences recovered and comprised ∼0.2-6% of the total archaeal community. Field and coculture data suggest that H(2) limitation may be partly ameliorated by H(2) syntrophy with hyperthermophilic heterotrophs. These data support our estimated H(2) threshold for hyperthermophilic methanogenesis at vents and highlight the need for coupled laboratory and field measurements to constrain microbial distribution and biogeochemical impacts in the deep sea.
Collapse
|
48
|
Flores GE, Shakya M, Meneghin J, Yang ZK, Seewald JS, Geoff Wheat C, Podar M, Reysenbach AL. Inter-field variability in the microbial communities of hydrothermal vent deposits from a back-arc basin. GEOBIOLOGY 2012; 10:333-346. [PMID: 22443386 DOI: 10.1111/j.1472-4669.2012.00325.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Diverse microbial communities thrive on and in deep-sea hydrothermal vent mineral deposits. However, our understanding of the inter-field variability in these communities is poor, as limited sampling and sequencing efforts have hampered most previous studies. To explore the inter-field variability in these communities, we used barcoded pyrosequencing of the variable region 4 (V4) of the 16S rRNA gene to characterize the archaeal and bacterial communities of over 30 hydrothermal deposit samples from six vent fields located along the Eastern Lau Spreading Center. Overall, the bacterial and archaeal communities of the Eastern Lau Spreading Center are similar to other active vent deposits, with a high diversity of Epsilonproteobacteria and thermophilic Archaea. However, the archaeal and bacterial communities from the southernmost vent field, Mariner, were significantly different from the other vent fields. At Mariner, the epsilonproteobacterial genus Nautilia and the archaeal family Thermococcaceae were prevalent in most samples, while Lebetimonas and Thermofilaceae were more abundant at the other vent fields. These differences appear to be influenced in part by the unique geochemistry of the Mariner fluids resulting from active degassing of a subsurface magma chamber. These results show that microbial communities associated with hydrothermal vent deposits in back-arc basins are taxonomically similar to those from mid-ocean ridge systems, but differences in geologic processes between vent fields in a back-arc basin can influence microbial community structure.
Collapse
Affiliation(s)
- G E Flores
- Department of Biology, Portland State University, Portland, OR, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Miller-Coleman RL, Dodsworth JA, Ross CA, Shock EL, Williams AJ, Hartnett HE, McDonald AI, Havig JR, Hedlund BP. Korarchaeota diversity, biogeography, and abundance in Yellowstone and Great Basin hot springs and ecological niche modeling based on machine learning. PLoS One 2012; 7:e35964. [PMID: 22574130 PMCID: PMC3344838 DOI: 10.1371/journal.pone.0035964] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/28/2012] [Indexed: 11/18/2022] Open
Abstract
Over 100 hot spring sediment samples were collected from 28 sites in 12 areas/regions, while recording as many coincident geochemical properties as feasible (>60 analytes). PCR was used to screen samples for Korarchaeota 16S rRNA genes. Over 500 Korarchaeota 16S rRNA genes were screened by RFLP analysis and 90 were sequenced, resulting in identification of novel Korarchaeota phylotypes and exclusive geographical variants. Korarchaeota diversity was low, as in other terrestrial geothermal systems, suggesting a marine origin for Korarchaeota with subsequent niche-invasion into terrestrial systems. Korarchaeota endemism is consistent with endemism of other terrestrial thermophiles and supports the existence of dispersal barriers. Korarchaeota were found predominantly in >55°C springs at pH 4.7–8.5 at concentrations up to 6.6×106 16S rRNA gene copies g−1 wet sediment. In Yellowstone National Park (YNP), Korarchaeota were most abundant in springs with a pH range of 5.7 to 7.0. High sulfate concentrations suggest these fluids are influenced by contributions from hydrothermal vapors that may be neutralized to some extent by mixing with water from deep geothermal sources or meteoric water. In the Great Basin (GB), Korarchaeota were most abundant at spring sources of pH<7.2 with high particulate C content and high alkalinity, which are likely to be buffered by the carbonic acid system. It is therefore likely that at least two different geological mechanisms in YNP and GB springs create the neutral to mildly acidic pH that is optimal for Korarchaeota. A classification support vector machine (C-SVM) trained on single analytes, two analyte combinations, or vectors from non-metric multidimensional scaling models was able to predict springs as Korarchaeota-optimal or sub-optimal habitats with accuracies up to 95%. To our knowledge, this is the most extensive analysis of the geochemical habitat of any high-level microbial taxon and the first application of a C-SVM to microbial ecology.
Collapse
Affiliation(s)
| | - Jeremy A. Dodsworth
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| | - Christian A. Ross
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| | - Everett L. Shock
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, United States of America
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, United States of America
| | - Amanda J. Williams
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| | - Hilairy E. Hartnett
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, United States of America
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, United States of America
| | - Austin I. McDonald
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| | - Jeff R. Havig
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, United States of America
| | - Brian P. Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
- * E-mail:
| |
Collapse
|
50
|
Enomoto M, Nakagawa S, Sawabe T. Microbial communities associated with holothurians: presence of unique bacteria in the coelomic fluid. Microbes Environ 2012; 27:300-5. [PMID: 22446312 PMCID: PMC4036045 DOI: 10.1264/jsme2.me12020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Marine invertebrates interact with various microorganisms ranging from pathogens to symbionts. One-to-one symbiosis between a single microbial species and a single host animal has served as a model for the study of host-microbe interactions. In addition, increasing attention has recently been focused on the complex symbiotic associations, e.g., associations between sponges and their symbionts, due to their biotechnological potential; however, relatively little is known about the microbial diversity associated with members of the phylum Echinodermata. Here, for the first time, we investigated microbial communities associated with a commercially important holothurian species, Apostichopus japonicus, using culture-dependent and -independent methods. Diverse and abundant heterotrophs, mostly Gammaproteobacteria members, were cultured semi-quantitatively. Using the cloning and sequencing technique, different microbial communities were found in different holothurian tissues. In the holothurian coelomic fluid, potentially metabolically active and phylogenetically unique members of Epsilonproteobacteria and Rickettsiales were discovered. This study suggests that coelomic fluids of marine invertebrates, at least those inhabiting intertidal areas where physical and chemical conditions fluctuate, provide microbes with unique and stable habitats.
Collapse
Affiliation(s)
- Masaki Enomoto
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan
| | | | | |
Collapse
|