1
|
Xin Y, Wu N, Sun Z, Wang H, Chen Y, Xu C, Geng W, Cao H, Zhang X, Zhai B, Yan D. Methane seepage intensity distinguish microbial communities in sediments at the Mid-Okinawa Trough. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158213. [PMID: 36028040 DOI: 10.1016/j.scitotenv.2022.158213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Shallow methane/sulfate transition zones in cold seeps are hotspots to study microbially mediated geochemical cycles due to high methane fluxes. However, our knowledge about the microbial communities in remote seafloor cold seep ecosystems with different methane seepage intensity is still sparse due to the challenge for sampling and visual observations. In this work, three remotely operated vehicle (ROV) video-guided push sediment cores were sampled from cold seep fields with different methane seepage intensity (low-intensity seepage, R5-C1; moderate-intensity seepage, R6-C2; high-intensity seepage, R6-C3) at the western slope of Mid-Okinawa Trough (Mid-OT) and subjected to high throughput sequencing of 16S rRNA genes for bacteria and archaea. Vesicomyid clams and white microbial mats are visible by video at R6-C3 with methane bubbles. The high relative abundances of anaerobic methanotrophic archaea (ANME-1, -2, and -3), δ-Proteobacteriacea and Campylobacteria in R6-C3 indicated that the processes of anaerobic methane oxidation (AOM), sulfate reduction and sulfur oxidation might occur in this active seeping site. In contrast, Bathyarchaeia, Nitrosopumilales, Sphingomonadales, and Burkholderiales were enriched in bubble-free sites, which commonly involved in the degradation of organic compounds. Principal coordinate analysis showed that both bacterial and archaeal communities were clustered according to sampling sites, also indicating the impact of methane seepage intensity on microbial communities. The co-occurrence network analysis revealed that microbes at the site with high methane fluxes mainly cooperated with each other to sustain the ecosystems, whereas competition enhanced at sites with low methane fluxes. Detection of thermophiles Thermoanaerobaculia and Hydrothermarchaeota may indicate microbial transmission from nearby hydrothermal vents, suggesting potential interactions between cold seepage and hydrothermal vent ecosystems. These results expand our knowledge about the composition and distribution of bacteria and archaea with different methane seepage intensity in cold seep field at the Mid-OT, contributing to the ongoing efforts in understanding carbon cycling in the cold seep ecosystems.
Collapse
Affiliation(s)
- Youzhi Xin
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, China; Laboratory of Marine Mineral Resources, Pilot National Laboratory of Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China
| | - Nengyou Wu
- Laboratory of Marine Mineral Resources, Pilot National Laboratory of Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China
| | - Zhilei Sun
- Laboratory of Marine Mineral Resources, Pilot National Laboratory of Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| | - Ye Chen
- Laboratory of Marine Mineral Resources, Pilot National Laboratory of Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China
| | - Cuiling Xu
- Laboratory of Marine Mineral Resources, Pilot National Laboratory of Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China
| | - Wei Geng
- Laboratory of Marine Mineral Resources, Pilot National Laboratory of Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China
| | - Hong Cao
- Laboratory of Marine Mineral Resources, Pilot National Laboratory of Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China
| | - Xilin Zhang
- Laboratory of Marine Mineral Resources, Pilot National Laboratory of Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China
| | - Bin Zhai
- Laboratory of Marine Mineral Resources, Pilot National Laboratory of Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China
| | - Dawei Yan
- Laboratory of Marine Mineral Resources, Pilot National Laboratory of Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China
| |
Collapse
|
2
|
Liu S, Yu S, Lu X, Yang H, Li Y, Xu X, Lu H, Fang Y. Microbial communities associated with thermogenic gas hydrate-bearing marine sediments in Qiongdongnan Basin, South China Sea. Front Microbiol 2022; 13:1032851. [PMID: 36386663 PMCID: PMC9640435 DOI: 10.3389/fmicb.2022.1032851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
Biogenic and thermogenic gas are two major contributors to gas hydrate formation. Methane hydrates from both origins may have critical impacts on the ecological properties of marine sediments. However, research on microbial diversity in thermogenic hydrate-containing sediments is limited. This study examined the prokaryotic diversity and distributions along a sediment core with a vertical distribution of thermogenic gas hydrates with different occurrences obtained from the Qiongdongnan Basin by Illumina sequencing of 16S rRNA genes as well as molecular and geochemical techniques. Here, we show that gas hydrate occurrence has substantial impacts on both microbial diversity and community composition. Compared to the hydrate-free zone, distinct microbiomes with significantly higher abundance and lower diversity were observed within the gas hydrate-containing layers. Gammaproteobacteria and Actinobacterota dominated the bacterial taxa in all collected samples, while archaeal communities shifted sharply along the vertical profile of sediment layers. A notable stratified distribution of anaerobic methanotrophs shaped by both geophysical and geochemical parameters was also determined. In addition, the hydrate-free zone hosted a large number of rare taxa that might perform a fermentative breakdown of proteins in the deep biosphere and probably respond to the hydrate formation.
Collapse
Affiliation(s)
- Siwei Liu
- School of Earth and Space Sciences, Peking University, Beijing, China
| | - Shan Yu
- Beijing International Center for Gas Hydrate, School of Earth and Space Sciences, Peking University, Beijing, China
- *Correspondence: Shan Yu,
| | - Xindi Lu
- Beijing International Center for Gas Hydrate, School of Earth and Space Sciences, Peking University, Beijing, China
| | - Hailin Yang
- Beijing International Center for Gas Hydrate, School of Earth and Space Sciences, Peking University, Beijing, China
| | - Yuanyuan Li
- School of Earth and Space Sciences, Peking University, Beijing, China
| | - Xuemin Xu
- School of Earth and Space Sciences, Peking University, Beijing, China
- National Research Center for Geoanalysis, Beijing, China
| | - Hailong Lu
- Beijing International Center for Gas Hydrate, School of Earth and Space Sciences, Peking University, Beijing, China
| | - Yunxin Fang
- Guangzhou Marine Geological Survey, Guangzhou, China
- Yunxin Fang,
| |
Collapse
|
3
|
Tarnovetskii IY, Merkel AY, Pimenov NV. Analysis of Cultured Methanogenic Archaea from the Tarkhankut Peninsula Coastal Methane Seeps. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261719060183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
4
|
Cui H, Su X, Chen F, Holland M, Yang S, Liang J, Su P, Dong H, Hou W. Microbial diversity of two cold seep systems in gas hydrate-bearing sediments in the South China Sea. MARINE ENVIRONMENTAL RESEARCH 2019; 144:230-239. [PMID: 30732863 DOI: 10.1016/j.marenvres.2019.01.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/29/2018] [Accepted: 01/14/2019] [Indexed: 05/05/2023]
Abstract
Cold seep is a unique habitat for microorganisms in deep marine sediments, and microbial communities and biogeochemical processes are still poorly understood, especially in relation to hydrate-bearing geo-systems. In this study, two cold seep systems were sampled and microbial diversity was studied at Site GMGS2-08 in the northern part of the South China Sea (SCS) during the GMGS2 gas hydrate expedition. The current cold seep system was composed of a sulfate methane transition zone (SMTZ) and an upper gas hydrate zone (UGHZ). The buried cold seep system was composed of an authigenic carbonate zone (ACZ) and a lower gas hydrate zone (LGHZ). These drill core samples provided an excellent opportunity for analyzing the microbial abundance and diversity based on quantitative polymerase chain reaction (qPCR) and high-throughput 16S rRNA gene sequencing. Compared to previous studies, the high relative abundance of ANME-1b, a clade of anaerobic methanotrophic archaea (ANME), may perform anaerobic oxidation of methane (AOM) in collaboration with ANME-2c and Desulfobacteraceae in the SMTZ, and the high relative abundances of Hadesarchaea, ANME-1b archaea and Aerophobetes bacteria were found in the gas hydrate zone (GHZ) at Site GMGS2-08. ANME-1b, detected in the GHZ, might mainly mediate the AOM process, and the process might occur in a wide depth range within the LGHZ. Moreover, bacterial communities were significantly different between the GHZ and non-GHZ sediments. In the ACZ, archaeal communities were different between the two samples from the upper and the lower layers, while bacterial communities shared similarities. Overall, this new record of cold seep microbial diversity at Site GMGS2-08 showed the complexity of the interaction between biogeochemical reactions and environmental conditions.
Collapse
Affiliation(s)
- Hongpeng Cui
- School of Ocean Sciences, China University of Geosciences, Beijing, 100083, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Xin Su
- School of Ocean Sciences, China University of Geosciences, Beijing, 100083, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China.
| | - Fang Chen
- Guangzhou Marine Geological Survey, Guangzhou, 510075, China
| | | | - Shengxiong Yang
- Guangzhou Marine Geological Survey, Guangzhou, 510075, China
| | - Jinqiang Liang
- Guangzhou Marine Geological Survey, Guangzhou, 510075, China.
| | - Pibo Su
- Guangzhou Marine Geological Survey, Guangzhou, 510075, China
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; Department of Geology and Environmental Earth Science, Miami University, OH, 45056, USA
| | - Weiguo Hou
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| |
Collapse
|
5
|
Wegener G, Krukenberg V, Ruff SE, Kellermann MY, Knittel K. Metabolic Capabilities of Microorganisms Involved in and Associated with the Anaerobic Oxidation of Methane. Front Microbiol 2016; 7:46. [PMID: 26870011 PMCID: PMC4736303 DOI: 10.3389/fmicb.2016.00046] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/11/2016] [Indexed: 11/16/2022] Open
Abstract
In marine sediments the anaerobic oxidation of methane with sulfate as electron acceptor (AOM) is responsible for the removal of a major part of the greenhouse gas methane. AOM is performed by consortia of anaerobic methane-oxidizing archaea (ANME) and their specific partner bacteria. The physiology of these organisms is poorly understood, which is due to their slow growth with doubling times in the order of months and the phylogenetic diversity in natural and in vitro AOM enrichments. Here we study sediment-free long-term AOM enrichments that were cultivated from seep sediments sampled off the Italian Island Elba (20°C; hereon called E20) and from hot vents of the Guaymas Basin, Gulf of California, cultivated at 37°C (G37) or at 50°C (G50). These enrichments were dominated by consortia of ANME-2 archaea and Seep-SRB2 partner bacteria (E20) or by ANME-1, forming consortia with Seep-SRB2 bacteria (G37) or with bacteria of the HotSeep-1 cluster (G50). We investigate lipid membrane compositions as possible factors for the different temperature affinities of the different ANME clades and show autotrophy as characteristic feature for both ANME clades and their partner bacteria. Although in the absence of additional substrates methane formation was not observed, methanogenesis from methylated substrates (methanol and methylamine) could be quickly stimulated in the E20 and the G37 enrichment. Responsible for methanogenesis are archaea from the genus Methanohalophilus and Methanococcoides, which are minor community members during AOM (1–7‰ of archaeal 16S rRNA gene amplicons). In the same two cultures also sulfur disproportionation could be quickly stimulated by addition of zero-valent colloidal sulfur. The isolated partner bacteria are likewise minor community members (1–9‰ of bacterial 16S rRNA gene amplicons), whereas the dominant partner bacteria (Seep-SRB1a, Seep-SRB2, or HotSeep-1) did not grow on elemental sulfur. Our results support a functioning of AOM as syntrophic interaction of obligate methanotrophic archaea that transfer non-molecular reducing equivalents (i.e., via direct interspecies electron transfer) to obligate sulfate-reducing partner bacteria. Additional katabolic processes in these enrichments but also in sulfate methane interfaces are likely performed by minor community members.
Collapse
Affiliation(s)
- Gunter Wegener
- Max Planck Institute for Marine MicrobiologyBremen, Germany; MARUM, Center for Marine Environmental SciencesBremen, Germany
| | | | - S Emil Ruff
- Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Matthias Y Kellermann
- MARUM, Center for Marine Environmental SciencesBremen, Germany; Department of Earth Science and Marine Science Institute, University of California, Santa BarbaraSanta Barbara, CA, USA
| | - Katrin Knittel
- Max Planck Institute for Marine Microbiology Bremen, Germany
| |
Collapse
|
6
|
Evidence of Active Methanogen Communities in Shallow Sediments of the Sonora Margin Cold Seeps. Appl Environ Microbiol 2015. [DOI: 10.1128/aem.00147-15 rlike (select (case when (5853=5853) then 0x31302e313132382f61656d2e30303134372d3135 else 0x28 end))-- yhjw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
7
|
Evidence of Active Methanogen Communities in Shallow Sediments of the Sonora Margin Cold Seeps. Appl Environ Microbiol 2015. [DOI: 10.1128/aem.00147-15 and (select (case when (4843=4843) then null else ctxsys.drithsx.sn(1,4843) end) from dual) is null] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
8
|
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
9
|
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
10
|
Evidence of Active Methanogen Communities in Shallow Sediments of the Sonora Margin Cold Seeps. Appl Environ Microbiol 2015. [DOI: 10.1128/aem.00147-15 and (select (case when (4809=6114) then null else ctxsys.drithsx.sn(1,4809) end) from dual) is null-- zlmh] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
11
|
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
12
|
Evidence of Active Methanogen Communities in Shallow Sediments of the Sonora Margin Cold Seeps. Appl Environ Microbiol 2015. [DOI: 10.1128/aem.00147-15 and extractvalue(5836,concat(0x5c,0x7162707671,(select (elt(5836=5836,1))),0x717a6b7171))-- jijh] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
13
|
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
14
|
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
15
|
Evidence of Active Methanogen Communities in Shallow Sediments of the Sonora Margin Cold Seeps. Appl Environ Microbiol 2015. [DOI: 10.1128/aem.00147-15 order by 1-- wjpz] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
16
|
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
17
|
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
18
|
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
19
|
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
20
|
Evidence of Active Methanogen Communities in Shallow Sediments of the Sonora Margin Cold Seeps. Appl Environ Microbiol 2015. [DOI: 10.1128/aem.00147-15 or extractvalue(9645,concat(0x5c,0x7162707671,(select (elt(9645=9645,1))),0x717a6b7171))-- tzdx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
21
|
Evidence of Active Methanogen Communities in Shallow Sediments of the Sonora Margin Cold Seeps. Appl Environ Microbiol 2015. [DOI: 10.1128/aem.00147-15 order by 1#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
22
|
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
23
|
Evidence of Active Methanogen Communities in Shallow Sediments of the Sonora Margin Cold Seeps. Appl Environ Microbiol 2015. [DOI: 10.1128/aem.00147-15 and 9969=9969-- bqjm] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
24
|
Evidence of Active Methanogen Communities in Shallow Sediments of the Sonora Margin Cold Seeps. Appl Environ Microbiol 2015. [DOI: 10.1128/aem.00147-15 and 5417=7636-- tabb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
25
|
Evidence of Active Methanogen Communities in Shallow Sediments of the Sonora Margin Cold Seeps. Appl Environ Microbiol 2015. [DOI: 10.1128/aem.00147-15 order by 1-- ntbd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
26
|
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
27
|
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
28
|
Evidence of Active Methanogen Communities in Shallow Sediments of the Sonora Margin Cold Seeps. Appl Environ Microbiol 2015. [DOI: 10.1128/aem.00147-15 rlike (select (case when (7991=6814) then 0x31302e313132382f61656d2e30303134372d3135 else 0x28 end))-- awkz] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
29
|
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
30
|
Evidence of Active Methanogen Communities in Shallow Sediments of the Sonora Margin Cold Seeps. Appl Environ Microbiol 2015. [DOI: 10.1128/aem.00147-15 and (select (case when (8714=1632) then null else ctxsys.drithsx.sn(1,8714) end) from dual) is null] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
31
|
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
32
|
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
33
|
Evidence of Active Methanogen Communities in Shallow Sediments of the Sonora Margin Cold Seeps. Appl Environ Microbiol 2015. [DOI: 10.1128/aem.00147-15 or extractvalue(9645,concat(0x5c,0x7162707671,(select (elt(9645=9645,1))),0x717a6b7171))] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
34
|
Evidence of Active Methanogen Communities in Shallow Sediments of the Sonora Margin Cold Seeps. Appl Environ Microbiol 2015. [DOI: 10.1128/aem.00147-15 and extractvalue(5836,concat(0x5c,0x7162707671,(select (elt(5836=5836,1))),0x717a6b7171))] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
35
|
Evidence of Active Methanogen Communities in Shallow Sediments of the Sonora Margin Cold Seeps. Appl Environ Microbiol 2015. [DOI: 10.1128/aem.00147-15 and 8053=(select (case when (8053=6425) then 8053 else (select 6425 union select 9502) end))-- fyqk] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
36
|
Evidence of Active Methanogen Communities in Shallow Sediments of the Sonora Margin Cold Seeps. Appl Environ Microbiol 2015. [DOI: 10.1128/aem.00147-15 and (select (case when (4843=4843) then null else ctxsys.drithsx.sn(1,4843) end) from dual) is null-- boza] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
37
|
Evidence of Active Methanogen Communities in Shallow Sediments of the Sonora Margin Cold Seeps. Appl Environ Microbiol 2015. [DOI: 10.1128/aem.00147-15 rlike (select (case when (3247=9761) then 0x31302e313132382f61656d2e30303134372d3135 else 0x28 end))] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
38
|
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
39
|
Evidence of Active Methanogen Communities in Shallow Sediments of the Sonora Margin Cold Seeps. Appl Environ Microbiol 2015. [DOI: 10.1128/aem.00147-15 and 5797=7820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
40
|
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
41
|
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
42
|
Evidence of active methanogen communities in shallow sediments of the sonora margin cold seeps. Appl Environ Microbiol 2015. [PMID: 25769831 PMCID: PMC4407212 DOI: 10.1128/aem.00147-15;select dbms_pipe.receive_message(chr(66)||chr(69)||chr(114)||chr(108),32) from dual--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic Archaea were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic Methanococcoides burtonii relatives and several new autotrophic Methanogenium lineages, confirming the cooccurrence of Methanosarcinales and Methanomicrobiales methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
43
|
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
44
|
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
45
|
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
46
|
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
47
|
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
48
|
Evidence of Active Methanogen Communities in Shallow Sediments of the Sonora Margin Cold Seeps. Appl Environ Microbiol 2015. [DOI: 10.1128/aem.00147-15 rlike (select (case when (5853=5853) then 0x31302e313132382f61656d2e30303134372d3135 else 0x28 end))] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
49
|
Evidence of Active Methanogen Communities in Shallow Sediments of the Sonora Margin Cold Seeps. Appl Environ Microbiol 2015. [DOI: 10.1128/aem.00147-15 and 7189=(select (case when (7189=7189) then 7189 else (select 4603 union select 7104) end))-- urgz] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
50
|
Evidence of Active Methanogen Communities in Shallow Sediments of the Sonora Margin Cold Seeps. Appl Environ Microbiol 2015. [DOI: 10.1128/aem.00147-15 and 9969=9969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|