1
|
Geary EL, Oba PM, Templeman JR, Swanson KS. Apparent total tract nutrient digestibility of frozen raw, freeze-dried raw, fresh, and extruded dog foods and their effects on serum metabolites and fecal characteristics, metabolites, and microbiota of healthy adult dogs. Transl Anim Sci 2024; 8:txae163. [PMID: 39687915 PMCID: PMC11648562 DOI: 10.1093/tas/txae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Various pet food diet formats are available, but many are poorly studied. The objective of this study was to determine the apparent total tract macronutrient digestibility (ATTD) of frozen raw, freeze-dried raw, fresh, and extruded dog foods and assess their effects on serum metabolites, hematology, and fecal characteristics, metabolites, and microbiota of healthy adult dogs. Ten beagle dogs (4.10 ± 0.74 yr) were used in a replicated 5 × 5 Latin square study to test the following diets: Chicken and Barley Recipe (extruded; Hill's Science Diet [EXT]), Chicken and White Rice Recipe (fresh; Just Food for Dogs [FRSH]), Chicken Formula (frozen raw; Primal [FRZN]), Chicken and Sorghum Hybrid Freeze-dried Formula (freeze-dried raw; Primal [HFD]), and Chicken Dinner Patties (freeze-dried raw; Stella & Chewy's [FD]). The experiment was composed of five 35-d periods, with each ending with fecal and blood collections. Data were analyzed using Mixed Models in SAS 9.4, with P < 0.05 being significant. Treatment was a fixed effect and dog a random effect. Protein ATTD was higher for FRZN and FD than other diets and higher for HFD than FRSH and EXT. Fat ATTD was higher for HFD than FRZN and EXT and lower for EXT than other diets. Fecal output was higher for dogs fed EXT than those fed other diets and higher for dogs fed FRSH than those fed FRZN, HFD, or FD. Fecal pH was lower in dogs fed EXT and FRSH than those fed other diets. Fecal scores were higher (looser) in dogs fed EXT and FRSH than those fed FRZN and FD. Fecal dry matter was higher in dogs fed FD than those fed other diets and higher in those fed FRZN and HFD than those fed EXT and FRSH. In general, fecal short-chain fatty acids were highest in dogs fed EXT, intermediate in dogs fed FRSH and HFD, and lowest in dogs fed FRZN and FD. Fecal isobutyrate and isovalerate were highest in dogs fed HFD, lowest in dogs fed FRSH, and intermediate in dogs fed other diets. Fecal primary bile acids were higher, while secondary bile acids were lower in dogs fed FRSH than in dogs fed other diets. Fecal microbiota were greatly impacted by diet, with alpha diversity, beta diversity, and relative abundances of over 40 bacterial genera being different among treatments. This study shows that dietary format may lead to great differences in nutrient digestibility and fecal characteristics, metabolites, and microbiota. More research is needed to distinguish the effects of ingredient source, processing method, and nutrient composition.
Collapse
Affiliation(s)
- Elizabeth L Geary
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Patrícia M Oba
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | | | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
2
|
Yan G, Qin Z, Liu A, Huang Z, Wang X, Zhang S, Xie X, Huang X, Chen J, Li Y, Xie Q, Liu Y, Su Z, Xie J. Sulfonation metabolism in the gut microbiota is the main metabolic pathway of cholesterol in hypercholesterolemic mice. Food Funct 2024; 15:9750-9765. [PMID: 39238326 DOI: 10.1039/d4fo02312a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The interactions between dietary cholesterol and intestinal microbiota strongly affect host health. Sulfonation is a major conjugating pathway responsible for regulating the chemical and functional homeostasis of endogenous and exogenous molecules. However, the role of cholesterol sulfonation metabolism in the host remains unclear. This work was designed to profile cholesterol-specific host-microbe interaction and conversion focusing on cholesterol sulfonation metabolism. Results indicated that the serum and fecal cholesterol sulfate (CHS) levels were significantly higher than those of total bile acid (TBA) levels in hypercholesterolemic mice. Deletion of the gut microbiota by antibiotics could dramatically increase total cholesterol (TC) levels but it decreased CHS levels in a pseudo-germ-free (PGF) mouse host. 16S rRNA gene sequencing assay and correlation analysis between the abundance of various intestinal bacteria (phylum and class) and the CHS/TC ratio showed that the intestinal genera Bacteroides contributed essentially to cholesterol sulfonation metabolism. These results were further confirmed in an in situ and ex vivo mouse intestinal model, which indicated that the sulfonation metabolism rate of cholesterol could reach 42% under high cholesterol conditions. These findings provided new evidence that the sulfonation metabolic pathway dominated cholesterol metabolism in hypercholesterolemic mice and microbial conversion of cholesterol-to-CHS was of vital importance for cholesterol-lowering by Bacteroides. This suggested that the gut microbiota could regulate cholesterol metabolism and that it was feasible to reduce cholesterol levels by dietary interventions involving the gut microbiota.
Collapse
Affiliation(s)
- Guangtao Yan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Zehui Qin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - Aitong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Ziwei Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Xinhong Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Shanli Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Xiaolin Xie
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China
| | - Xiaoqi Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Qingfeng Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China.
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China
| | - Jianhui Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China.
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510120, PR China
| |
Collapse
|
3
|
Pokala A, Kraft J, Taormina VM, Michalski MC, Vors C, Torres-Gonzalez M, Bruno RS. Whole milk dairy foods and cardiometabolic health: dairy fat and beyond. Nutr Res 2024; 126:99-122. [PMID: 38669850 DOI: 10.1016/j.nutres.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024]
Abstract
Bovine dairy milk is a nutrient-rich matrix, but consumption of full-fat dairy food varieties has been claimed historically to be associated with poorer cardiometabolic health, a notion often attributed to the saturated fat content. However, continued investigation that includes observational studies and randomized controlled trials (RCTs) provide evidence that favorably supports full-fat dairy foods and their bioactive components on cardiometabolic health. This review addresses this controversy by examining the evidence surrounding full-fat dairy foods and their implications for human health. Dairy foods are heterogeneous, not just in their fat content but also in other compositional aspects within and between fermented (e.g., yogurt, cheese) and nonfermented products (e.g., milk) that could differentially influence cardiometabolic health. Drawing from complementary lines of evidence from epidemiological studies and RCTs, this review describes the health effects of dairy foods regarding their fat content, as well as their polar lipids that are concentrated in the milk fat globule fraction. Observational studies have limitedly supported the consumption of full-fat dairy to protect against cardiometabolic disorders. However, this framework has been disputed by RCTs indicating that dairy foods, regardless of their fat content or fermentation, are not detrimental to cardiometabolic health and may instead alleviate certain cardiometabolic risk factors. As dietary recommendations evolve, which currently indicate to avoid full-fat dairy foods, it is essential to consider the totality of evidence, especially from RCTs, while also recognizing that investigation is needed to evaluate the complexity of dairy foods within diverse dietary patterns and their impacts on cardiometabolic health.
Collapse
Affiliation(s)
- Avinash Pokala
- Human Nutrition Program, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Jana Kraft
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, Vermont, 05405, USA
| | - Victoria M Taormina
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, Vermont, 05405, USA
| | - Marie-Caroline Michalski
- INRAE, UMR1397, Inserm, U1060, Université Claude Bernard Lyon 1, CarMeN laboratory, Pierre-Bénite, FR
| | - Cécile Vors
- INRAE, UMR1397, Inserm, U1060, Université Claude Bernard Lyon 1, CarMeN laboratory, Pierre-Bénite, FR
| | | | - Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, Ohio, 43210, USA.
| |
Collapse
|
4
|
Dosh L, Ghazi M, Haddad K, El Masri J, Hawi J, Leone A, Basset C, Geagea AG, Jurjus R, Jurjus A. Probiotics, gut microbiome, and cardiovascular diseases: An update. Transpl Immunol 2024; 83:102000. [PMID: 38262540 DOI: 10.1016/j.trim.2024.102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Cardiovascular diseases (CVD) are one of the most challenging diseases and many factors have been demonstrated to affect their pathogenesis. One of the major factors that affect CVDs, especially atherosclerosis, is the gut microbiota (GM). Genetics play a key role in linking CVDs with GM, in addition to some environmental factors which can be either beneficial or harmful. The interplay between GM and CVDs is complex due to the numerous mechanisms through which microbial components and their metabolites can influence CVDs. Within this interplay, the immune system plays a major role, mainly based on the immunomodulatory effects of microbial dysbiosis and its resulting metabolites. The resulting modulation of chronic inflammatory processes was found to reduce the severity of CVDs and to maintain cardiovascular health. To better understand the specific roles of GM-related metabolites in this interplay, this review presents an updated perspective on gut metabolites related effects on the cardiovascular system, highlighting the possible benefits of probiotics in therapeutic strategies.
Collapse
Affiliation(s)
- Laura Dosh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Maya Ghazi
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Karim Haddad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Jad El Masri
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.
| | - Jihad Hawi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, Lebanon.
| | - Angelo Leone
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy.
| | - Charbel Basset
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy.
| | - Alice Gerges Geagea
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rosalyn Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Abdo Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
5
|
Bubeck AM, Urbain P, Horn C, Jung AS, Ferrari L, Ruple HK, Podlesny D, Zorn S, Laupsa-Borge J, Jensen C, Lindseth I, Lied GA, Dierkes J, Mellgren G, Bertz H, Matysik S, Krautbauer S, Liebisch G, Schoett HF, Dankel SN, Fricke WF. High-fat diet impact on intestinal cholesterol conversion by the microbiota and serum cholesterol levels. iScience 2023; 26:107697. [PMID: 37694136 PMCID: PMC10485154 DOI: 10.1016/j.isci.2023.107697] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/02/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023] Open
Abstract
Cholesterol-to-coprostanol conversion by the intestinal microbiota has been suggested to reduce intestinal and serum cholesterol availability, but the relationship between intestinal cholesterol conversion and the gut microbiota, dietary habits, and serum lipids has not been characterized in detail. We measured conserved proportions of cholesterol high and low-converter types in individuals with and without obesity from two distinct, independent low-carbohydrate high-fat (LCHF) dietary intervention studies. Across both cohorts, cholesterol conversion increased in previous low-converters after LCHF diet and was positively correlated with the fecal relative abundance of Eubacterium coprostanoligenes. Lean cholesterol high-converters had increased serum triacylglycerides and decreased HDL-C levels before LCHF diet and responded to the intervention with increased LDL-C, independently of fat, cholesterol, and saturated fatty acid intake. Our findings identify the cholesterol high-converter type as a microbiome marker, which in metabolically healthy lean individuals is associated with increased LDL-C in response to LCHF.
Collapse
Affiliation(s)
- Alena M. Bubeck
- Department of Microbiome Research and Applied Bioinformatics, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Paul Urbain
- Department of Medicine I, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cathrine Horn
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Anna S. Jung
- Department of Microbiome Research and Applied Bioinformatics, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Lisa Ferrari
- Department of Microbiome Research and Applied Bioinformatics, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Hannah K. Ruple
- Department of Microbiome Research and Applied Bioinformatics, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Daniel Podlesny
- Department of Microbiome Research and Applied Bioinformatics, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Stefanie Zorn
- Department of Medicine I, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Johnny Laupsa-Borge
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Caroline Jensen
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | | - Gülen Arslan Lied
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Jutta Dierkes
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Gunnar Mellgren
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Hartmut Bertz
- Department of Medicine I, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Silke Matysik
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Hans-Frieder Schoett
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Simon N. Dankel
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - W. Florian Fricke
- Department of Microbiome Research and Applied Bioinformatics, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Sung CH, Pilla R, Marsilio S, Chow B, Zornow KA, Slovak JE, Lidbury JA, Steiner JM, Hill SL, Suchodolski JS. Fecal Concentrations of Long-Chain Fatty Acids, Sterols, and Unconjugated Bile Acids in Cats with Chronic Enteropathy. Animals (Basel) 2023; 13:2753. [PMID: 37685017 PMCID: PMC10486672 DOI: 10.3390/ani13172753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Chronic enteropathy (CE) in cats encompasses food-responsive enteropathy, chronic inflammatory enteropathy (or inflammatory bowel disease), and low-grade intestinal T-cell lymphoma. While alterations in the gut metabolome have been extensively studied in humans and dogs with gastrointestinal disorders, little is known about the specific metabolic profile of cats with CE. As lipids take part in energy storage, inflammation, and cellular structure, investigating the lipid profile in cats with CE is crucial. This study aimed to measure fecal concentrations of various fatty acids, sterols, and bile acids. Fecal samples from 56 cats with CE and 77 healthy control cats were analyzed using gas chromatography-mass spectrometry, targeting 12 fatty acids, 10 sterols, and 5 unconjugated bile acids. Fecal concentrations of nine targeted fatty acids and animal-derived sterols were significantly increased in cats with CE. However, fecal concentrations of plant-derived sterols were significantly decreased in cats with CE. Additionally, an increased percentage of primary bile acids was observed in a subset of cats with CE. These findings suggest the presence of lipid maldigestion, malabsorption, and inflammation in the gastrointestinal tract of cats with CE. Understanding the lipid alterations in cats with CE can provide insights into the disease mechanisms and potential future therapeutic strategies.
Collapse
Affiliation(s)
- Chi-Hsuan Sung
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (C.-H.S.)
| | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (C.-H.S.)
| | - Sina Marsilio
- UC Davis School of Veterinary Medicine, Department of Veterinary Medicine and Epidemiology, University of California, Davis, CA 95616, USA
| | - Betty Chow
- Veterinary Specialty Hospital, San Diego, CA 92121, USA
- VCA Animal Specialty and Emergency Center, Los Angeles, CA 90025, USA
| | | | | | - Jonathan A. Lidbury
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (C.-H.S.)
| | - Joerg M. Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (C.-H.S.)
| | - Steve L. Hill
- Veterinary Specialty Hospital, San Diego, CA 92121, USA
- Flagstaff Veterinary Internal Medicine Consulting, Flagstaff, AZ 86004, USA
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (C.-H.S.)
| |
Collapse
|
7
|
Comparative Gut Microbiome Differences between High and Low Aortic Arch Calcification Score in Patients with Chronic Diseases. Int J Mol Sci 2023; 24:ijms24065673. [PMID: 36982746 PMCID: PMC10059004 DOI: 10.3390/ijms24065673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023] Open
Abstract
Gut dysbiosis can induce chronic inflammation and contribute to atherosclerosis and vascular calcification. The aortic arch calcification (AoAC) score is a simple, noninvasive, and semiquantitative assessment tool to evaluate vascular calcification on chest radiographs. Few studies have discussed the relationship between gut microbiota and AoAC. Therefore, this study aimed to compare the microbiota composition between patients with chronic diseases and high or low AoAC scores. A total of 186 patients (118 males and 68 females) with chronic diseases, including diabetes mellitus (80.6%), hypertension (75.3%), and chronic kidney disease (48.9%), were enrolled. Gut microbiota in fecal samples were analyzed by sequencing of the 16S rRNA gene, and differences in microbial function were examined. The patients were divided into three groups according to AoAC score, including 103 patients in the low AoAC group (AoAC ≤ 3), 40 patients in the medium AoAC group (3 < AoAC ≤ 6), and 43 patients in the high AoAC group (AoAC > 6). Compared to the low AoAC group, the high AoAC group had a significantly lower microbial species diversity (Chao1 index and Shannon index) and increased microbial dysbiosis index. Beta diversity showed that the microbial community composition was significantly different among the three groups (p = 0.041, weighted UniFrac PCoA). A distinct microbial community structure was found in the patients with a low AoAC, with an increased abundance at the genus level of Agathobacter, Eubacterium coprostanoligenes group, Ruminococcaceae UCG-002, Barnesiella, Butyricimonas, Oscillibacter, Ruminococcaceae DTU089, and Oxalobacter. In addition, there was an increased relative abundance of class Bacilli in the high AoAC group. Our findings support the association between gut dysbiosis and the severity of AoAC in patients with chronic diseases.
Collapse
|
8
|
Telle-Hansen VH, Gaundal L, Bastani N, Rud I, Byfuglien MG, Gjøvaag T, Retterstøl K, Holven KB, Ulven SM, Myhrstad MCW. Replacing saturated fatty acids with polyunsaturated fatty acids increases the abundance of Lachnospiraceae and is associated with reduced total cholesterol levels-a randomized controlled trial in healthy individuals. Lipids Health Dis 2022; 21:92. [PMID: 36163070 PMCID: PMC9511723 DOI: 10.1186/s12944-022-01702-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/12/2022] [Indexed: 11/12/2022] Open
Abstract
Background Improving dietary fat quality strongly affects serum cholesterol levels and hence the risk of cardiovascular diseases (CVDs). Recent studies have identified dietary fat as a potential modulator of the gut microbiota, a central regulator of host metabolism including lipid metabolism. We have previously shown a significant reduction in total cholesterol levels after replacing saturated fatty acids (SFAs) with polyunsaturated fatty acids (PUFAs). The aim of the present study was to investigate the effect of dietary fat quality on gut microbiota, short-chain fatty acids (SCFAs), and bile acids in healthy individuals. In addition, to investigate how changes in gut microbiota correlate with blood lipids, bile acids, and fatty acids. Methods Seventeen participants completed a randomized, controlled dietary crossover study. The participants received products with SFAs (control) or PUFAs in random order for three days. Fecal samples for gut microbiota analyses and fasting blood samples (lipids, fatty acids, and bile acids) were measured before and after the three-day intervention. Results Of a panel of 40 bacteria, Lachnospiraceae and Bifidobacterium spp. were significantly increased after intervention with PUFAs compared with SFAs. Interestingly, changes in Lachnospiraceae, as well as Phascolarlactobacterium sp. and Eubacterium hallii, was also found to be negatively correlated with changes in total cholesterol levels after replacing the intake of SFAs with PUFAs for three days. No significant differences in SCFAs or bile acids were found after the intervention. Conclusion Replacing SFAs with PUFAs increased the abundance of the gut microbiota family of Lachnospiraceae and Bifidobacterium spp. Furthermore, the reduction in total cholesterol after improving dietary fat quality correlated with changes in the gut microbiota family Lachnospiraceae. Future studies are needed to reveal whether Lachnospiraceae may be targeted to reduce total cholesterol levels. Trial registration The study was registered at Clinical Trials (https://clinicaltrials.gov/, registration identification number: NCT03658681).
Collapse
Affiliation(s)
- Vibeke H Telle-Hansen
- Faculty of Health Sciences, Oslo Metropolitan University, St. Olavsplass, Postbox 4, 0130, Oslo, Norway.
| | - Line Gaundal
- Faculty of Health Sciences, Oslo Metropolitan University, St. Olavsplass, Postbox 4, 0130, Oslo, Norway
| | - Nasser Bastani
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, P.O. Box 1046, 0317, Oslo, Norway
| | - Ida Rud
- Nofima -Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, 1433, Ås, Norway
| | | | - Terje Gjøvaag
- Faculty of Health Sciences, Oslo Metropolitan University, St. Olavsplass, Postbox 4, 0130, Oslo, Norway
| | - Kjetil Retterstøl
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, P.O. Box 1046, 0317, Oslo, Norway.,The Lipid Clinic, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Nydalen, P.O. Box 4950, 0424, Oslo, Norway
| | - Kirsten B Holven
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, P.O. Box 1046, 0317, Oslo, Norway.,The Norwegian National Advisory Unit On Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Stine M Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, P.O. Box 1046, 0317, Oslo, Norway
| | - Mari C W Myhrstad
- Faculty of Health Sciences, Oslo Metropolitan University, St. Olavsplass, Postbox 4, 0130, Oslo, Norway
| |
Collapse
|
9
|
Breuninger TA, Wawro N, Freuer D, Reitmeier S, Artati A, Grallert H, Adamski J, Meisinger C, Peters A, Haller D, Linseisen J. Fecal Bile Acids and Neutral Sterols Are Associated with Latent Microbial Subgroups in the Human Gut. Metabolites 2022; 12:846. [PMID: 36144250 PMCID: PMC9504437 DOI: 10.3390/metabo12090846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022] Open
Abstract
Bile acids, neutral sterols, and the gut microbiome are intricately intertwined and each affects human health and metabolism. However, much is still unknown about this relationship. This analysis included 1280 participants of the KORA FF4 study. Fecal metabolites (primary and secondary bile acids, plant and animal sterols) were analyzed using a metabolomics approach. Dirichlet regression models were used to evaluate associations between the metabolites and twenty microbial subgroups that were previously identified using latent Dirichlet allocation. Significant associations were identified between 12 of 17 primary and secondary bile acids and several of the microbial subgroups. Three subgroups showed largely positive significant associations with bile acids, and six subgroups showed mostly inverse associations with fecal bile acids. We identified a trend where microbial subgroups that were previously associated with "healthy" factors were here inversely associated with fecal bile acid levels. Conversely, subgroups that were previously associated with "unhealthy" factors were positively associated with fecal bile acid levels. These results indicate that further research is necessary regarding bile acids and microbiota composition, particularly in relation to metabolic health.
Collapse
Affiliation(s)
- Taylor A. Breuninger
- Chair of Epidemiology, University Hospital Augsburg, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| | - Nina Wawro
- Chair of Epidemiology, University Hospital Augsburg, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Epidemiology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Dennis Freuer
- Chair of Epidemiology, University Hospital Augsburg, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| | - Sandra Reitmeier
- Chair of Nutrition and Immunology, Technische Universität München, Gregor-Mendel-Str. 2, 85354 Freising, Germany
- ZIEL—Institute for Food & Health, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Anna Artati
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Metabolomics and Proteomics Core, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Harald Grallert
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Epidemiology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Christa Meisinger
- Chair of Epidemiology, University Hospital Augsburg, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| | - Annette Peters
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Epidemiology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology, Technische Universität München, Gregor-Mendel-Str. 2, 85354 Freising, Germany
- ZIEL—Institute for Food & Health, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Jakob Linseisen
- Chair of Epidemiology, University Hospital Augsburg, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
- ZIEL—Institute for Food & Health, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| |
Collapse
|
10
|
Bu W, Dong GK, Da WW, Zhang GX, Liu HM, Ju XY, Li RP, Yuan B. Salvianolic acid-modified chitosan particle for shift intestinal microbiota composition and metabolism to reduce benzopyrene toxicity for mice. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Juste C, Gérard P. Cholesterol-to-Coprostanol Conversion by the Gut Microbiota: What We Know, Suspect, and Ignore. Microorganisms 2021; 9:1881. [PMID: 34576776 PMCID: PMC8468837 DOI: 10.3390/microorganisms9091881] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Every day, up to 1 g of cholesterol, composed of the unabsorbed dietary cholesterol, the biliary cholesterol secretion, and cholesterol of cells sloughed from the intestinal epithelium, enters the colon. All cholesterol arriving in the large intestine can be metabolized by the colonic bacteria. Cholesterol is mainly converted into coprostanol, a non-absorbable sterol that is excreted in the feces. Interestingly, cholesterol-to-coprostanol conversion in human populations is variable, with a majority of high converters and a minority of low or inefficient converters. Two major pathways have been proposed, one involving the direct stereospecific reduction of the Δ5 double bond direct while the indirect pathway involves the intermediate formation of 4-cholelesten-3-one and coprostanone. Despite the fact that intestinal cholesterol conversion was discovered more than a century ago, only a few cholesterol-to-coprostanol-converting bacterial strains have been isolated and characterized. Moreover, the responsible genes were mainly unknown until recently. Interestingly, cholesterol-to-coprostanol conversion is highly regulated by the diet. Finally, this gut bacterial metabolism has been linked to health and disease, and recent evidence suggests it could contribute to lower blood cholesterol and cardiovascular risks.
Collapse
Affiliation(s)
| | - Philippe Gérard
- AgroParisTech, Micalis Institute, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France;
| |
Collapse
|
12
|
Zwartjes MSZ, Gerdes VEA, Nieuwdorp M. The Role of Gut Microbiota and Its Produced Metabolites in Obesity, Dyslipidemia, Adipocyte Dysfunction, and Its Interventions. Metabolites 2021; 11:531. [PMID: 34436472 PMCID: PMC8398981 DOI: 10.3390/metabo11080531] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
Obesity is becoming an increasing problem worldwide and is often, but not invariably, associated with dyslipidemia. The gut microbiota is increasingly linked to cardiovascular disease, nonalcoholic fatty liver disease, and type 2 diabetes mellitus. However, relatively little focus has been attributed to the role of gut-microbiota-derived metabolites in the development of dyslipidemia and alterations in lipid metabolism. In this review, we discuss current data involved in these processes and point out the therapeutic potentials. We cover the ability of gut microbiota metabolites to alter lipoprotein lipase action, VLDL secretion, and plasma triglyceride levels, and its effects on reverse cholesterol transport, adipocyte dysfunction, and adipose tissue inflammation. Finally, the current intervention strategies for treatment of obesity and dyslipidemia is addressed with emphasis on the role of gut microbiota metabolites and its ability to predict treatment efficacies.
Collapse
Affiliation(s)
- Max S. Z. Zwartjes
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (V.E.A.G.); (M.N.)
- Department of Internal Medicine, Spaarne Gasthuis, Spaarnepoort 1, 2134 TM Hoofddorp, The Netherlands
| | - Victor E. A. Gerdes
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (V.E.A.G.); (M.N.)
- Department of Internal Medicine, Spaarne Gasthuis, Spaarnepoort 1, 2134 TM Hoofddorp, The Netherlands
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (V.E.A.G.); (M.N.)
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
- Department of Internal Medicine, Diabetes Center, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
13
|
Rajeev R, Seethalakshmi PS, Jena PK, Prathiviraj R, Kiran GS, Selvin J. Gut microbiome responses in the metabolism of human dietary components: Implications in health and homeostasis. Crit Rev Food Sci Nutr 2021; 62:7615-7631. [PMID: 34016000 DOI: 10.1080/10408398.2021.1916429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The gut microbiome and its link with human health and disease have gained a lot of attention recently. The microbiome executes its functions in the host by carrying out the transformation of dietary components and/or de novo synthesis of various essential nutrients. The presence of complex microbial communities makes it difficult to understand the host-microbiome interplay in the metabolism of dietary components. This review attempts to uncover the incredible role of the gut microbiome in the metabolism of dietary components, diet-microbiome interplay, and restoration of the microbiome. The in silico analysis performed in this study elucidates the functional description of essential/hub genes involved in the amino acid degradation pathway, which are mutually present in the host and its gut microbiome. Hence, the computational model helps comprehend the inter-and intracellular molecular networks between humans and their microbial partners.
Collapse
Affiliation(s)
- Riya Rajeev
- Department of Microbiology, Pondicherry University, Puducherry, India
| | - P S Seethalakshmi
- Department of Microbiology, Pondicherry University, Puducherry, India
| | - Prasant Kumar Jena
- Immunology and infectious disease research, Department of Pediatrics, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - R Prathiviraj
- Department of Microbiology, Pondicherry University, Puducherry, India
| | - George Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Puducherry, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry, India
| |
Collapse
|
14
|
Mukherjee A, Lordan C, Ross RP, Cotter PD. Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health. Gut Microbes 2020; 12:1802866. [PMID: 32835590 PMCID: PMC7524325 DOI: 10.1080/19490976.2020.1802866] [Citation(s) in RCA: 316] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/10/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
Over the last two decades our understanding of the gut microbiota and its contribution to health and disease has been transformed. Among a new 'generation' of potentially beneficial microbes to have been recognized are members of the genus Eubacterium, who form a part of the core human gut microbiome. The genus consists of phylogenetically, and quite frequently phenotypically, diverse species, making Eubacterium a taxonomically unique and challenging genus. Several members of the genus produce butyrate, which plays a critical role in energy homeostasis, colonic motility, immunomodulation and suppression of inflammation in the gut. Eubacterium spp. also carry out bile acid and cholesterol transformations in the gut, thereby contributing to their homeostasis. Gut dysbiosis and a consequently modified representation of Eubacterium spp. in the gut, have been linked with various human disease states. This review provides an overview of Eubacterium species from a phylogenetic perspective, describes how they alter with diet and age and summarizes its association with the human gut and various health conditions.
Collapse
Affiliation(s)
- Arghya Mukherjee
- Department of Food Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Cathy Lordan
- Department of Food Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - R. Paul Ross
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- Department of Food Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
15
|
Ding QY, Tian JX, Li M, Lian FM, Zhao LH, Wei XX, Han L, Zheng YJ, Gao ZZ, Yang HY, Fang XY, Tong XL. Interactions Between Therapeutics for Metabolic Disease, Cardiovascular Risk Factors, and Gut Microbiota. Front Cell Infect Microbiol 2020; 10:530160. [PMID: 33194785 PMCID: PMC7644821 DOI: 10.3389/fcimb.2020.530160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
With improved standards of living, the incidence of multiple metabolic disorders has increased year by year, especially major risk factors for cardiovascular disease such as hyperglycemia and hyperlipidemia, continues to increase. Emerging epidemiological data and clinical trials have shown the additional protective effects of some metabolic therapy drugs against cardiovascular diseases. A series of studies have found that these drugs may work by modulating the composition of gut microbiota. In this review, we provide a brief overview of the contribution of the gut microbiota to both metabolic disorders and cardiovascular diseases, as well as the response of gut microbiota to metabolic therapy drugs with cardiovascular benefits. In this manner, we link the recent advances in microbiome studies on metabolic treatment drugs with their cardiovascular protective effects, suggesting that intestinal microorganisms may play a potential role in reducing cardiovascular risk factors. We also discuss the potential of microorganism-targeted therapeutics as treatment strategies for preventing and/or treating cardiovascular disease and highlight the need to establish causal links between therapeutics for metabolic diseases, gut microbiota modulation, and cardiovascular protection.
Collapse
Affiliation(s)
- Qi-You Ding
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Jia-Xing Tian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Li
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Feng-Mei Lian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin-Hua Zhao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiu-Xiu Wei
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Lin Han
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu-Jiao Zheng
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Ze-Zheng Gao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Hao-Yu Yang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xin-Yi Fang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xiao-Lin Tong
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Dias AM, Cordeiro G, Estevinho MM, Veiga R, Figueira L, Reina‐Couto M, Magro F. Gut bacterial microbiome composition and statin intake-A systematic review. Pharmacol Res Perspect 2020; 8:e00601. [PMID: 32476298 PMCID: PMC7261966 DOI: 10.1002/prp2.601] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/29/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
Recently, the gut microbiome has become an important field of interest. Indeed, the microbiome has been associated to numerous drug interactions and it is thought to influence the efficacy of pharmacologic treatments. Although statins are widely prescribed medications, there remains considerable variability in its therapeutic response. In this context, we aimed to investigate how statins modulate the gut microbiome and, reversely, how can the microbiome influence the course of anti-hypercholesterolemic treatment. We conducted a systematic review by searching four online databases, in accordance with PRISMA guidelines. Studies addressing gut microbiome changes following statin treatment and those assessing statins' response and associating it with patients' microbiome were included. Due to the limited number of results, we decided to include studies enrolling both humans and animals. We summarized information from three human and seven animal studies and aimed to assess the influence of gut microbiome composition on statin response (Outcome 1) and to evaluate the impact of statin treatment on the gut microbiome (Outcome 2). An association between a certain microbiome composition that promoted the lipid-lowering effect of statins was found. However, what kind of microorganisms and how they can exert this effect remains uncertain. Furthermore, statins might have a role in the modulation of the gut microbiome, but then again, it is still unknown whether this change is directly caused by the drug or another metabolic mechanism. Even though gut microbiota may have several potential therapeutic implications, its use as a personalized predictive biomarker requires further studies.
Collapse
Affiliation(s)
- Andreia M. Dias
- Clinical Pharmacology UnitSão João Hospital University CentrePortoPortugal
| | - Gonçalo Cordeiro
- Clinical Pharmacology UnitSão João Hospital University CentrePortoPortugal
| | - Maria M. Estevinho
- Department of BiomedicineUnit of Pharmacology and TherapeuticsFaculty of MedicineUniversity of PortoPortoPortugal
| | - Rui Veiga
- Clinical Pharmacology UnitSão João Hospital University CentrePortoPortugal
- Department of BiomedicineUnit of Pharmacology and TherapeuticsFaculty of MedicineUniversity of PortoPortoPortugal
- Service of Intensive MedicineSão João Hospital University CentrePortoPortugal
| | - Luis Figueira
- Clinical Pharmacology UnitSão João Hospital University CentrePortoPortugal
- Department of BiomedicineUnit of Pharmacology and TherapeuticsFaculty of MedicineUniversity of PortoPortoPortugal
- Service of OphthalmologySão João Hospital University CentrePortoPortugal
| | - Marta Reina‐Couto
- Clinical Pharmacology UnitSão João Hospital University CentrePortoPortugal
- Department of BiomedicineUnit of Pharmacology and TherapeuticsFaculty of MedicineUniversity of PortoPortoPortugal
- Service of Intensive MedicineSão João Hospital University CentrePortoPortugal
| | - Fernando Magro
- Clinical Pharmacology UnitSão João Hospital University CentrePortoPortugal
- Department of BiomedicineUnit of Pharmacology and TherapeuticsFaculty of MedicineUniversity of PortoPortoPortugal
- Service of GastroenterologySão João Hospital University CentrePortoPortugal
| | | |
Collapse
|
17
|
Villette R, Kc P, Beliard S, Salas Tapia MF, Rainteau D, Guerin M, Lesnik P. Unraveling Host-Gut Microbiota Dialogue and Its Impact on Cholesterol Levels. Front Pharmacol 2020; 11:278. [PMID: 32308619 PMCID: PMC7145900 DOI: 10.3389/fphar.2020.00278] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Disruption in cholesterol metabolism, particularly hypercholesterolemia, is a significant cause of atherosclerotic cardiovascular disease. Large interindividual variations in plasma cholesterol levels are traditionally related to genetic factors, and the remaining portion of their variance is accredited to environmental factors. In recent years, the essential role played by intestinal microbiota in human health and diseases has emerged. The gut microbiota is currently viewed as a fundamental regulator of host metabolism and of innate and adaptive immunity. Its bacterial composition but also the synthesis of multiple molecules resulting from bacterial metabolism vary according to diet, antibiotics, drugs used, and exposure to pollutants and infectious agents. Microbiota modifications induced by recent changes in the human environment thus seem to be a major factor in the current epidemic of metabolic/inflammatory diseases (diabetes mellitus, liver diseases, inflammatory bowel disease, obesity, and dyslipidemia). Epidemiological and preclinical studies report associations between bacterial communities and cholesterolemia. However, such an association remains poorly investigated and characterized. The objectives of this review are to present the current knowledge on and potential mechanisms underlying the host-microbiota dialogue for a better understanding of the contribution of microbial communities to the regulation of cholesterol homeostasis.
Collapse
Affiliation(s)
- Remy Villette
- INSERM, UMRS U1166, "Integrative Biology of Atherosclerosis" and Sorbonne Université, Paris, France
| | - Pukar Kc
- INSERM, UMRS U1166, "Integrative Biology of Atherosclerosis" and Sorbonne Université, Paris, France
| | - Sophie Beliard
- Aix-Marseille Université, INSERM U1263, INRA, C2VN, Marseille, France.,APHM, La Conception Hospital, Marseille, France
| | | | - Dominique Rainteau
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint Antoine, Département de Métabolomique Clinique, Paris, France
| | - Maryse Guerin
- INSERM, UMRS U1166, "Integrative Biology of Atherosclerosis" and Sorbonne Université, Paris, France
| | - Philippe Lesnik
- INSERM, UMRS U1166, "Integrative Biology of Atherosclerosis" and Sorbonne Université, Paris, France
| |
Collapse
|
18
|
Kazemian N, Mahmoudi M, Halperin F, Wu JC, Pakpour S. Gut microbiota and cardiovascular disease: opportunities and challenges. MICROBIOME 2020; 8:36. [PMID: 32169105 PMCID: PMC7071638 DOI: 10.1186/s40168-020-00821-0] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 03/02/2020] [Indexed: 05/03/2023]
Abstract
Coronary artery disease (CAD) is the most common health problem worldwide and remains the leading cause of morbidity and mortality. Over the past decade, it has become clear that the inhabitants of our gut, the gut microbiota, play a vital role in human metabolism, immunity, and reactions to diseases, including CAD. Although correlations have been shown between CAD and the gut microbiota, demonstration of potential causal relationships is much more complex and challenging. In this review, we will discuss the potential direct and indirect causal roots between gut microbiota and CAD development via microbial metabolites and interaction with the immune system. Uncovering the causal relationship of gut microbiota and CAD development can lead to novel microbiome-based preventative and therapeutic interventions. However, an interdisciplinary approach is required to shed light on gut bacterial-mediated mechanisms (e.g., using advanced nanomedicine technologies and incorporation of demographic factors such as age, sex, and ethnicity) to enable efficacious and high-precision preventative and therapeutic strategies for CAD.
Collapse
Affiliation(s)
- Negin Kazemian
- School of Engineering, University of British Columbia, Kelowna, Kelowna, BC, Canada
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, USA.
| | | | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sepideh Pakpour
- School of Engineering, University of British Columbia, Kelowna, Kelowna, BC, Canada.
| |
Collapse
|
19
|
Breuninger TA, Wawro N, Meisinger C, Artati A, Adamski J, Peters A, Grallert H, Linseisen J. Associations between fecal bile acids, neutral sterols, and serum lipids in the KORA FF4 study. Atherosclerosis 2019; 288:1-8. [DOI: 10.1016/j.atherosclerosis.2019.06.911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/17/2019] [Accepted: 06/21/2019] [Indexed: 01/06/2023]
|
20
|
Cuevas-Tena M, Bermúdez JD, Silvestre RDLÁ, Alegría A, Lagarda MJ. Impact of colonic fermentation on sterols after the intake of a plant sterol-enriched beverage: A randomized, double-blind crossover trial. Clin Nutr 2019; 38:1549-1560. [DOI: 10.1016/j.clnu.2018.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/27/2018] [Accepted: 08/15/2018] [Indexed: 11/30/2022]
|
21
|
Jeung WH, Nam W, Kim HJ, Kim JY, Nam B, Jang SS, Lee JL, Sim JH, Park SD. Oral Administration of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 with Cinnamomi Ramulus Extract Reduces Diet-Induced Obesity and Modulates Gut Microbiota. Prev Nutr Food Sci 2019; 24:136-143. [PMID: 31328117 PMCID: PMC6615350 DOI: 10.3746/pnf.2019.24.2.136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/28/2019] [Indexed: 12/15/2022] Open
Abstract
Obesity is a major health issue worldwide, and is associated with many diseases including type 2 diabetes. In this study, we evaluated the anti-obesity effects of combinations of two lactic acid bacteria (LAB), Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032, and Cinnamomi Ramulus (CR) extract, and explored the mechanism through which they modulate gut microbiota using diet-induced obese mice. Male C57BL/6J mice were randomly divided into five groups that received a high-fat diet (HFD), HFD and LAB (HFD+LAB), HFD and CR extract (HFD+CR), HFD with LAB and CR extract (HFD+LAB+CR), or normal diet for 10 weeks. The mice in the HFD+LAB+CR group showed significant reductions in body weight gain, in particular epididymal fat and liver, blood leptin levels, and an increase in the levels of blood adiponectin. In addition, the LAB and CR extract altered the gut microbiota, mainly increasing the alpha diversity. These results demonstrate that a mixture of two LAB (Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032) and CR extracts alleviate HFD-induced obesity, and has potential of being used as a strategy for the treatment of obesity.
Collapse
Affiliation(s)
- Woon Hee Jeung
- R&BD Center, Korea Yakult Co., Ltd., Gyeonggi 17086, Korea
| | - Woo Nam
- R&BD Center, Korea Yakult Co., Ltd., Gyeonggi 17086, Korea
| | - Hyeon Ji Kim
- R&BD Center, Korea Yakult Co., Ltd., Gyeonggi 17086, Korea
| | - Joo Yun Kim
- R&BD Center, Korea Yakult Co., Ltd., Gyeonggi 17086, Korea
| | - Bora Nam
- R&BD Center, Korea Yakult Co., Ltd., Gyeonggi 17086, Korea
| | - Sung Sik Jang
- R&BD Center, Korea Yakult Co., Ltd., Gyeonggi 17086, Korea
| | - Jung-Lyoul Lee
- R&BD Center, Korea Yakult Co., Ltd., Gyeonggi 17086, Korea
| | - Jae-Hun Sim
- R&BD Center, Korea Yakult Co., Ltd., Gyeonggi 17086, Korea
| | - Soo-Dong Park
- R&BD Center, Korea Yakult Co., Ltd., Gyeonggi 17086, Korea
| |
Collapse
|
22
|
Kunz S, Matysik S. A comprehensive method to determine sterol species in human faeces by GC-triple quadrupole MS. J Steroid Biochem Mol Biol 2019; 190:99-103. [PMID: 30923016 DOI: 10.1016/j.jsbmb.2019.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/23/2019] [Indexed: 01/12/2023]
Abstract
The human gut microbiome plays a crucial role in both health and disease. Metabolites in human faeces related to microbial activity might therefore be attractive surrogate markers to track changes of microbiota induced by diet or disease. The hyphenation of gas chromatography with triple quadrupole mass spectrometry is a promising approach to increase sensitivity and selectivity as compared to single quad MS instruments. The versatility of gas chromatography-tandem mass spectrometry (GC-MS/MS) can be advantageously exploited in clinical laboratory medicine, e.g. for quantification of sterols in biological material. In this paper, we present the application of GC-MS/MS for determination of sterol components in human faeces. A serious problem of analysis of faeces is preanalytics. Uncontrolled degradation of metabolites during transport and storage of faeces before entering the clinical laboratory might occur. In our experiments we did not observe any increasing or decreasing concentration after storage of native faeces material even at room temperature. Furthermore, we answer the question of how personal metabolic responses with respect to sterols are and address the importance of sampling strategies. From a pilot study it is concluded that differentiation between high and low metabolizers is independent of the type of sampling and constant over several days.
Collapse
Affiliation(s)
- Sonja Kunz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Silke Matysik
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|
23
|
Abstract
The gut microbiota plays a key role in cholesterol metabolism, mainly through the reduction of cholesterol to coprostanol. The latter sterol exhibits distinct physicochemical properties linked to its limited absorption in the gut. Few bacteria were reported to reduce cholesterol into coprostanol. Three microbial pathways of coprostanol production were described based on the analysis of reaction intermediates. However, these metabolic pathways and their associated genes remain poorly studied. In this review, we shed light on the microbial metabolic pathways related to coprostanol synthesis. Moreover, we highlight current strategies and future directions to better characterize these microbial enzymes and pathways.
Collapse
|
24
|
Harrault L, Milek K, Jardé E, Jeanneau L, Derrien M, Anderson DG. Faecal biomarkers can distinguish specific mammalian species in modern and past environments. PLoS One 2019; 14:e0211119. [PMID: 30730906 PMCID: PMC6366745 DOI: 10.1371/journal.pone.0211119] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 01/08/2019] [Indexed: 11/19/2022] Open
Abstract
Identifying the presence of animals based on faecal deposits in modern and ancient environments is of primary importance to archaeologists, ecologists, forensic scientists, and watershed managers, but it has proven difficult to distinguish faecal material to the species level. Until now, four 5β-stanols have been deployed as faecal biomarkers to distinguish between omnivores and herbivores, but they cannot distinguish between species. Here we present a database of faecal signatures from ten omnivore and herbivore species based on eleven 5β-stanol compounds, which enables us to distinguish for the first time the faecal signatures of a wide range of animals. We validated this fingerprinting method by testing it on modern and ancient soil samples containing known faecal inputs and successfully distinguished the signatures of different omnivores and herbivores.
Collapse
Affiliation(s)
- Loïc Harrault
- Department of Archaeology, Durham University, Durham, United Kingdom
- Department of Archaeology, University of Aberdeen, Aberdeen, United Kingdom
- The James Hutton Institute, Craigiebuckler, Aberdeen, United Kingdom
- * E-mail:
| | - Karen Milek
- Department of Archaeology, Durham University, Durham, United Kingdom
- Department of Archaeology, University of Aberdeen, Aberdeen, United Kingdom
| | - Emilie Jardé
- Université Rennes, CNRS, Géosciences Rennes, UMR 6118, Rennes, France
| | - Laurent Jeanneau
- Université Rennes, CNRS, Géosciences Rennes, UMR 6118, Rennes, France
| | - Morgane Derrien
- Department of Environment and Energy, Sejong University, Seoul, South Korea
| | - David G. Anderson
- Department of Anthropology, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
25
|
Kriaa A, Bourgin M, Potiron A, Mkaouar H, Jablaoui A, Gérard P, Maguin E, Rhimi M. Microbial impact on cholesterol and bile acid metabolism: current status and future prospects. J Lipid Res 2018; 60:323-332. [PMID: 30487175 PMCID: PMC6358303 DOI: 10.1194/jlr.r088989] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/25/2018] [Indexed: 02/06/2023] Open
Abstract
Recently, the gut microbiota has emerged as a crucial factor that influences cholesterol metabolism. Ever since, significant interest has been shown in investigating these host-microbiome interactions to uncover microbiome-mediated functions on cholesterol and bile acid (BA) metabolism. Indeed, changes in gut microbiota composition and, hence, its derived metabolites have been previously reported to subsequently impact the metabolic processes and have been linked to several diseases. In this context, associations between a disrupted gut microbiome, impaired BA metabolism, and cholesterol dysregulation have been highlighted. Extensive advances in metagenomic and metabolomic studies in this field have allowed us to further our understanding of the role of intestinal bacteria in metabolic health and disease. However, only a few have provided mechanistic insights into their impact on cholesterol metabolism. Identifying the myriad functions and interactions of these bacteria to maintain cholesterol homeostasis remain an important challenge in such a field of research. In this review, we discuss the impact of gut microbiota on cholesterol metabolism, its association with disease settings, and the potential of modulating gut microbiota as a promising therapeutic target to lower hypercholesterolemia.
Collapse
Affiliation(s)
- Aicha Kriaa
- UMR 1319 Micalis, INRA, Microbiota Interaction with Human and Animal Team (MIHA), AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Mélanie Bourgin
- UMR 1319 Micalis, INRA, Microbiota Interaction with Human and Animal Team (MIHA), AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Aline Potiron
- UMR 1319 Micalis, INRA, Microbiota Interaction with Human and Animal Team (MIHA), AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Héla Mkaouar
- UMR 1319 Micalis, INRA, Microbiota Interaction with Human and Animal Team (MIHA), AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Amin Jablaoui
- UMR 1319 Micalis, INRA, Microbiota Interaction with Human and Animal Team (MIHA), AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Philippe Gérard
- UMR 1319 Micalis, INRA, Microbiota Interaction with Human and Animal Team (MIHA), AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Emmanuelle Maguin
- UMR 1319 Micalis, INRA, Microbiota Interaction with Human and Animal Team (MIHA), AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Moez Rhimi
- UMR 1319 Micalis, INRA, Microbiota Interaction with Human and Animal Team (MIHA), AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| |
Collapse
|
26
|
Cuevas-Tena M, Alegría A, Lagarda MJ. Relationship Between Dietary Sterols and Gut Microbiota: A Review. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201800054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Maria Cuevas-Tena
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia; Avda. Vicent Andrés Estellés s/n 46100 - Burjassot (Valencia) Spain
| | - Amparo Alegría
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia; Avda. Vicent Andrés Estellés s/n 46100 - Burjassot (Valencia) Spain
| | - Maria J. Lagarda
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia; Avda. Vicent Andrés Estellés s/n 46100 - Burjassot (Valencia) Spain
| |
Collapse
|
27
|
Wang L, Wang Y, Wang H, Zhou X, Wei X, Xie Z, Zhang Z, Wang K, Mu J. The influence of the intestinal microflora to the efficacy of Rosuvastatin. Lipids Health Dis 2018; 17:151. [PMID: 29960598 PMCID: PMC6026514 DOI: 10.1186/s12944-018-0801-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022] Open
Abstract
Background Intestinal microflora has been shown to play essential roles in the clinical therapies of metabolic diseases. The present study is aiming to investigate the potential roles and mechanisms of how intestinal microflora mediates lipid-reduction efficacy of Rosuvastatin. Methods To investigate the correlation between the intestinal microflora and efficacy of Rosuvastatin, we analyzed the diversity of intestinal microflora using PCR-DGGE analysis and 16S rDNA sequencing approaches. Furthermore, we compared the blood lipid levels of rat models with dysbiosis of intestinal microflora and control rats upon the Rosuvastatin administration. Results The diversity of the intestinal flora was obviously decreased upon the antibiotic treatment, this effect could be maintained for 2 weeks after establishment of the models. Importantly, the results from 16S rDNA sequencing demonstrated that the abundance of Lactobacillus and Bifidobacterium was remarkably diminished upon the antibiotic treatment in antibiotic+Rosuvastatin-treated group compared to that of Rosuvastatin-treated group and control group. Correspondently, the lipid-reduction efficacy of Rosuvastatin was significantly compromised. However, the diversity of the intestinal flora was recovered 4 weeks after the antibiotic treatment. Subsequently, the lipid-reduction efficacy of Rosuvastatin was also recovered to level of the control rats treated with Rosuvastatin alone. Conclusion Intestinal flora could play an essential role in mediating the lipid-reduction efficacy of Rosuvastatin.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China. .,Department of Cardiology, Affiliated Zhongshan Hospital, Dalian University, Dalian, 116001, China.
| | - Yang Wang
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hongwei Wang
- Department of Cardiology, Affiliated Zhongshan Hospital, Dalian University, Dalian, 116001, China
| | - Xue Zhou
- Department of Laboratory, The Second Affiliated Hospital of Jiaxing University, Jiaxing Second Hospital, Jiaxing, 314000, China
| | - Xianjing Wei
- Department of Cardiology, Affiliated Zhongshan Hospital, Dalian University, Dalian, 116001, China
| | - Zezhou Xie
- Department of Cardiology, Affiliated Zhongshan Hospital, Dalian University, Dalian, 116001, China
| | - Zhipeng Zhang
- Department of Cardiology, Affiliated Zhongshan Hospital, Dalian University, Dalian, 116001, China
| | - Keke Wang
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jianjun Mu
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
28
|
Cuevas-Tena M, Gómez del Pulgar EM, Benítez-Páez A, Sanz Y, Alegría A, Lagarda MJ. Plant sterols and human gut microbiota relationship: An in vitro colonic fermentation study. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.03.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
29
|
Minnifield BA, Aslibekyan SW. The Interplay Between the Microbiome and Cardiovascular Risk. CURRENT GENETIC MEDICINE REPORTS 2018. [DOI: 10.1007/s40142-018-0142-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Quifer-Rada P, Choy YY, Calvert CC, Waterhouse AL, Lamuela-Raventos RM. Use of metabolomics and lipidomics to evaluate the hypocholestreolemic effect of Proanthocyanidins from grape seed in a pig model. Mol Nutr Food Res 2016; 60:2219-2227. [PMID: 27240545 DOI: 10.1002/mnfr.201600190] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 12/12/2022]
Abstract
SCOPE This work aims to evaluate changes in the fecal metabolomic profile due to grape seed extract (GSE) intake by untargeted and targeted analysis using high resolution mass spectrometry in conjunction with multivariate statistics. METHODS AND RESULTS An intervention study with six crossbred female pigs was performed. The pigs followed a standard diet for 3 days, then they were fed with a supplemented diet containing 1% (w/w) of MegaNatural® Gold grape seed extract for 6 days. Fresh pig fecal samples were collected daily. A combination of untargeted high resolution mass spectrometry, multivariate analysis (PLS-DA), data-dependent MS/MS scan, and accurate mass database matching was used to measure the effect of the treatment on fecal composition. The resultant PLS-DA models showed a good discrimination among classes with great robustness and predictability. A total of 14 metabolites related to the GSE consumption were identified including biliary acid, dicarboxylic fatty acid, cholesterol metabolites, purine metabolites, and eicosanoid metabolites among others. Moreover, targeted metabolomics using GC-MS showed that cholesterol and its metabolites fecal excretion was increased due to the proanthocyanidins from grape seed extract. CONCLUSION The results show that oligomeric procyanidins from GSE modifies bile acid and steroid excretion, which could exert a hypocholesterolemic effect.
Collapse
Affiliation(s)
- Paola Quifer-Rada
- Department of Nutrition, Food Science and Gastronomy -XARTA-INSA-UB, School of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,CIBEROBN del Instituto de Salud Carlos III, ISCIII, Spain
| | - Ying Yng Choy
- Department of Viticulture and Enology, University of California, Davis, CA, USA
| | | | - Andrew L Waterhouse
- Department of Viticulture and Enology, University of California, Davis, CA, USA
| | - Rosa M Lamuela-Raventos
- Department of Nutrition, Food Science and Gastronomy -XARTA-INSA-UB, School of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain. .,CIBEROBN del Instituto de Salud Carlos III, ISCIII, Spain.
| |
Collapse
|
31
|
Antharam VC, McEwen DC, Garrett TJ, Dossey AT, Li EC, Kozlov AN, Mesbah Z, Wang GP. An Integrated Metabolomic and Microbiome Analysis Identified Specific Gut Microbiota Associated with Fecal Cholesterol and Coprostanol in Clostridium difficile Infection. PLoS One 2016; 11:e0148824. [PMID: 26871580 PMCID: PMC4752508 DOI: 10.1371/journal.pone.0148824] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/22/2016] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile infection (CDI) is characterized by dysbiosis of the intestinal microbiota and a profound derangement in the fecal metabolome. However, the contribution of specific gut microbes to fecal metabolites in C. difficile-associated gut microbiome remains poorly understood. Using gas-chromatography mass spectrometry (GC-MS) and 16S rRNA deep sequencing, we analyzed the metabolome and microbiome of fecal samples obtained longitudinally from subjects with Clostridium difficile infection (n = 7) and healthy controls (n = 6). From 155 fecal metabolites, we identified two sterol metabolites at >95% match to cholesterol and coprostanol that significantly discriminated C. difficile-associated gut microbiome from healthy microbiota. By correlating the levels of cholesterol and coprostanol in fecal extracts with 2,395 bacterial operational taxonomic units (OTUs) determined by 16S rRNA sequencing, we identified 63 OTUs associated with high levels of coprostanol and 2 OTUs correlated with low coprostanol levels. Using indicator species analysis (ISA), 31 of the 63 coprostanol-associated bacteria correlated with health, and two Veillonella species were associated with low coprostanol levels that correlated strongly with CDI. These 65 bacterial taxa could be clustered into 12 sub-communities, with each community containing a consortium of organisms that co-occurred with one another. Our studies identified 63 human gut microbes associated with cholesterol-reducing activities. Given the importance of gut bacteria in reducing and eliminating cholesterol from the GI tract, these results support the recent finding that gut microbiome may play an important role in host lipid metabolism.
Collapse
Affiliation(s)
- Vijay C Antharam
- Department of Medicine, Division of Infectious Diseases and Global Medicine, University of Florida, Gainesville, FL, United States of America
| | - Daniel C McEwen
- Department of Biosciences, Minnesota State University Moorhead, Moorhead, MN, United States of America
| | - Timothy J Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States of America
| | - Aaron T Dossey
- All Things Bugs LLC, Athens, GA, United States of America
| | - Eric C Li
- Department of Medicine, Division of Infectious Diseases and Global Medicine, University of Florida, Gainesville, FL, United States of America
| | - Andrew N Kozlov
- Department of Medicine, Division of Infectious Diseases and Global Medicine, University of Florida, Gainesville, FL, United States of America
| | - Zhubene Mesbah
- Department of Medicine, Division of Infectious Diseases and Global Medicine, University of Florida, Gainesville, FL, United States of America
| | - Gary P Wang
- Department of Medicine, Division of Infectious Diseases and Global Medicine, University of Florida, Gainesville, FL, United States of America.,Medical Service, North Florida/South Georgia Veterans Health System, Gainesville, FL, United States of America
| |
Collapse
|
32
|
Warinner C, Speller C, Collins MJ, Lewis CM. Ancient human microbiomes. J Hum Evol 2015; 79:125-36. [PMID: 25559298 PMCID: PMC4312737 DOI: 10.1016/j.jhevol.2014.10.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 07/06/2014] [Accepted: 10/29/2014] [Indexed: 12/20/2022]
Abstract
Very recently, we discovered a vast new microbial self: the human microbiome. Our native microbiota interface with our biology and culture to influence our health, behavior, and quality of life, and yet we know very little about their origin, evolution, or ecology. With the advent of industrialization, globalization, and modern sanitation, it is intuitive that we have changed our relationship with microbes, but we have little information about the ancestral state of our microbiome, and we therefore lack a foundation for characterizing this change. High-throughput sequencing has opened up new opportunities in the field of paleomicrobiology, allowing us to investigate the evolution of the complex microbial ecologies that inhabit our bodies. By focusing on recent coprolite and dental calculus research, we explore how emerging research on ancient human microbiomes is changing the way we think about ancient disease and how archaeological studies can contribute to a medical understanding of health and nutrition today.
Collapse
Affiliation(s)
- Christina Warinner
- Department of Anthropology, University of Oklahoma, 101 David L. Boren Blvd., Norman, OK 73019, USA
| | - Camilla Speller
- Department of Archaeology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Matthew J Collins
- Department of Archaeology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Cecil M Lewis
- Department of Anthropology, University of Oklahoma, 101 David L. Boren Blvd., Norman, OK 73019, USA.
| |
Collapse
|
33
|
Sistiaga A, Mallol C, Galván B, Summons RE. The Neanderthal meal: a new perspective using faecal biomarkers. PLoS One 2014; 9:e101045. [PMID: 24963925 PMCID: PMC4071062 DOI: 10.1371/journal.pone.0101045] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 06/02/2014] [Indexed: 12/02/2022] Open
Abstract
Neanderthal dietary reconstructions have, to date, been based on indirect evidence and may underestimate the significance of plants as a food source. While zooarchaeological and stable isotope data have conveyed an image of Neanderthals as largely carnivorous, studies on dental calculus and scattered palaeobotanical evidence suggest some degree of contribution of plants to their diet. However, both views remain plausible and there is no categorical indication of an omnivorous diet. Here we present direct evidence of Neanderthal diet using faecal biomarkers, a valuable analytical tool for identifying dietary provenance. Our gas chromatography-mass spectrometry results from El Salt (Spain), a Middle Palaeolithic site dating to ca. 50,000 yr. BP, represents the oldest positive identification of human faecal matter. We show that Neanderthals, like anatomically modern humans, have a high rate of conversion of cholesterol to coprostanol related to the presence of required bacteria in their guts. Analysis of five sediment samples from different occupation floors suggests that Neanderthals predominantly consumed meat, as indicated by high coprostanol proportions, but also had significant plant intake, as shown by the presence of 5β-stigmastanol. This study highlights the applicability of the biomarker approach in Pleistocene contexts as a provider of direct palaeodietary information and supports the opportunity for further research into cholesterol metabolism throughout human evolution.
Collapse
Affiliation(s)
- Ainara Sistiaga
- Department of Geography and History, University of La Laguna, Tenerife, Spain
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Instituto Universitario de Bio-Orgánica Antonio González, La Laguna, Tenerife, Spain
- * E-mail:
| | - Carolina Mallol
- Department of Geography and History, University of La Laguna, Tenerife, Spain
- Instituto Universitario de Bio-Orgánica Antonio González, La Laguna, Tenerife, Spain
| | - Bertila Galván
- Department of Geography and History, University of La Laguna, Tenerife, Spain
| | - Roger Everett Summons
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
34
|
García-Fernández E, Medrano FJ, Galán B, García JL. Deciphering the transcriptional regulation of cholesterol catabolic pathway in mycobacteria: identification of the inducer of KstR repressor. J Biol Chem 2014; 289:17576-88. [PMID: 24802756 PMCID: PMC4067193 DOI: 10.1074/jbc.m113.545715] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 05/02/2014] [Indexed: 11/06/2022] Open
Abstract
Cholesterol degradation plays a prominent role in Mycobacterium tuberculosis infection; therefore, to develop new tools to combat this disease, we need to decipher the components comprising and regulating the corresponding pathway. A TetR-like repressor (KstR) regulates the upper part of this complex catabolic pathway, but the induction mechanism remains unknown. Using a biophysical approach, we have discovered that the inducer molecule of KstR in M. smegmatis mc(2)155 is not cholesterol but 3-oxo-4-cholestenoic acid, one of the first metabolic intermediates. Binding this compound induces dramatic conformational changes in KstR that promote the KstR-DNA interaction to be released from the operator, retaining its dimeric state. Our findings suggest a regulatory model common to all cholesterol degrading bacteria in which the first steps of the pathway are critical to its mineralization and explain the high redundancy of the enzymes involved in these initial steps.
Collapse
Affiliation(s)
| | - Francisco Javier Medrano
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid 28040, Spain
| | | | | |
Collapse
|
35
|
Ebel B, Lemetais G, Beney L, Cachon R, Sokol H, Langella P, Gervais P. Impact of probiotics on risk factors for cardiovascular diseases. A review. Crit Rev Food Sci Nutr 2014; 54:175-89. [PMID: 24188267 DOI: 10.1080/10408398.2011.579361] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Probiotic microorganisms have historically been used to rebalance disturbed intestinal microbiota and to diminish gastrointestinal disorders, such as diarrhea or inflammatory bowel diseases (e.g., Crohn's disease and ulcerative colitis). Recent studies explore the potential for expanded uses of probiotics on medical disorders that increase the risk of developing cardiovascular diseases and diabetes, such as obesity, hypercholesterolemia, arterial hypertension, and metabolic disturbances such as hyperhomocysteinemia and oxidative stress. This review aims at summarizing the proposed molecular and cellular mechanisms involved in probiotic-host interactions and to identify the nature of the resulting beneficial effects. Specific probiotic strains can act by modulating immune response, by producing particular molecules or releasing biopeptides, and by modulating nervous system activity. To date, the majority of studies have been conducted in animal models. New investigations on the related mechanisms in humans need to be carried out to better enable targeted and effective use of the broad variety of probiotic strains.
Collapse
Affiliation(s)
- Bruno Ebel
- a Unité Procédés Alimentaires et Microbiologiques, UMR A 02.102, AgroSup Dijon/Université de Bourgogne , 1 esplanade Erasme , Dijon , France
| | | | | | | | | | | | | |
Collapse
|
36
|
Gérard P. Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens 2013; 3:14-24. [PMID: 25437605 PMCID: PMC4235735 DOI: 10.3390/pathogens3010014] [Citation(s) in RCA: 393] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 12/17/2022] Open
Abstract
The human gastro-intestinal tract hosts a complex and diverse microbial community, whose collective genetic coding capacity vastly exceeds that of the human genome. As a consequence, the gut microbiota produces metabolites from a large range of molecules that host's enzymes are not able to convert. Among these molecules, two main classes of steroids, cholesterol and bile acids, denote two different examples of bacterial metabolism in the gut. Therefore, cholesterol is mainly converted into coprostanol, a non absorbable sterol which is excreted in the feces. Moreover, this conversion occurs in a part of the human population only. Conversely, the primary bile acids (cholic and chenodeoxycholic acids) are converted to over twenty different secondary bile acid metabolites by the gut microbiota. The main bile salt conversions, which appear in the gut of the whole human population, include deconjugation, oxidation and epimerization of hydroxyl groups at C3, C7 and C12, 7-dehydroxylation, esterification and desulfatation. If the metabolisms of cholesterol and bile acids by the gut microbiota are known for decades, their consequences on human health and disease are poorly understood and only start to be considered.
Collapse
|
37
|
Yoo SR, Kim YJ, Park DY, Jung UJ, Jeon SM, Ahn YT, Huh CS, McGregor R, Choi MS. Probiotics L. plantarum and L. curvatus in combination alter hepatic lipid metabolism and suppress diet-induced obesity. Obesity (Silver Spring) 2013; 21:2571-8. [PMID: 23512789 DOI: 10.1002/oby.20428] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 02/06/2013] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To determine the effects of naturally derived probiotic strains individually or combination on a short-term diet-induced obesity model. DESIGN AND METHODS C57BL/6J mice (n = 50) were randomly divided into five groups, then fed a high-fat high-cholesterol diet (HFCD), HFCD and Lactobacillus plantarum KY1032 (PL, 10(10) cfu/day), HFCD and Lactobacillus curvatus HY7601 (CU, 10(10) cfu/day), HFCD and in combination with PL+CU (10(10) cfu/day), or a normal diet (ND) for 9 weeks. RESULTS PL and CU showed distinct and shared metabolic activity against a panel of 50 carbohydrates. Fat accumulation in adipose tissue and liver was significantly reduced by probiotic strains CU or PL+CU. Probiotic strains CU or PL+CU reduced cholesterol in plasma and liver, while PL+CL had a synergistic effect on hepatic triglycerides. Probiotic strains PL+CU combination was more effective for inhibiting gene expressions of various fatty acid synthesis enzymes in the liver, concomitant with decreases in fatty acid oxidation-related enzyme activities and their gene expressions. CONCLUSIONS Multi-strain probiotics may prove more beneficial than single-strain probiotics to combat fat accumulation and metabolic alterations in diet-induced obesity.
Collapse
Affiliation(s)
- Sae-Rom Yoo
- Department of Food Science and Nutrition, Center for Food & Nutritional Genomics, Kyungpook National University, 1370 Sankyuk-dong, Buk-gu, Daegu 702-701, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
García JL, Uhía I, Galán B. Catabolism and biotechnological applications of cholesterol degrading bacteria. Microb Biotechnol 2012; 5:679-99. [PMID: 22309478 PMCID: PMC3815891 DOI: 10.1111/j.1751-7915.2012.00331.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cholesterol is a steroid commonly found in nature with a great relevance in biology, medicine and chemistry, playing an essential role as a structural component of animal cell membranes. The ubiquity of cholesterol in the environment has made it a reference biomarker for environmental pollution analysis and a common carbon source for different microorganisms, some of them being important pathogens such as Mycobacterium tuberculosis. This work revises the accumulated biochemical and genetic knowledge on the bacterial pathways that degrade or transform this molecule, given that the characterization of cholesterol metabolism would contribute not only to understand its role in tuberculosis but also to develop new biotechnological processes that use this and other related molecules as starting or target materials.
Collapse
Affiliation(s)
- J L García
- Environmental Biology Department, Centro de Investigaciones Biológicas, CSIC, C/ Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | | | | |
Collapse
|
39
|
Daughton CG. Real-time estimation of small-area populations with human biomarkers in sewage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 414:6-21. [PMID: 22137478 DOI: 10.1016/j.scitotenv.2011.11.015] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 11/03/2011] [Accepted: 11/04/2011] [Indexed: 04/14/2023]
Abstract
A new approach is conceptualized for measuring small-area human populations by using biomarkers in sewage. The basis for the concept (SCIM: Sewage Chemical-Information Mining) is supported by a comprehensive examination and synthesis of data published across several disciplines, including medicine, microbiology, clinical chemistry, and environmental science. Accurate measures of human populations are fundamental to numerous disciplines, including economics, marketing, politics, sociology, public health and safety (e.g., disease management; assessment of natural hazards; disaster prevention and response), quality of life, and the environment. Knowing the size, distribution, and flow of a small-area (local) population facilitates understanding the numerous and complex linkages and interactions between humans and the environment. Examples include material-flow (substance-flow) analysis, determining the magnitude of per capita contribution of pollutant loadings to watersheds, or forecasting future impacts of local populations on the environment or a population's demands on resources. While no definitive approach exists for measuring small-area populations, census-taking is a long-established convention. No approach exists, however, for gauging small-area populations in real-time, as none is able to capture population dynamics, which involve transient changes (e.g., daily influx and efflux) and lasting changes (e.g., births, deaths, change in residence). Accurate measurement of small-area populations in real time has never been possible but is essential for facilitating the design of more sustainable communities. Real-time measurement would provide communities the capability of testing what-if scenarios in design and policy decisions. After evaluation of a range of biomarkers (including the nitrogenous waste product creatinine, which has been long used in clinical chemistry as a parameter to normalize the concentrations of other urinary excretion products to account for urine dilution), the biomarker with the most potential for the SCIM concept for real-time measurement of population was determined to be coprostanol - the major sterol produced by microbial reduction of cholesterol in the colon.
Collapse
Affiliation(s)
- Christian G Daughton
- Environmental Sciences Division, National Exposure Research Laboratory, U.S. Environmental Protection Agency, 944 East Harmon Avenue, Las Vegas, NV 89119, USA.
| |
Collapse
|
40
|
Trautvetter U, Ditscheid B, Kiehntopf M, Jahreis G. A combination of calcium phosphate and probiotics beneficially influences intestinal lactobacilli and cholesterol metabolism in humans. Clin Nutr 2011; 31:230-7. [PMID: 22019281 DOI: 10.1016/j.clnu.2011.09.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 09/16/2011] [Accepted: 09/26/2011] [Indexed: 11/16/2022]
Abstract
BACKGROUND & AIMS The study focuses on the influence of a probiotic supplement alone and in combination with a calcium supplement on faecal lactobacilli colonisation and beneficial health effects such as a lowering of blood cholesterol. METHODS Thirty-two men and women participated in the double-blind, placebo-controlled, cross-over study. All participants consumed a probiotic drink containing 10(10)CFU/d Lactobacillus paracasei (LPC37) for four weeks. In addition, one group consumed bread enriched with pentacalcium hydroxy-triphosphate (CaP; 1g Ca/d) and the other group had bread without CaP. After a two-week washout and a two-week placebo period, the intervention was switched for further four weeks. RESULTS After intervention with LPC37+CaP, total cholesterol and LDL-cholesterol concentration in plasma decreased significantly compared to LPC37 and placebo. The faecal concentration of L. paracasei and that of all lactobacilli increased significantly after LPC37+CaP and LPC37 compared to placebo. Moreover, secondary bile acids in faeces increased significantly after LPC37+CaP intervention compared to placebo. CONCLUSIONS CaP modulates the colonisation of LPC37 in the human gut under combinatory supplementation of CaP and LPC37. The combined supplementation also decreases plasma LDL-cholesterol and the LDL/HDL ratio in healthy, moderately hypercholesterolemic men and women, which could be also due to the CaP supplementation. CLINICAL TRIAL REGISTRATION NUMBER NCT01033461.
Collapse
Affiliation(s)
- Ulrike Trautvetter
- Department of Nutritional Physiology, Institute of Nutrition, Friedrich Schiller University Jena, Dornburger Str 24, D-07743 Jena, Germany
| | | | | | | |
Collapse
|
41
|
Kaddurah-Daouk R, Baillie RA, Zhu H, Zeng ZB, Wiest MM, Nguyen UT, Wojnoonski K, Watkins SM, Trupp M, Krauss RM. Enteric microbiome metabolites correlate with response to simvastatin treatment. PLoS One 2011; 6:e25482. [PMID: 22022402 PMCID: PMC3192752 DOI: 10.1371/journal.pone.0025482] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 09/05/2011] [Indexed: 11/18/2022] Open
Abstract
Although statins are widely prescribed medications, there remains considerable variability in therapeutic response. Genetics can explain only part of this variability. Metabolomics is a global biochemical approach that provides powerful tools for mapping pathways implicated in disease and in response to treatment. Metabolomics captures net interactions between genome, microbiome and the environment. In this study, we used a targeted GC-MS metabolomics platform to measure a panel of metabolites within cholesterol synthesis, dietary sterol absorption, and bile acid formation to determine metabolite signatures that may predict variation in statin LDL-C lowering efficacy. Measurements were performed in two subsets of the total study population in the Cholesterol and Pharmacogenetics (CAP) study: Full Range of Response (FR), and Good and Poor Responders (GPR) were 100 individuals randomly selected from across the entire range of LDL-C responses in CAP. GPR were 48 individuals, 24 each from the top and bottom 10% of the LDL-C response distribution matched for body mass index, race, and gender. We identified three secondary, bacterial-derived bile acids that contribute to predicting the magnitude of statin-induced LDL-C lowering in good responders. Bile acids and statins share transporters in the liver and intestine; we observed that increased plasma concentration of simvastatin positively correlates with higher levels of several secondary bile acids. Genetic analysis of these subjects identified associations between levels of seven bile acids and a single nucleotide polymorphism (SNP), rs4149056, in the gene encoding the organic anion transporter SLCO1B1. These findings, along with recently published results that the gut microbiome plays an important role in cardiovascular disease, indicate that interactions between genome, gut microbiome and environmental influences should be considered in the study and management of cardiovascular disease. Metabolic profiles could provide valuable information about treatment outcomes and could contribute to a more personalized approach to therapy.
Collapse
Affiliation(s)
- Rima Kaddurah-Daouk
- Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (RKD); (RMK)
| | | | - Hongjie Zhu
- Department of Statistics and Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Zhao-Bang Zeng
- Department of Statistics and Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Michelle M. Wiest
- Department of Statistics, University of Idaho, Moscow, Idaho, United States of America
| | - Uyen Thao Nguyen
- Lipomics Technologies-Tethys Bioscience, West Sacramento, California, United States of America
| | - Katie Wojnoonski
- Children's Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Steven M. Watkins
- Lipomics Technologies-Tethys Bioscience, West Sacramento, California, United States of America
| | - Miles Trupp
- Bioinformatics Research Group, AI Center, SRI International, Menlo Park, California, United States of America
| | - Ronald M. Krauss
- Children's Hospital Oakland Research Institute, Oakland, California, United States of America
- * E-mail: (RKD); (RMK)
| |
Collapse
|
42
|
Tamura M, Hori S, Nakagawa H. Dietary cholesterol lowers plasma and cecal equol concentrations in mice. Nutr Res 2010; 29:882-7. [PMID: 19963162 DOI: 10.1016/j.nutres.2009.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 10/14/2009] [Accepted: 10/15/2009] [Indexed: 11/30/2022]
Abstract
This study examined the effects of cholesterol on mouse intestinal microflora and on isoflavonoids in the cecum and plasma. Dietary cholesterol affects bile acid metabolism and bile acids can influence the intestinal microorganisms. Intestinal microflora appear to play an important role in isoflavone metabolism. We hypothesized that dietary cholesterol changes the metabolism of isoflavonoids and intestinal microorganisms in mice. Male mice were randomly divided into two groups, which were fed a cholesterol-daidzein (CDA) or daidzein (DA) diet (control diet) for 60d. Plasma equol and cecal equol concentrations were significantly higher in the DA group (control group) than in the CDA group. However, plasma cholesterol concentrations were significantly higher in the CDA group compared to the DA group. The composition of cecal microorganisms differed between the two dietary groups. The occupation ratios of Clostridium cluster XI, Clostridium subcluster XIVa, and Lactobacillales were significantly higher in the CDA group. The occupation ratio of Bifidobacterium was significantly lower in the CDA group. This study suggests that dietary cholesterol has the potential to affect the metabolism of equol from daidzein by altering the metabolic activity of the intestinal microorganisms and gut physiological function.
Collapse
Affiliation(s)
- Motoi Tamura
- National Food Research Institute, Tsukuba, 305-8642 Ibaraki, Japan.
| | | | | |
Collapse
|
43
|
Huys G, Vanhoutte T, Vandamme P. Application of sequence-dependent electrophoresis fingerprinting in exploring biodiversity and population dynamics of human intestinal microbiota: what can be revealed? Interdiscip Perspect Infect Dis 2008; 2008:597603. [PMID: 19277102 PMCID: PMC2648627 DOI: 10.1155/2008/597603] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 09/22/2008] [Indexed: 01/13/2023] Open
Abstract
Sequence-dependent electrophoresis (SDE) fingerprinting techniques such as denaturing gradient gel electrophoresis (DGGE) have become commonplace in the field of molecular microbial ecology. The success of the SDE technology lays in the fact that it allows visualization of the predominant members of complex microbial ecosystems independent of their culturability and without prior knowledge on the complexity and diversity of the ecosystem. Mainly using the prokaryotic 16S rRNA gene as PCR amplification target, SDE-based community fingerprinting turned into one of the leading molecular tools to unravel the diversity and population dynamics of human intestinal microbiota. The first part of this review covers the methodological concept of SDE fingerprinting and the technical hurdles for analyzing intestinal samples. Subsequently, the current state-of-the-art of DGGE and related techniques to analyze human intestinal microbiota from healthy individuals and from patients with intestinal disorders is surveyed. In addition, the applicability of SDE analysis to monitor intestinal population changes upon nutritional or therapeutic interventions is critically evaluated.
Collapse
Affiliation(s)
- Geert Huys
- Laboratory of Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Tom Vanhoutte
- Laboratory of Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|
44
|
Gérard P, Lepercq P, Leclerc M, Gavini F, Raibaud P, Juste C. Bacteroides sp. strain D8, the first cholesterol-reducing bacterium isolated from human feces. Appl Environ Microbiol 2007; 73:5742-9. [PMID: 17616613 PMCID: PMC2074900 DOI: 10.1128/aem.02806-06] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The microbial community in the human colon contains bacteria that reduce cholesterol to coprostanol, but the species responsible for this conversion are still unknown. We describe here the first isolation and characterization of a cholesterol-reducing bacterium of human intestinal origin. Strain D8 was isolated from a 10(-8) dilution of a fresh stool sample provided by a senior male volunteer with a high capacity to reduce luminal cholesterol to coprostanol. Cholesterol-to-coprostanol conversion by strain D8 started on the third day, while cells were in stationary phase, and was almost complete after 7 days. Intermediate products (4-cholesten-3-one and coprostanone) were occasionally observed, suggesting an indirect pathway for cholesterol-to-coprostanol conversion. Resting-cell assays showed that strain D8 could reduce 1.5 mumol of cholesterol/mg bacterial protein/h. Strain D8 was a gram-negative, non-spore-forming, rod-shaped organism identified as a member of the genus Bacteroides closely related to Bacteroides vulgatus, based on its morphological and biochemical characteristics. The 16S rRNA gene sequence of strain D8 was most similar (>99.5%) to those of two isolates of the recently described species Bacteroides dorei. Phylogenetic tree construction confirmed that Bacteroides sp. strain D8 clustered within an independent clade together with these B. dorei strains. Nevertheless, no cholesterol-reducing activity could be detected in cultures of the B. dorei type strain. Based on Bacteroides group-specific PCR-temporal temperature gradient gel electrophoresis, there was no correlation between the presence of a band comigrating with the band of Bacteroides sp. strain D8 and cholesterol conversion in 11 human fecal samples, indicating that this strain is unlikely to be mainly responsible for cholesterol conversion in the human population.
Collapse
Affiliation(s)
- Philippe Gérard
- Unité d'Ecologie et Physiologie du Système Digestif, INRA, Bâtiment J. Poly, Domaine de Vilvert, 78352 Jouy-en-Josas cedex, France.
| | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Glassmeyer ST, Furlong ET, Kolpin DW, Cahill JD, Zaugg SD, Werner SL, Meyer MT, Kryak DD. Transport of chemical and microbial compounds from known wastewater discharges: potential for use as indicators of human fecal contamination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005; 39:5157-69. [PMID: 16082943 DOI: 10.1021/es048120k] [Citation(s) in RCA: 368] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The quality of drinking and recreational water is currently (2005) determined using indicator bacteria. However, the culture tests used to analyze forthese bacteria require a long time to complete and do not discriminate between human and animal fecal material sources. One complementary approach is to use chemicals found in human wastewater, which would have the advantages of (1) potentially shorter analysis times than the bacterial culture tests and (2) being selected for human-source specificity. At 10 locations, water samples were collected upstream and at two successive points downstream from a wastewaster treatment plant (WWTP); a treated effluent sample was also collected at each WWTP. This sampling plan was used to determine the persistence of a chemically diverse suite of emerging contaminants in streams. Samples were also collected at two reference locations assumed to have minimal human impacts. Of the 110 chemical analytes investigated in this project, 78 were detected at least once. The number of compounds in a given sample ranged from 3 at a reference location to 50 in a WWTP effluent sample. The total analyte load at each location varied from 0.018 microg/L at the reference location to 97.7 microg/L in a separate WWTP effluent sample. Although most of the compound concentrations were in the range of 0.01-1.0 microg/L, in some samples, individual concentrations were in the range of 5-38 microg/L. The concentrations of the majority of the chemicals present in the samples generally followed the expected trend: they were either nonexistent or at trace levels in the upstream samples, had their maximum concentrations in the WWTP effluent samples, and then declined in the two downstream samples. This research suggests that selected chemicals are useful as tracers of human wastewater discharge.
Collapse
Affiliation(s)
- Susan T Glassmeyer
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 26 West Martin Luther King Drive, MS 564, Cincinnati, Ohio 45268, USA.
| | | | | | | | | | | | | | | |
Collapse
|