1
|
Carroll LM, Cheng RA, Wiedmann M, Kovac J. Keeping up with the Bacillus cereus group: taxonomy through the genomics era and beyond. Crit Rev Food Sci Nutr 2021; 62:7677-7702. [PMID: 33939559 DOI: 10.1080/10408398.2021.1916735] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Bacillus cereus group, also known as B. cereus sensu lato (s.l.), is a species complex that contains numerous closely related lineages, which vary in their ability to cause illness in humans and animals. The classification of B. cereus s.l. isolates into species-level taxonomic units is thus essential for informing public health and food safety efforts. However, taxonomic classification of these organisms is challenging. Numerous-often conflicting-taxonomic changes to the group have been proposed over the past two decades, making it difficult to remain up to date. In this review, we discuss the major nomenclatural changes that have accumulated in the B. cereus s.l. taxonomic space prior to 2020, particularly in the genomic sequencing era, and outline the resulting problems. We discuss several contemporary taxonomic frameworks as applied to B. cereus s.l., including (i) phenotypic, (ii) genomic, and (iii) hybrid nomenclatural frameworks, and we discuss the advantages and disadvantages of each. We offer suggestions as to how readers can avoid B. cereus s.l. taxonomic ambiguities, regardless of the nomenclatural framework(s) they choose to employ. Finally, we discuss future directions and open problems in the B. cereus s.l. taxonomic realm, including those that cannot be solved by genomic approaches alone.
Collapse
Affiliation(s)
- Laura M Carroll
- Structural and Computational Biology Unit, EMBL, Heidelberg, Germany
| | - Rachel A Cheng
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
2
|
Saikia L, Gogoi N, Das PP, Sarmah A, Punam K, Mahanta B, Bora S, Bora R. Bacillus cereus-Attributable Primary Cutaneous Anthrax-Like Infection in Newborn Infants, India. Emerg Infect Dis 2019; 25:1261-1270. [PMID: 31211665 PMCID: PMC6590766 DOI: 10.3201/eid2507.181493] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During March 13-June 23, 2018, anthrax-like cutaneous lesions attributed to the Bacillus cereus group of organisms developed in 12 newborns in India. We traced the source of infection to the healthcare kits used for newborn care. We used multilocus sequence typing to characterize the 19 selected strains from various sources in hospital settings, including the healthcare kits. This analysis revealed the existence of a genetically diverse population comprising mostly new sequence types. Phylogenetic analysis clustered most strains into the previously defined clade I, composed primarily of pathogenic bacilli. We suggest that the synergistic interaction of nonhemolytic enterotoxin and sphingomyelinase might have a role in the development of cutaneous lesions. The infection was controlled by removing the healthcare kits and by implementing an ideal housekeeping program. All the newborns recovered after treatment with ciprofloxacin and amikacin.
Collapse
|
3
|
Mugadza DT, Owusu-Darko R, Buys EM. Short communication: Source tracking Bacillus cereus in an extended-shelf-life milk processing plant using partial sequencing of rpoB and multilocus sequence typing. J Dairy Sci 2019; 102:135-139. [DOI: 10.3168/jds.2018-14733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/22/2018] [Indexed: 12/19/2022]
|
4
|
Evolutionary processes and environmental factors underlying the genetic diversity and lifestyles of Bacillus cereus group bacteria. Res Microbiol 2017; 168:309-318. [DOI: 10.1016/j.resmic.2016.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 07/03/2016] [Accepted: 07/05/2016] [Indexed: 11/22/2022]
|
5
|
Liu Y, Lai Q, Du J, Shao Z. Genetic diversity and population structure of the Bacillus cereus group bacteria from diverse marine environments. Sci Rep 2017; 7:689. [PMID: 28386130 PMCID: PMC5429728 DOI: 10.1038/s41598-017-00817-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/20/2017] [Indexed: 11/25/2022] Open
Abstract
The phylogenetic diversity of marine bacteria belonged to the Bacillus cereus group has not been well investigated. Here, we present the genetic diversity and population structure of 71 bacteria from diverse marine environments, using a multilocus sequence typing (MLST) approach and the analyses of digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) based on some representative genomic sequences. The MLST analysis demonstrated that these isolates were highly diverse and a wide distribution in marine environments and some of them showed niche specificity to some extent. They were assigned to 27 sequence types (STs) with 23 novel STs. Phylogenetic analysis of 82 bacteria containing 11 type strains based on MLST discriminated them as 20 clusters including 10 new ones. Both the dDDH and ANI results supported the proposition that each of 20 clusters represented one independent species, including 10 putative novel species. Values of 98.3% of MLST similarity and 96.2% of ANI were proposed as the standard for the species definition of this group. In summary, the first insight into the phylogenetic diversity of the group bacteria from marine environments will contribute to better understanding of their ecological role and evolution in contrast with terrestrial environments.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, SOA; Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, 361005, China
| | - Qiliang Lai
- State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, SOA; Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, 361005, China
| | - Juan Du
- State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, SOA; Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, 361005, China
| | - Zongze Shao
- State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, SOA; Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, 361005, China.
| |
Collapse
|
6
|
Yang Y, Yu X, Zhan L, Chen J, Zhang Y, Zhang J, Chen H, Zhang Z, Zhang Y, Lu Y, Mei L. Multilocus sequence type profiles of Bacillus cereus isolates from infant formula in China. Food Microbiol 2017; 62:46-50. [DOI: 10.1016/j.fm.2016.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 09/09/2016] [Accepted: 09/11/2016] [Indexed: 12/19/2022]
|
7
|
Yang Y, Gu H, Yu X, Zhan L, Chen J, Luo Y, Zhang Y, Zhang Y, Lu Y, Jiang J, Mei L. Genotypic heterogeneity of emetic toxin producing Bacillus cereus isolates from China. FEMS Microbiol Lett 2016; 364:fnw237. [PMID: 27744366 DOI: 10.1093/femsle/fnw237] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/24/2016] [Accepted: 10/14/2016] [Indexed: 11/14/2022] Open
Abstract
Emetic toxin-producing Bacillus cereus (emetic B. cereus) is the third member of B. cereus group whose toxins are encoded by megaplasmids, beside anthrax and insecticidal toxins of B. anthracis and B. thuringiensis, respectively. A total of 18 emetic isolates collected from food poisoning events, clinical and non-random food samples in Zhejiang province of China, were analyzed by plasmid screening, pulse field gel electrophoresis, multilocus sequence typing, and toxic gene identification to investigate their genotypic diversity. In this study, 13 plasmid profile types, 14 pulse types and 6 different STs from emetic isolates were detected, in which ST 1035,1038,1053,1054 and 1065 were first assigned and reported. The toxic gene ces existed on its own, or coexisted with other toxic genes bceT, cytk, entFM and nhe, but never with hbl in emetic isolates. The results demonstrated that the emetic B. cereus strains from China were heterologous at genotypic level.
Collapse
Affiliation(s)
- Yong Yang
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, Zhejiang Province, China
| | - Hua Gu
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, Zhejiang Province, China
| | - Xiaofeng Yu
- College of Food Science, Shihezi University, Shihezi 832001, Xinjiang Province, China
| | - Li Zhan
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, Zhejiang Province, China
| | - Jiancai Chen
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, Zhejiang Province, China
| | - Yun Luo
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, Zhejiang Province, China
| | - Yunyi Zhang
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, Zhejiang Province, China
| | - Yanjun Zhang
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, Zhejiang Province, China
| | - Yiyu Lu
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, Zhejiang Province, China
| | - Jianmin Jiang
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, Zhejiang Province, China
| | - Lingling Mei
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, Zhejiang Province, China
| |
Collapse
|
8
|
Fiedoruk K, Daniluk T, Fiodor A, Drewicka E, Buczynska K, Leszczynska K, Bideshi DK, Swiecicka I. MALDI-TOF MS portrait of emetic and non-emetic Bacillus cereus group members. Electrophoresis 2016; 37:2235-47. [PMID: 27196540 DOI: 10.1002/elps.201500308] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 04/25/2016] [Accepted: 05/09/2016] [Indexed: 11/09/2022]
Abstract
The number of foodborne intoxications caused by emetic Bacillus cereus isolates has increased significantly. As such, rapid and reliable methods to identify emetic strains appear to be clinically relevant. In this study, intact cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to differentiate emetic and non-emetic bacilli. The phyloproteomic clustering of 34 B. cereus emetic and 88 non-emetic isolates classified as B. cereus, Bacillus thuringiensis, Bacillus weihenstephanensis, and Bacillus mycoides, showed (i) a clear separation of both groups at a similarity level of 43%, and (ii) a high relatedness among the emetic isolates (similarity of 78%). Specifically, 83 mass peak classes were recognized in the spectral window range between m/z 4000 and 12 000 that were tentatively assigned to 41 protein variants based on a bioinformatic approach. Mass variation between the emetic and the non-emetic subsets was recorded for 27 of them, including ten ribosomal subunit proteins, for which inter-strain polymorphism was confirmed by gene sequencing. Additional peaks were assigned to other proteins such as small acid soluble proteins, cold shock proteins and hypothetical proteins, e.g., carbohydrate kinase. Moreover, the results were supported by in silico analysis of the biomarkers in 259 members of B. cereus group, including Bacillus anthracis, based on their whole-genome sequences. In conclusion, the proteomic profiling by MALDI-TOF MS is a promising and rapid method for pre-screening B. cereus to identify medically relevant isolates and for epidemiologic purposes.
Collapse
Affiliation(s)
- Krzysztof Fiedoruk
- Department of Microbiology, Medical University of Bialystok, Bialystok, Poland
| | - Tamara Daniluk
- Department of Microbiology, Medical University of Bialystok, Bialystok, Poland
| | - Angelika Fiodor
- Department of Microbiology, University of Bialystok, Bialystok, Poland
| | - Ewa Drewicka
- Department of Microbiology, University of Bialystok, Bialystok, Poland
| | | | | | - Dennis Ken Bideshi
- Department of Natural and Mathematical Science, California Baptist University, Riverside, USA.,Department of Entomology, University of California, Riverside, USA
| | - Izabela Swiecicka
- Department of Microbiology, University of Bialystok, Bialystok, Poland.,Laboratory of Applied Microbiology, University of Bialystok, Bialystok, Poland
| |
Collapse
|
9
|
|
10
|
Castiaux V, Liu X, Delbrassinne L, Mahillon J. Is Cytotoxin K from Bacillus cereus a bona fide enterotoxin? Int J Food Microbiol 2015; 211:79-85. [PMID: 26186121 DOI: 10.1016/j.ijfoodmicro.2015.06.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 06/20/2015] [Accepted: 06/22/2015] [Indexed: 11/19/2022]
Abstract
Cytotoxin K (CytK) produced by Bacillus cereus s.l. has generally been considered to be associated with the foodborne diarrhoeal syndrome. Two distinct variants of CytK have been reported: CytK-1 from Bacillus cytotoxicus and CytK-2 from B. cereus. In order to determine whether CytK plays a significant role in the diarrhoeal disease, the occurrence of cytK genes was assessed among 390 B. cereus isolates with different origins including clinical and food poisoning samples and was found to be 46%. Interestingly, the cytK occurrence was slightly lower in food poisoning and clinical isolates than in environmental samples. Seventy cytK-2 positive strains (including 28 isolates from foodborne outbreaks) were then selected in order to assess their genetic diversity. A genetic dendrogram based on the cytK-2 sequences of these 70 strains and on two cytK-1 sequences from strains NVH 391-98 and 883-00 showed an important diversity. However, no strain clustering according to the origin or source of isolation was observed. These observations were confirmed by Multi-Locus Sequences Typing (MLST) based on five different loci of housekeeping genes (ccpA, recF, sucC, purF and gdpD) for which no grouping of foodborne outbreak strains could be identified. Therefore, the choice of cytK as virulence factor for the diarrhoeal pathotype does not seem to be relevant per se, even though the involvement of CytK in the diarrhoeal syndrome cannot be fully excluded. Potential synergistic effects between CytK and other virulence factors, together with their potential variable expression levels should be further investigated.
Collapse
Affiliation(s)
- Virginie Castiaux
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Xiaojin Liu
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Laurence Delbrassinne
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium; Scientific Institute of Public Health, Juliette Wytsman street 14, B-1050 Brussels, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
11
|
Thorsen L, Kando CK, Sawadogo H, Larsen N, Diawara B, Ouédraogo GA, Hendriksen NB, Jespersen L. Characteristics and phylogeny of Bacillus cereus strains isolated from Maari, a traditional West African food condiment. Int J Food Microbiol 2014; 196:70-8. [PMID: 25528535 DOI: 10.1016/j.ijfoodmicro.2014.11.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 11/10/2014] [Accepted: 11/24/2014] [Indexed: 10/24/2022]
Abstract
Maari is a spontaneously fermented food condiment made from baobab tree seeds in West African countries. This type of product is considered to be safe, being consumed by millions of people on a daily basis. However, due to the spontaneous nature of the fermentation the human pathogen Bacillus cereus occasionally occurs in Maari. This study characterizes succession patterns and pathogenic potential of B. cereus isolated from the raw materials (ash, water from a drilled well (DW) and potash), seed mash throughout fermentation (0-96h), after steam cooking and sun drying (final product) from two production sites of Maari. Aerobic mesophilic bacterial (AMB) counts in raw materials were of 10(5)cfu/ml in DW, and ranged between 6.5×10(3) and 1.2×10(4)cfu/g in potash, 10(9)-10(10)cfu/g in seed mash during fermentation and 10(7) - 10(9) after sun drying. Fifty three out of total 290 AMB isolates were identified as B. cereus sensu lato by use of ITS-PCR and grouped into 3 groups using PCR fingerprinting based on Escherichia coli phage-M13 primer (M13-PCR). As determined by panC gene sequencing, the isolates of B. cereus belonged to PanC types III and IV with potential for high cytotoxicity. Phylogenetic analysis of concatenated sequences of glpF, gmk, ilvD, pta, pur, pycA and tpi revealed that the M13-PCR group 1 isolates were related to B. cereus biovar anthracis CI, while the M13-PCR group 2 isolates were identical to cereulide (emetic toxin) producing B. cereus strains. The M13-PCR group 1 isolates harboured poly-γ-D-glutamic acid capsule biosynthesis genes capA, capB and capC showing 99-100% identity with the environmental B. cereus isolate 03BB108. Presence of cesB of the cereulide synthetase gene cluster was confirmed by PCR in M13-PCR group 2 isolates. The B. cereus harbouring the cap genes were found in potash, DW, cooking water and at 8h fermentation. The "emetic" type B. cereus were present in DW, the seed mash at 48-72h of fermentation and in the final product, while the remaining isolates (PanC type IV) were detected in ash, at 48-72h fermentation and in the final product. This work sheds light on the succession and pathogenic potential of B. cereus species in traditional West African food condiment and clarifies their phylogenetic relatedness to B. cereus biovar anthracis. Future implementation of GMP and HACCP and development of starter cultures for controlled Maari fermentations will help to ensure a safe product.
Collapse
Affiliation(s)
- Line Thorsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Christine Kere Kando
- Food Technology Department (DTA/IRSAT/CNRST), Ouagadougou 03 BP 7047, Burkina Faso; Université Polytechnique de Bobo-Dioulasso, 01 BP 1091 Bobo-Dioulasso, Burkina Faso
| | - Hagrétou Sawadogo
- Food Technology Department (DTA/IRSAT/CNRST), Ouagadougou 03 BP 7047, Burkina Faso
| | - Nadja Larsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Bréhima Diawara
- Food Technology Department (DTA/IRSAT/CNRST), Ouagadougou 03 BP 7047, Burkina Faso
| | | | - Niels Bohse Hendriksen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Lene Jespersen
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark.
| |
Collapse
|
12
|
Chenau J, Fenaille F, Caro V, Haustant M, Diancourt L, Klee SR, Junot C, Ezan E, Goossens PL, Becher F. Identification and validation of specific markers of Bacillus anthracis spores by proteomics and genomics approaches. Mol Cell Proteomics 2013; 13:716-32. [PMID: 24379445 DOI: 10.1074/mcp.m113.032946] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bacillus anthracis is the causative bacteria of anthrax, an acute and often fatal disease in humans. The infectious agent, the spore, represents a real bioterrorism threat and its specific identification is crucial. However, because of the high genomic relatedness within the Bacillus cereus group, it is still a real challenge to identify B. anthracis spores confidently. Mass spectrometry-based tools represent a powerful approach to the efficient discovery and identification of such protein markers. Here we undertook comparative proteomics analyses of Bacillus anthracis, cereus and thuringiensis spores to identify proteoforms unique to B. anthracis. The marker discovery pipeline developed combined peptide- and protein-centric approaches using liquid chromatography coupled to tandem mass spectrometry experiments using a high resolution/high mass accuracy LTQ-Orbitrap instrument. By combining these data with those from complementary bioinformatics approaches, we were able to highlight a dozen novel proteins consistently observed across all the investigated B. anthracis spores while being absent in B. cereus/thuringiensis spores. To further demonstrate the relevance of these markers and their strict specificity to B. anthracis, the number of strains studied was extended to 55, by including closely related strains such as B. thuringiensis 9727, and above all the B. cereus biovar anthracis CI, CA strains that possess pXO1- and pXO2-like plasmids. Under these conditions, the combination of proteomics and genomics approaches confirms the pertinence of 11 markers. Genes encoding these 11 markers are located on the chromosome, which provides additional targets complementary to the commonly used plasmid-encoded markers. Last but not least, we also report the development of a targeted liquid chromatography coupled to tandem mass spectrometry method involving the selection reaction monitoring mode for the monitoring of the 4 most suitable protein markers. Within a proof-of-concept study, we demonstrate the value of this approach for the further high throughput and specific detection of B. anthracis spores within complex samples.
Collapse
Affiliation(s)
- Jérôme Chenau
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, 91191 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Vassileva M, Torii K, Oshimoto M, Okamoto A, Agata N, Yamada K, Hasegawa T, Ohta M. Phylogenetic Analysis ofBacillus cereusIsolates from Severe Systemic Infections Using Multilocus Sequence Typing Scheme. Microbiol Immunol 2013; 50:743-9. [PMID: 16985296 DOI: 10.1111/j.1348-0421.2006.tb03847.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacillus cereus strains from cases of severe or lethal systemic infections, including respiratory symptoms cases, were analyzed using multilocus sequence typing scheme of B. cereus MLST database. The isolates were evenly distributed between the two main clades, and 60% of them had allele profiles new to the database. Half of the collection's strains clustered in a lineage neighboring Bacillus anthracis phylogenetic origin. Strains from lethal cases with respiratory symptoms were allocated in both main clades. This is the first report of strains causing respiratory symptoms to be identified as genetically distant from B. anthracis. The phylogenetic location of the presented here strains was compared with all previously submitted to the database isolates from systemic infections, and were found to appear in the same clusters where clinical isolates from other studies had been assigned. It seems that the pathogenic strains are forming clusters on the phylogenetic tree.
Collapse
Affiliation(s)
- Maria Vassileva
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Zahner V, Silva ACTDCE, Moraes GPD, McIntosh D, Filippis ID. Extended genetic analysis of Brazilian isolates of Bacillus cereus and Bacillus thuringiensis. Mem Inst Oswaldo Cruz 2013; 108:65-72. [PMID: 23440117 PMCID: PMC3974328 DOI: 10.1590/s0074-02762013000100011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/17/2012] [Indexed: 11/22/2022] Open
Abstract
Multiple locus sequence typing (MLST) was undertaken to extend the genetic characterization of 29 isolates of Bacillus cereus and Bacillus thuringiensis previously characterized in terms of presence/absence of sequences encoding virulence factors and via variable number tandem repeat (VNTR). Additional analysis involved polymerase chain reaction for the presence of sequences (be, cytK, inA, pag, lef, cya and cap), encoding putative virulence factors, not investigated in the earlier study. MLST analysis ascribed novel and unique sequence types to each of the isolates. A phylogenetic tree was constructed from a single sequence of 2,838 bp of concatenated loci sequences. The strains were not monophyletic by analysis of any specific housekeeping gene or virulence characteristic. No clear association in relation to source of isolation or to genotypic profile based on the presence or absence of putative virulence genes could be identified. Comparison of VNTR profiling with MLST data suggested a correlation between these two methods of genetic analysis. In common with the majority of previous studies, MLST was unable to provide clarification of the basis for pathogenicity among members of the B. cereus complex. Nevertheless, our application of MLST served to reinforce the notion that B. cereus and B. thuringiensis should be considered as the same species.
Collapse
Affiliation(s)
- Viviane Zahner
- Laboratório de Transmissores de Leishmanioses, Setor de Entomologia Médica Forense, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil.
| | | | | | | | | |
Collapse
|
15
|
Turabelidze G, Gee JE, Hoffmaster AR, Manian F, Butler C, Byrd D, Schildknecht S, Hauser LC, Duncan M, Ferrett R, Evans D, Talley C. Contaminated ventilator air flow sensor linked to Bacillus cereus colonization of newborns. Emerg Infect Dis 2013; 19:781-3. [PMID: 23647973 PMCID: PMC3647488 DOI: 10.3201/eid1905.12039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We investigated Bacillus cereus–positive tracheal aspirates from infants on ventilators in a neonatal intensive care unit. Multilocus sequence typing determined a genetic match between strains isolated from samples from a case-patient and from the air flow sensor in the ventilator. Changing the sterilization method for sensors to steam autoclaving stopped transmission.
Collapse
Affiliation(s)
- George Turabelidze
- Missouri Department of Health and Senior Services, Jefferson City, Missouri 63103, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Turabelidze G, Gee JE, Hoffmaster AR, Manian F, Butler C, Byrd D, Schildknecht S, Hauser LC, Duncan M, Ferrett R, Evans D, Talley C. Contaminated Ventilator Air Flow Sensor Linked toBacillus cereusColonization of Newborns. Emerg Infect Dis 2013. [DOI: 10.3201/eid1905.120239] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
17
|
Santos C, Almeida F, Guimarães A, Abrahão W, Arantes O, Vilas-Bôas G. RE-PCR variability and toxigenic profile of food poisoning, foodborne and soil-associated Bacillus cereus isolates from Brazil. Int J Food Microbiol 2011; 151:277-83. [DOI: 10.1016/j.ijfoodmicro.2011.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 07/25/2011] [Accepted: 09/11/2011] [Indexed: 11/25/2022]
|
18
|
Ahmod NZ, Gupta RS, Shah HN. Identification of a Bacillus anthracis specific indel in the yeaC gene and development of a rapid pyrosequencing assay for distinguishing B. anthracis from the B. cereus group. J Microbiol Methods 2011; 87:278-85. [PMID: 21907250 DOI: 10.1016/j.mimet.2011.08.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/22/2011] [Accepted: 08/22/2011] [Indexed: 02/07/2023]
Abstract
Bacillus anthracis, the causative agent of anthrax, is a potential source of bioterrorism. The existing assays for its identification lack specificity due to the close genetic relationship it exhibits to other members of the B. cereus group. Our comparative analyses of protein sequences from Bacillus species have identified a 24 amino acid deletion in a conserved region of the YeaC protein that is uniquely present in B. anthracis. PCR primers based on conserved regions flanking this indel in the Bacillus cereus group of species (viz. Bacillus cereus, B. anthracis, B. thuringiensis, B. mycoides, B. weihenstephnensis and B. pseudomycoides) specifically amplified a 282 bp fragment from all six reference B. anthracis strains, whereas a 354 bp fragment was amplified from 15 other B. cereus group of species/strains. These fragments, due to large size difference, are readily distinguished by means of agarose gel electrophoresis. In contrast to the B. cereus group, no PCR amplification was observed with any of the non-B. cereus group of species/strains. This indel was also used for developing a rapid pyrosequencing assay for the identification of B. anthracis. Its performance was evaluated by examining the presence or absence of this indel in a panel of 81 B. cereus-like isolates from various sources that included 39 B. anthracis strains. Based upon the sequence data from the pyrograms, the yeaC indel was found to be a distinctive characteristic of various B. anthracis strains tested and not found in any other species/strains from these samples. Therefore, this B. anthracis specific indel provides a robust and highly-specific chromosomal marker for the identification of this high-risk pathogen from other members of the B. cereus group independent of a strain's virulence. The pyrosequencing platform also allows for the rapid and simultaneous screening of multiple samples for the presence of this B. anthracis-specific marker.
Collapse
Affiliation(s)
- Nadia Z Ahmod
- Department for Bioanalysis and Horizon Technologies, Centre for Infections, Health Protection Agency, Colindale, London, United Kingdom.
| | | | | |
Collapse
|
19
|
Wright AM, Beres SB, Consamus EN, Long SW, Flores AR, Barrios R, Richter GS, Oh SY, Garufi G, Maier H, Drews AL, Stockbauer KE, Cernoch P, Schneewind O, Olsen RJ, Musser JM. Rapidly progressive, fatal, inhalation anthrax-like infection in a human: case report, pathogen genome sequencing, pathology, and coordinated response. Arch Pathol Lab Med 2011; 135:1447-59. [PMID: 21882964 DOI: 10.5858/2011-0362-sair.1] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Ten years ago a bioterrorism event involving Bacillus anthracis spores captured the nation's interest, stimulated extensive new research on this pathogen, and heightened concern about illegitimate release of infectious agents. Sporadic reports have described rare, fulminant, and sometimes fatal cases of pneumonia in humans and nonhuman primates caused by strains of Bacillus cereus , a species closely related to Bacillus anthracis. OBJECTIVES To describe and investigate a case of rapidly progressive, fatal, anthrax-like pneumonia and the overwhelming infection caused by a Bacillus species of uncertain provenance in a patient residing in rural Texas. DESIGN We characterized the genome of the causative strain within days of its recovery from antemortem cultures using next-generation sequencing and performed immunohistochemistry on tissues obtained at autopsy with antibodies directed against virulence proteins of B anthracis and B cereus. RESULTS We discovered that the infection was caused by a previously unknown strain of B cereus that was closely related to, but genetically distinct from, B anthracis . The strain contains a plasmid similar to pXO1, a genetic element encoding anthrax toxin and other known virulence factors. Immunohistochemistry demonstrated that several homologs of B anthracis virulence proteins were made in infected tissues, likely contributing to the patient's death. CONCLUSIONS Rapid genome sequence analysis permitted us to genetically define this strain, rule out the likelihood of bioterrorism, and contribute effectively to the institutional response to this event. Our experience strongly reinforced the critical value of deploying a well-integrated, anatomic, clinical, and genomic strategy to respond rapidly to a potential emerging, infectious threat to public health.
Collapse
Affiliation(s)
- Angela M Wright
- Department of Pathology and Laboratory Medicine, The Methodist Hospital System, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tourasse NJ, Helgason E, Klevan A, Sylvestre P, Moya M, Haustant M, Økstad OA, Fouet A, Mock M, Kolstø AB. Extended and global phylogenetic view of the Bacillus cereus group population by combination of MLST, AFLP, and MLEE genotyping data. Food Microbiol 2010; 28:236-44. [PMID: 21315979 DOI: 10.1016/j.fm.2010.06.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 06/26/2010] [Accepted: 06/30/2010] [Indexed: 11/18/2022]
Abstract
The Bacillus cereus group of bacteria includes species that can cause food-poisoning or spoilage, such as B. cereus, as well as Bacillus anthracis, the cause of anthrax. In the present report we have conducted a multi-datatype analysis using tools from the HyperCAT database (http://mlstoslo.uio.no/) that we recently developed, combining data from multilocus sequence typing (Tourasse et al., 2010), amplified fragment length polymorphism, and multilocus enzyme electrophoresis typing techniques. We provide a comprehensive snapshot of the B. cereus group population, incorporating 2213 isolates including 450 from food and dairy products, in the form of both phylogenetic supertrees and superclusters of genetically closely related isolates. Our main findings include the detection of phylogenetically separated groups of isolates possibly representing novel evolutionary lineages within the B. cereus group, a putative new branch of B. anthracis, as well as new groups of related strains containing both environmental and clinical isolates. In addition, the multi-datatype analysis revealed to a larger extent than previously recognized that food-borne isolates can share identical genotyping profiles with strains from various other origins. Altogether, the global analysis confirms and extends the results underlining the opportunistic nature of B. cereus group organisms, and the fact that isolates responsible for disease outbreaks and contamination of foodstuffs can originate from various genetic backgrounds.
Collapse
Affiliation(s)
- Nicolas J Tourasse
- Laboratory for Microbial Dynamics (LaMDa) and Department of Pharmaceutical Biosciences (Microbiology), University of Oslo, N-0316 Oslo, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Read TD, Turingan RS, Cook C, Giese H, Thomann UH, Hogan CC, Tan E, Selden RF. Rapid multi-locus sequence typing using microfluidic biochips. PLoS One 2010; 5:e10595. [PMID: 20485679 PMCID: PMC2868872 DOI: 10.1371/journal.pone.0010595] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 04/19/2010] [Indexed: 12/01/2022] Open
Abstract
Background Multiple locus sequence typing (MLST) has become a central genotyping strategy for analysis of bacterial populations. The scheme involves de novo sequencing of 6–8 housekeeping loci to assign unique sequence types. In this work we adapted MLST to a rapid microfluidics platform in order to enhance speed and reduce laboratory labor time. Methodology/Principal Findings Using two integrated microfluidic devices, DNA was purified from 100 Bacillus cereus soil isolates, used as a template for multiplex amplification of 7 loci and sequenced on forward and reverse strands. The time on instrument from loading genomic DNA to generation of electropherograms was only 1.5 hours. We obtained full-length sequence of all seven MLST alleles from 84 representing 46 different Sequence Types. At least one allele could be sequenced from a further 15 strains. The nucleotide diversity of B. cereus isolated in this study from one location in Rockville, Maryland (0.04 substitutions per site) was found to be as great as the global collection of isolates. Conclusions/Significance Biogeographical investigation of pathogens is only one of a panoply of possible applications of microfluidics based MLST; others include microbiologic forensics, biothreat identification, and rapid characterization of human clinical samples.
Collapse
Affiliation(s)
- Timothy D Read
- Biological Defense Research Directorate, Naval Medical Research Center, Rockville, Maryland, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kolstø AB, Tourasse NJ, Økstad OA. What sets Bacillus anthracis apart from other Bacillus species? Annu Rev Microbiol 2009; 63:451-76. [PMID: 19514852 DOI: 10.1146/annurev.micro.091208.073255] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacillus anthracis is the cause of anthrax, and two large plasmids are essential for toxicity: pXO1, which contains the toxin genes, and pXO2, which encodes a capsule. B. anthracis forms a highly monomorphic lineage within the B. cereus group, but strains of Bacillus thuringiensis and B. cereus exist that are genetically closely related to the B. anthracis cluster. During the past five years B. cereus strains that contain the pXO1 virulence plasmid were discovered, and strains with both pXO1 and pXO2 have been isolated from great apes in Africa. Therefore, the presence of pXO1 and pXO2 no longer principally separates B. anthracis from other Bacilli. The B. anthracis lineage carries a specific mutation in the global regulator PlcR, which controls the transcription of secreted virulence factors in B. cereus and B. thuringiensis. Coevolution of the B. anthracis chromosome with its plasmids may be the basis for the successful development and uniqueness of the B. anthracis lineage.
Collapse
Affiliation(s)
- Anne-Brit Kolstø
- Laboratory for Microbial Dynamics and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo 0316, Norway.
| | | | | |
Collapse
|
23
|
Didelot X, Barker M, Falush D, Priest FG. Evolution of pathogenicity in the Bacillus cereus group. Syst Appl Microbiol 2009; 32:81-90. [PMID: 19200684 DOI: 10.1016/j.syapm.2009.01.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 01/06/2009] [Accepted: 01/07/2009] [Indexed: 11/25/2022]
Abstract
The Bacillus cereus group of bacteria comprises soil-dwelling saprophytes but on occasion these bacteria can cause a wide range of diseases in humans, including food poisoning, systemic infections and highly lethal forms of anthrax. While anthrax is almost invariably caused by strains from a single evolutionary lineage, Bacillus anthracis, variation in the virulence properties of strains from other lineages has not been fully addressed. Using multi-locus sequence data from 667 strains, we reconstructed the evolutionary history of the B. cereus group in terms of both clonal inheritance and recombination. The strains included 155 clinical isolates representing B. anthracis, and isolates from emetic and diarrhoeal food poisoning, septicaemia and related infections, wound, and lung infections. We confirmed the existence of three major clades and found that clinical isolates of B. cereus (with the exception of emetic toxin-producing strains) are evenly distributed between and within clades 1 and 2. B. anthracis in particular and emetic toxin-producing B. cereus show more clonal structure and are restricted to clade 1. Our characterization of the patterns of genetic exchange showed that there exist partial barriers to gene flow between the three clades. The pathogenic strains do not exhibit atypically high or low rates of recombination, consistent with the opportunistic nature of most pathogenic infections. However, there have been a large number of recent imports in clade 1 of strains from external origins, which is indicative of an on-going shift in gene-flow boundaries for this clade.
Collapse
Affiliation(s)
- Xavier Didelot
- Department of Statistics, University of Warwick, Coventry CV4 7AL, UK.
| | | | | | | |
Collapse
|
24
|
|
25
|
Hoffmaster AR, Novak RT, Marston CK, Gee JE, Helsel L, Pruckler JM, Wilkins PP. Genetic diversity of clinical isolates of Bacillus cereus using multilocus sequence typing. BMC Microbiol 2008; 8:191. [PMID: 18990211 PMCID: PMC2585095 DOI: 10.1186/1471-2180-8-191] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 11/06/2008] [Indexed: 11/20/2022] Open
Abstract
Background Bacillus cereus is most commonly associated with foodborne illness (diarrheal and emetic) but is also an opportunistic pathogen that can cause severe and fatal infections. Several multilocus sequence typing (MLST) schemes have recently been developed to genotype B. cereus and analysis has suggested a clonal or weakly clonal population structure for B. cereus and its close relatives B. anthracis and B. thuringiensis. In this study we used MLST to determine if B. cereus isolates associated with illnesses of varying severity (e.g., severe, systemic vs. gastrointestinal (GI) illness) were clonal or formed clonal complexes. Results A retrospective analysis of 55 clinical B. cereus isolates submitted to the Centers for Disease Control and Prevention between 1954 and 2004 was conducted. Clinical isolates from severe infections (n = 27), gastrointestinal (GI) illness (n = 18), and associated isolates from food (n = 10) were selected for analysis using MLST. The 55 isolates were diverse and comprised 38 sequence types (ST) in two distinct clades. Of the 27 isolates associated with serious illness, 13 clustered in clade 1 while 14 were in clade 2. Isolates associated with GI illness were also found throughout clades 1 and 2, while no isolates in this study belonged to clade 3. All the isolates from this study belonging to the clade 1/cereus III lineage were associated with severe disease while isolates belonging to clade1/cereus II contained isolates primarily associated with severe disease and emetic illness. Only three STs were observed more than once for epidemiologically distinct isolates. Conclusion STs of clinical B. cereus isolates were phylogenetically diverse and distributed among two of three previously described clades. Greater numbers of strains will need to be analyzed to confirm if specific lineages or clonal complexes are more likely to contain clinical isolates or be associated with specific illness, similar to B. anthracis and emetic B. cereus isolates.
Collapse
Affiliation(s)
- Alex R Hoffmaster
- National Center for Zoonotic, Vector-borne, and Enteric Diseases, Centers for Disease Control and Prevention, Atlanta, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Peruca APS, Vilas-Bôas GT, Arantes OMN. Genetic relationships between sympatric populations of Bacillus cereus and Bacillus thuringiensis, as revealed by rep-PCR genomic fingerprinting. Mem Inst Oswaldo Cruz 2008; 103:497-500. [DOI: 10.1590/s0074-02762008000500016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 07/18/2008] [Indexed: 11/22/2022] Open
|
27
|
Ngamwongsatit P, Banada PP, Panbangred W, Bhunia AK. WST-1-based cell cytotoxicity assay as a substitute for MTT-based assay for rapid detection of toxigenic Bacillus species using CHO cell line. J Microbiol Methods 2008; 73:211-5. [DOI: 10.1016/j.mimet.2008.03.002] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 03/04/2008] [Accepted: 03/05/2008] [Indexed: 11/25/2022]
|
28
|
Callahan C, Castanha ER, Fox KF, Fox A. The Bacillus cereus containing sub-branch most closely related to Bacillus anthracis, have single amino acid substitutions in small acid-soluble proteins, while remaining sub-branches are more variable. Mol Cell Probes 2008; 22:207-11. [PMID: 18439962 DOI: 10.1016/j.mcp.2007.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 11/21/2007] [Indexed: 10/22/2022]
Abstract
Hoffmaster et al. [Hoffmaster AR, Ravel J, Rasko DA, Chapman GD, Chute MD, Marston CK, et al. Identification of anthrax toxin genes in Bacillus cereus associated with illness resembling inhalation anthrax. Proc Natl Acad Sci U S A 2004;101:8449-54; Hoffmaster AR, Hill KK, Gee JE, Marston CK, De BK, Popovic T, et al. Characterization of Bacillus cereus isolates associated with fatal pneumonias: strains are closely related to Bacillus anthracis and harbor B. anthracis virulence genes. J Clin Microbiol 2006;44:3352-60] phylogenetically divided Bacillus cereus strains into 10 branches by amplified fragment length polymorphism (AFLP) with Branch F including all Bacillus anthracis strains and pneumonia-causing strains of B. cereus. There are four sub-branches within Branch F, referred to here as F1-A, F1-B, F2-A and F2-B. The B. anthracis strains are found within sub-branch F1-B. Concerning, the currently available B. cereus pneumonia-causing isolates, one was found to categorize within sub-branch F1-B and two within F2-B. In the following work the sequence variation between B. cereus strains was determined by MALDI-TOF MS and MS-MS for each strain of B. cereus in Branch F. ESI-MS was performed on selected strains for confirmation. Small acid-soluble proteins (SASPs) of B. cereus strains found in F1-B showed a single amino acid substitution, while strains in the other three sub-branches were more variable generally showing one or two amino acid substitutions. The single substitutions always occurred in the C-terminus. Double substitutions occurred in both N and C termini. Of the pneumonia-causing strains, one exhibited a single amino acid substitution, while the other two exhibited a two amino acid substitution.
Collapse
Affiliation(s)
- Courtney Callahan
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, 6311 Garners Ferry Road, Columbia, SC 29208, USA.
| | | | | | | |
Collapse
|
29
|
Multiple-locus sequence typing and analysis of toxin genes in Bacillus cereus food-borne isolates. Appl Environ Microbiol 2007; 74:850-60. [PMID: 18083872 DOI: 10.1128/aem.01495-07] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the present study we characterized 47 food-borne isolates of Bacillus cereus using multilocus sequence typing (MLST). Newly determined sequences were combined with sequences available in public data banks in order to produce the largest data set possible. Phylogenetic analysis was performed on a total of 296 strains for which MLST sequence information is available, and three main lineages--I, II, and III--within the B. cereus complex were identified. With few exceptions, all food-borne isolates were in group I. The occurrence of horizontal gene transfer (HGT) among various strains was analyzed by several statistical methods, providing evidence of widespread lateral gene transfer within B. cereus. We also investigated the occurrence of toxin-encoding genes, focusing on their evolutionary history within B. cereus. Several patterns were identified, indicating a pivotal role of HGT in the evolution of toxin-encoding genes. Our results indicate that HGT is an important element in shaping the population structure of the B. cereus complex. The results presented here also provide strong evidence of reticulate evolution within the B. cereus complex.
Collapse
|
30
|
Tourasse NJ, Kolstø AB. SuperCAT: a supertree database for combined and integrative multilocus sequence typing analysis of the Bacillus cereus group of bacteria (including B. cereus, B. anthracis and B. thuringiensis). Nucleic Acids Res 2007; 36:D461-8. [PMID: 17982177 PMCID: PMC2238978 DOI: 10.1093/nar/gkm877] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The Bacillus cereus group of bacteria is an important group including mammalian and insect pathogens, such as B. anthracis, the anthrax bacterium, B. thuringiensis, used as a biological pesticide and B. cereus, often involved in food poisoning incidents. To characterize the population structure and epidemiology of these bacteria, five separate multilocus sequence typing (MLST) schemes have been developed, which makes results difficult to compare. Therefore, we have developed a database that compiles and integrates MLST data from all five schemes for the B. cereus group, accessible at http://mlstoslo.uio.no/. Supertree techniques were used to combine the phylogenetic information from analysis of all schemes and datasets, in order to produce an integrated view of the B. cereus group population. The database currently contains strain information and sequence data for 1029 isolates and 26 housekeeping gene fragments, which can be searched by keywords, MLST scheme, or sequence similarity. Supertrees can be browsed according to various criteria such as species, isolate source, or genetic distance, and subtrees containing strains of interest can be extracted. Besides analysis of the available data, the user has the possibility to enter her/his own sequences and compare them to the database and/or include them into the supertree reconstructions.
Collapse
Affiliation(s)
- Nicolas J Tourasse
- Department of Pharmaceutical Biosciences, University of Oslo, Oslo, Norway
| | | |
Collapse
|
31
|
Cell wall carbohydrate compositions of strains from the Bacillus cereus group of species correlate with phylogenetic relatedness. J Bacteriol 2007; 190:112-21. [PMID: 17981984 DOI: 10.1128/jb.01292-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the Bacillus cereus group contain cell wall carbohydrates that vary in their glycosyl compositions. Recent multilocus sequence typing (MLST) refined the relatedness of B. cereus group members by separating them into clades and lineages. Based on MLST, we selected several B. anthracis, B. cereus, and B. thuringiensis strains and compared their cell wall carbohydrates. The cell walls of different B. anthracis strains (clade 1/Anthracis) were composed of glucose (Glc), galactose (Gal), N-acetyl mannosamine (ManNAc), and N-acetylglucosamine (GlcNAc). In contrast, the cell walls from clade 2 strains (B. cereus type strain ATCC 14579 and B. thuringiensis strains) lacked Gal and contained N-acetylgalactosamine (GalNAc). The B. cereus clade 1 strains had cell walls that were similar in composition to B. anthracis in that they all contained Gal. However, the cell walls from some clade 1 strains also contained GalNAc, which was not present in B. anthracis cell walls. Three recently identified clade 1 strains of B. cereus that caused severe pneumonia, i.e., strains 03BB102, 03BB87, and G9241, had cell wall compositions that closely resembled those of the B. anthracis strains. It was also observed that B. anthracis strains cell wall glycosyl compositions differed from one another in a plasmid-dependent manner. When plasmid pXO2 was absent, the ManNAc/Gal ratio decreased, while the Glc/Gal ratio increased. Also, deletion of atxA, a global regulatory gene, from a pXO2- strain resulted in cell walls with an even greater level of Glc.
Collapse
|
32
|
Cherif A, Ettoumi B, Raddadi N, Daffonchio D, Boudabous A. Genomic diversity and relationship of Bacillus thuringiensis and Bacillus cereus by multi-REP-PCR fingerprinting. Can J Microbiol 2007; 53:343-50. [PMID: 17538643 DOI: 10.1139/w06-129] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genomic diversity and relationship among 56 Bacillus thuringiensis and Bacillus cereus type strains were investigated by multi-REP-PCR fingerprinting consisting of three PCR reactions targeting the enterobacterial ERIC1 and ERIC2 and the streptococcal BOXA1R consensus sequences. A total of 113 polymorphic bands were generated in the REP-PCR profiles that allowed tracing of a single dendrogram with three major groups. Bacillus cereus strains clustered together in the A and B groups. Most of the B. thuringiensis strains clustered in group C, which included groups of serovars with a within-group similarity higher than 40% as follows: darmstadiensis, israelensis, and morrisoni; aizawai, kenyae, pakistani, and thompsoni; canadensis, entomocidus, galleriae, kurstaki, and tolworthi; alesti, dendrolimus, and kurstaki; and finitimus, sotto, and thuringiensis. Multi-REP-PCR fingerprinting clustered B. thuringiensis serovars in agreement with previously developed multilocus sequence typing schemes, indicating that it represents a rapid shortcut for addressing the genetic relationship of unknown strains with the major known serovars.
Collapse
Affiliation(s)
- Ameur Cherif
- Laboratoire miroorganismes et biomolécules actives, Faculté des sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia.
| | | | | | | | | |
Collapse
|
33
|
Tourasse NJ, Helgason E, Økstad OA, Hegna IK, Kolstø AB. The Bacillus cereus group: novel aspects of population structure and genome dynamics. J Appl Microbiol 2007; 101:579-93. [PMID: 16907808 DOI: 10.1111/j.1365-2672.2006.03087.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AIMS To provide new insights into the population and genomic structure of the Bacillus cereus group of bacteria. METHODS AND RESULTS The genetic relatedness among B. cereus group strains was assessed by multilocus sequence typing (MLST) using an optimized scheme based on seven chromosomal housekeeping genes. A set of 48 strains from different clinical sources was included, and six clonal complexes containing several genetically similar isolates from unrelated patients were identified. Interestingly, several clonal groups contained strains that were isolated from similar human sources. Furthermore, comparative whole genome sequence analysis of 16 strains led to the discovery of novel ubiquitous genome features of the B. cereus group, such as atypical group II introns, IStrons, and hitherto uncharacterized repeated elements. CONCLUSIONS The B. cereus group constitutes a coherent population unified by the presence of ubiquitous and specific genetic elements which do not show any pattern, either in their sequences or genomic locations, which allows to differentiate between the member species of the group. Nevertheless, the population is very dynamic, as particular lineages of clinical origin can evolve to form clonal complexes. At the genome level, the dynamic behaviour is indicated by the presence of numerous mobile and repeated elements. SIGNIFICANCE AND IMPACT OF THE STUDY The B. cereus group of bacteria comprises species that are of medical and economic importance. The MLST data, along with the primers and protocols used, will be available in a public, web-accessible database (http://mlstoslo.uio.no).
Collapse
Affiliation(s)
- N J Tourasse
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Norway
| | | | | | | | | |
Collapse
|
34
|
Lapidus A, Goltsman E, Auger S, Galleron N, Ségurens B, Dossat C, Land ML, Broussolle V, Brillard J, Guinebretiere MH, Sanchis V, Nguen-The C, Lereclus D, Richardson P, Wincker P, Weissenbach J, Ehrlich SD, Sorokin A. Extending the Bacillus cereus group genomics to putative food-borne pathogens of different toxicity. Chem Biol Interact 2007; 171:236-49. [PMID: 17434157 DOI: 10.1016/j.cbi.2007.03.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 02/20/2007] [Accepted: 03/02/2007] [Indexed: 10/23/2022]
Abstract
The Bacillus cereus group represents sporulating soil bacteria containing pathogenic strains which may cause diarrheic or emetic food poisoning outbreaks. Multiple locus sequence typing revealed a presence in natural samples of these bacteria of about 30 clonal complexes. Application of genomic methods to this group was however biased due to the major interest for representatives closely related to Bacillus anthracis. Albeit the most important food-borne pathogens were not yet defined, existing data indicate that they are scattered all over the phylogenetic tree. The preliminary analysis of the sequences of three genomes discussed in this paper narrows down the gaps in our knowledge of the B. cereus group. The strain NVH391-98 is a rare but particularly severe food-borne pathogen. Sequencing revealed that the strain should be a representative of a novel bacterial species, for which the name Bacillus cytotoxis or Bacillus cytotoxicus is proposed. This strain has a reduced genome size compared to other B. cereus group strains. Genome analysis revealed absence of sigma B factor and the presence of genes encoding diarrheic Nhe toxin, not detected earlier. The strain B. cereus F837/76 represents a clonal complex close to that of B. anthracis. Including F837/76, three such B. cereus strains had been sequenced. Alignment of genomes suggests that B. anthracis is their common ancestor. Since such strains often emerge from clinical cases, they merit a special attention. The third strain, KBAB4, is a typical facultative psychrophile generally found in soil. Phylogenic studies show that in nature it is the most active group in terms of gene exchange. Genomic sequence revealed high presence of extra-chromosomal genetic material (about 530kb) that may account for this phenomenon. Genes coding Nhe-like toxin were found on a big plasmid in this strain. This may indicate a potential mechanism of toxicity spread from the psychrophile strain community. The results of this genomic work and ecological compartments of different strains incite to consider a necessity of creating prophylactic vaccines against bacteria closely related to NVH391-98 and F837/76. Presumably developing of such vaccines can be based on the properties of non-pathogenic strains such as KBAB4 or ATCC14579 reported here or earlier. By comparing the protein coding genes of strains being sequenced in this project to others we estimate the shared proteome, or core genome, in the B. cereus group to be 3000+/-200 genes and the total proteome, or pan-genome, to be 20-25,000 genes.
Collapse
Affiliation(s)
- Alla Lapidus
- DOE Joint Genome Institute, Walnut Creek, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Esterase electrophoretic polymorphism ofBacillus thuringiensis andBacillus cereus reference strains. ANN MICROBIOL 2007. [DOI: 10.1007/bf03175045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
36
|
Rasko DA, Rosovitz MJ, Økstad OA, Fouts DE, Jiang L, Cer RZ, Kolstø AB, Gill SR, Ravel J. Complete sequence analysis of novel plasmids from emetic and periodontal Bacillus cereus isolates reveals a common evolutionary history among the B. cereus-group plasmids, including Bacillus anthracis pXO1. J Bacteriol 2006; 189:52-64. [PMID: 17041058 PMCID: PMC1797222 DOI: 10.1128/jb.01313-06] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The plasmids of the members of the Bacillus cereus sensu lato group of organisms are essential in defining the phenotypic traits associated with pathogenesis and ecology. For example, Bacillus anthracis contains two plasmids, pXO1 and pXO2, encoding toxin production and encapsulation, respectively, that define this species pathogenic potential, whereas the presence of a Bt toxin-encoding plasmid defines Bacillus thuringiensis isolates. In this study the plasmids from B. cereus isolates that produce emetic toxin or are linked to periodontal disease were sequenced and analyzed. Two periodontal isolates examined contained almost identical approximately 272-kb plasmids, named pPER272. The emetic toxin-producing isolate contained one approximately 270-kb plasmid, named pCER270, encoding the cereulide biosynthesis gene cluster. Comparative sequence analyses of these B. cereus plasmids revealed a high degree of sequence similarity to the B. anthracis pXO1 plasmid, especially in a putative replication region. These plasmids form a newly defined group of pXO1-like plasmids. However, these novel plasmids do not contain the pXO1 pathogenicity island, which in each instance is replaced by plasmid specific DNA. Plasmids pCER270 and pPER272 share regions that are not found in any other pXO1-like plasmids. Evolutionary studies suggest that these plasmids are more closely related to each other than to other identified B. cereus plasmids. Screening of a population of B. cereus group isolates revealed that pXO1-like plasmids are more often found in association with clinical isolates. This study demonstrates that the pXO1-like plasmids may define pathogenic B. cereus isolates in the same way that pXO1 and pXO2 define the B. anthracis species.
Collapse
Affiliation(s)
- David A Rasko
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, Maryland 20850, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Marston CK, Gee JE, Popovic T, Hoffmaster AR. Molecular approaches to identify and differentiate Bacillus anthracis from phenotypically similar Bacillus species isolates. BMC Microbiol 2006; 6:22. [PMID: 16515693 PMCID: PMC1413540 DOI: 10.1186/1471-2180-6-22] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 03/03/2006] [Indexed: 11/10/2022] Open
Abstract
Background Bacillus anthracis and Bacillus cereus can usually be distinguished by standard microbiological methods (e.g., motility, hemolysis, penicillin susceptibility and susceptibility to gamma phage) and PCR. However, we have identified 23 Bacillus spp. isolates that gave discrepant results when assayed by standard microbiological methods and PCR. We used multiple-locus variable-number tandem repeat analysis (MLVA), multiple-locus sequence typing (MLST), and phenotypic analysis to characterize these isolates, determine if they cluster phylogenetically and establish whether standard microbiological identification or PCR were associated with false positive/negative results. Results Six isolates were LRN real-time PCR-positive but resistant to gamma phage; MLVA data supported the identification of these isolates as gamma phage-resistant B. anthracis. Seventeen isolates were LRN real-time PCR-negative but susceptible to gamma phage lysis; these isolates appear to be a group of unusual gamma phage-susceptible B. cereus isolates that are closely related to each other and to B. anthracis. All six B. anthracis MLVA chromosomal loci were amplified from one unusual gamma phage-susceptible, motile, B. cereus isolate (although the amplicons were atypical sizes), and when analyzed phylogenetically, clustered with B. anthracis by MLST. Conclusion MLVA and MLST aided in the identification of these isolates when standard microbiological methods and PCR could not definitely identify or rule out B. anthracis. This study emphasized the need to perform multiple tests when attempting to identify B. anthracis since relying on a single assay remains problematic due to the diverse nature of bacteria.
Collapse
Affiliation(s)
- Chung K Marston
- Meningitis and Special Pathogens Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd., MS G34, Atlanta, Georgia, 30333, USA
| | - Jay E Gee
- Meningitis and Special Pathogens Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd., MS G34, Atlanta, Georgia, 30333, USA
| | - Tanja Popovic
- Meningitis and Special Pathogens Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd., MS G34, Atlanta, Georgia, 30333, USA
| | - Alex R Hoffmaster
- Meningitis and Special Pathogens Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd., MS G34, Atlanta, Georgia, 30333, USA
| |
Collapse
|