1
|
Assens M, Frederiksen H, Pedersen AT, Petersen JH, Andersson AM, Sundberg K, Jensen LN, Curtin P, Skakkebæk NE, Swan SH, Main KM. Prenatal phthalate exposure and pubertal development in 16-year-old daughters: reproductive hormones and number of ovarian follicles. Hum Reprod 2024; 39:2501-2511. [PMID: 39385341 DOI: 10.1093/humrep/deae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/24/2024] [Indexed: 10/12/2024] Open
Abstract
STUDY QUESTION Is there a possible association between prenatal phthalate exposure and late effects in teenage daughters with respect to reproductive hormone levels, uterine volume, and number of ovarian follicles? SUMMARY ANSWER Our study showed subtle associations between phthalate metabolite concentrations in maternal serum from pregnancy or cord blood and LH and insulin-like growth factor 1 (IGF-1) levels as well as uterine volume in their daughters 16 years later. WHAT IS KNOWN ALREADY Endocrine-disrupting environmental chemicals may adversely affect human reproductive health, and many societies have experienced a trend toward earlier puberty and an increasing prevalence of infertility in young couples. The scientific evidence of adverse effects of foetal exposure to a large range of chemicals, including phthalates, on male reproductive health is growing, but very few studies have explored effects on female reproduction. STUDY DESIGN, SIZE, DURATION This follow-up study included 317 teenage daughters who were part of the Copenhagen Mother-Child Cohort, a population-based longitudinal birth cohort of 1210 females born between 1997 and 2002. PARTICIPANTS/MATERIALS, SETTING, METHODS A total of 317 female participants (median age 16 years) were examined for weight, height, and menstrual pattern. A serum sample was analysed for concentrations of reproductive hormones, and trans-abdominal 3D ultrasonography was performed to obtain the number of ovarian follicles, ovarian and uterine size. Prenatal maternal serum samples were available for 115 females, and cord blood samples were available for 118 females. These were analysed for concentrations of 32 phthalate metabolites. Weighted quantile sum regression was used for modelling associations of combined prenatal phthalate exposure with the reproductive outcomes in post-menarcheal females. MAIN RESULTS AND THE ROLE OF CHANCE In bivariate correlation analyses, negative significant associations were found between several prenatal phthalate metabolite concentrations and serum hormone concentrations (testosterone, 17-OH-progesterone, and IGF-1) as well as number of ovarian follicles in puberty. Positive significant correlations were found between prenatal phthalate exposure and FSH and sex hormone-binding globulin concentrations. Combined analyses of phthalate exposure (weighted quantile sums) showed significant negative associations with IGF-1 concentration and uterine volume as well as a significant positive association with LH concentration. LIMITATIONS, REASONS FOR CAUTION Phthalate metabolites were measured in serum from single prenatal maternal blood samples and cord blood samples. Potential concomitant exposure to other endocrine-disrupting environmental chemicals before or after birth was not controlled for. The study population size was limited. WIDER IMPLICATIONS OF THE FINDINGS Our results support the need for further research into possible adverse effects of environmental chemicals during foetal development of the female reproductive system. STUDY FUNDING/COMPETING INTEREST(S) The work was supported by The Center on Endocrine Disruptors (CeHoS) under The Danish Environmental Protection Agency and The Ministry of Environment and Food (grant number: MST-621-00 065). No conflicts of interest are declared. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Maria Assens
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- International Center for Research & Training in Endocrine Disruption of Male Reproduction & Child Health (EDMaRC), Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- International Center for Research & Training in Endocrine Disruption of Male Reproduction & Child Health (EDMaRC), Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Anette Tønnes Pedersen
- Department of Gynaecology, The Fertility Clinic, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jørgen Holm Petersen
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- International Center for Research & Training in Endocrine Disruption of Male Reproduction & Child Health (EDMaRC), Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Karin Sundberg
- Department of Obstetrics, Center of Fetal Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lisa Neerup Jensen
- Department of Obstetrics, Center of Fetal Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Niels E Skakkebæk
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- International Center for Research & Training in Endocrine Disruption of Male Reproduction & Child Health (EDMaRC), Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Shanna H Swan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katharina M Main
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- International Center for Research & Training in Endocrine Disruption of Male Reproduction & Child Health (EDMaRC), Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Abstract
ABSTRACT Rheumatology patients historically were told they "can't" or "shouldn't" become pregnant. Improved rheumatic diagnostics and treatments have led to decreased morbidity and mortality and increased quality of life resulting in an opportunity to focus on fertility and its preservation. In the same vein as rheumatic disease care, assisted reproductive technology (ART), which includes freezing of egg and sperm as well as in vitro fertilization, has made considerable strides in the recent past. ART is safe for those with rheumatic diseases and has comparable outcomes to the general public, but may take additional effort due to optimal timing, rheumatic medications, and other nuances. In a specialty that treats chronic inflammatory diagnoses using teratogens and gonadotoxins, it is important to address family building desires with patients so their goals can be met.Rheumatologists have little knowledge of ART and how it impacts or applies to their patients; however, patients want their rheumatologist to be the source of knowledge for this information (Arthritis Rheumatol. 2022;74:suppl 9). Many barriers to ART exist and will be explored, with the financial burden being paramount (Glob J Health Sci. 6;1:181-191). Future efforts to examine the future fertility of rheumatology patients in an era of biologics and "treat-to-target" are needed to better understand who would most benefit from this costly and not without risk medical treatment. Given the changing landscape of financial support for ART due to insurance mandates, rheumatologists should not modify counseling based on the anticipated ability of patients to afford care. Preservation should also be broached with patients without partners and those from the LGBTQAI+ community. In addition to expanding the education of rheumatologists regarding this topic and its incorporation into clinical care, advocacy for ART access and insurance coverage is a much-needed future direction.
Collapse
Affiliation(s)
- Molly Leavitt
- From the Division of Rheumatology, University of South Florida, Tampa, FL
| | | | - Cuoghi Edens
- Departments of Internal Medicine and Pediatrics, Sections of Rheumatology and Pediatric Rheumatology, University of Chicago Medicine, Chicago, IL
| |
Collapse
|
3
|
Touraine P, Chabbert-Buffet N, Plu-Bureau G, Duranteau L, Sinclair AH, Tucker EJ. Premature ovarian insufficiency. Nat Rev Dis Primers 2024; 10:63. [PMID: 39266563 DOI: 10.1038/s41572-024-00547-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 09/14/2024]
Abstract
Premature ovarian insufficiency (POI) is a cause of infertility and endocrine dysfunction in women, defined by loss of normal, predictable ovarian activity before the age of 40 years. POI is clinically characterized by amenorrhoea (primary or secondary) with raised circulating levels of follicle-stimulating hormone. This condition can occur due to medical interventions such as ovarian surgery or cytotoxic cancer therapy, metabolic and lysosomal storage diseases, infections, chromosomal anomalies and autoimmune diseases. At least 1 in 100 women is affected by POI, including 1 in 1,000 before the age of 30 years. Substantial evidence suggests a genetic basis to POI. However, the cause of idiopathic POI remains unknown in most patients, indicating that gene variants associated with this condition remain to be discovered. Over the past 10 years, tremendous progress has been made in our knowledge of genes involved in POI. Genetic approaches in diagnosis are important as they enable patients with familial POI to be identified, with the opportunity for oocyte preservation. Moreover, genetic approaches could provide a better understanding of disease mechanisms, which will ultimately aid the development of improved treatments.
Collapse
Affiliation(s)
- Philippe Touraine
- Department of Endocrinology and Reproductive Medicine, AP-HP Pitié Salpêtrière Hospital, Sorbonne Université Médecine, Paris, France.
- Inserm U1151 INEM, Necker Hospital, Paris, France.
| | - Nathalie Chabbert-Buffet
- Department of Obstetrics, Gynecology and Reproductive Medicine, Tenon Hospital, AP-HP Sorbonne Université, Paris, France
- INSERM UMR S 938, CDR St Antoine, Paris, France
| | - Genevieve Plu-Bureau
- Department of Medical Gynecology, AP-HP Port Royal-Cochin Hospital, Université Paris Cité, Paris, France
- U1151 EPOPEE Team, Paris, France
| | - Lise Duranteau
- Department of Medical Gynecology, Bicêtre Hospital, AP-HP Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Andrew H Sinclair
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Elena J Tucker
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
Rohayem J, Alexander EC, Heger S, Nordenström A, Howard SR. Mini-Puberty, Physiological and Disordered: Consequences, and Potential for Therapeutic Replacement. Endocr Rev 2024; 45:460-492. [PMID: 38436980 PMCID: PMC11244267 DOI: 10.1210/endrev/bnae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Indexed: 03/05/2024]
Abstract
There are 3 physiological waves of central hypothalamic-pituitary-gonadal (HPG) axis activity over the lifetime. The first occurs during fetal life, the second-termed "mini-puberty"-in the first months after birth, and the third at puberty. After adolescence, the axis remains active all through adulthood. Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic disorder characterized by a deficiency in hypothalamic gonadotropin-releasing hormone (GnRH) secretion or action. In cases of severe CHH, all 3 waves of GnRH pulsatility are absent. The absence of fetal HPG axis activation manifests in around 50% of male newborns with micropenis and/or undescended testes (cryptorchidism). In these boys, the lack of the mini-puberty phase accentuates testicular immaturity. This is characterized by a low number of Sertoli cells, which are important for future reproductive capacity. Thus, absent mini-puberty will have detrimental effects on later fertility in these males. The diagnosis of CHH is often missed in infants, and even if recognized, there is no consensus on optimal therapeutic management. Here we review physiological mini-puberty and consequences of central HPG axis disorders; provide a diagnostic approach to allow for early identification of these conditions; and review current treatment options for replacement of mini-puberty in male infants with CHH. There is evidence from small case series that replacement with gonadotropins to mimic "mini-puberty" in males could have beneficial outcomes not only regarding testis descent, but also normalization of testis and penile sizes. Moreover, such therapeutic replacement regimens in disordered mini-puberty could address both reproductive and nonreproductive implications.
Collapse
Affiliation(s)
- Julia Rohayem
- Department of Pediatric Endocrinology and Diabetology, Children's Hospital of Eastern Switzerland, 9006 St. Gallen, Switzerland
- University of Muenster, 48149 Muenster, Germany
| | - Emma C Alexander
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Sabine Heger
- Department of Pediatric Endocrinology, Children's Hospital Auf der Bult, 30173 Hannover, Germany
| | - Anna Nordenström
- Pediatric Endocrinology, Karolinska Institutet, Astrid Lindgren Children's Hospital, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Sasha R Howard
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
- Department of Paediatric Endocrinology, Royal London Children's Hospital, Barts Health NHS Trust, London E1 1FR, UK
| |
Collapse
|
5
|
Mishra GD, Davies MC, Hillman S, Chung HF, Roy S, Maclaran K, Hickey M. Optimising health after early menopause. Lancet 2024; 403:958-968. [PMID: 38458215 DOI: 10.1016/s0140-6736(23)02800-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/09/2023] [Accepted: 12/11/2023] [Indexed: 03/10/2024]
Abstract
The typical age at menopause is 50-51 years in high-income countries. However, early menopause is common, with around 8% of women in high-income countries and 12% of women globally experiencing menopause between the ages of 40 years and 44 years. Menopause before age 40 years (premature ovarian insufficiency) affects an additional 2-4% of women. Both early menopause and premature ovarian insufficiency can herald an increased risk of chronic disease, including osteoporosis and cardiovascular disease. People who enter menopause at younger ages might also experience distress and feel less supported than those who reach menopause at the average age. Clinical practice guidelines are available for the diagnosis and management of premature ovarian insufficiency, but there is a gap in clinical guidance for early menopause. We argue that instead of distinct age thresholds being applied, early menopause should be seen on a spectrum between premature ovarian insufficiency and menopause at the average age. This Series paper presents evidence for the short-term and long-term consequences of early menopause. We offer a practical framework for clinicians to guide diagnosis and management of early menopause, which considers the nature and severity of symptoms, age and medical history, and the individual's wishes and priorities to optimise their quality of life and short-term and long-term health. We conclude with recommendations for future research to address key gaps in the current evidence.
Collapse
Affiliation(s)
- Gita D Mishra
- Australian Women and Girls' Health Research Centre, School of Public Health, University of Queensland, Brisbane, QLD, Australia.
| | - Melanie C Davies
- Institute for Women's Health, University College London, London, UK
| | - Sarah Hillman
- Unit of Academic Primary Care, Warwick Medical School, University of Warwick, Coventry, UK
| | - Hsin-Fang Chung
- Australian Women and Girls' Health Research Centre, School of Public Health, University of Queensland, Brisbane, QLD, Australia
| | - Subho Roy
- Department of Anthropology, University of Calcutta, Kolkata, India
| | - Kate Maclaran
- Department of Gynaecology, Chelsea and Westminster Hospital, London, UK
| | - Martha Hickey
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne and the Royal Women's Hospital, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Dey P, Monferini N, Donadini L, Lodde V, Franciosi F, Luciano AM. Method of Isolation and In Vitro Culture of Primordial Follicles in Bovine Animal Model. Methods Mol Biol 2024; 2770:171-182. [PMID: 38351454 DOI: 10.1007/978-1-0716-3698-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The mammalian ovary is a substantial source of oocytes arranged into follicles at various stages of folliculogenesis, from the primordial to the ovulatory ones. Primordial follicles constitute the most abundant source of gametes inside the mammalian ovary at any given time.The isolation of a high number of primordial follicles, together with the development of protocols for in vitro follicle growth, would provide a powerful tool to fully exploit the female reproductive potential and boost the rescue and restoration of fertility in assisted reproduction technologies in human medicine, animal breeding, and preservation of threatened species. However, the most significant limitation is the lack of efficient methods for isolating a healthy and homogeneous population of viable primordial follicles suitable for in vitro culture. Here, we provide a fast and high-yield strategy for the mechanical isolation of primordial follicles from limited portions of the ovarian cortex in the bovine animal model.
Collapse
Affiliation(s)
- Pritha Dey
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Noemi Monferini
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Ludovica Donadini
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Valentina Lodde
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Federica Franciosi
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Alberto Maria Luciano
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
7
|
Hassan J, Knuus K, Lahtinen A, Rooda I, Otala M, Tuuri T, Gidlöf S, Edlund E, Menezes J, Malmros J, Byström P, Sundin M, Langenskiöld C, Vogt H, Frisk P, Petersen C, Damdimopoulou P, Jahnukainen K. Reference standards for follicular density in ovarian cortex from birth to sexual maturity. Reprod Biomed Online 2023; 47:103287. [PMID: 37603956 DOI: 10.1016/j.rbmo.2023.103287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/15/2023] [Accepted: 07/11/2023] [Indexed: 08/23/2023]
Abstract
RESEARCH QUESTION Are age-normalized reference values for human ovarian cortical follicular density adequate for tissue quality control in fertility preservation? DESIGN Published quantitative data on the number of follicles in samples without known ovarian pathology were converted into cortical densities to create reference values. Next, a sample cohort of 126 girls (age 1-24 years, mean ± SD 11 ± 6) with cancer, severe haematological disease or Turner syndrome were used to calculate Z-scores for cortical follicular density based on the reference values. RESULTS No difference was observed between Z-scores in samples from untreated patients (0.3 ± 3.5, n = 30) and patients treated with (0.5 ± 2.9, n = 48) and without (0.1 ± 1.3, n = 6) alkylating chemotherapy. Z-scores were not correlated with increasing cumulative exposure to cytostatics. Nevertheless, Z-scores in young treated patients (0-2 years -2.1 ± 3.1, n = 10, P = 0.04) were significantly lower than Z-scores in older treated patients (11-19 years, 2 ± 1.9, n = 15). Samples from patients with Turner syndrome differed significantly from samples from untreated patients (-5.2 ± 5.1, n = 24, P = 0.003), and a Z-score of -1.7 was identified as a cut-off showing good diagnostic value for identification of patients with Turner syndrome with reduced ovarian reserve. When this cut-off was applied to other patients, analysis showed that those with indications for reduced ovarian reserve (n = 15) were significantly younger (5.9 ± 4.2 versus 10.7 ± 5.9 years, P = 0.004) and, when untreated, more often had non-malignant haematologic diseases compared with those with normal ovarian reserve (n = 24, 100% versus 19%, P = 0.009). CONCLUSION Z-scores allow the estimation of genetic- and treatment-related effects on follicular density in cortical tissue from young patients stored for fertility preservation. Understanding the quality of cryopreserved tissue facilitates its use during patient counselling. More research is needed regarding the cytostatic effects found in this study.
Collapse
Affiliation(s)
- Jasmin Hassan
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynaecology, Karolinska Institutet, Stockholm, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden.
| | - Katri Knuus
- Department of Obstetrics and Gynaecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Atte Lahtinen
- Applied Tumour Genomics Research Programme, Faculty of Medicine, University of Helsinki, Finland; Department of Medical and Clinical Genetics, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ilmatar Rooda
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynaecology, Karolinska Institutet, Stockholm, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Marjut Otala
- University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Timo Tuuri
- Department of Obstetrics and Gynaecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Sebastian Gidlöf
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynaecology, Karolinska Institutet, Stockholm, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Erik Edlund
- Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Judith Menezes
- Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Malmros
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden; Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Petra Byström
- Department of Clinical Science, Intervention and Technology, Division of Paediatrics, Karolinska Institutet, Stockholm, Sweden; Section of Paediatric Haematology, Immunology and HCT, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Sundin
- Department of Clinical Science, Intervention and Technology, Division of Paediatrics, Karolinska Institutet, Stockholm, Sweden; Section of Paediatric Haematology, Immunology and HCT, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Cecilia Langenskiöld
- Department of Paediatric Oncology, Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hartmut Vogt
- Crown Princess Victoria's Child and Youth Hospital, Linköping, Sweden; Department of Biomedical and Clinical Sciences, Division of Children's and Women's Health, Linköping University, Linköping, Sweden
| | - Per Frisk
- Department of Women's and Children's Health, Uppsala University Children's Hospital, Uppsala, Sweden
| | - Cecilia Petersen
- NORDFERTIL Research Lab Stockholm, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Department of Paediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Pauliina Damdimopoulou
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynaecology, Karolinska Institutet, Stockholm, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Kirsi Jahnukainen
- NORDFERTIL Research Lab Stockholm, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Children's Hospital, Paediatric Research Centre, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
8
|
Follicular Atresia, Cell Proliferation, and Anti-Mullerian Hormone in Two Neotropical Primates (Aotus nancymae and Sapajus macrocephalus). Animals (Basel) 2023; 13:ani13061051. [PMID: 36978591 PMCID: PMC10044352 DOI: 10.3390/ani13061051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 02/07/2023] [Indexed: 03/17/2023] Open
Abstract
This study evaluated the follicular atresia, cell proliferation, and anti-Mullerian hormone action in Aotus nancymae and Sapajus macrocephalus during three sexual phases (follicular, luteal, and gestational). Follicular quantification and immunolocalization of Caspase-3 protein, B-cell lymphoma 2 (BCL-2), proliferating cell nuclear antigen (PCNA), and anti-Mullerian hormone (AMH) were performed. A significant difference in the quantification between preantral and antral follicles, with a progressive decrease in the antrals, was identified. Protein and hormonal markers varied significantly between follicle cell types (A. nancymae p = 0.001; S. macrocephalus, p = 0.002). Immunostaining in the preantral and antral follicles was present in all sexual phases; for Caspase-3, in granulosa cells, oocytes, and stroma; for BCL-2, in granulosa cells, oocytes, and theca; and for PCNA and AMH, in oocytes and granulosa cells. The immunostaining for Caspase-3 was more expressive in the preantral follicles (follicular phase, p < 0.05), while that for BCL-2 and PCNA was more expressive in the antral follicles of the follicular phase. The AMH was more expressive in the primary and antral follicles of nonpregnant females, in both the follicular and luteal phases. Our results contribute to understanding the ovarian follicular selection, recruitment, and degeneration of these species.
Collapse
|
9
|
Tsui EL, O’Neill KE, LeDuc RD, Shikanov A, Gomez-Lobo V, Laronda MM. Creating a common language for the subanatomy of the ovary. Biol Reprod 2023; 108:1-4. [PMID: 36308436 PMCID: PMC9843671 DOI: 10.1093/biolre/ioac199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 01/21/2023] Open
Affiliation(s)
- Elizabeth L Tsui
- Department of Endocrinology and Department of Pediatric Surgery, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kathleen E O’Neill
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard D LeDuc
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Ariella Shikanov
- Department of Biomedical Engineering, Department of Obstetrics and Gynecology, Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Veronica Gomez-Lobo
- Pediatric and Adolescent Gynecology Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Monica M Laronda
- Department of Endocrinology and Department of Pediatric Surgery, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
10
|
Kelsey T. Models and Biomarkers for Ovarian Ageing. Subcell Biochem 2023; 103:185-199. [PMID: 37120469 DOI: 10.1007/978-3-031-26576-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The human ovarian reserve is defined by the number of non-growing follicles (NGFs) in the ovary, with the age-related decline in NGF population determining age at menopause for healthy women. In this chapter, the concept of ovarian reserve is explored in detail, with a sequence of models described that in principle allow any individual to be compared to the general population. As there is no current technology that can count the NGFs in a living ovary, we move our focus to biomarkers for the ovarian reserve. Using serum analysis and ultrasound it is possible to measure anti-Müllerian hormone (AMH), follicle-stimulating hormone (FSH), and ovarian volume (OV) and to count numbers of antral follicles (AFC). These are compared, with ovarian volume being the closest to a true biomarker for a wide range of ages and with AMH and AFC being the most popular for post-pubertal and pre-menopausal ages. The study of genetic and subcellular biomarkers for the ovarian reserve has produced less concrete results. Recent advances are described and compared in terms of limitations and potential. The chapter concludes with an overview of the future study indicated by our current knowledge and by current controversy in the field.
Collapse
Affiliation(s)
- Tom Kelsey
- School of Computer Science, University of St Andrews, St Andrews, UK.
| |
Collapse
|
11
|
Ovarian Reserve Disorders, Can We Prevent Them? A Review. Int J Mol Sci 2022; 23:ijms232315426. [PMID: 36499748 PMCID: PMC9737352 DOI: 10.3390/ijms232315426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
The ovarian reserve is finite and begins declining from its peak at mid-gestation until only residual follicles remain as women approach menopause. Reduced ovarian reserve, or its extreme form, premature ovarian insufficiency, stems from multiple factors, including developmental, genetic, environmental exposures, autoimmune disease, or medical/surgical treatment. In many cases, the cause remains unknown and resulting infertility is not ultimately addressed by assisted reproductive technologies. Deciphering the mechanisms that underlie disorders of ovarian reserve could improve the outcomes for patients struggling with infertility, but these disorders are diverse and can be categorized in multiple ways. In this review, we will explore the topic from a perspective that emphasizes the prevention or mitigation of ovarian damage. The most desirable mode of fertoprotection is primary prevention (intervening before ablative influence occurs), as identifying toxic influences and deciphering the mechanisms by which they exert their effect can reduce or eliminate exposure and damage. Secondary prevention in the form of screening is not recommended broadly. Nevertheless, in some instances where a known genetic background exists in discrete families, screening is advised. As part of prenatal care, screening panels include some genetic diseases that can lead to infertility or subfertility. In these patients, early diagnosis could enable fertility preservation or changes in family-building plans. Finally, Tertiary Prevention (managing disease post-diagnosis) is critical. Reduced ovarian reserve has a major influence on physiology beyond fertility, including delayed/absent puberty or premature menopause. In these instances, proper diagnosis and medical therapy can reduce adverse effects. Here, we elaborate on these modes of prevention as well as proposed mechanisms that underlie ovarian reserve disorders.
Collapse
|
12
|
Tu W, Ni D, Yang H, Zhao F, Yang C, Zhao X, Guo Z, Yu K, Wang J, Hu Z, Chen Z, Zhao Y, Wang Z, Gao F, Yan L, Yang X, Zhu L, Wang H. Deciphering the dynamics of the ovarian reserve in cynomolgus monkey through a quantitative morphometric study. Sci Bull (Beijing) 2022; 67:1854-1859. [PMID: 36546298 DOI: 10.1016/j.scib.2022.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/07/2022] [Accepted: 08/18/2022] [Indexed: 01/07/2023]
Affiliation(s)
- Wan Tu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongdong Ni
- Department of Gynecology and Obstetrics, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hua Yang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Feiyan Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China; Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Chen Yang
- Hebei Normal University, Shijiazhuang 050024, China
| | - Xuehan Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China; Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Zhiyuan Guo
- Northeast Agricultural University, Harbin 150030, China
| | - Kunyuan Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingzi Wang
- Beijing Normal University, Beijing 100875, China
| | - Zhaoshan Hu
- Beijing Normal University, Beijing 100875, China
| | - Zixuan Chen
- China Agricultural University, Beijing 100091, China
| | - Yan Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenbo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Long Yan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Xiaokui Yang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China; Beijing Maternal and Child Health Care Hospital, Beijing 100026, China.
| | - Lan Zhu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| |
Collapse
|
13
|
Nordenström A. Potential Impact of mini-puberty on fertility. ANNALES D'ENDOCRINOLOGIE 2022; 83:250-253. [PMID: 35728696 DOI: 10.1016/j.ando.2022.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mini-puberty is defined as the period in infancy with elevated FSH and LH resulting increased levels of sex hormones. It differs between boys and girls. Its impact on future fertility is largely unknown. This mini-review focus on the effects of mini-puberty on genital development and some aspects possibly related to future fertility.
Collapse
Affiliation(s)
- Anna Nordenström
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden, Department of Pediatric Endocrinology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
14
|
Lundgaard Riis M, Jørgensen A. Deciphering Sex-Specific Differentiation of Human Fetal Gonads: Insight From Experimental Models. Front Cell Dev Biol 2022; 10:902082. [PMID: 35721511 PMCID: PMC9201387 DOI: 10.3389/fcell.2022.902082] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Sex-specific gonadal differentiation is initiated by the expression of SRY in male foetuses. This promotes a signalling pathway directing testicular development, while in female foetuses the absence of SRY and expression of pro-ovarian factors promote ovarian development. Importantly, in addition to the initiation of a sex-specific signalling cascade the opposite pathway is simultaneously inhibited. The somatic cell populations within the gonads dictates this differentiation as well as the development of secondary sex characteristics via secretion of endocrine factors and steroid hormones. Opposing pathways SOX9/FGF9 (testis) and WNT4/RSPO1 (ovary) controls the development and differentiation of the bipotential mouse gonad and even though sex-specific gonadal differentiation is largely considered to be conserved between mice and humans, recent studies have identified several differences. Hence, the signalling pathways promoting early mouse gonad differentiation cannot be directly transferred to human development thus highlighting the importance of also examining this signalling in human fetal gonads. This review focus on the current understanding of regulatory mechanisms governing human gonadal sex differentiation by combining knowledge of these processes from studies in mice, information from patients with differences of sex development and insight from manipulation of selected signalling pathways in ex vivo culture models of human fetal gonads.
Collapse
Affiliation(s)
- Malene Lundgaard Riis
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Anne Jørgensen
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
15
|
Park CJ, Oh JE, Feng J, Cho YM, Qiao H, Ko C. Lifetime changes of the oocyte pool: Contributing factors with a focus on ovulatory inflammation. Clin Exp Reprod Med 2022; 49:16-25. [PMID: 35255655 PMCID: PMC8923630 DOI: 10.5653/cerm.2021.04917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/11/2022] [Indexed: 12/24/2022] Open
Abstract
In mammalian species, females are born with a number of oocytes exceeding what they release via ovulation. In humans, an average girl is born with over a thousand times more oocytes than she will ovulate in her lifetime. The reason for having such an excessive number of oocytes in a neonatal female ovary is currently unknown. However, it is well established that the oocyte number decreases throughout the entire lifetime until the ovary loses them all. In this review, data published in the past 80 years were used to assess the current knowledge regarding the changing number of oocytes in humans and mice, as well as the reported factors that contribute to the decline of oocyte numbers. Briefly, a collective estimation indicates that an average girl is born with approximately 600,000 oocytes, which is 2,000 times more than the number of oocytes that she will ovulate in her lifetime. The oocyte number begins to decrease immediately after birth and is reduced to half of the initial number by puberty and almost zero by age 50 years. Multiple factors that are either intrinsic or extrinsic to the ovary contribute to the decline of the oocyte number. The inflammation caused by the ovulatory luteinizing hormone surge is discussed as a potential contributing factor to the decline of the oocyte pool during the reproductive lifespan.
Collapse
Affiliation(s)
- Chan Jin Park
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL ,USA.,Epivara Inc., Champaign, IL, USA
| | - Ji-Eun Oh
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL ,USA
| | - Jianan Feng
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL ,USA
| | - Yoon Min Cho
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL ,USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL ,USA
| | - CheMyong Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL ,USA
| |
Collapse
|
16
|
Umeno K, Sasaki A, Kimura N. The impact of oocyte death on mouse primordial follicle formation and ovarian reserve. Reprod Med Biol 2022; 21:e12489. [PMID: 36329711 PMCID: PMC9623396 DOI: 10.1002/rmb2.12489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
Background Ovaries, the source of oocytes, maintain the numbers of primordial follicles, develop oocytes for fertilization and embryonic development. Although it is well known that about two-thirds of oocytes are lost during the formation of primordial follicles through cyst fragmentation and the aggregation of oocytes within the cyst, the mechanism responsible for this remains unclear. Methods We provide an overview of cell death that is associated with the oocyte cyst breakdown and primordial follicle assembly along with our recent findings for mice that had been treated with a TNFα ligand inhibitor. Main Findings It is generally accepted that apoptosis is the major mechanism responsible for the depletion of germ cells. In fact, a gene deficiency or the overexpression of apoptosis regulators can have a great effect on follicle numbers and/or fertility. Apoptosis, however, may not be the only cause of the large-scale oocyte attrition during oocyte cyst breakdown, and other mechanisms, such as aggregation, may also be involved in this process. Conclusion The continued study of oocyte death during primordial follicle formation could lead to the development of novel strategies for manipulating the primordial follicle pool, leading to improved fertility by enhancing the ovarian reserve.
Collapse
Affiliation(s)
- Ken Umeno
- Laboratory of Animal Reproduction, Graduate School of Agricultural ScienceYamagata UniversityTsuruokaJapan
| | - Ayana Sasaki
- Laboratory of Animal Reproduction, Graduate School of Agricultural ScienceYamagata UniversityTsuruokaJapan
| | - Naoko Kimura
- Laboratory of Animal Reproduction, Graduate School of Agricultural ScienceYamagata UniversityTsuruokaJapan
| |
Collapse
|
17
|
Priya K, Setty M, Babu UV, Pai KSR. Implications of environmental toxicants on ovarian follicles: how it can adversely affect the female fertility? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67925-67939. [PMID: 34628616 PMCID: PMC8718383 DOI: 10.1007/s11356-021-16489-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/07/2021] [Indexed: 05/06/2023]
Abstract
The pool of primordial follicles formed in the ovaries during early development determines the span and quality of fertility in the reproductive life of a woman. As exposure to occupational and environmental toxicants (ETs) has become inevitable, consequences on female fertility need to be established. This review focuses on the ETs, especially well-studied prototypes of the classes endocrine disrupting chemicals (EDCs), heavy metals, agrochemicals, cigarette smoke, certain chemicals used in plastic, cosmetic and sanitary product industries etc that adversely affect the female fertility. Many in vitro, in vivo and epidemiological studies have indicated that these ETs have the potential to affect folliculogenesis and cause reduced fertility in women. Here, we emphasize on four main conditions: polycystic ovary syndrome, primary ovarian insufficiency, multioocytic follicles and meiotic defects including aneuploidies which can be precipitated by ETs. These are considered main causes for reduced female fertility by directly altering the follicular recruitment, development and oocytic meiosis. Although substantial experimental evidence is drawn with respect to the detrimental effects, it is clear that establishing the role of one ET as a risk factor in a single condition is difficult as multiple conditions have common risk factors. Therefore, it is important to consider this as a matter of public and wildlife health.
Collapse
Affiliation(s)
- Keerthi Priya
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Manjunath Setty
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Uddagiri Venkanna Babu
- Phytochemistry Department, R & D Centre, The Himalaya Drug Company, Makali, Tumkur Road, Bangalore, Karnataka, 562162, India
| | - Karkala Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
18
|
Lundgaard Riis M, Nielsen JE, Hagen CP, Rajpert-De Meyts E, Græm N, Jørgensen A, Juul A. Accelerated loss of oogonia and impaired folliculogenesis in females with Turner syndrome start during early fetal development. Hum Reprod 2021; 36:2992-3002. [PMID: 34568940 DOI: 10.1093/humrep/deab210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/23/2021] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION How are germ cell numbers and initiation of folliculogenesis affected in fetal Turner syndrome (TS) ovaries? SUMMARY ANSWER Germ cell development was severely affected already in early second trimester pregnancies, including accelerated oogonia loss and impaired initiation of primordial follicle formation in TS ovaries, while the phenotype in TS mosaic ovaries was less severe. WHAT IS KNOWN ALREADY Females with TS are characterized by premature ovarian insufficiency (POI). This phenotype is proposed to be a consequence of germ cell loss during development, but the timing and mechanisms behind this are not characterized in detail. Only few studies have evaluated germ cell development in fetal TS and TS mosaic ovaries, and with a sparse number of specimens included per study. STUDY DESIGN, SIZE, DURATION This study included a total of 102 formalin-fixed and paraffin-embedded fetal ovarian tissue specimens. Specimens included were from fetuses with 45,X (N = 42 aged gestational week (GW) 12-20, except one GW 40 sample), 45,X/46,XX (N = 7, aged GW 12-20), and from controls (N = 53, aged GW 12-42) from a biobank (ethics approval # H-2-2014-103). PARTICIPANTS/MATERIALS, SETTING, METHODS The number of OCT4 positive germ cells/mm2, follicles (primordial and primary)/mm2 and cPARP positive cells/mm2 were quantified in fetal ovarian tissue from TS, TS mosaic and controls following morphological and immunohistochemical analysis. MAIN RESULTS AND THE ROLE OF CHANCE After adjusting for gestational age, the number of OCT4+ oogonia was significantly higher in control ovaries (N = 53) versus 45,X ovaries (N = 40, P < 0.001), as well as in control ovaries versus 45,X/46,XX mosaic ovaries (N = 7, P < 0.043). Accordingly, the numbers of follicles were significantly higher in control ovaries versus 45,X and 45,X/46,XX ovaries from GW 16-20 with a median range of 154 (N = 11) versus 0 (N = 24) versus 3 (N = 5) (P < 0.001 and P < 0.015, respectively). The number of follicles was also significantly higher in 45,X/46,XX mosaic ovaries from GW 16-20 compared with 45,X ovaries (P < 0.005). Additionally, the numbers of apoptotic cells determined as cPARP+ cells/mm2 were significantly higher in ovaries 45,X (n = 39) versus controls (n = 15, P = 0.001) from GW 12-20 after adjusting for GW. LIMITATIONS, REASONS FOR CAUTION The analysis of OCT4+ cells/mm2, cPARP+ cells/mm2 and follicles (primordial and primary)/mm2 should be considered semi-quantitative as it was not possible to use quantification by stereology. The heterogeneous distribution of follicles in the ovarian cortex warrants a cautious interpretation of the exact quantitative numbers reported. Moreover, only one 45,X specimen and no 45,X/46,XX specimens aged above GW 20 were available for this study, which unfortunately made it impossible to assess whether the ovarian folliculogenesis was delayed or absent in the TS and TS mosaic specimens. WIDER IMPLICATIONS OF THE FINDINGS This human study provides insights about the timing of accelerated fetal germ cell loss in TS. Knowledge about the biological mechanism of POI in girls with TS is clinically useful when counseling patients about expected ovarian function and fertility preservation strategies. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC). TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Malene Lundgaard Riis
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - John E Nielsen
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Casper P Hagen
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Ewa Rajpert-De Meyts
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Niels Græm
- Department of Pathology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Anne Jørgensen
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
19
|
Kwon A, Kim HS. Congenital hypogonadotropic hypogonadism: from clinical characteristics to genetic aspects. PRECISION AND FUTURE MEDICINE 2021. [DOI: 10.23838/pfm.2021.00093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Congenital hypogonadotropic hypogonadism (CHH) is a rare disorder caused by a deficiency in gonadotropin-releasing hormone (GnRH). CHH is characterized by delayed puberty and/or infertility; this is because GnRH is the main component of the hypothalamic-pituitary-gonadal (HPG) axis, which is a key factor in pubertal development and reproductive function completion. However, since the development of sexual characteristics and reproduction begins in the prenatal period and is very complex and delicate, the clinical characteristics and involved genes are very diverse. In particular, the HPG axis is activated three times in a lifetime, and the symptoms and biochemical findings of CHH vary by period. In addition, related genes also vary according to the formation and activation process of the HPG axis. In this review, the clinical characteristics and treatment of CHH according to HPG axis activation and different developmental periods are reviewed, and the related genes are summarized according to their pathological mechanisms.
Collapse
|
20
|
Upson K, Weinberg CR, Nichols HB, Dinse GE, D’Aloisio AA, Sandler DP, Baird DD. Early-life Farm Exposure and Ovarian Reserve in a US Cohort of Women. Epidemiology 2021; 32:672-680. [PMID: 34039897 PMCID: PMC8370468 DOI: 10.1097/ede.0000000000001376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND In a previous exploratory study, we reported lower concentrations of the ovarian reserve biomarker anti-Müllerian hormone (AMH) in adulthood with prenatal farm exposure. We now examine this association as well as childhood farm exposure using enrollment data from the Sister Study, a large US cohort of women. METHODS We collected prenatal and childhood farm exposure data by questionnaire and telephone interview. However, serum AMH data were available only for a nested subset: premenopausal women ages 35-54 subsequently diagnosed with breast cancer (n = 418 cases) and their matched controls (n = 866). To avoid potential bias from restricting analyses to only premenopausal controls, we leveraged the available cohort data. We used data from both premenopausal cases and controls as well as postmenopausal women ages 35-54 (n = 3,526) (all presumed to have undetectable AMH concentrations) and applied weights to produce a sample representative of the cohort ages 35-54 (n = 17,799). The high proportion of undetectable AMH concentrations (41%) was addressed using reverse-scale Cox regression. An adjusted hazard ratio (HR) <1.0 indicates that exposed individuals had lower AMH concentrations than unexposed individuals. RESULTS Prenatal exposure to maternal residence or work on a farm was associated with lower AMH concentrations (HR 0.66; 95% confidence intervals [CI] = 0.48 to 0.90). Associations between childhood farm residence exposures and AMH were null or weak, except childhood contact with pesticide-treated livestock or buildings (HR 0.69; 95% CI = 0.40 to 1.2). CONCLUSIONS Replication of the prenatal farm exposure and lower adult AMH association raises concern that aspects of prenatal farm exposure may result in reduced adult ovarian reserve.
Collapse
Affiliation(s)
- Kristen Upson
- Department of Epidemiology and Biostatistics, College of
Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Clarice R. Weinberg
- Biostatistics & Computational Biology Branch, National
Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Hazel B. Nichols
- Department of Epidemiology, Gillings School of Global
Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Gregg E. Dinse
- Clinical and Public Health Sciences, Social &
Scientific Systems, Durham, NC, USA
| | - Aimee A. D’Aloisio
- Clinical and Public Health Sciences, Social &
Scientific Systems, Durham, NC, USA
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental
Health Sciences, Research Triangle Park, NC, USA
| | - Donna D. Baird
- Epidemiology Branch, National Institute of Environmental
Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
21
|
Beverley R, Snook ML, Brieño-Enríquez MA. Meiotic Cohesin and Variants Associated With Human Reproductive Aging and Disease. Front Cell Dev Biol 2021; 9:710033. [PMID: 34409039 PMCID: PMC8365356 DOI: 10.3389/fcell.2021.710033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022] Open
Abstract
Successful human reproduction relies on the well-orchestrated development of competent gametes through the process of meiosis. The loading of cohesin, a multi-protein complex, is a key event in the initiation of mammalian meiosis. Establishment of sister chromatid cohesion via cohesin rings is essential for ensuring homologous recombination-mediated DNA repair and future proper chromosome segregation. Cohesin proteins loaded during female fetal life are not replenished over time, and therefore are a potential etiology of age-related aneuploidy in oocytes resulting in decreased fecundity and increased infertility and miscarriage rates with advancing maternal age. Herein, we provide a brief overview of meiotic cohesin and summarize the human genetic studies which have identified genetic variants of cohesin proteins and the associated reproductive phenotypes including primary ovarian insufficiency, trisomy in offspring, and non-obstructive azoospermia. The association of cohesion defects with cancer predisposition and potential impact on aging are also described. Expansion of genetic testing within clinical medicine, with a focus on cohesin protein-related genes, may provide additional insight to previously unknown etiologies of disorders contributing to gamete exhaustion in females, and infertility and reproductive aging in both men and women.
Collapse
Affiliation(s)
- Rachel Beverley
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Meredith L Snook
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Miguel Angel Brieño-Enríquez
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
22
|
Tang H, Liu Y, Fan Y, Li C. Therapeutic Effects of Low-Intensity Pulsed Ultrasound on Premature Ovarian Insufficiency. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2377-2387. [PMID: 34088530 DOI: 10.1016/j.ultrasmedbio.2021.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/20/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
We explored the therapeutic effects of low-intensity pulsed ultrasound (LIPUS) on a rat model of ovarian damage induced by cyclophosphamide. A total of 44 female rats with premature ovarian insufficiency induced by cyclophosphamide were randomly divided into two groups (an ultrasound group and a control group); 22 normal rats without premature ovarian insufficiency were also included as a third group. The ultrasound group was treated with LIPUS, while the other two groups received the same treatment but without any power output. We monitored the estrous cycles of all rats. Seven days after treatment, 21 rats were selected to mate with male rats. We then recorded the pregnancy rate along with the number and weight of newborn rats per nest. We collected samples of blood, uterus and ovaries from the remaining 45 rats before they were sacrificed. Compared with the normal group, the control group exhibited disordered estrous cycles, more atretic follicles (p < 0.01), higher levels of serum follicle-stimulating hormone (p < 0.01), fewer other follicles (p < 0.01) and lower serum levels of E2 and anti-Müllerian hormone (p < 0.01). Compared with the control group, the ultrasound group had normal estrous cycles with fewer atretic follicles (p < 0.01), lower levels of serum follicle-stimulating hormone (p < 0.01), more other follicles (p < 0.01) and higher levels of serum E2 (p < 0.01). No significant difference in the levels of serum anti-Müllerian hormone was noted between the control group and the ultrasound group. No significant differences were observed between the three groups with respect to pregnancy rate or the number and weight of newborns per nest (p > 0.05). In conclusion, our data indicate that LIPUS could improve some ovarian functions of rats with premature ovarian insufficiency.
Collapse
Affiliation(s)
- Huajun Tang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Yao Liu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Yijin Fan
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Chengzhi Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
23
|
Place NJ, Prado AM, Faykoo-Martinez M, Brieño-Enriquez MA, Albertini DF, Holmes MM. Germ cell nests in adult ovaries and an unusually large ovarian reserve in the naked mole-rat. Reproduction 2021; 161:89-98. [PMID: 33151901 DOI: 10.1530/rep-20-0304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/05/2020] [Indexed: 01/25/2023]
Abstract
The naked mole-rat (NMR, Heterocephalus glaber) is renowned for its eusociality and exceptionally long lifespan (> 30 y) relative to its small body size (35-40 g). A NMR phenomenon that has received far less attention is that females show no decline in fertility or fecundity into their third decade of life. The age of onset of reproductive decline in many mammalian species is closely associated with the number of germ cells remaining at the age of sexual maturity. We quantified ovarian reserve size in NMRs at the youngest age (6 months) when subordinate females can begin to ovulate after removal from the queen's suppression. We then compared the NMR ovarian reserve size to values for 19 other mammalian species that were previously reported. The NMR ovarian reserve at 6 months of age is exceptionally large at 108,588 ± 69,890 primordial follicles, which is more than 10-fold larger than in mammals of a comparable size. We also observed germ cell nests in ovaries from 6-month-old NMRs, which is highly unusual since breakdown of germ cell nests and the formation of primordial follicles is generally complete by early postnatal life in other mammals. Additionally, we found germ cell nests in young adult NMRs between 1.25 and 3.75 years of age, in both reproductively activated and suppressed females. The unusually large NMR ovarian reserve provides one mechanism to account for this species' protracted fertility. Whether germ cell nests in adult ovaries contribute to the NMR's long reproductive lifespan remains to be determined.
Collapse
Affiliation(s)
- Ned J Place
- Department of Population Medicine & Diagnostic Sciences, Cornell University, Ithaca, New York, USA
| | - Alexandra M Prado
- Department of Population Medicine & Diagnostic Sciences, Cornell University, Ithaca, New York, USA
| | | | - Miguel Angel Brieño-Enriquez
- Department of Obstetrics, Gynecology & Reproductive Medicine, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David F Albertini
- Department of Reproductive Biology, Bedford Research Foundation, Bedford, Massachusetts, USA
| | - Melissa M Holmes
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
24
|
Jaillard S, Bell K, Akloul L, Walton K, McElreavy K, Stocker WA, Beaumont M, Harrisson C, Jääskeläinen T, Palvimo JJ, Robevska G, Launay E, Satié AP, Listyasari N, Bendavid C, Sreenivasan R, Duros S, van den Bergen J, Henry C, Domin-Bernhard M, Cornevin L, Dejucq-Rainsford N, Belaud-Rotureau MA, Odent S, Ayers KL, Ravel C, Tucker EJ, Sinclair AH. New insights into the genetic basis of premature ovarian insufficiency: Novel causative variants and candidate genes revealed by genomic sequencing. Maturitas 2020; 141:9-19. [PMID: 33036707 DOI: 10.1016/j.maturitas.2020.06.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/12/2020] [Accepted: 06/07/2020] [Indexed: 11/20/2022]
Abstract
Ovarian deficiency, including premature ovarian insufficiency (POI) and diminished ovarian reserve (DOR), represents one of the main causes of female infertility. POI is a genetically heterogeneous condition but current understanding of its genetic basis is far from complete, with the cause remaining unknown in the majority of patients. The genes that regulate DOR have been reported but the genetic basis of DOR has not been explored in depth. Both conditions are likely to lie along a continuum of degrees of decrease in ovarian reserve. We performed genomic analysis via whole exome sequencing (WES) followed by in silico analyses and functional experiments to investigate the genetic cause of ovarian deficiency in ten affected women. We achieved diagnoses for three of them, including the identification of novel variants in STAG3, GDF9, and FANCM. We identified potentially causative FSHR variants in another patient. This is the second report of biallelic GDF9 and FANCM variants, and, combined with functional support, validates these genes as bone fide autosomal recessive "POI genes". We also identified new candidate genes, NRIP1, XPO1, and MACF1. These genes have been linked to ovarian function in mouse, pig, and zebrafish respectively, but never in humans. In the case of NRIP1, we provide functional support for the deleterious nature of the variant via SUMOylation and luciferase/β-galactosidase reporter assays. Our study provides multiple insights into the genetic basis of POI/DOR. We have further elucidated the involvement of GDF9, FANCM, STAG3 and FSHR in POI pathogenesis, and propose new candidate genes, NRIP1, XPO1, and MACF1, which should be the focus of future studies.
Collapse
Affiliation(s)
- Sylvie Jaillard
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France; CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia.
| | - Katrina Bell
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Linda Akloul
- CHU Rennes, Service de Génétique Clinique, CLAD Ouest, F-35033, Rennes, France
| | - Kelly Walton
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, VIC, 3800, Australia
| | | | - William A Stocker
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, VIC, 3800, Australia; Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Marion Beaumont
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France
| | - Craig Harrisson
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, VIC, 3800, Australia
| | - Tiina Jääskeläinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, FI-70211 Kuopio, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, FI-70211 Kuopio, Finland
| | - Gorjana Robevska
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Erika Launay
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France
| | - Anne-Pascale Satié
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Nurin Listyasari
- Doctoral Program of Medical and Health Sciences, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Claude Bendavid
- INRAE, INSERM, Univ Rennes, Institut NuMeCan, Rennes, Saint-Gilles, France; CHU Rennes, Laboratoire de Biochimie et Toxicologie, F-35033, Rennes, France
| | - Rajini Sreenivasan
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Solène Duros
- CHU Rennes, Département de Gynécologie Obstétrique et Reproduction Humaine, F-35033, Rennes, France
| | - Jocelyn van den Bergen
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Catherine Henry
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France
| | - Mathilde Domin-Bernhard
- CHU Rennes, Département de Gynécologie Obstétrique et Reproduction Humaine, F-35033, Rennes, France
| | - Laurence Cornevin
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France
| | - Nathalie Dejucq-Rainsford
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Marc-Antoine Belaud-Rotureau
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France; CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France; CHU Rennes, Service de Biologie de la Reproduction-CECOS, F-35033, Rennes, France
| | - Sylvie Odent
- CHU Rennes, Service de Génétique Clinique, CLAD Ouest, F-35033, Rennes, France; Univ Rennes, CNRS UMR 6290, Institut de Génétique et Développement, F-35000, Rennes, France
| | - Katie L Ayers
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Célia Ravel
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France; CHU Rennes, Service de Biologie de la Reproduction-CECOS, F-35033, Rennes, France
| | - Elena J Tucker
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, 3052, Australia.
| | - Andrew H Sinclair
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, 3052, Australia
| |
Collapse
|
25
|
Abrahami N, Izhaki I, Younis JS. Is there a difference in ovarian reserve biomarkers and ovarian response between the right and left ovaries? Reprod Biomed Online 2020; 41:416-424. [DOI: 10.1016/j.rbmo.2020.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/09/2020] [Accepted: 06/10/2020] [Indexed: 01/30/2023]
|
26
|
Renault CH, Aksglaede L, Wøjdemann D, Hansen AB, Jensen RB, Juul A. Minipuberty of human infancy - A window of opportunity to evaluate hypogonadism and differences of sex development? Ann Pediatr Endocrinol Metab 2020; 25:84-91. [PMID: 32615687 PMCID: PMC7336259 DOI: 10.6065/apem.2040094.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/20/2020] [Indexed: 01/07/2023] Open
Abstract
Activation of the hypothalamic-pituitary-gonadal (HPG) axis happens in 3 phases during life. The first phase is during fetal life and is only separated from the second phase, called minipuberty, by the high concentration of placental hormones at birth. The third period of activation of the HPG axis is puberty and is well-described. Minipuberty consists of the neonatal activation of the HPG axis, mainly in the first 1-6 months, where the resulting high levels of gonadotropins and sex steroids induce the maturation of sexual organs in both sexes. With gonadal activation, testosterone levels rise in boys with peak levels after 1-3 months, which results in penile and testicular growth. In girls, gonadal activation leads to follicular maturation and a fluctuating increase in estrogen levels, with more controversy regarding the actual influence on the target tissue. The regulation of the HPG axis is complex, involving many biological and environmental factors. Only a few of these have known effects. Many details of this complex interaction of factors remain to be elucidated in order to understand the mechanisms underlying the first postnatal activation of the HPG axis as well as mechanisms shutting down the HPG axis, resulting in the hormonal quiescence observed between minipuberty and puberty. Minipuberty allows for the maturation of sexual organs and forms a platform for future fertility, but the long-term significance is still not absolutely clear. However, it provides a window of opportunity in the early detection of differences of sexual development, offering the possibility of initiating early medical treatment in some cases.
Collapse
Affiliation(s)
| | - Lise Aksglaede
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ditte Wøjdemann
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anna Berg Hansen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Beck Jensen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Rogol AD. Human sex chromosome aneuploidies: The hypothalamic-pituitary-gonadal axis. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:313-319. [PMID: 32170911 DOI: 10.1002/ajmg.c.31782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 11/10/2022]
Abstract
Sex chromosome aneuploidies (SCA) are relatively common as a group, perhaps 1 per 500 births, but much more common at conception. Many syndromes have been noted in those with these conditions, but not so many data are available concerning the hypothalamic-pituitary-gonadal (HPG) axis. The physiology of the HPG axis is first reviewed at four epochs in time: fetal, birth and mini-puberty, childhood, and adolescence (puberty). Those sections are followed by detailed analysis of the functioning of the HPG axis in individuals with specific SCA with chromosomal numbers ranging from 45 to 49. Robust data are available for the chromosomal complements 47,XXY and 47,XXX with fewer data available for many of the others.
Collapse
Affiliation(s)
- Alan D Rogol
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
28
|
Bizzarri C, Cappa M. Ontogeny of Hypothalamus-Pituitary Gonadal Axis and Minipuberty: An Ongoing Debate? Front Endocrinol (Lausanne) 2020; 11:187. [PMID: 32318025 PMCID: PMC7154076 DOI: 10.3389/fendo.2020.00187] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022] Open
Abstract
The fetal hypothalamus-pituitary gonadal (HPG) axis begins to function during mid-gestation but its activity decreases during late pregnancy due to the suppressive effects of placental estrogens. Placental hormones drop immediately after birth, FSH and LH surge at around 1 week and peak between 1 and 3 months of life. The HPG axis is activated in both sexes, but a sexual dimorphism is evident with higher LH values in boys, while FSH prevails in girls. Both gonadotrophins decline in boys by around 6 months of age. In girls, LH declines at the same time as in boys, while FSH persists elevated up to 3 or 4 years of age. As a result of gonadotropin activation, testicular testosterone increases in males and ovarian estradiol rises in females. These events clinically translate into testicular and penile growth in boys, enlargement of uterus and breasts in girls. The functional impact of HPG axis activity in infancy on later reproductive function is uncertain. According to the perinatal programming theory, this period may represent an essential programming process. In boys, long-term testicular hormonal function and spermatogenesis seem to be, at least in part, regulated by minipuberty. On the contrary, the role of minipuberty in girls is still uncertain. Recently, androgen exposure during minipuberty has been correlated with later sex-typed behavior. Premature and/or SGA infants show significant differences in postnatal HPG axis activity in comparison to full-term infants and the consequences of these differences on later health and disease require further research. The sex-dimorphic HPG activation during mid-gestation is probably responsible for the body composition differences observed ad birth between boys and girls, with boys showing greater total body mass and lean mass, and a lower proportion of fat mass. Testosterone exposure during minipuberty further contributes to these differences and seems to be responsible for the significantly higher growth velocity observed in male infants. Lastly, minipuberty is a valuable "window of opportunity" for differential diagnosis of disorders of sex development and it represents the only time window before puberty when congenital hypogonadism can be diagnosed by the simple analysis of basal gonadotropin and gonadal hormone levels.
Collapse
|
29
|
Histologic Features of Hysterectomy Specimens From Female-Male Transgender Individuals. Int J Gynecol Pathol 2019; 38:520-527. [DOI: 10.1097/pgp.0000000000000548] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Shtaut MI, Kurilo LF. Composition of Somatic and Germ Cells of Human Gonads in Prenatal and Postnatal Periods. Russ J Dev Biol 2019. [DOI: 10.1134/s1062360419020061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Hummitzsch K, Hatzirodos N, Irving-Rodgers HF, Hartanti MD, Perry VEA, Anderson RA, Rodgers RJ. Morphometric analyses and gene expression related to germ cells, gonadal ridge epithelial-like cells and granulosa cells during development of the bovine fetal ovary. PLoS One 2019; 14:e0214130. [PMID: 30901367 PMCID: PMC6430378 DOI: 10.1371/journal.pone.0214130] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/07/2019] [Indexed: 12/24/2022] Open
Abstract
Cells on the surface of the mesonephros give rise to replicating Gonadal Ridge Epithelial-Like (GREL) cells, the first somatic cells of the gonadal ridge. Later germ cells associate with the GREL cells in the ovigerous cords, and the GREL cells subsequently give rise to the granulosa cells in follicles. To examine these events further, 27 bovine fetal ovaries of different gestational ages were collected and prepared for immunohistochemical localisation of collagen type I and Ki67 to identify regions of the ovary and cell proliferation, respectively. The non-stromal cortical areas (collagen-negative) containing GREL cells and germ cells and later in development, the follicles with oocytes and granulosa cells, were analysed morphometrically. Another set of ovaries (n = 17) were collected and the expression of genes associated with germ cell lineages and GREL/granulosa cells were quantitated by RT-PCR. The total volume of non-stromal areas in the cortex increased significantly and progressively with ovarian development, plateauing at the time the surface epithelium developed. However, the proportion of non-stromal areas in the cortex declined significantly and progressively throughout gestation, largely due to a cessation in growth of the non-stroma cells and the continued growth of stroma. The proliferation index in the non-stromal area was very high initially and then declined substantially at the time follicles formed. Thereafter, it remained low. The numerical density of the non-stromal cells was relatively constant throughout ovarian development. The expression levels of a number of genes across gestation either increased (AMH, FSHR, ESR1, INHBA), declined (CYP19A1, ESR2, ALDH1A1, DSG2, OCT4, LGR5) or showed no particular pattern (CCND2, CTNNB1, DAZL, FOXL2, GATA4, IGFBP3, KRT19, NR5A1, RARRES1, VASA, WNT2B). Many of the genes whose expression changed across gestation, were positively or negatively correlated with each other. The relationships between these genes may reflect their roles in the important events such as the transition of ovigerous cords to follicles, oogonia to oocytes or GREL cells to granulosa cells.
Collapse
Affiliation(s)
- Katja Hummitzsch
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Nicholas Hatzirodos
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Helen F. Irving-Rodgers
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- School of Medical Science, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Monica D. Hartanti
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Viv E. A. Perry
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, United Kingdom
| | - Richard A. Anderson
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Raymond J. Rodgers
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- * E-mail:
| |
Collapse
|
32
|
Jazwiec PA, Li X, Matushewski B, Richardson BS, Sloboda DM. Fetal Growth Restriction Is Associated With Decreased Number of Ovarian Follicles and Impaired Follicle Growth in Young Adult Guinea Pig Offspring. Reprod Sci 2019; 26:1557-1567. [PMID: 30744513 DOI: 10.1177/1933719119828041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND The mechanisms mediating the impacts of fetal growth restriction (FGR) on follicular development are commonly studied in mouse/rat models, where ovarian development occurs largely during the early postnatal period. These models have shown that FGR is associated with premature follicle loss, early pubertal onset, and accelerated ovarian aging. Whether the same occurs in precocious species is unknown. OBJECTIVE Since guinea pig follicle development occurs in utero in a manner consistent with human ovarian development, we sought to determine whether FGR had similar impacts on guinea pig ovarian development. METHODS Dunkin-Hartley guinea pig dams were randomized to receive a control (CON) or a nutrient-restricted diet (FGR) prior to conception until weaning. Offspring ovaries were collected at prepubertal (postnatal day [P] 25) and young adult (P110) time points. RESULTS Prepubertal offspring exposed to FGR showed little differences in ovarian transcript levels and follicle counts. Young adult FGR offspring, however, showed reductions in the number of transitioning, primary, and antral follicles, as well as corpora lutea. This loss in follicles was associated with reduced insulin-like growth factor receptor and growth differentiation factor-9 messenger RNA levels in FGR P110 offspring compared to CON. CONCLUSION We demonstrate that FGR in guinea pigs is accompanied by perturbations in signaling pathways essential for proper follicle growth and manifests as reductions in growing follicles in offspring, but these changes do not manifest until postpuberty. These data support the fact that accelerated reproductive maturation/aging is a conserved phenotype that is associated with in utero nutritional adversity.
Collapse
Affiliation(s)
- Patrycja A Jazwiec
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Xinglin Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Brad Matushewski
- Department of Obstetrics and Gynecology, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
- Department of Pediatrics, University of Western Ontario, London, Ontario, Canada
- Children's Health Research Institute, University of Western Ontario, London, Ontario, Canada
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Bryan S Richardson
- Department of Obstetrics and Gynecology, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
- Department of Pediatrics, University of Western Ontario, London, Ontario, Canada
- Children's Health Research Institute, University of Western Ontario, London, Ontario, Canada
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Departments of Pediatrics and Obstetrics and Gynecology, McMaster University, Hamilton, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| |
Collapse
|
33
|
Uliani RC, Conley AJ, Corbin CJ, Friso AM, Maciel LFS, Alvarenga MA. Anti-Müllerian hormone and ovarian aging in mares. J Endocrinol 2019; 240:147-156. [PMID: 30400031 DOI: 10.1530/joe-18-0391] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 10/26/2018] [Indexed: 12/31/2022]
Abstract
Anti-Müllerian hormone (AMH) is used as a marker of follicle population numbers and potential fertility in several species including horses but limited data exist across the lifespan. No one has decreased ovarian reserve experimentally to investigate whether a corresponding, quantitative decrease in AMH results. Concentrations of AMH across the lifespan were compiled from 1101 equine females sampled from birth to >33 years of age. Young and old mares (averaging 6 and 19 years) were hemi-ovariectomized and circulating AMH was assessed before and daily thereafter for 15 days. The remaining ovary was removed later and blood was drawn again before and after this second surgery for AMH determination. Polynomial regression analysis and analysis of mares grouped by 5-year intervals of age demonstrated AMH concentrations to be higher in mares aged 5-10 and 10-15 years than 0-5 years of age and lower in mares after 20 years of age. There was high variability in AMH concentrations among neonatal fillies, some of which had concentrations typical of males. Hemi-ovariectomy was followed by a decrease of AMH, almost exactly halving concentrations in intact mares. Concentrations of AMH had returned to intact levels in old mares before complete ovariectomy, as if exhibiting ovarian compensatory hypertrophy, but recovery of AMH was not evident in young mares. AMH may reflect ovarian senescence in mares after 20 years of age but is too variable to do so in the first two decades of life. The ovarian endocrine response to hemi-ovariectomy in mares appears to change with age.
Collapse
Affiliation(s)
- Renata C Uliani
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Alan J Conley
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - C Jo Corbin
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Aimê M Friso
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Luciana F S Maciel
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Marco A Alvarenga
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
34
|
Upson K, Chin HB, Marsh EE, Baird DD. Intrauterine, Infant, and Childhood Factors and Ovarian Reserve in Young African American Women. J Womens Health (Larchmt) 2019; 28:1711-1720. [PMID: 30638418 DOI: 10.1089/jwh.2018.7382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background: Ovarian toxic exposures during early development may contribute to reduced ovarian reserve in adulthood. Materials and Methods: We explored a range of intrauterine, infant, and childhood factors in relation to a biomarker of ovarian reserve, anti-Müllerian hormone (AMH) concentrations, in adulthood. We conducted a cross-sectional exploratory study of 1600 African American women 23-35 years of age residing in the Detroit, Michigan metropolitan area, who had serum AMH measurements (Ansh Labs PicoAMH enzyme-linked immunosorbent assay) and no previous polycystic ovarian syndrome diagnosis. Information on 32 intrauterine, infant, and childhood factors was ascertained by self-administered questionnaires, with 87% of participants receiving assistance from mothers. The percent differences in AMH concentrations in relation to early-life factors and 95% confidence intervals (CIs) were estimated using multivariable linear regression, adjusting for age, current hormonal contraceptive use, and body mass index. Results: Of the early-life factors evaluated in this study, two maternal pregnancy factors were associated with lower AMH concentrations in adult participants. Participants whose mothers lived or worked on a farm (vs. neither lived nor worked on a farm) when pregnant with the participant had 42% lower AMH concentrations (95% CI = -62 to -9). Among participants whose mothers lived in Michigan when pregnant with the participant (n = 1238), maternal residence in Detroit for at least a month was associated with 22% lower AMH concentrations (95% CI = -34 to -8) in the participant. Conclusions: Further research is merited to replicate our findings and identify the aspects of maternal farm exposure and Detroit residence that may be associated with lower AMH concentrations.
Collapse
Affiliation(s)
- Kristen Upson
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Helen B Chin
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Erica E Marsh
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Donna D Baird
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
35
|
Morrison JL, Botting KJ, Darby JRT, David AL, Dyson RM, Gatford KL, Gray C, Herrera EA, Hirst JJ, Kim B, Kind KL, Krause BJ, Matthews SG, Palliser HK, Regnault TRH, Richardson BS, Sasaki A, Thompson LP, Berry MJ. Guinea pig models for translation of the developmental origins of health and disease hypothesis into the clinic. J Physiol 2018; 596:5535-5569. [PMID: 29633280 PMCID: PMC6265540 DOI: 10.1113/jp274948] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
Over 30 years ago Professor David Barker first proposed the theory that events in early life could explain an individual's risk of non-communicable disease in later life: the developmental origins of health and disease (DOHaD) hypothesis. During the 1990s the validity of the DOHaD hypothesis was extensively tested in a number of human populations and the mechanisms underpinning it characterised in a range of experimental animal models. Over the past decade, researchers have sought to use this mechanistic understanding of DOHaD to develop therapeutic interventions during pregnancy and early life to improve adult health. A variety of animal models have been used to develop and evaluate interventions, each with strengths and limitations. It is becoming apparent that effective translational research requires that the animal paradigm selected mirrors the tempo of human fetal growth and development as closely as possible so that the effect of a perinatal insult and/or therapeutic intervention can be fully assessed. The guinea pig is one such animal model that over the past two decades has demonstrated itself to be a very useful platform for these important reproductive studies. This review highlights similarities in the in utero development between humans and guinea pigs, the strengths and limitations of the guinea pig as an experimental model of DOHaD and the guinea pig's potential to enhance clinical therapeutic innovation to improve human health.
Collapse
Affiliation(s)
- Janna L. Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health ResearchUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Kimberley J. Botting
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Jack R. T. Darby
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health ResearchUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Anna L. David
- Research Department of Maternal Fetal Medicine, Institute for Women's HealthUniversity College LondonLondonUK
| | - Rebecca M. Dyson
- Department of Paediatrics & Child Health and Centre for Translational PhysiologyUniversity of OtagoWellingtonNew Zealand
| | - Kathryn L. Gatford
- Robinson Research Institute and Adelaide Medical SchoolUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Clint Gray
- Department of Paediatrics & Child Health and Centre for Translational PhysiologyUniversity of OtagoWellingtonNew Zealand
| | - Emilio A. Herrera
- Pathophysiology Program, Biomedical Sciences Institute (ICBM), Faculty of MedicineUniversity of ChileSantiagoChile
| | - Jonathan J. Hirst
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Biomedical Sciences and PharmacyUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Bona Kim
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
| | - Karen L. Kind
- School of Animal and Veterinary SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Bernardo J. Krause
- Division of Paediatrics, Faculty of MedicinePontificia Universidad Católica de ChileSantiagoChile
| | | | - Hannah K. Palliser
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Biomedical Sciences and PharmacyUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Timothy R. H. Regnault
- Departments of Obstetrics and Gynaecology, Physiology and PharmacologyWestern University, and Children's Health Research Institute and Lawson Health Research InstituteLondonOntarioCanada
| | - Bryan S. Richardson
- Departments of Obstetrics and Gynaecology, Physiology and PharmacologyWestern University, and Children's Health Research Institute and Lawson Health Research InstituteLondonOntarioCanada
| | - Aya Sasaki
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
| | - Loren P. Thompson
- Department of Obstetrics, Gynecology, and Reproductive SciencesUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Mary J. Berry
- Department of Paediatrics & Child Health and Centre for Translational PhysiologyUniversity of OtagoWellingtonNew Zealand
| |
Collapse
|
36
|
Lanciotti L, Cofini M, Leonardi A, Penta L, Esposito S. Up-To-Date Review About Minipuberty and Overview on Hypothalamic-Pituitary-Gonadal Axis Activation in Fetal and Neonatal Life. Front Endocrinol (Lausanne) 2018; 9:410. [PMID: 30093882 PMCID: PMC6070773 DOI: 10.3389/fendo.2018.00410] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/02/2018] [Indexed: 11/13/2022] Open
Abstract
Minipuberty consists of activation of the hypothalamic-pituitary-gonadal (HPG) axis during the neonatal period, resulting in high gonadotropin and sex steroid levels, and occurs mainly in the first 3-6 months of life in both sexes. The rise in the levels of these hormones allows for the maturation of the sexual organs. In boys, the peak testosterone level is associated with penile and testicular growth and the proliferation of gonadic cells. In girls, the oestradiol levels stimulate breast tissue, but exhibit considerable fluctuations that probably reflect the cycles of maturation and atrophy of the ovarian follicles. Minipuberty allows for the development of the genital organs and creates the basis for future fertility, but further studies are necessary to understand its exact role, especially in girls. Nevertheless, no scientific study has yet elucidated how the HPG axis turns itself off and remains dormant until puberty. Additional future studies may identify clinical implications of minipuberty in selected cohorts of patients, such as premature and small for gestational age infants. Finally, minipuberty provides a fundamental 6-month window of the possibility of making early diagnoses in patients with suspected sexual reproductive disorders to enable the prompt initiation of treatment rather than delaying treatment until pubertal failure.
Collapse
Affiliation(s)
| | | | | | | | - Susanna Esposito
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| |
Collapse
|
37
|
Coccia ME, Rizzello F, Capezzuoli T, Evangelisti P, Cozzi C, Petraglia F. Bilateral Endometrioma Excision: Surgery-Related Damage to Ovarian Reserve. Reprod Sci 2018; 26:543-550. [DOI: 10.1177/1933719118777640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Maria Elisabetta Coccia
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| | - Francesca Rizzello
- Assisted Reproduction Center, Careggi University Hospital, Florence, Italy
| | - Tommaso Capezzuoli
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| | - Paolo Evangelisti
- Assisted Reproduction Center, Careggi University Hospital, Florence, Italy
| | - Cinzia Cozzi
- Assisted Reproduction Center, Careggi University Hospital, Florence, Italy
| | - Felice Petraglia
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
38
|
Bothun AM, Gao Y, Takai Y, Ishihara O, Seki H, Karger B, Tilly JL, Woods DC. Quantitative Proteomic Profiling of the Human Ovary from Early to Mid-Gestation Reveals Protein Expression Dynamics of Oogenesis and Folliculogenesis. Stem Cells Dev 2018; 27:723-735. [PMID: 29631484 DOI: 10.1089/scd.2018.0002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The in vivo gene networks involved in coordinating human fetal ovarian development remain obscure. In this study, quantitative mass spectrometry was conducted on ovarian tissue collected at key stages during the first two trimesters of human gestational development, confirming the expression profiling data using immunofluorescence, as well as in vitro modeling with human oogonial stem cells (OSCs) and human embryonic stem cells (ESCs). A total of 3,837 proteins were identified in samples spanning developmental days 47-137. Bioinformatics clustering and Ingenuity Pathway Analysis identified DNA mismatch repair and base excision repair as major pathways upregulated during this time. In addition, MAEL and TEX11, two key meiosis-related proteins, were identified as highly expressed during the developmental window associated with fetal oogenesis. These findings were confirmed and extended using in vitro differentiation of OSCs into in vitro derived oocytes and of ESCs into primordial germ cell-like cells and oocyte-like cells, as models. In conclusion, the global protein expression profiling data generated by this study have provided novel insights into human fetal ovarian development in vivo and will serve as a valuable new resource for future studies of the signaling pathways used to orchestrate human oogenesis and folliculogenesis.
Collapse
Affiliation(s)
- Alisha M Bothun
- 1 Department of Biology, Laboratory for Aging and Infertility Research, Northeastern University , Boston, Massachusetts
| | - Yuanwei Gao
- 2 Department of Chemistry & Chemical Biology, The Barnett Institute for Chemical and Biological Analysis, Northeastern University , Boston, Massachusetts
| | - Yasushi Takai
- 3 Department of Obstetrics and Gynecology, Saitama Medical Center, Saitama Medical University , Saitama, Japan
| | - Osamu Ishihara
- 4 Department of Obstetrics and Gynecology, Saitama Medical University , Saitama, Japan
| | - Hiroyuki Seki
- 3 Department of Obstetrics and Gynecology, Saitama Medical Center, Saitama Medical University , Saitama, Japan
| | - Barry Karger
- 2 Department of Chemistry & Chemical Biology, The Barnett Institute for Chemical and Biological Analysis, Northeastern University , Boston, Massachusetts
| | - Jonathan L Tilly
- 1 Department of Biology, Laboratory for Aging and Infertility Research, Northeastern University , Boston, Massachusetts
| | - Dori C Woods
- 1 Department of Biology, Laboratory for Aging and Infertility Research, Northeastern University , Boston, Massachusetts
| |
Collapse
|
39
|
Algarroba GN, Sanfilippo JS, Valli-Pulaski H. Female fertility preservation in the pediatric and adolescent cancer patient population. Best Pract Res Clin Obstet Gynaecol 2017; 48:147-157. [PMID: 29221705 DOI: 10.1016/j.bpobgyn.2017.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/15/2017] [Indexed: 01/26/2023]
Abstract
The 5-year survival rate for childhood cancer is over 80%, thereby increasing the number of young women facing infertility in the future because of the gonadotoxic effects of chemotherapy and radiation. The gonadotoxic effects of childhood cancer treatment vary by the radiation regimen and the chemotherapeutic drugs utilized. Although the American Society of Clinical Oncology guidelines recommend fertility preservation for all patients, there are several barriers and ethical considerations to fertility preservation in the pediatric and adolescent female population. Additionally, the fertility preservation methods for pre- and postpubertal females differ, with only experimental methods available for prepubertal females. We will review the risk of chemotherapy and radiation on female fertility, the approach to fertility preservation in the pediatric and adolescent female population, methods of fertility preservation for both pre- and postpubertal females, barriers to fertility preservation, cost, and psychological and ethical considerations.
Collapse
Affiliation(s)
- Gabriela N Algarroba
- University of Pittsburgh School of Medicine, 3550 Terrace St., Pittsburgh, PA 15213, USA.
| | - Joseph S Sanfilippo
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh School of Medicine, 300 Halket St., Suite 5150, Pittsburgh, PA 15213, USA.
| | - Hanna Valli-Pulaski
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh School of Medicine, 204 Craft Ave, Pittsburgh, PA 15213, USA.
| |
Collapse
|
40
|
Abstract
Recently, the existence of a mechanism for neo-oogenesis in the ovaries of adult mammals has generated much controversy within reproductive biology. This mechanism, which proposes that the ovary has cells capable of renewing the follicular reserve, has been described for various species of mammals. The first evidence was found in prosimians and humans. However, these findings were not considered relevant because the predominant dogma for reproductive biology at the time was that of Zuckerman. This dogma states that female mammals are born with finite numbers of oocytes that decline throughout postnatal life. Currently, the concept of neo-oogenesis has gained momentum due to the discovery of cells with mitotic activity in adult ovaries of various mammalian species (mice, humans, rhesus monkeys, domestic animals such as pigs, and wild animals such as bats). Despite these reports, the concept of neo-oogenesis has not been widely accepted by the scientific community, generating much criticism and speculation about its accuracy because it has been impossible to reproduce some evidence. This controversy has led to the creation of two positions: one in favour of neo-oogenesis and the other against it. Various animal models have been used in support of both camps, including both classic laboratory animals and domestic and wild animals. The aim of this review is to critically present the current literature on the subject and to evaluate the arguments pro and contra neo-oogenesis in mammals.
Collapse
|
41
|
Tucker EJ, Grover SR, Bachelot A, Touraine P, Sinclair AH. Premature Ovarian Insufficiency: New Perspectives on Genetic Cause and Phenotypic Spectrum. Endocr Rev 2016; 37:609-635. [PMID: 27690531 DOI: 10.1210/er.2016-1047] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Premature ovarian insufficiency (POI) is one form of female infertility, defined by loss of ovarian activity before the age of 40 and characterized by amenorrhea (primary or secondary) with raised gonadotropins and low estradiol. POI affects up to one in 100 females, including one in 1000 before the age of 30. Substantial evidence suggests a genetic basis for POI; however, the majority of cases remain unexplained, indicating that genes likely to be associated with this condition are yet to be discovered. This review discusses the current knowledge of the genetic basis of POI. We highlight genes typically known to cause syndromic POI that can be responsible for isolated POI. The role of mouse models in understanding POI pathogenesis is discussed, and a thorough list of candidate POI genes is provided. Identifying a genetic basis for POI has multiple advantages, such as enabling the identification of presymptomatic family members who can be offered counseling and cryopreservation of eggs before depletion, enabling personalized treatment based on the cause of an individual's condition, and providing better understanding of disease mechanisms that ultimately aid the development of improved treatments.
Collapse
Affiliation(s)
- Elena J Tucker
- Murdoch Children's Research Institute (E.J.T., S.R.G., A.H.S.), Royal Children's Hospital, Melbourne, VIC 3052 Australia; Department of Paediatrics (E.J.T., S.R.G., A.H.S.), University of Melbourne, Melbourne, VIC 3010, Australia; Department of Paediatric and Adolescent Gynaecology (S.R.G.), Royal Children's Hospital, Melbourne, VIC 3052, Australia; Assistance Publique Hôpitaux de Paris, (A.B., P.T.), IE3M, Université Pierre et Marie Curie, Paris 6 University, Department of Endocrinology and Reproductive Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance et des Pathologies Gynécologiques Rares, Pitié-Salpêtrière Hospital, Université Pierre et Marie Curie, 75013 Paris, France; Institut National de la Santé et de la Recherche Médicale (A.B., P.T.), 75654 Paris, France
| | - Sonia R Grover
- Murdoch Children's Research Institute (E.J.T., S.R.G., A.H.S.), Royal Children's Hospital, Melbourne, VIC 3052 Australia; Department of Paediatrics (E.J.T., S.R.G., A.H.S.), University of Melbourne, Melbourne, VIC 3010, Australia; Department of Paediatric and Adolescent Gynaecology (S.R.G.), Royal Children's Hospital, Melbourne, VIC 3052, Australia; Assistance Publique Hôpitaux de Paris, (A.B., P.T.), IE3M, Université Pierre et Marie Curie, Paris 6 University, Department of Endocrinology and Reproductive Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance et des Pathologies Gynécologiques Rares, Pitié-Salpêtrière Hospital, Université Pierre et Marie Curie, 75013 Paris, France; Institut National de la Santé et de la Recherche Médicale (A.B., P.T.), 75654 Paris, France
| | - Anne Bachelot
- Murdoch Children's Research Institute (E.J.T., S.R.G., A.H.S.), Royal Children's Hospital, Melbourne, VIC 3052 Australia; Department of Paediatrics (E.J.T., S.R.G., A.H.S.), University of Melbourne, Melbourne, VIC 3010, Australia; Department of Paediatric and Adolescent Gynaecology (S.R.G.), Royal Children's Hospital, Melbourne, VIC 3052, Australia; Assistance Publique Hôpitaux de Paris, (A.B., P.T.), IE3M, Université Pierre et Marie Curie, Paris 6 University, Department of Endocrinology and Reproductive Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance et des Pathologies Gynécologiques Rares, Pitié-Salpêtrière Hospital, Université Pierre et Marie Curie, 75013 Paris, France; Institut National de la Santé et de la Recherche Médicale (A.B., P.T.), 75654 Paris, France
| | - Philippe Touraine
- Murdoch Children's Research Institute (E.J.T., S.R.G., A.H.S.), Royal Children's Hospital, Melbourne, VIC 3052 Australia; Department of Paediatrics (E.J.T., S.R.G., A.H.S.), University of Melbourne, Melbourne, VIC 3010, Australia; Department of Paediatric and Adolescent Gynaecology (S.R.G.), Royal Children's Hospital, Melbourne, VIC 3052, Australia; Assistance Publique Hôpitaux de Paris, (A.B., P.T.), IE3M, Université Pierre et Marie Curie, Paris 6 University, Department of Endocrinology and Reproductive Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance et des Pathologies Gynécologiques Rares, Pitié-Salpêtrière Hospital, Université Pierre et Marie Curie, 75013 Paris, France; Institut National de la Santé et de la Recherche Médicale (A.B., P.T.), 75654 Paris, France
| | - Andrew H Sinclair
- Murdoch Children's Research Institute (E.J.T., S.R.G., A.H.S.), Royal Children's Hospital, Melbourne, VIC 3052 Australia; Department of Paediatrics (E.J.T., S.R.G., A.H.S.), University of Melbourne, Melbourne, VIC 3010, Australia; Department of Paediatric and Adolescent Gynaecology (S.R.G.), Royal Children's Hospital, Melbourne, VIC 3052, Australia; Assistance Publique Hôpitaux de Paris, (A.B., P.T.), IE3M, Université Pierre et Marie Curie, Paris 6 University, Department of Endocrinology and Reproductive Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance et des Pathologies Gynécologiques Rares, Pitié-Salpêtrière Hospital, Université Pierre et Marie Curie, 75013 Paris, France; Institut National de la Santé et de la Recherche Médicale (A.B., P.T.), 75654 Paris, France
| |
Collapse
|
42
|
Freour T, Vassena R. Transcriptomics analysis and human preimplantation development. J Proteomics 2016; 162:135-140. [PMID: 27765633 DOI: 10.1016/j.jprot.2016.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/25/2016] [Accepted: 10/14/2016] [Indexed: 12/12/2022]
Abstract
The study of oocyte and preimplantation embryo biology has been regarded with great curiosity throughout scientific history, but it is not until the development of robust methods for in vitro observation and manipulation of animal gametes that developmental biology has flourished as a discipline. By far the biggest technical challenge in studying transcription in oocytes and early embryo has been the necessity of developing techniques that retain a high level of accuracy when starting from small amount of material. The objective of this narrative review is to summarize the knowledge gained about the embryonic preimplantation period in the human species from transcriptomics experiments, and to discuss technical limitations and solutions to the study of transcriptomics in these samples. SIGNIFICANCE In this review we identify key critical issues in performing transcriptomics experiments during the human preimplantation period, and identifying possible ways to overcome them. This, combined with a description of clinical perspectives and the definition of future avenues for research will provide useful for future research.
Collapse
Affiliation(s)
- Thomas Freour
- Clinica EUGIN, Barcelona, Spain; Service de médecine et biologie de la reproduction, CHU de Nantes, Nantes, France; Faculté de médecine, Université de Nantes, Nantes, France; INSERM UMR1064, Nantes, France
| | | |
Collapse
|
43
|
Elzaiat M, Todeschini AL, Caburet S, Veitia R. The genetic make-up of ovarian development and function: the focus on the transcription factor FOXL2. Clin Genet 2016; 91:173-182. [DOI: 10.1111/cge.12862] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/01/2016] [Accepted: 09/01/2016] [Indexed: 12/19/2022]
Affiliation(s)
- M. Elzaiat
- Molecular and Cellular Pathologies; Institut Jacques Monod; Paris France
- UFR Sciences du Vivant; Université Paris Diderot-Paris VII; Paris France
| | - A.-L. Todeschini
- Molecular and Cellular Pathologies; Institut Jacques Monod; Paris France
- UFR Sciences du Vivant; Université Paris Diderot-Paris VII; Paris France
| | - S. Caburet
- Molecular and Cellular Pathologies; Institut Jacques Monod; Paris France
- UFR Sciences du Vivant; Université Paris Diderot-Paris VII; Paris France
| | - R.A. Veitia
- Molecular and Cellular Pathologies; Institut Jacques Monod; Paris France
- UFR Sciences du Vivant; Université Paris Diderot-Paris VII; Paris France
| |
Collapse
|
44
|
Stefansdottir A, Johnston ZC, Powles-Glover N, Anderson RA, Adams IR, Spears N. Etoposide damages female germ cells in the developing ovary. BMC Cancer 2016; 16:482. [PMID: 27510889 PMCID: PMC4980800 DOI: 10.1186/s12885-016-2505-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 07/05/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND As with many anti-cancer drugs, the topoisomerase II inhibitor etoposide is considered safe for administration to women in the second and third trimesters of pregnancy, but assessment of effects on the developing fetus have been limited. The purpose of this research was to examine the effect of etoposide on germ cells in the developing ovary. Mouse ovary tissue culture was used as the experimental model, thus allowing us to examine effects of etoposide on all stages of germ cell development in the same way, in vitro. RESULTS Fetal ovaries from embryonic day 13.5 CD1 mice or neonatal ovaries from postnatal day 0 CD1 mice were cultured with 50-150 ng ml(-1) or 50-200 ng ml(-1) etoposide respectively, concentrations that are low relative to that in patient serum. When fetal ovaries were treated prior to follicle formation, etoposide resulted in dose-dependent damage, with 150 ng ml(-1) inducing a near-complete absence of healthy follicles. In contrast, treatment of neonatal ovaries, after follicle formation, had no effect on follicle numbers and only a minor effect on follicle health, even at 200 ng ml(-1). The sensitivity of female germ cells to etoposide coincided with topoisomerase IIα expression: in the developing ovary of both mouse and human, topoisomerase IIα was expressed in germ cells only prior to follicle formation. CONCLUSIONS Exposure of pre-follicular ovaries, in which topoisomerase IIα expression was germ cell-specific, resulted in a near-complete elimination of germ cells prior to follicle formation, with the remaining germ cells going on to form unhealthy follicles by the end of culture. In contrast, exposure to follicle-enclosed oocytes, which no longer expressed topoisomerase IIα in the germ cells, had no effect on total follicle numbers or health, the only effect seen specific to transitional follicles. Results indicate the potential for adverse effects on fetal ovarian development if etoposide is administered to pregnant women when germ cells are not yet enclosed within ovarian follicles, a process that starts at approximately 17 weeks gestation and is only complete towards the end of pregnancy.
Collapse
Affiliation(s)
- Agnes Stefansdottir
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD UK
| | - Zoe C. Johnston
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD UK
- Present Address: Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G61 1QH UK
| | | | - Richard A. Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, EH16 4TJ UK
| | - Ian R. Adams
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Norah Spears
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD UK
| |
Collapse
|
45
|
Jin H, Won M, Park SE, Lee S, Park M, Bae J. FOXL2 Is an Essential Activator of SF-1-Induced Transcriptional Regulation of Anti-Müllerian Hormone in Human Granulosa Cells. PLoS One 2016; 11:e0159112. [PMID: 27414805 PMCID: PMC4944948 DOI: 10.1371/journal.pone.0159112] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/27/2016] [Indexed: 11/17/2022] Open
Abstract
Anti-Müllerian hormone (AMH) is required for proper sexual differentiation by regulating the regression of the Müllerian ducts in males. Recent studies indicate that AMH could be an important factor for maintaining the ovarian reserve. However, the mechanisms of AMH regulation in the ovary are largely unknown. Here, we provide evidence that AMH is an ovarian target gene of steroidogenic factor-1 (SF-1), an orphan nuclear receptor required for proper follicle development. FOXL2 is an evolutionally conserved transcription factor, and its mutations cause blepharophimosis, ptosis, and epicanthus inversus syndrome (BPES), wherein affected females display eyelid defects and premature ovarian failure (POF). Notably, we found that functional FOXL2 is essential for SF-1-induced AMH regulation, via protein–protein interactions between FOXL2 and SF-1. A BPES-inducing mutant of FOXL2 (290–291delCA) was unable to interact with SF-1 and failed to mediate the association between SF-1 and the AMH promoter. Therefore, this study identified a novel regulatory circuit for ovarian AMH production; specifically, through the coordinated interplay between FOXL2 and SF-1 that could control ovarian follicle development.
Collapse
Affiliation(s)
- Hanyong Jin
- School of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Miae Won
- Department of Pharmacy, CHA University, Seongnam, Korea
| | - Si Eun Park
- School of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Seunghwa Lee
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Mira Park
- School of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Jeehyeon Bae
- School of Pharmacy, Chung-Ang University, Seoul, Korea
| |
Collapse
|
46
|
Zhang J, Liu W, Sun X, Kong F, Zhu Y, Lei Y, Su Y, Su Y, Li J. Inhibition of mTOR Signaling Pathway Delays Follicle Formation in Mice. J Cell Physiol 2016; 232:585-595. [PMID: 27301841 DOI: 10.1002/jcp.25456] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/13/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing China
| | - Wenwen Liu
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing China
| | - Xinhui Sun
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing China
| | - Feifei Kong
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing China
| | - Ye Zhu
- Department of Gynecology; Nanjing Maternal and Child Health Hospital; Nanjing Medical University; Nanjing China
| | - Yue Lei
- Department of Gynecology; Nanjing Maternal and Child Health Hospital; Nanjing Medical University; Nanjing China
| | - Youqiang Su
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing China
| | - Yiping Su
- Department of Gynecology; Nanjing Maternal and Child Health Hospital; Nanjing Medical University; Nanjing China
| | - Jing Li
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing China
| |
Collapse
|
47
|
Alves KA, Alves BG, Gastal GDA, de Tarso SGS, Gastal MO, Figueiredo JR, Gambarini ML, Gastal EL. The Mare Model to Study the Effects of Ovarian Dynamics on Preantral Follicle Features. PLoS One 2016; 11:e0149693. [PMID: 26900687 PMCID: PMC4762659 DOI: 10.1371/journal.pone.0149693] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/18/2016] [Indexed: 11/19/2022] Open
Abstract
Ovarian tissue collected by biopsy procedures allows the performance of many studies with clinical applications in the field of female fertility preservation. The aim of the present study was to investigate the influence of reproductive phase (anestrous vs. diestrous) and ovarian structures (antral follicles and corpus luteum) on the quality, class distribution, number, and density of preantral follicles, and stromal cell density. Ovarian fragments were harvested by biopsy pick-up procedures from mares and submitted to histological analysis. The mean preantral follicle and ovarian stromal cell densities were greater in the diestrous phase and a positive correlation of stromal cell density with the number and density of preantral follicles was observed. The mean area (mm2) of ovarian structures increased in the diestrous phase and had positive correlations with number of preantral follicles, follicle density, and stromal cell density. Biopsy fragments collected from ovaries containing an active corpus luteum had a higher follicle density, stromal cell density, and proportion of normal preantral follicles. In conclusion, our results showed: (1) the diestrous phase influenced positively the preantral follicle quality, class distribution, and follicle and stromal cell densities; (2) the area of ovarian structures was positively correlated with the follicle and stromal cell densities; and (3) the presence of an active corpus luteum had a positive effect on the quality of preantral follicles, and follicle and stromal densities. Therefore, herein we demonstrate that the presence of key ovarian structures favors the harvest of ovarian fragments containing an appropriate number of healthy preantral follicles.
Collapse
Affiliation(s)
- Kele A. Alves
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, lllinois, United States of America
- Center for Studies and Research in Animal Reproductive Biology, College of Veterinary and Animal Science, Federal University of Goiás, Goiânia, GO, Brazil
| | - Benner G. Alves
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, lllinois, United States of America
| | - Gustavo D. A. Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, lllinois, United States of America
| | - Saulo G. S. de Tarso
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, lllinois, United States of America
| | - Melba O. Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, lllinois, United States of America
| | - José R. Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - Maria L. Gambarini
- Center for Studies and Research in Animal Reproductive Biology, College of Veterinary and Animal Science, Federal University of Goiás, Goiânia, GO, Brazil
| | - Eduardo L. Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, lllinois, United States of America
- * E-mail:
| |
Collapse
|
48
|
Pelosi E, Forabosco A, Schlessinger D. Genetics of the ovarian reserve. Front Genet 2015; 6:308. [PMID: 26528328 PMCID: PMC4606124 DOI: 10.3389/fgene.2015.00308] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/24/2015] [Indexed: 11/13/2022] Open
Abstract
Primordial follicles or non-growing follicles (NGFs) are the functional unit of reproduction, each comprising a single germ cell surrounded by supporting somatic cells. NGFs constitute the ovarian reserve (OR), prerequisite for germ cell ovulation and the continuation of the species. The dynamics of the reserve is determined by the number of NGFs formed and their complex subsequent fates. During the reproductive lifespan, the OR progressively diminishes due to follicle atresia as well as recruitment, maturation, and ovulation. The depletion of the OR is the major determining driver of menopause, which ensues when the number of primordial follicles falls below a threshold of ∼1,000. Therefore, genes and processes involved in follicle dynamics are particularly important to understand the process of menopause, both in the typical reproductive lifespan and in conditions like primary ovarian insufficiency, defined as menopause before age 40. Genes and their variants that affect the timing of menopause thereby provide candidates for diagnosis of and intervention in problems of reproductive lifespan. We review the current knowledge of processes and genes involved in the development of the OR and in the dynamics of ovarian follicles.
Collapse
Affiliation(s)
- Emanuele Pelosi
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | | | - David Schlessinger
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
49
|
Moreno I, Míguez-Forjan JM, Simón C. Artificial gametes from stem cells. Clin Exp Reprod Med 2015; 42:33-44. [PMID: 26161331 PMCID: PMC4496429 DOI: 10.5653/cerm.2015.42.2.33] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 06/18/2015] [Accepted: 06/18/2015] [Indexed: 11/06/2022] Open
Abstract
The generation of artificial gametes is a real challenge for the scientific community today. In vitro development of human eggs and sperm will pave the way for the understanding of the complex process of human gametogenesis and will provide with human gametes for the study of infertility and the onset of some inherited disorders. However, the great promise of artificial gametes resides in their future application on reproductive treatments for all these people wishing to have genetically related children and for which gamete donation is now their unique option of parenthood. This is the case of infertile patients devoid of suitable gametes, same sex couples, singles and those fertile couples in a high risk of transmitting serious diseases to their progeny. In the search of the best method to obtain artificial gametes, many researchers have successfully obtained human germ cell-like cells from stem cells at different stages of differentiation. In the near future, this field will evolve to new methods providing not only viable but also functional and safe artificial germ cells. These artificial sperm and eggs should be able to recapitulate all the genetic and epigenetic processes needed for the correct gametogenesis, fertilization and embryogenesis leading to the birth of a healthy and fertile newborn.
Collapse
Affiliation(s)
- Inmaculada Moreno
- Department of Research and Development, Igenomix S.L., Paternam, Spain
| | | | - Carlos Simón
- Department of Research and Development, Igenomix S.L., Paternam, Spain. ; Fundación Instituto Valenciano de Infertilidad (FIVI), Valencia, Spain. ; Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
50
|
Omari S, Waters M, Naranian T, Kim K, Perumalsamy AL, Chi M, Greenblatt E, Moley KH, Opferman JT, Jurisicova A. Mcl-1 is a key regulator of the ovarian reserve. Cell Death Dis 2015; 6:e1755. [PMID: 25950485 PMCID: PMC4669721 DOI: 10.1038/cddis.2015.95] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/07/2015] [Accepted: 02/18/2015] [Indexed: 02/05/2023]
Abstract
A majority of ovarian follicles are lost to natural death, but the disruption of factors involved in maintenance of the oocyte pool results in a further untimely follicular depletion known as premature ovarian failure. The anti-apoptotic B-cell lymphoma 2 (Bcl-2) family member myeloid cell leukemia-1 (MCL-1) has a pro-survival role in various cell types; however, its contribution to oocyte survival is unconfirmed. We present a phenotypic characterization of oocytes deficient in Mcl-1, and establish its role in maintenance of the primordial follicle (PMF) pool, growing oocyte survival and oocyte quality. Mcl-1 depletion resulted in the premature exhaustion of the ovarian reserve, characterized by early PMF loss because of activation of apoptosis. The increasingly diminished surviving cohort of growing oocytes displayed elevated markers of autophagy and mitochondrial dysfunction. Mcl-1-deficient ovulated oocytes demonstrated an increased susceptibility to cellular fragmentation with activation of the apoptotic cascade. Concomitant deletion of the pro-apoptotic Bcl-2 member Bcl-2-associated X protein (Bax) rescued the PMF phenotype and ovulated oocyte death, but did not prevent the mitochondrial dysfunction associated with Mcl-1 deficiency and could not rescue long-term breeding performance. We thus recognize MCL-1 as the essential survival factor required for conservation of the postnatal PMF pool, growing follicle survival and effective oocyte mitochondrial function.
Collapse
Affiliation(s)
- S Omari
- 1] Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, 25 Orde Street, Toronto, Ontario M5T 3H7, Canada [2] Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - M Waters
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, 25 Orde Street, Toronto, Ontario M5T 3H7, Canada
| | - T Naranian
- 1] Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, 25 Orde Street, Toronto, Ontario M5T 3H7, Canada [2] Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - K Kim
- 1] Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, 25 Orde Street, Toronto, Ontario M5T 3H7, Canada [2] Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - A L Perumalsamy
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, 25 Orde Street, Toronto, Ontario M5T 3H7, Canada
| | - M Chi
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660S Euclid Avenue, St. Louis, MO 63110, USA
| | - E Greenblatt
- 1] Centre for Fertility and Reproductive Health, Mount Sinai Hospital, 250 Dundas Street, Toronto, Ontario M5T 2Z5, Canada [2] Department of Obstetrics and Gynecology, University of Toronto, 92 College Street, Toronto, Ontario M5G 1L4, Canada
| | - K H Moley
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660S Euclid Avenue, St. Louis, MO 63110, USA
| | - J T Opferman
- Department of Biochemistry, St. Jude Children's Research Hospital, MS 340, Room D4063D, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - A Jurisicova
- 1] Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, 25 Orde Street, Toronto, Ontario M5T 3H7, Canada [2] Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada [3] Department of Obstetrics and Gynecology, University of Toronto, 92 College Street, Toronto, Ontario M5G 1L4, Canada
| |
Collapse
|