1
|
Amaral VLL, Nunes JL, Salvador RA, Senn AP, dos Santos TG. In vitro culture of mechanically isolated murine primary follicles in the presence of human platelet lysate PLTMax. JBRA Assist Reprod 2024; 28:410-417. [PMID: 38446749 PMCID: PMC11349267 DOI: 10.5935/1518-0557.20240008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/21/2024] [Indexed: 03/08/2024] Open
Abstract
OBJECTIVE To develop a system for the culture of murine preantral ovarian follicles using Human Serum Albumin (HSA) and Human Platelet Lysate (PLTMax). METHODS Mechanically isolated preantral follicles (N=146) were obtained from Swiss mice and cultured in DMEM:F12 medium for ten days in a 96-well plate with conical bottom. The medium was supplemented with penicillin, streptomycin, and equine chorionic gonadotropin. Additional proteins were tested in 4 test groups: G1: human serum albumin (HSA), G2: human platelet lysate (PLTM), and G3 and G4: HSA + PLTMax at lower and higher concentrations, respectively. Cellular vitality and oocyte morphology were evaluated on day 11 of culture. RESULTS The highest follicular growth (3.4 fold) was achieved in HSA (G1), while a significantly lower (1.8 fold) growth was achieved in the presence of PLTM (G2, G4) and even further reduced (1.2 fold) when HSA and PLTM were combined (G3). Cellular vitality was close to 70-80% among the four groups, and the highest number of intact oocytes were found in G1. CONCLUSIONS PLTM did not improve follicular development and oocyte maturation compared to HSA but preserved cell vitality.
Collapse
Affiliation(s)
| | - Jhuly Laurentino Nunes
- Laboratory of reproductive biology, University of Vale do
Itajaí (UNIVALI), Itajaí, SC, Brazil
| | - Rafael Alonso Salvador
- Laboratory of reproductive biology, University of Vale do
Itajaí (UNIVALI), Itajaí, SC, Brazil
| | - Alfred Paul Senn
- Department of Genetic Medicine and Development, University of
Geneva, Geneva, Switzerland
| | | |
Collapse
|
2
|
Zaniker EJ, Hashim PH, Gauthier S, Ankrum JA, Campo H, Duncan FE. Three-Dimensionally Printed Agarose Micromold Supports Scaffold-Free Mouse Ex Vivo Follicle Growth, Ovulation, and Luteinization. Bioengineering (Basel) 2024; 11:719. [PMID: 39061801 PMCID: PMC11274170 DOI: 10.3390/bioengineering11070719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Ex vivo follicle growth is an essential tool, enabling interrogation of folliculogenesis, ovulation, and luteinization. Though significant advancements have been made, existing follicle culture strategies can be technically challenging and laborious. In this study, we advanced the field through development of a custom agarose micromold, which enables scaffold-free follicle culture. We established an accessible and economical manufacturing method using 3D printing and silicone molding that generates biocompatible hydrogel molds without the risk of cytotoxicity from leachates. Each mold supports simultaneous culture of multiple multilayer secondary follicles in a single focal plane, allowing for constant timelapse monitoring and automated analysis. Mouse follicles cultured using this novel system exhibit significantly improved growth and ovulation outcomes with comparable survival, oocyte maturation, and hormone production profiles as established three-dimensional encapsulated in vitro follicle growth (eIVFG) systems. Additionally, follicles recapitulated aspects of in vivo ovulation physiology with respect to their architecture and spatial polarization, which has not been observed in eIVFG systems. This system offers simplicity, scalability, integration with morphokinetic analyses of follicle growth and ovulation, and compatibility with existing microphysiological platforms. This culture strategy has implications for fundamental follicle biology, fertility preservation strategies, reproductive toxicology, and contraceptive drug discovery.
Collapse
Affiliation(s)
- Emily J. Zaniker
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (E.J.Z.); (P.H.H.); (S.G.)
| | - Prianka H. Hashim
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (E.J.Z.); (P.H.H.); (S.G.)
| | - Samuel Gauthier
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (E.J.Z.); (P.H.H.); (S.G.)
| | - James A. Ankrum
- Roy J. Carver Department of Biomedical Engineering, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA 52245, USA;
| | - Hannes Campo
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (E.J.Z.); (P.H.H.); (S.G.)
| | - Francesca E. Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (E.J.Z.); (P.H.H.); (S.G.)
| |
Collapse
|
3
|
Nair R, Kasturi M, Mathur V, Seetharam RN, S Vasanthan K. Strategies for developing 3D printed ovarian model for restoring fertility. Clin Transl Sci 2024; 17:e13863. [PMID: 38955776 PMCID: PMC11219245 DOI: 10.1111/cts.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024] Open
Abstract
Ovaries play a crucial role in the regulation of numerous essential processes that occur within the intricate framework of female physiology. They are entrusted with the responsibility of both generating a new life and orchestrating a delicate hormonal symphony. Understanding their functioning is crucial for gaining insight into the complexities of reproduction, health, and fertility. In addition, ovaries secrete hormones that are crucial for both secondary sexual characteristics and the maintenance of overall health. A three-dimensional (3D) prosthetic ovary has the potential to restore ovarian function and preserve fertility in younger females who have undergone ovariectomies or are afflicted with ovarian malfunction. Clinical studies have not yet commenced, and the production of 3D ovarian tissue for human implantation is still in the research phase. The main challenges faced while creating a 3D ovary for in vivo implantation include sustenance of ovarian follicles, achieving vascular infiltration into the host tissue, and restoring hormone circulation. The complex ovarian microenvironment that is compartmentalized and rigid makes the biomimicking of the 3D ovary challenging in terms of biomaterial selection and bioink composition. The successful restoration of these properties in animal models has led to expectations for the development of human ovaries for implantation. This review article summarizes and evaluates the optimal 3D models of ovarian structures and their safety and efficacy concerns to provide concrete suggestions for future research.
Collapse
Affiliation(s)
- Ramya Nair
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher EducationManipalKarnatakaIndia
| | - Meghana Kasturi
- Department of Mechanical EngineeringUniversity of MichiganDearbornMichiganUSA
| | - Vidhi Mathur
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher EducationManipalKarnatakaIndia
| | - Raviraja N. Seetharam
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher EducationManipalKarnatakaIndia
| | - Kirthanashri S Vasanthan
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher EducationManipalKarnatakaIndia
| |
Collapse
|
4
|
Christodoulaki A, He H, Zhou M, De Roo C, Baetens M, De Pretre T, Fakhar-I-Adil M, Menten B, Van Soom A, Stoop D, Boel A, Heindryckx B. Pronuclear transfer rescues poor embryo development of in vitro-grown secondary mouse follicles. Hum Reprod Open 2024; 2024:hoae009. [PMID: 38425578 PMCID: PMC10904147 DOI: 10.1093/hropen/hoae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/28/2024] [Indexed: 03/02/2024] Open
Abstract
STUDY QUESTION Is pronuclear transfer (PNT) capable of restoring embryo developmental arrest caused by cytoplasmic inferiority of in vitro-grown (IVG) mouse oocytes? SUMMARY ANSWER PNT to in vivo matured cytoplasm significantly improved embryo development of IVG mouse oocytes, leading to living, fertile offspring. WHAT IS KNOWN ALREADY In vitro follicle culture has been considered as a fertility preservation option for cancer patients. Studies describing the culture of human follicles remain scarce, owing to low availability of tissue. Mouse models have extensively been used to study and optimize follicle culture. Although important achievements have been accomplished, including the production of healthy offspring in mice, IVG oocytes are of inferior quality when compared to in vivo-grown oocytes, likely because of cytoplasmic incompetence. STUDY DESIGN SIZE DURATION The study was carried out from September 2020 to February 2022. In total, 120 15-day-old B6D2 mice were used to perform secondary follicle culture and assess the quality of IVG oocytes. In vivo-grown control oocytes were obtained from 85 8- to 12-week-old B6D2 mice, following ovarian stimulation. For sperm collection, four B6D2 males between 10 and 14 weeks old were used. For embryo transfer, 14 8- to 12-week-old CD1 females served as surrogate mothers and 10 CD1 vasectomized males 10-24 weeks old were used to generate pseudo-pregnant females. Finally, for mating, four B6D2 female mice aged 8-10 weeks and two B6D2 male mice aged 10 weeks old were used to confirm the fertility of nuclear transfer (NT)-derived pups. PARTICIPANTS/MATERIALS SETTING METHODS Secondary follicles from 15-day-old B6D2 mice were isolated from the ovaries and cultured for 9 days, before a maturation stimulus was given. Following 16-18 h of maturation, oocytes were collected and evaluated on maturation rate, oocyte diameter, activation rate, spindle morphology, calcium-releasing ability, and mitochondrial membrane potential. For every experiment, in vivo-grown oocytes were used as a control for comparison. When cytoplasmic immaturity and poor embryo development were confirmed in IVG oocytes, PNT was performed. For this, the pronuclei from IVG oocytes, created following parthenogenetic activation and IVF, were transferred to the cytoplasm of fertilized, in vivo-grown oocytes. Genetic analysis and embryo transfer of the generated embryos were implemented to confirm the safety of the technique. MAIN RESULTS AND THE ROLE OF CHANCE Following 9 days of follicle culture, 703 oocytes were collected, of which 76% showed maturation to the metaphase II stage. Oocyte diameters were significantly lower in IVG oocytes, measuring 67.4 μm versus 73.1 μm in controls (P < 0.001). Spindle morphology did not differ significantly between IVG and control oocytes, but calcium-releasing ability was compromised in the IVG group. An average calcium release of 1.62 arbitrary units was observed in IVG oocytes, significantly lower than 5.74 in control oocytes (P < 0.001). Finally, mitochondrial membrane potential was inferior in IVG compared to the control group, reaching an average value of 0.95 versus 2.27 (P < 0.001). Developmental potential of IVG oocytes was assessed following parthenogenetic activation with strontium chloride (SrCl2). Only 59.4% of IVG oocytes cleaved to two cells and 36.3% reached the blastocyst stage, significantly lower than 89.5% and 88.2% in control oocytes, respectively (P < 0.001 and 0.001). Both PNT and spindle transfer (ST) were explored in pilot experiments with parthenogenetically activated oocytes, as a means to overcome poor embryo development. After the added value of NT was confirmed, we continued with the generation of biparental embryos by PNT. For this purpose, IVG and control oocytes first underwent IVF. Only 15.5% of IVG oocytes were normally fertilized, in contrast to 45.5% in controls (P < 0.001), with resulting failure of blastocyst formation in the IVG group (0 versus 86.2%, P < 0.001). When the pronuclei of IVG zygotes were transferred to the cytoplasm of control zygotes, the blastocyst rate was restored to 86.9%, a similar level as the control. Genetic analysis of PNT embryos revealed a normal chromosomal profile, to a rate of 80%. Finally, the generation of living, fertile offspring from PNT was possible following embryo transfer to surrogate mothers. LARGE-SCALE DATA N/A. LIMITATIONS REASONS FOR CAUTION Genetic profiles of analysed embryos from PNT originate from groups that are too small to draw concrete conclusions, whilst ST, which would be the preferred NT approach, could not be used for the generation of biparental embryos owing to technical limitations. Even though promising, the use of PNT should be considered as experimental. Furthermore, results were acquired in a mouse model, so validation of the technique in human IVG oocytes needs to be performed to evaluate the clinical relevance of the technology. The genetic profiles from IVG oocytes, which would be the ultimate characterization for chromosomal abnormalities, were not analysed owing to limitations in the reliable analysis of single cells. WIDER IMPLICATIONS OF THE FINDINGS PNT has the ability to overcome the poor cytoplasmic quality of IVG mouse oocytes. Considering the low maturation efficiency of human IVG oocytes and potential detrimental effects following long-term in vitro culture, NT could be applied to rescue embryo development and could lead to an increased availability of good quality embryos for transfer. STUDY FUNDING/COMPETING INTERESTS A.C. is a holder of FWO (Fonds voor Wetenschappelijk Onderzoek) grants (1S80220N and 1S80222N). B.H. and A.V.S. have been awarded with a special BOF (Bijzonder Onderzoeksfonds), GOA (Geconcerteerde onderzoeksacties) 2018000504 (GOA030-18 BOF) funding. B.H. has been receiving unrestricted educational funding from Ferring Pharmaceuticals (Aalst, Belgium). The authors declare that they have no conflict of interest.
Collapse
Affiliation(s)
- Antonia Christodoulaki
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| | - Haitang He
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
- Department of Obstetrics and Gynaecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhou
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| | - Chloë De Roo
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
- Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Machteld Baetens
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium
| | - Tine De Pretre
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium
| | - Muhammad Fakhar-I-Adil
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| | - Björn Menten
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium
| | - Ann Van Soom
- Faculty of Veterinary Medicine, Department of Reproduction, Obstetrics and Herd Health, University of Ghent, Merelbeke, Belgium
| | - Dominic Stoop
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
- Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Annekatrien Boel
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| | - Björn Heindryckx
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
5
|
Frost ER, Gilchrist RB. Making human eggs in a dish: are we close? Trends Biotechnol 2024; 42:168-178. [PMID: 37625913 DOI: 10.1016/j.tibtech.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/05/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023]
Abstract
In the space of 50 years, we have seen incredible achievements in human reproductive medicine. With these leaps forward, it is no wonder that there is a major interest in women's reproductive health research, including extension of reproductive lifespan. Substantial effort is currently being made to address this challenge, including from the commercial sector. In vitro gametogenesis (IVG) in mice is a spectacular breakthrough and has the potential to offer hope to women with intractable infertility. However, with such lofty goals, some reflection may be called for: mastering all of the techniques required for complete and safe IVG in women is likely to be extraordinarily difficult.
Collapse
Affiliation(s)
- Emily R Frost
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Robert B Gilchrist
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
6
|
Leonel ECR, Dadashzadeh A, Moghassemi S, Vlieghe H, Wyns C, Orellana R, Amorim CA. New Solutions for Old Problems: How Reproductive Tissue Engineering Has Been Revolutionizing Reproductive Medicine. Ann Biomed Eng 2023; 51:2143-2171. [PMID: 37468688 DOI: 10.1007/s10439-023-03321-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Acquired disorders and congenital defects of the male and female reproductive systems can have profound impacts on patients, causing sexual and endocrine dysfunction and infertility, as well as psychosocial consequences that affect their self-esteem, identity, sexuality, and relationships. Reproductive tissue engineering (REPROTEN) is a promising approach to restore fertility and improve the quality of life of patients with reproductive disorders by developing, replacing, or regenerating cells, tissues, and organs from the reproductive and urinary systems. In this review, we explore the latest advancements in REPROTEN techniques and their applications for addressing degenerative conditions in male and female reproductive organs. We discuss current research and clinical outcomes and highlight the potential of 3D constructs utilizing biomaterials such as scaffolds, cells, and biologically active molecules. Our review offers a comprehensive guide for researchers and clinicians, providing insights into how to reestablish reproductive tissue structure and function using innovative surgical approaches and biomaterials. We highlight the benefits of REPROTEN for patients, including preservation of fertility and hormonal production, reconstruction of uterine and cervical structures, and restoration of sexual and urinary functions. Despite significant progress, REPROTEN still faces ethical and technical challenges that need to be addressed. Our review underscores the importance of continued research in this field to advance the development of effective and safe REPROTEN approaches for patients with reproductive disorders.
Collapse
Affiliation(s)
- Ellen C R Leonel
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium
| | - Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium
| | - Hanne Vlieghe
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium
| | - Christine Wyns
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Renan Orellana
- Departamento de Ciencias Químicas y Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Christiani A Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium.
| |
Collapse
|
7
|
Francés-Herrero E, Lopez R, Campo H, de Miguel-Gómez L, Rodríguez-Eguren A, Faus A, Pellicer A, Cervelló I. Advances of xenogeneic ovarian extracellular matrix hydrogels for in vitro follicle development and oocyte maturation. BIOMATERIALS ADVANCES 2023; 151:213480. [PMID: 37267748 DOI: 10.1016/j.bioadv.2023.213480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/04/2023]
Abstract
Research aimed at preserving female fertility is increasingly using bioengineering techniques to develop new platforms capable of supporting ovarian cell function in vitro and in vivo. Natural hydrogels (alginate, collagen, and fibrin) have been the most exploited approaches; however they are biologically inert and/or biochemically simple. Thus, establishing a suitable biomimetic hydrogel from decellularized ovarian cortex (OC) extracellular matrix (OvaECM) could provide a complex native biomaterial for follicle development and oocyte maturation. The objectives of this work were (i) to establish an optimal protocol to decellularize and solubilize bovine OC, (ii) to characterize the histological, molecular, ultrastructural, and proteomic properties of the resulting tissue and hydrogel, and (iii) to assess its biocompatibility and adequacy for murine in vitro follicle growth (IVFG). Sodium dodecyl sulfate was identified as the best detergent to develop bovine OvaECM hydrogels. Hydrogels added into standard media or used as plate coatings were employed for IVFG and oocyte maturation. Follicle growth, survival, hormone production, and oocyte maturation and developmental competence were evaluated. OvaECM hydrogel-supplemented media best supported follicle survival, expansion, and hormone production, while the coatings provided more mature and competent oocytes. Overall, the findings support the xenogeneic use of OvaECM hydrogels for future human female reproductive bioengineering.
Collapse
Affiliation(s)
- Emilio Francés-Herrero
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain; IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Rosalba Lopez
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain; IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Hannes Campo
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lucía de Miguel-Gómez
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain; IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Adolfo Rodríguez-Eguren
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Amparo Faus
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Antonio Pellicer
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain; IVI Roma Parioli, IVI-RMA Global, 00197 Rome, Italy
| | - Irene Cervelló
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain.
| |
Collapse
|
8
|
Xiong X, Hu Y, Pan B, Zhu Y, Fei X, Yang Q, Xie Y, Xiong Y, Lan D, Fu W, Li J. RFRP-3 Influences Apoptosis and Steroidogenesis of Yak Cumulus Cells and Compromises Oocyte Meiotic Maturation and Subsequent Developmental Competence. Int J Mol Sci 2023; 24:ijms24087000. [PMID: 37108163 PMCID: PMC10138887 DOI: 10.3390/ijms24087000] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
RF amide-related peptide 3 (RFRP-3), a mammalian ortholog of gonadotropin-inhibitory hormone (GnIH), is identified to be a novel inhibitory endogenous neurohormonal peptide that regulates mammalian reproduction by binding with specific G protein-coupled receptors (GPRs) in various species. Herein, our objectives were to explore the biological functions of exogenous RFRP-3 on the apoptosis and steroidogenesis of yak cumulus cells (CCs) and the developmental potential of yak oocytes. The spatiotemporal expression pattern and localization of GnIH/RFRP-3 and its receptor GPR147 were determined in follicles and CCs. The effects of RFRP-3 on the proliferation and apoptosis of yak CCs were initially estimated by EdU assay and TUNEL staining. We confirmed that high-dose (10-6 mol/L) RFRP-3 suppressed viability and increased the apoptotic rates, implying that RFRP-3 could repress proliferation and induce apoptosis. Subsequently, the concentrations of E2 and P4 were significantly lower with 10-6 mol/L RFRP-3 treatment than that of the control counterparts, which indicated that the steroidogenesis of CCs was impaired after RFRP-3 treatment. Compared with the control group, 10-6 mol/L RFRP-3 treatment decreased the maturation of yak oocytes efficiently and subsequent developmental potential. We sought to explore the potential mechanism of RFRP-3-induced apoptosis and steroidogenesis, so we observed the levels of apoptotic regulatory factors and hormone synthesis-related factors in yak CCs after RFRP-3 treatment. Our results indicated that RFRP-3 dose-dependently elevated the expression of apoptosis markers (Caspase and Bax), whereas the expression levels of steroidogenesis-related factors (LHR, StAR, 3β-HSD) were downregulated in a dose-dependent manner. However, all these effects were moderated by cotreatment with inhibitory RF9 of GPR147. These results demonstrated that RFRP-3 adjusted the expression of apoptotic and steroidogenic regulatory factors to induce apoptosis of CCs, probably through binding with its receptor GPR147, as well as compromised oocyte maturation and developmental potential. This research revealed the expression profiles of GnIH/RFRP-3 and GPR147 in yak CCs and supported a conserved inhibitory action on oocyte developmental competence.
Collapse
Affiliation(s)
- Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yulei Hu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Bangting Pan
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yanjin Zhu
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Xixi Fei
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Qinhui Yang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yumian Xie
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Daoliang Lan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Wei Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
9
|
Zhao X, Zhang S, Gao S, Chang HM, Leung PCK, Tan J. A Novel Three-Dimensional Follicle Culture System Decreases Oxidative Stress and Promotes the Prolonged Culture of Human Granulosa Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15084-15095. [PMID: 36926803 PMCID: PMC10065000 DOI: 10.1021/acsami.2c18734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Tissue engineering advancements have made it possible to modify biomaterials to reconstruct a similar three-dimensional structure of the extracellular matrix (ECM) for follicle development and to supply the required biological signals. We postulated that an artificial polysaccharide hydrogel modified with an ECM mimetic peptide may produce efficient irritation signals by binding to specific integrins providing a suitable environment for follicular development and influencing the behavior of human granulosa cells (hGCs). Laminin, an important component of the extracellular matrix, can modulate hGCs and oocyte growth. Specifically, follicles of mice were randomly divided into two-dimensional (2D) and three-dimensional (3D) culture systems established by a hydrogel modified with RGD or laminin mimetic peptides (IKVAV and YIGSR) and RGD (IYR). Our results showed that 3D cultured systems significantly improved follicle survival, growth, and viability. IYR peptides enhanced the oocyte meiosis competence. Additionally, we explored the effect of 3D culture on hGCs, which improved hGCs viability, increased the proportion of S- and G2/M-phase cells, and inhibited cell apoptosis of hGCs. On days 1 and 2, the secretion of progesterone was reduced in 3D-cultured hGCs. Notably, 3D-cultured hGCs exhibited delayed senescence, decreased oxidative stress, and elevated mitochondrial membrane potential. Moreover, the expression levels of cumulus expansion-related genes (COX2, HAS2, and PTX3) and integrin α6β1 were upregulated in 3D-cultured hGCs. In conclusion, a 3D culture utilizing hydrogels modified with Laminin-mimetic peptides can provide a durable physical environment suitable for follicular development. The laminin-mimetic peptides may regulate the biological activity of hGCs by attaching to the integrin α6β1.
Collapse
Affiliation(s)
- Xinyang Zhao
- Center
of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning 110022, China
- Key
Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling
of Liaoning Province, Shenyang, Liaoning 110022, China
| | - Siwen Zhang
- Center
of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning 110022, China
- Key
Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling
of Liaoning Province, Shenyang, Liaoning 110022, China
| | - Shan Gao
- Center
of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning 110022, China
- Key
Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling
of Liaoning Province, Shenyang, Liaoning 110022, China
| | - Hsun-Ming Chang
- Department
of Obstetrics and Gynaecology, BC Children’s Hospital Research
Institute, University of British Columbia, Vancouver, British Columbia V5Z4H4, Canada
- Reproductive
Medicine Center, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung 404327, Taiwan
| | - Peter C. K. Leung
- Department
of Obstetrics and Gynaecology, BC Children’s Hospital Research
Institute, University of British Columbia, Vancouver, British Columbia V5Z4H4, Canada
| | - Jichun Tan
- Center
of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning 110022, China
- Key
Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling
of Liaoning Province, Shenyang, Liaoning 110022, China
| |
Collapse
|
10
|
Almeida GHDR, Iglesia RP, Rinaldi JDC, Murai MK, Calomeno CVAQ, da Silva Junior LN, Horvath-Pereira BDO, Pinho LBM, Miglino MA, Carreira ACO. Current Trends on Bioengineering Approaches for Ovarian Microenvironment Reconstruction. TISSUE ENGINEERING. PART B, REVIEWS 2023. [PMID: 36355603 DOI: 10.1089/ten.teb.2022.0171] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ovarian tissue has a unique microarchitecture and a complex cellular and molecular dynamics that are essential for follicular survival and development. Due to this great complexity, several factors may lead to ovarian insufficiency, and therefore to systemic metabolic disorders and female infertility. Techniques currently used in the reproductive clinic such as oocyte cryopreservation or even ovarian tissue transplant, although effective, have several limitations, which impair their wide application. In this scenario, mimetic ovarian tissue reconstruction comes as an innovative alternative to develop new methodologies for germ cells preservation and ovarian functions restoration. The ovarian extracellular matrix (ECM) is crucial for oocyte viability maintenance, once it acts actively in folliculogenesis. One of the key components of ovarian bioengineering is biomaterials application that mimics ECM and provides conditions for cell anchorage, proliferation, and differentiation. Therefore, this review aims at describing ovarian tissue engineering approaches and listing the main limitations of current methods for preservation and reestablishment of ovarian fertility. In addition, we describe the main elements that structure this study field, highlighting the main advances and the challenges to overcome to develop innovative methodologies to be applied in reproductive medicine. Impact Statement This review presents the main advances in the application of tissue bioengineering in the ovarian tissue reconstruction to develop innovative solutions for ovarian fertility reestablishment.
Collapse
Affiliation(s)
| | - Rebeca Piatniczka Iglesia
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Mikaelly Kiemy Murai
- Department of Morphological Sciences, State University of Maringa, Maringá, Brazil
| | | | | | | | - Letícia Beatriz Mazo Pinho
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.,Center of Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
| |
Collapse
|
11
|
Jitjumnong J, Tang PC. Bone Morphogenetic Protein 15 (BMP-15) Improves In Vitro Mouse Folliculogenesis. Animals (Basel) 2023; 13:ani13060980. [PMID: 36978521 PMCID: PMC10044016 DOI: 10.3390/ani13060980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
Multilayered secondary follicles were encapsulated in a 0.5% alginate matrix and cultured in a 3D culture system supplemented with bone morphogenetic protein 15 (BMP-15; 15 ng/mL) for 12 days. The in vitro development of ovarian follicles was evaluated. On day 12, the follicle diameter, follicle survival rate, and antrum formation rate were significantly higher for follicles cultured in BMP-15-supplemented medium than those cultured in regular medium. The percentage of ovulated metaphase II oocytes retrieved from follicles cultured in BMP-15-supplemented medium was greater than that of oocytes retrieved from follicles cultured in regular medium. The secretion of P4 was significantly higher on days 6, 8, and 10 in follicles cultured in BMP-15-supplemented medium. The result for E2 tended toward significance on day 12. Intracellular reactive oxygen species levels were higher and glutathione levels were lower in mature oocytes from the in vitro culture than in mature oocytes from an in vivo control. A 3D culture system using an alginate matrix and supplemented with BMP-15 effectively improves the outcomes of in vitro ovarian follicle culture.
Collapse
Affiliation(s)
- Jakree Jitjumnong
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan
| | - Pin-Chi Tang
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
- Correspondence: ; Tel.: +886-4-2284-0365 (ext. 222); Fax: +886-4-2286-0265
| |
Collapse
|
12
|
Converse A, Zaniker EJ, Amargant F, Duncan FE. Recapitulating folliculogenesis and oogenesis outside the body: encapsulated in vitro follicle growth†. Biol Reprod 2023; 108:5-22. [PMID: 36136744 PMCID: PMC9843677 DOI: 10.1093/biolre/ioac176] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/04/2022] [Accepted: 09/21/2022] [Indexed: 01/21/2023] Open
Abstract
Folliculogenesis is a tightly coordinated process essential for generating a fertilization-competent gamete while also producing gonadal hormones that sustain endocrine function. In vitro follicle growth systems have been critical to our understanding of key events in folliculogenesis, such as gonadotropin-independent and dependent growth, steroid hormone production, and oocyte growth and maturation (cytoplasmic and meiotic). Although there are several successful follicle culture strategies, the following protocol details an encapsulated in vitro follicle growth (eIVFG) system for use with mouse ovarian follicles. Encapsulated IVFG is performed with alginate hydrogels, which are biologically inert, maintains cell-to-cell interactions between granulosa cells and the oocyte, and preserves follicle architecture as found in the ovary. The system supports follicle growth, development, and differentiation from the early primary follicle to the antral follicle stage. Moreover, post-folliculogenesis events including meiotic maturation, ovulation, and luteinization are also supported. Importantly, the culture of secondary follicles has successfully resulted in viable pups after blastocyst transfer. This alginate-based eIVFG system is versatile and has broad applications as a tool for interrogating the fundamental biology of the ovarian follicle in a controlled manner, a screening platform for toxicity and bioactivity, and a potential fertility preservation method for endangered species as well as humans.
Collapse
Affiliation(s)
- Aubrey Converse
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illnois, USA
| | - Emily J Zaniker
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illnois, USA
| | - Farners Amargant
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illnois, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illnois, USA
| |
Collapse
|
13
|
Khunmanee S, Park H. Three-Dimensional Culture for In Vitro Folliculogenesis in the Aspect of Methods and Materials. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:1242-1257. [PMID: 35822548 DOI: 10.1089/ten.teb.2021.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In vitro ovarian follicle culture is a reproduction technique used to obtain fertilizable oocytes, for overcoming fertility issues due to premature ovarian failure. This requires the establishment of an in vitro culture model that is capable of better simulating the in vivo ovarian growth environment. Two-dimensional (2D) culture systems have been successfully set up in rodent models. However, they are not suitable for larger animal models as the follicles of larger animals cultured in 2D culture systems often lose their shape due to dysfunction in the gap junctions. Three-dimensional (3D) culture systems are more suitable for maintaining follicle architecture, and therefore are proposed for the successful in vitro culturing of follicles in various animal models. The role of different methods, scaffolds, and suspension cultures in supporting follicle development has been studied to provide direction for improving in vitro follicle culture technologies. The three major strategies for in vitro 3D follicle cultures are discussed in this article. First, the in vitro culture systems, such as microfluidics, hanging drop, hydrogels, and 3D-printing, are reviewed. We have focused on the 3D hydrogel system as it uses different materials for supporting follicular growth and oocyte maturation in several animal models and in humans. We have also discussed the criteria used for biomaterial evaluations such as solid concentration, elasticity, and rigidity. In addition, future research directions for advancing in vitro 3D follicle culture system are discussed. Impact statement A new frontier in assisted reproductive technology is in vitro tissue or follicle culture, particularly for fertility preservation. The in vitro three-dimensional (3D) culture technique enhances follicular development and provides mature oocytes, overcoming the limitations of traditional in vitro two-dimensional cultures. Polymer biomaterials have good compatibility and retain the physiological structure of follicles in the 3D culture system. Utilizing hybrid in vitro culture materials by merging matrix, hydrogel, and unique patterned materials may facilitate follicular growth in the future.
Collapse
Affiliation(s)
- Sureerat Khunmanee
- Department of Integrative Engineering, Chung-Ang University, Seoul, Korea
| | - Hansoo Park
- Department of Integrative Engineering, Chung-Ang University, Seoul, Korea
| |
Collapse
|
14
|
Ghorbani S, Eyni H, Norahan MH, Zarrintaj P, Urban N, Mohammadzadeh A, Mostafavi E, Sutherland DS. Advanced bioengineering of female germ cells to preserve fertility. Biol Reprod 2022; 107:1177-1204. [PMID: 35947985 PMCID: PMC10144627 DOI: 10.1093/biolre/ioac160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/14/2022] Open
Abstract
Oogenesis and folliculogenesis are considered as complex and species-specific cellular differentiation processes, which depend on the in vivo ovarian follicular environment and endocrine cues. Considerable efforts have been devoted to driving the differentiation of female primordial germ cells toward mature oocytes outside of the body. The recent experimental attempts have laid stress on offering a suitable microenvironment to assist the in vitro folliculogenesis and oogenesis. Despite developing a variety of bioengineering techniques and generating functional mature gametes through in vitro oogenesis in earlier studies, we still lack knowledge of appropriate microenvironment conditions for building biomimetic culture systems for female fertility preservation. Therefore, this review paper can provide a source for a large body of scientists developing cutting-edge in vitro culture systems for female germ cells or setting up the next generation of reproductive medicine as feasible options for female infertility treatment. The focal point of this review outlines advanced bioengineering technologies such as 3D biofabricated hydrogels/scaffolds and microfluidic systems utilized with female germlines for fertility preservation through in vitro folliculogenesis and oogenesis.
Collapse
Affiliation(s)
- Sadegh Ghorbani
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Hossein Eyni
- Cellular and Molecular Research Center, School of Medicine, Iran University of Medical Science, Tehran, Iran
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Hadi Norahan
- School of Engineering and Sciences, Tecnologico de Monterrey Unviersity, Monterrey, NL, Mexico
| | - Payam Zarrintaj
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA
| | - Nadine Urban
- Freiburg Centre for Interactive Materials and Bioinspired Technology, University of Freiburg, Freiburg, Germany
| | | | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Duncan S Sutherland
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| |
Collapse
|
15
|
ÜNAL MS, SEÇME M. Does the ovarian surface epithelium differentiate into primordial follicle and primary follicle precursor structures? CUKUROVA MEDICAL JOURNAL 2022. [DOI: 10.17826/cumj.1134852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Purpose: The aim of this study is to investigate the differentiation capacity of ovarian surface epithelial cells both in cell culture conditions and in ovarian tissue sections.
Materials and Methods: The ovaries of two prepubertal (4 weeks old) female rats were divided into small pieces and explant cell culture was created. Ovarian surface epithelium proliferating together with ovarian stromal cells in mixed cell culture was isolated and reproduced. In addition, ovarian surface epithelium was examined in histological sections of ovarian tissue and images were taken under the microscope.
Results: The morphological appearance of the ovarian surface epithelium was found to be cobblestone. In the count performed under phase contrast microscopy, it was observed that 2x106 and 3x106 cells were grown in the culture dishes, respectively. Primordial follicle-like structures were observed in some areas of the petri dishes. On the histological sections, primordial and primary follicle precursor structures were observed on the basement membrane.
Conclusion: Showing oocyte markers (Gdf-9, C-Mos, Zpc, Stella) and germ cell markers (Dazl, Vasa, Blimp1, Fragilis) both in cell cultures and in histological sections can give us valuable information in terms of monitoring the differentiation capacity of these cells.
Collapse
|
16
|
Fazelian‐Dehkordi K, Talaei‐Khozani T, A SFM. Three‐dimensional in vitro maturation of rabbit oocytes enriched with sheep decellularized greater omentum. Vet Med Sci 2022; 8:2092-2103. [PMID: 35896003 PMCID: PMC9514494 DOI: 10.1002/vms3.891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Khatereh Fazelian‐Dehkordi
- Department of Anatomical Sciences Shiraz Medical School, Shiraz University of Medical Sciences Shiraz Iran
| | - Tahereh Talaei‐Khozani
- Histomorphometry and Stereology Research Center Shiraz Medical School, Shiraz University of Medical Sciences Shiraz Iran
- Tissue Engineering Lab Department of Anatomical Sciences Shiraz Medical School, Shiraz University of Medical Sciences Shiraz Iran
| | - S. Fakhroddin Mesbah A
- Department of Anatomical Sciences Shiraz Medical School, Shiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
17
|
Wu M, Guo Y, Wei S, Xue L, Tang W, Chen D, Xiong J, Huang Y, Fu F, Wu C, Chen Y, Zhou S, Zhang J, Li Y, Wang W, Dai J, Wang S. Biomaterials and advanced technologies for the evaluation and treatment of ovarian aging. J Nanobiotechnology 2022; 20:374. [PMID: 35953871 PMCID: PMC9367160 DOI: 10.1186/s12951-022-01566-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/17/2022] [Indexed: 12/26/2022] Open
Abstract
Ovarian aging is characterized by a progressive decline in ovarian function. With the increase in life expectancy worldwide, ovarian aging has gradually become a key health problem among women. Over the years, various strategies have been developed to preserve fertility in women, while there are currently no clinical treatments to delay ovarian aging. Recently, advances in biomaterials and technologies, such as three-dimensional (3D) printing and microfluidics for the encapsulation of follicles and nanoparticles as delivery systems for drugs, have shown potential to be translational strategies for ovarian aging. This review introduces the research progress on the mechanisms underlying ovarian aging, and summarizes the current state of biomaterials in the evaluation and treatment of ovarian aging, including safety, potential applications, future directions and difficulties in translation.
Collapse
Affiliation(s)
- Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yibao Huang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Fangfang Fu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Chuqing Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Ying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Wenwen Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China. .,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China. .,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China. .,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China. .,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| |
Collapse
|
18
|
Winship AL, Alesi LR, Sant S, Stringer JM, Cantavenera A, Hegarty T, Requesens CL, Liew SH, Sarma U, Griffiths MJ, Zerafa N, Fox SB, Brown E, Caramia F, Zareie P, La Gruta NL, Phillips KA, Strasser A, Loi S, Hutt KJ. Checkpoint inhibitor immunotherapy diminishes oocyte number and quality in mice. NATURE CANCER 2022; 3:1-13. [PMID: 36008687 DOI: 10.1038/s43018-022-00413-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Loss of fertility is a major concern for female reproductive-age cancer survivors, since a common side-effect of conventional cytotoxic cancer therapies is permanent damage to the ovary. While immunotherapies are increasingly becoming a standard of care for many cancers-including in the curative setting-their impacts on ovarian function and fertility are unknown. We evaluated the effect of immune checkpoint inhibitors blocking programmed cell death protein ligand 1 and cytotoxic T lymphocyte-associated antigen 4 on the ovary using tumor-bearing and tumor-free mouse models. We find that immune checkpoint inhibition increases immune cell infiltration and tumor necrosis factor-α expression within the ovary, diminishes the ovarian follicular reserve and impairs the ability of oocytes to mature and ovulate. These data demonstrate that immune checkpoint inhibitors have the potential to impair both immediate and future fertility, and studies in women should be prioritized. Additionally, fertility preservation should be strongly considered for women receiving these immunotherapies, and preventative strategies should be investigated in future studies.
Collapse
Affiliation(s)
- Amy L Winship
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Lauren R Alesi
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sneha Sant
- Division of Research, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Jessica M Stringer
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Aldana Cantavenera
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Teharn Hegarty
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Carolina Lliberos Requesens
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Seng H Liew
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Urooza Sarma
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Meaghan J Griffiths
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Nadeen Zerafa
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Stephen B Fox
- Division of Research, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Emmaline Brown
- Division of Research, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Franco Caramia
- Division of Research, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - Pirooz Zareie
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Nicole L La Gruta
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kelly-Anne Phillips
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Sherene Loi
- Division of Research, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Karla J Hutt
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
19
|
Di Berardino C, Liverani L, Peserico A, Capacchietti G, Russo V, Bernabò N, Tosi U, Boccaccini AR, Barboni B. When Electrospun Fiber Support Matters: In Vitro Ovine Long-Term Folliculogenesis on Poly (Epsilon Caprolactone) (PCL)-Patterned Fibers. Cells 2022; 11:cells11121968. [PMID: 35741097 PMCID: PMC9222101 DOI: 10.3390/cells11121968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/17/2022] [Indexed: 12/14/2022] Open
Abstract
Current assisted reproduction technologies (ART) are insufficient to cover the slice of the population needing to restore fertility, as well as to amplify the reproductive performance of domestic animals or endangered species. The design of dedicated reproductive scaffolds has opened the possibility to better recapitulate the reproductive 3D ovarian environment, thus potentially innovating in vitro folliculogenesis (ivF) techniques. To this aim, the present research has been designed to compare ovine preantral follicles in vitro culture on poly(epsilon-caprolactone) (PCL)-based electrospun scaffolds designed with different topology (Random vs. Patterned fibers) with a previously validated system. The ivF performances were assessed after 14 days under 3D-oil, Two-Step (7 days in 3D-oil and on scaffold), or One-Step PCL protocols (14 days on PCL-scaffold) by assessing morphological and functional outcomes. The results show that Two- and One-Step PCL ivF protocols, when performed on patterned scaffolds, were both able to support follicle growth, antrum formation, and the upregulation of follicle marker genes leading to a greater oocyte meiotic competence than in the 3D-oil system. In conclusion, the One-Step approach could be proposed as a practical and valid strategy to support a synergic follicle-oocyte in vitro development, providing an innovative tool to enhance the availability of matured gametes on an individual basis for ART purposes.
Collapse
Affiliation(s)
- Chiara Di Berardino
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
- Correspondence:
| | - Liliana Liverani
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander University of Erlangen-Nuremberg, 91054 Erlangen, Germany; (L.L.); (A.R.B.)
| | - Alessia Peserico
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Giulia Capacchietti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Valentina Russo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Umberto Tosi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Aldo Roberto Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander University of Erlangen-Nuremberg, 91054 Erlangen, Germany; (L.L.); (A.R.B.)
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| |
Collapse
|
20
|
Artificial Oocyte: Development and Potential Application. Cells 2022; 11:cells11071135. [PMID: 35406698 PMCID: PMC8998074 DOI: 10.3390/cells11071135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/07/2023] Open
Abstract
Millions of people around the world suffer from infertility, with the number of infertile couples and individuals increasing every year. Assisted reproductive technologies (ART) have been widely developed in recent years; however, some patients are unable to benefit from these technologies due to their lack of functional germ cells. Therefore, the development of alternative methods seems necessary. One of these methods is to create artificial oocytes. Oocytes can be generated in vitro from the ovary, fetal gonad, germline stem cells (GSCs), ovarian stem cells, or pluripotent stem cells (PSCs). This approach has raised new hopes in both basic research and medical applications. In this article, we looked at the principle of oocyte development, the landmark studies that enhanced our understanding of the cellular and molecular mechanisms that govern oogenesis in vivo, as well as the mechanisms underlying in vitro generation of functional oocytes from different sources of mouse and human stem cells. In addition, we introduced next-generation ART using somatic cells with artificial oocytes. Finally, we provided an overview of the reproductive application of in vitro oogenesis and its use in human fertility.
Collapse
|
21
|
Liao B, Qi X, Yun C, Qiao J, Pang Y. Effects of Androgen Excess-Related Metabolic Disturbances on Granulosa Cell Function and Follicular Development. Front Endocrinol (Lausanne) 2022; 13:815968. [PMID: 35237237 PMCID: PMC8883052 DOI: 10.3389/fendo.2022.815968] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/06/2022] [Indexed: 01/24/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disease in women of reproductive age. Ovarian dysfunction including abnormal steroid hormone synthesis and follicular arrest play a vital role in PCOS pathogenesis. Hyperandrogenemia is one of the important characteristics of PCOS. However, the mechanism of regulation and interaction between hyperandrogenism and ovulation abnormalities are not clear. To investigate androgen-related metabolic state in granulosa cells of PCOS patients, we identified the transcriptome characteristics of PCOS granulosa cells by RNA-seq. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differentially expressed genes (DEGs) revealed that genes enriched in lipid metabolism pathway, fatty acid biosynthetic process and ovarian steroidogenesis pathway were abnormally expressed in PCOS granulosa cells in comparison with that in control. There are close interactions among these three pathways as identified by analysis of the protein-protein interaction (PPI) network of DEGs. Furthermore, in vitro mouse follicle culture system was established to explore the effect of high androgen and its related metabolic dysfunction on follicular growth and ovulation. RT-qPCR results showed that follicles cultured with dehydroepiandrosterone (DHEA) exhibited decreased expression levels of cumulus expansion-related genes (Has2, Ptx3, Tnfaip6 and Adamts1) and oocyte maturation-related genes (Gdf9 and Bmp15), which may be caused by impaired steroid hormone synthesis and lipid metabolism, thus inhibited follicular development and ovulation. Furthermore, the inhibition effect of DHEA on follicle development and ovulation was ameliorated by flutamide, an androgen receptor (AR) antagonist, suggesting the involvement of AR signaling. In summary, our study offers new insights into understanding the role of androgen excess induced granulosa cell metabolic disorder in ovarian dysfunction of PCOS patients.
Collapse
Affiliation(s)
- Baoying Liao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China
| | - Xinyu Qi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China
| | - Chuyu Yun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Peking University, Ministry of Education, Beijing, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China
| | - Yanli Pang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China
- *Correspondence: Yanli Pang,
| |
Collapse
|
22
|
Francés-Herrero E, Lopez R, Hellström M, de Miguel-Gómez L, Herraiz S, Brännström M, Pellicer A, Cervelló I. OUP accepted manuscript. Hum Reprod Update 2022; 28:798-837. [PMID: 35652272 PMCID: PMC9629485 DOI: 10.1093/humupd/dmac025] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND To provide the optimal milieu for implantation and fetal development, the female reproductive system must orchestrate uterine dynamics with the appropriate hormones produced by the ovaries. Mature oocytes may be fertilized in the fallopian tubes, and the resulting zygote is transported toward the uterus, where it can implant and continue developing. The cervix acts as a physical barrier to protect the fetus throughout pregnancy, and the vagina acts as a birth canal (involving uterine and cervix mechanisms) and facilitates copulation. Fertility can be compromised by pathologies that affect any of these organs or processes, and therefore, being able to accurately model them or restore their function is of paramount importance in applied and translational research. However, innate differences in human and animal model reproductive tracts, and the static nature of 2D cell/tissue culture techniques, necessitate continued research and development of dynamic and more complex in vitro platforms, ex vivo approaches and in vivo therapies to study and support reproductive biology. To meet this need, bioengineering is propelling the research on female reproduction into a new dimension through a wide range of potential applications and preclinical models, and the burgeoning number and variety of studies makes for a rapidly changing state of the field. OBJECTIVE AND RATIONALE This review aims to summarize the mounting evidence on bioengineering strategies, platforms and therapies currently available and under development in the context of female reproductive medicine, in order to further understand female reproductive biology and provide new options for fertility restoration. Specifically, techniques used in, or for, the uterus (endometrium and myometrium), ovary, fallopian tubes, cervix and vagina will be discussed. SEARCH METHODS A systematic search of full-text articles available in PubMed and Embase databases was conducted to identify relevant studies published between January 2000 and September 2021. The search terms included: bioengineering, reproduction, artificial, biomaterial, microfluidic, bioprinting, organoid, hydrogel, scaffold, uterus, endometrium, ovary, fallopian tubes, oviduct, cervix, vagina, endometriosis, adenomyosis, uterine fibroids, chlamydia, Asherman’s syndrome, intrauterine adhesions, uterine polyps, polycystic ovary syndrome and primary ovarian insufficiency. Additional studies were identified by manually searching the references of the selected articles and of complementary reviews. Eligibility criteria included original, rigorous and accessible peer-reviewed work, published in English, on female reproductive bioengineering techniques in preclinical (in vitro/in vivo/ex vivo) and/or clinical testing phases. OUTCOMES Out of the 10 390 records identified, 312 studies were included for systematic review. Owing to inconsistencies in the study measurements and designs, the findings were assessed qualitatively rather than by meta-analysis. Hydrogels and scaffolds were commonly applied in various bioengineering-related studies of the female reproductive tract. Emerging technologies, such as organoids and bioprinting, offered personalized diagnoses and alternative treatment options, respectively. Promising microfluidic systems combining various bioengineering approaches have also shown translational value. WIDER IMPLICATIONS The complexity of the molecular, endocrine and tissue-level interactions regulating female reproduction present challenges for bioengineering approaches to replace female reproductive organs. However, interdisciplinary work is providing valuable insight into the physicochemical properties necessary for reproductive biological processes to occur. Defining the landscape of reproductive bioengineering technologies currently available and under development for women can provide alternative models for toxicology/drug testing, ex vivo fertility options, clinical therapies and a basis for future organ regeneration studies.
Collapse
Affiliation(s)
| | | | - Mats Hellström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lucía de Miguel-Gómez
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
- Fundación IVI, IVI-RMA Global, Valencia, Spain
| | - Sonia Herraiz
- Fundación IVI, IVI-RMA Global, Valencia, Spain
- Reproductive Medicine Research Group, IIS La Fe, Valencia, Spain
| | - Mats Brännström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Stockholm IVF-EUGIN, Stockholm, Sweden
| | - Antonio Pellicer
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
- IVI Roma Parioli, IVI-RMA Global, Rome, Italy
| | | |
Collapse
|
23
|
Xu J, Zelinski MB. Oocyte quality following in vitro follicle development†. Biol Reprod 2021; 106:291-315. [PMID: 34962509 PMCID: PMC9004734 DOI: 10.1093/biolre/ioab242] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 12/30/2022] Open
Abstract
In vitro follicle development (IVFD) is an adequate model to obtain basic knowledge of folliculogenesis and provides a tool for ovarian toxicity screening. IVFD yielding competent oocytes may also offer an option for fertility and species preservation. To promote follicle growth and oocyte maturation in vitro, various culture systems are utilized for IVFD in rodents, domestic animals, wild animals, nonhuman primates, and humans. Follicle culture conditions have been improved by optimizing gonadotropin levels, regulatory factors, nutrient supplements, oxygen concentration, and culture matrices. This review summarizes quality assessment of oocytes generated from in vitro-developed antral follicles from the preantral stage, including oocyte epigenetic and genetic profile, cytoplasmic and nuclear maturation, preimplantation embryonic development following in vitro fertilization, as well as pregnancy and live offspring after embryo transfer. The limitations of oocyte quality evaluation following IVFD and the gaps in our knowledge of IVFD to support proper oocyte development are also discussed. The information may advance our understanding of the requirements for IVFD, with a goal of producing competent oocytes with genetic integrity to sustain embryonic development resulting in healthy offspring.
Collapse
Affiliation(s)
- Jing Xu
- Correspondence: Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA. Tel: +1 5033465411; Fax: +1 5033465585; E-mail:
| | - Mary B Zelinski
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA,Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
24
|
Kim YY, Yun JW, Kim SW, Kim H, Kang BC, Ku SY. Synergistic Promoting Effects of X-Linked Inhibitor of Apoptosis Protein and Matrix on the In Vitro Follicular Maturation of Marmoset Follicles. Tissue Eng Regen Med 2021; 19:93-103. [PMID: 34741748 DOI: 10.1007/s13770-021-00387-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/02/2021] [Accepted: 08/16/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND In vitro follicular maturation (IVFM) of ovarian follicles is an emerging option for fertility preservation. Many paracrine factors and two-dimensional or three-dimensional (3D) environments have been used for optimization. However, since most studies were conducted using the murine model, the physiological differences between mice and humans limit the interpretation and adaptation of the results. Marmoset monkey is a non-human primate (NHPs) with more similar reproductive physiology to humans. In this study, we attempted to establish a 3D matrix (Matrtigel)-based IVFM condition for marmoset ovarian follicles in combination with anti-apoptotic factor, X-linked inhibitor of apoptosis protein (XIAP). METHODS Marmoset follicles were isolated as individual follicles and cultured in a single drop with the addition of 0, 10, and 100 μg/mL of XIAP molecules. Matured oocytes and granulosa cells from mature follicles were collected and analyzed. The average number of isolated follicles was less than 100, and primordial and antral follicles were abundant in the ovaries. RESULTS IVFM of marmoset follicles in 3D matrix conditions with XIAP increased the rates of survival and in vitro follicle development. Furthermore, oocytes from the 3D cultures were successfully fertilized and developed in vitro. The addition of XIAP increased the secretion of estradiol and aromatase. Furthermore, expression of granulosa-specific genes, such as bone morphogenetic protein 15, Oct4, and follicle-stimulating hormone receptor were upregulated in the in vitro-matured follicles than in normal, well-grown, and atretic follicles. Apoptosis-related B-cell lymphoma-2 was highly expressed in the atretic follicles than in the XIAP-treated follicles, and higher caspase-3 was localized in the XIAP-treated follicles. CONCLUSION In this study, we attempted to establish a 3D-matrix-based marmoset IVFM condition and demonstrated the synergistic effects of XIAP. The use of a 3D matrix may be applied as an optimal culture condition for marmoset ovarian follicles.
Collapse
Affiliation(s)
- Yoon Young Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.,Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Jun-Won Yun
- Department of Medical and Biological Sciences, The Catholic University of Korea, 327 Sosa-ro, Bucheon, 14662, Korea
| | - Sung Woo Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.,Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.,Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Hoon Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.,Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.,Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Byeong-Cheol Kang
- Department of Medicine, Seoul National University College of Medicine, 103 Daehak ro, Jongno-gu, Seoul, 03080, Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea. .,Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea. .,Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| |
Collapse
|
25
|
Dadashzadeh A, Moghassemi S, Shavandi A, Amorim CA. A review on biomaterials for ovarian tissue engineering. Acta Biomater 2021; 135:48-63. [PMID: 34454083 DOI: 10.1016/j.actbio.2021.08.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/26/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022]
Abstract
Considerable challenges in engineering the female reproductive tissue are the follicle's unique architecture, the need to recapitulate the extracellular matrix, and tissue vascularization. Over the years, various strategies have been developed for preserving fertility in women diagnosed with cancer, such as embryo, oocyte, or ovarian tissue cryopreservation. While autotransplantation of cryopreserved ovarian tissue is a viable choice to restore fertility in prepubertal girls and women who need to begin chemo- or radiotherapy soon after the cancer diagnosis, it is not suitable for all patients due to the risk of having malignant cells present in the ovarian fragments in some types of cancer. Advances in tissue engineering such as 3D printing and ovary-on-a-chip technologies have the potential to be a translational strategy for precisely recapitulating normal tissue in terms of physical structure, vascularization, and molecular and cellular spatial distribution. This review first introduces the ovarian tissue structure, describes suitable properties of biomaterials for ovarian tissue engineering, and highlights recent advances in tissue engineering for developing an artificial ovary. STATEMENT OF SIGNIFICANCE: The increase of survival rates in young cancer patients has been accompanied by a rise in infertility/sterility in cancer survivors caused by the gonadotoxic effect of some chemotherapy regimens or radiotherapy. Such side-effect has a negative impact on these patients' quality of life as one of their main concerns is generating biologically related children. To aid female cancer patients, several research groups have been resorting to tissue engineering strategies to develop an artificial ovary. In this review, we discuss the numerous biomaterials cited in the literature that have been tested to encapsulate and in vitro culture or transplant isolated preantral follicles from human and different animal models. We also summarize the recent advances in tissue engineering that can potentially be optimal strategies for developing an artificial ovary.
Collapse
|
26
|
Hopkins TIR, Bemmer VL, Franks S, Dunlop C, Hardy K, Dunlop IE. Micromechanical mapping of the intact ovary interior reveals contrasting mechanical roles for follicles and stroma. Biomaterials 2021; 277:121099. [PMID: 34537501 DOI: 10.1016/j.biomaterials.2021.121099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/08/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022]
Abstract
Follicle development in the ovary must be tightly regulated to ensure cyclical release of oocytes (ovulation). Disruption of this process is a common cause of infertility, for example via polycystic ovary syndrome (PCOS) and premature ovarian insufficiency (POI). Recent ex vivo studies suggest that follicle growth is mechanically regulated, however, crucially, the actual mechanical properties of the follicle microenvironment have remained unknown. Here we use atomic force microscopy (AFM) spherical probe indentation to map and quantify the mechanical microenvironment in the mouse ovary, at high resolution and across the entire width of the intact (bisected) ovarian interior. Averaging over the entire organ, we find the ovary to be a fairly soft tissue comparable to fat or kidney (mean Young's Modulus 3.3±2.5 kPa). This average, however, conceals substantial spatial variations, with the overall range of tissue stiffnesses from c. 0.5-10 kPa, challenging the concept that a single Young's Modulus can effectively summarize this complex organ. Considering the internal architecture of the ovary, we find that stiffness is low at the edge and centre which are dominated by stromal tissue, and highest in an intermediate zone that is dominated by large developmentally-advanced follicles, confirmed by comparison with immunohistology images. These results suggest that large follicles are mechanically dominant structures in the ovary, contrasting with previous expectations that collagen-rich stroma would dominate. Extending our study to the highest resolutions (c. 5 μm) showed substantial mechanical variations within the larger zones, even over very short (sub-100 μm) lengths, and especially within the stiffer regions of the ovary. Taken together, our results provide a new, physiologically accurate, framework for ovarian biomechanics and follicle tissue engineering.
Collapse
Affiliation(s)
- Thomas I R Hopkins
- Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, UK; Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, London, W12 0NN, UK
| | - Victoria L Bemmer
- Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Stephen Franks
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, London, W12 0NN, UK
| | - Carina Dunlop
- Department of Mathematics, University of Surrey, GU2 7XH, UK
| | - Kate Hardy
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, London, W12 0NN, UK
| | - Iain E Dunlop
- Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| |
Collapse
|
27
|
Sarabadani M, Tavana S, Mirzaeian L, Fathi R. Co-culture with peritoneum mesothelial stem cells supports the in vitro growth of mouse ovarian follicles. J Biomed Mater Res A 2021; 109:2685-2694. [PMID: 34228401 DOI: 10.1002/jbm.a.37260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022]
Abstract
The important roles played by the ovarian microenvironment and cell interactions in folliculogenesis suggest promising approaches for in vivo growth of ovarian follicles using appropriate scaffolds containing suitable cell sources. In this study, we have investigated the growth of early preantral follicles in the presence of decellularized mesenteric peritoneal membrane (MPM), peritoneum mesothelial stem cells (PMSCs), and conditioned medium (CM) of PMSCs. MPM of mouse was first decellularized; PMSCs were isolated from MPM and cultured and their conditioned medium (CM) was collected. Mouse follicles were separated into four groups: (1) culture in base medium (control), (2) culture in decellularized MPM (DMPM), (3) co-culture with PMSCs (Co-PMSCs), and (4) culture in CM of PMSCs (CM-PMSCs). Qualitative and quantitative assessments were performed to evaluate intact mesenteric peritoneal membrane (IMPM) as well as decellularized ones. After culturing the ovarian follicles, follicular and oocyte diameter, viability, eccentric oocyte percentage, and estradiol hormone amounts were evaluated. Quantitative and qualitative evaluations confirmed removal of cells and retention of the essential fibers in MPM after the decellularization process. Follicular parameters showed that Co-PMSCs better support in vitro growth and development of ovarian follicles than the other groups. The eccentric rate and estradiol production were statistically higher for the Co-PMSCs group than for the CM-PMSCs and control groups. Although the culture of early preantral follicles on DMPM and CM-PMSCs could improve in vitro follicular growth, co-culture of follicles with PMSCs showed even greater improvements in terms of follicular growth and diameter.
Collapse
Affiliation(s)
- Mahdieh Sarabadani
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Somayeh Tavana
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Leila Mirzaeian
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
28
|
Jalili C, Khani Hemmatabadi F, Bakhtiyari M, Abdolmaleki A, Moradi F. Effects of Three-Dimensional Sodium Alginate Scaffold on Maturation and Developmental Gene Expressions in Fresh and Vitrified Preantral Follicles of Mice. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2021; 15:167-177. [PMID: 34155863 PMCID: PMC8233925 DOI: 10.22074/ijfs.2020.134609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/06/2020] [Indexed: 11/05/2022]
Abstract
BACKGROUND Prior to chemotherapy interventions, n vitroi maturation (IVM) of folliclesthrough vitrification can be used to help young people conserve their fertility. The aim of s tudy was to inves tigate effect of sodium alginat scaffold on follicles development and improvement of the culture medium. MATERIALS AND METHODS This experimental study was conducted on immature female BALB/c mice (12-14 days). Follicles were gathered mechanically and placed in α-Minimal Essential Medium (α-MEM) containing 5% fetal bovine serum (FBS). Some pre-antral follicles were frozen. The fresh and vitrified follicles were cultured in different concentrations of sodium alginate (0.25%, 0.5%, and 1%) and two dimensional (2D) medium for 12 days. The samples were evaluated for viability percentage, the number of MII-phase oocytes and reactive oxygen specious (ROS) level. Additionally, Gdf9, Bmp15, Bmp7, Bmp4, Gpx, mnSOD and Gcs gene expressions were assessed in the samples. RESULTS The highest and lowest percentages of follicle viability and maturation in the fresh and vitrified groups were respectively 0.5% concentration and 2D culture. There was no significant difference among the concentrations of 0.25% and 1%. Viability and maturation of follicles showed a significant increase in the fresh groups in comparison with the vitrified groups. ROS levels in the both fresh and vitrified groups with different concentrations of alginate showed a significant decrease compared to the control group. ROS levels in follicles showed a significant decrease in the fresh groups in comparison with the vitrified groups (P≤0.0001). The highest gene expression levels were observed in the 0.5% alginate (P≤0.0001). Moreover, the viability percentage, follicle maturation, and gene expression levels were higher in the fresh groupsthan the vitrified groups (P≤0.0001). CONCLUSION Alginate hydrogel at a proper concentration of 5%, not only helps follicle get mature, but also promotes the expression of developmental genes and reducesthe level of intracellular ROS. Follicular vitrification decreases quality of the follicles, which are partially compensated using a three dimensional (3D) cell culture medium.
Collapse
Affiliation(s)
- Cyrus Jalili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fuzieh Khani Hemmatabadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Anatomy Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Bakhtiyari
- Anatomy Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Abdolmaleki
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Moradi
- Anatomy Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Assessment of cGMP level in medium during in vitro growth period of murine preantral follicles with and without supplementation of C-type natriuretic peptide. ZYGOTE 2021; 30:98-102. [PMID: 34154685 DOI: 10.1017/s0967199421000393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To enhance the developmental competency of murine ovarian follicles cultured in vitro, C-type natriuretic peptide (CNP) was supplemented in the culture system. Although the mechanism is not fully elucidated, it was reported that the effect of CNP supplementation was mediated by increased cyclic guanosine monophosphate (cGMP). In the present study, cGMP levels in media for murine preantral follicle culture were compared both between a control group without CNP supplementation and an experimental group with CNP supplementation and between days in each group. In addition, follicle growth patterns and oocyte maturity were assessed and compared between the two groups. Results demonstrated that along with in vitro culture, cGMP levels increased (P < 0.05) both in the control group and the experimental group, whereas cGMP levels were not significantly different between the two groups on the same day of in vitro culture (P > 0.05). The oocyte's maturity was superior in the experimental group compared with the control group (P < 0.05). As ovarian follicles grew three-dimensionally in the experimental group but were flattened in the control group, CNP might improve oocyte maturity through maintaining the three-dimensional architecture of the ovarian follicle because of increased transzonal projections (TZP) and functional gap junctions between oocyte and surrounding granulosa cells.
Collapse
|
30
|
Doungkamchan C, Orwig KE. Recent advances: fertility preservation and fertility restoration options for males and females. Fac Rev 2021; 10:55. [PMID: 34195694 PMCID: PMC8204761 DOI: 10.12703/r/10-55] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Fertility preservation is the process of saving gametes, embryos, gonadal tissues and/or gonadal cells for individuals who are at risk of infertility due to disease, medical treatments, age, genetics, or other circumstances. Adult patients have the options to preserve eggs, sperm, or embryos that can be used in the future to produce biologically related offspring with assisted reproductive technologies. These options are not available to all adults or to children who are not yet producing mature eggs or sperm. Gonadal cells/tissues have been frozen for several thousands of those patients worldwide with anticipation that new reproductive technologies will be available in the future. Therefore, the fertility preservation medical and research communities are obligated to responsibly develop next-generation reproductive technologies and translate them into clinical practice. We briefly describe standard options to preserve and restore fertility, but the emphasis of this review is on experimental options, including an assessment of readiness for translation to the human fertility clinic.
Collapse
Affiliation(s)
- Chatchanan Doungkamchan
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kyle E Orwig
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
31
|
Wu T, Gao YY, Su J, Tang XN, Chen Q, Ma LW, Zhang JJ, Wu JM, Wang SX. Three-dimensional bioprinting of artificial ovaries by an extrusion-based method using gelatin-methacryloyl bioink. Climacteric 2021; 25:170-178. [PMID: 33993814 DOI: 10.1080/13697137.2021.1921726] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE The aim of this study was to design and fabricate a three-dimensional (3D) printed artificial ovary. METHODS We first compared the printability of gelatin-methacryloyl (GelMA), alginate and GelMA-alginate bioinks, of which GelMA was selected for further investigation. The swelling properties, degradation kinetics and shape fidelity of GelMA scaffolds were characterized by equilibrium swelling/lyophilization, collagenase processing and micro-computed tomography evaluation. Commercial ovarian tumor cell lines (COV434, KGN, ID8) and primary culture ovarian somatic cells were utilized to perform cell-laden 3D printing, and the results were evaluated by live/dead assays and TUNEL detection. Murine ovarian follicles were seeded in the ovarian scaffold and their diameters were recorded every day. Finally, in vitro maturation was performed, and the ovulated oocytes were collected and observed. RESULTS Our results indicated that GelMA was suitable for 3D printing fabrication. Its scaffolds performed well in terms of hygroscopicity, degradation kinetics and shape fidelity. The viability of ovarian somatic cells was lower than that of commercial cell lines, suggesting that extrusion-based 3D culture fabrication is not suitable for primary ovarian cells. Nevertheless, the GelMA-based 3D printing system provided an appropriate microenvironment for ovarian follicles, which successfully grew and ovulated in the scaffolds. Metaphase II oocytes were also observed after in vitro maturation. CONCLUSIONS The GelMA-based 3D printing culture system is a viable alternative option for follicular growth, development and transfer. Accordingly, it shows promise for clinical application in the treatment of female endocrine and reproductive conditions.
Collapse
Affiliation(s)
- T Wu
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Y Y Gao
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - J Su
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - X N Tang
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Q Chen
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - L W Ma
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - J J Zhang
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - J M Wu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - S X Wang
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Kim SW, Kim YY, Kim H, Ku SY. Recent Advancements in Engineered Biomaterials for the Regeneration of Female Reproductive Organs. Reprod Sci 2021; 28:1612-1625. [PMID: 33797052 DOI: 10.1007/s43032-021-00553-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/17/2021] [Indexed: 12/14/2022]
Abstract
Various gynecologic diseases and chemoradiation or surgery for the management of gynecologic malignancies may damage the uterus and ovaries, leading to clinical problems such as infertility or early menopause. Embryo or oocyte cryopreservation-the standard method for fertility preservation-is not a feasible option for patients who require urgent treatment because the procedure requires ovarian stimulation for at least several days. Hormone replacement therapy (HRT) for patients diagnosed with premature menopause is contraindicated for patients with estrogen-dependent tumors or a history of thrombosis. Furthermore, these methods cannot restore the function of the uterus and ovaries. Although autologous transplantation of cryopreserved ovarian tissue is being attempted, it may re-introduce malignant cells after cancer treatment. With the recent development in regenerative medicine, research on engineered biomaterials for the restoration of female reproductive organs is being actively conducted. The use of engineered biomaterials is a promising option in the field of reproductive medicine because it can overcome the limitations of current therapies. Here, we review the ideal properties of biomaterials for reproductive tissue engineering and the recent advancements in engineered biomaterials for the regeneration of female reproductive organs.
Collapse
Affiliation(s)
- Sung Woo Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, 03080, South Korea.,Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| | - Yoon Young Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, 03080, South Korea. .,Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea.
| | - Hoon Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, 03080, South Korea. .,Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea. .,Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, 2024 E. Monument St, Baltimore, MD, 21205, USA.
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, 03080, South Korea.,Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
33
|
A Simplified Method for Three-Dimensional (3D) Porcine Preantral Follicles Culture Utilizing Hydrophobic Microbioreactors. Methods Mol Biol 2021. [PMID: 33604845 DOI: 10.1007/978-1-0716-1246-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The technological revolution in reproductive biology that started with artificial insemination procedures and embryo transfer led to the development of assisted reproduction techniques such as in vitro fertilization or even cloning of domestic animals by nuclear transfer from somatic cells. Currently, procedures of isolated immature ovarian follicles in vitro culture are becoming the prominent technology aimed to preserve or restore fertility especially of young oncological patients or those at risk of premature ovarian failure.Here, we describe a protocol that can be applied for in vitro growth of porcine, preantral ovarian follicles in three-dimensional (3D) culture conditions. After enzymatic isolation from the ovarian cortex, preantral follicles are suspended in a drop of medium and enclosed with fluorinated ethylene propylene (FEP) powder particles (microbioreactors). Such microbioreactors maintain the 3D structure of the follicles during the whole process of in vitro growth what is crucial to ensure proper folliculogenesis progression and their ability to survive.
Collapse
|
34
|
Saini S, Bhat RA, Waiz HA, Waiz SA. A study on steroidogenic elaborations of stroma and their regulation in response to ovarian hormones in goats. Anim Reprod Sci 2021; 228:106748. [PMID: 33845412 DOI: 10.1016/j.anireprosci.2021.106748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 11/24/2022]
Abstract
Stromal tissue is an essential componenlt of the ovary not only for providing structural support but also for contributing to the early follicular growth with their bi-directional paracrine signaling. Estradiol is a major female hormone mainly secreted by the follicular cells in the ovary. To examine the relationship between 17β-estradiol and the factors involved in androgen production in stromal cells, ovarian stromal cells were cultured in the graded concentrations (50 and 100 ng/mL) of 17β-estradiol for varying time periods (24 and 48 h). The cells were processed for transmission electron microscopy to study the changes in steroidogenic functions of the cells. The effect of estradiol treatment was also evaluated on the quantity of androgen production and abundance of steroidogenic enzymes and proteins. The results indicated 17β-estradiol increased androgen production in ovarian stromal cells. In addition to enhanced androstenedione and testosterone production, estradiol stimulation was also based on the marked increase in abundance of mRNA transcript of steroidogenic enzymes [Star (Steroidogenic Acute Regulatory Protein), Cyp11a1, Cyp17a1, and hsd3b1 (3β-hydroxysteroid dehydrogenase)], as well as abundances of StAR and CYP11A1 protein. Thus, 17β-estradiol enhanced steroidogenesis in ovarian stromal cells. This study provided a basis for further exploration of regulation of steroidogenesis in ovarian stromal cells and the feedback mechanisms in association with estradiol.
Collapse
Affiliation(s)
- Sudha Saini
- Department of Zoology, Kurukshetra University, Kurukshetra, 136119, India
| | - Rayees Ahmad Bhat
- Department of Zoology, Kurukshetra University, Kurukshetra, 136119, India.
| | - Hina Ashraf Waiz
- Assistant Professor Livestock Production and Management CVAS, Navania, Udaipur, Rajasthan University of Veterinary and Animal Sciences Bikaner, India
| | | |
Collapse
|
35
|
Almeida JZ, Lima LF, Vieira LA, Maside C, Ferreira ACA, Araújo VR, Duarte ABG, Raposo RS, Báo SN, Campello CC, Oliveira LFS, da Costa TP, Abreu JG, Figueiredo JR, Oriá RB. 5-Fluorouracil disrupts ovarian preantral follicles in young C57BL6J mice. Cancer Chemother Pharmacol 2021; 87:567-578. [PMID: 33471160 DOI: 10.1007/s00280-020-04217-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 12/11/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE 5-Fluorouracil (5-FU), an anti-cancer drug, has been used for hepatoblastoma (HB) chemotherapy in children, who may have impaired ovarian follicle pool reserve with lasting effects to reproduction. Therefore, this study aimed to investigate 5-FU effects on survival, growth, and morphology of ovarian preantral follicles from C57BL6J young mice. METHODS Experiments were carried-out both in vivo and in vitro. Mice were treated with 5-FU injection (450 mg/kg i.p) or saline and sacrificed 3 days after to obtain ovaries for histology and molecular biology. Ovaries for in vitro studies were obtained from unchallenged mice and cultured under basic culture medium (BCM) or BCM plus 5-FU (9.2, 46.1, 92.2 mM). Preantral follicles were classified according to developmental stages, and as normal or degenerated. To assess cell viability, caspase-3 immunostaining was performed. Transcriptional levels for apoptosis (Bax, Bcl2, p53, Bax/Bcl2) and Wnt pathway genes (Wnt2 and Wnt4) were also analyzed. Ultrastructural analyses were carried-out on non-cultured ovaries. In addition, β-catenin immunofluorescence was assessed in mouse ovaries. RESULTS The percentage of all-types normal follicles was significantly lower after 5-FU challenge. A total loss of secondary normal follicles was found in the 5-FU group. The highest 5-FU concentrations reduced the percentage of cultured normal primordial follicles. Large vacuoles were seen in granulosa cells and ooplasm of preantral follicles by electron microscopy. A significantly higher gene expression for Bax and Bax/Bcl2 ratio was seen after 5-FU treatment. A marked reduction in β-catenin immunolabeling was seen in 5-FU-challenged preantral follicles. In the in vitro experiments, apoptotic and Wnt gene transcriptions were significantly altered. CONCLUSION Altogether, our findings suggest that 5-FU can deleteriously affect the ovarian follicle reserve by reducing preantral follicles survival.
Collapse
Affiliation(s)
- Juliana Z Almeida
- Department of Morphology, Institute of Biomedicine, Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, School of Medicine, Federal University of Ceara, 1315 Rua Cel. Nunes de Melo, Fortaleza, CE, 60430-270, Brazil
| | - Laritza F Lima
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceara, Fortaleza, CE, Brazil
| | - Luís A Vieira
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceara, Fortaleza, CE, Brazil
| | - Carolina Maside
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceara, Fortaleza, CE, Brazil
| | - Anna C A Ferreira
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceara, Fortaleza, CE, Brazil
| | - Valdevane R Araújo
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceara, Fortaleza, CE, Brazil
| | - Ana B G Duarte
- Department of Morphology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Ramon S Raposo
- Experimental Biology Core, University of Fortaleza, Fortaleza, CE, Brazil
| | - Sônia N Báo
- Laboratory of Electron Microscopy, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Cláudio C Campello
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceara, Fortaleza, CE, Brazil
| | - Luiz F S Oliveira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thayse P da Costa
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - José Garcia Abreu
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - José R Figueiredo
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceara, Fortaleza, CE, Brazil
| | - Reinaldo B Oriá
- Department of Morphology, Institute of Biomedicine, Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, School of Medicine, Federal University of Ceara, 1315 Rua Cel. Nunes de Melo, Fortaleza, CE, 60430-270, Brazil.
| |
Collapse
|
36
|
Supplementation of c-type natriuretic peptide during in vitro growth period benefits the development of murine preantral follicles. ZYGOTE 2020; 29:150-154. [PMID: 33234184 DOI: 10.1017/s096719942000060x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The present study investigated the effects of c-type natriuretic peptide (CNP) on the development of murine preantral follicles during in vitro growth (IVG). Preantral follicles isolated from ovaries of Kunming mice were cultured in vitro. In the culture system, CNP was supplemented in the experimental groups and omitted in the control groups. In Experiment 1, CNP was only supplemented at the early stage and follicle development was evaluated. In Experiments 2 and 3, CNP was supplemented during the whole period of in vitro culture. In Experiment 2, follicle development and oocyte maturity were evaluated. In Experiment 3, follicle development and embryo cleavage after in vitro fertilization (IVF) were assessed. The results showed that in the control groups in all three experiments, granulosa cells migrated from within the follicle and the follicles could not reach the antral stage. In the experimental groups in all three experiments, no migration of granulosa cells was observed and follicle development was assessed as attaining the antral stage, which was significantly superior to that of the control group (P < 0.0001). Oocyte meiotic arrest was effectively maintained, hence giving good developmental competence. In conclusion, CNP supplementation in the culture system during IVG benefited the development of murine preantral follicles.
Collapse
|
37
|
He Y, Meng K, Wang X, Dong Z, Zhang Y, Quan F. Comparison of Bovine Small Antral Follicle Development in Two- and Three-Dimensional Culture Systems. AN ACAD BRAS CIENC 2020; 92:e20180935. [PMID: 33146258 DOI: 10.1590/0001-3765202020180935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/13/2018] [Indexed: 12/26/2022] Open
Abstract
To compare the effects of two-(2D, microplate) and three-dimensional (3D, alginate) culture systems on the in vitro growth of small antral follicles in cattle, individual follicles were separately cultured in the two culture systems for 8 days. Half of the culture medium was replaced by fresh medium every 2 days; the former medium was used to assess the amount of follicular hormone secretion using ELISA. Individual follicle morphology, diameter, and survival rate were recorded every alternate day. The results showed that in 4 days, there was no significant difference between the two systems, except that the growth rate of follicles in 2D system was relatively faster. After 4 days, estradiol concentration in 3D system was higher than that in 2D system. However, progesterone concentration was lower than that in the 2D system. The survival rate and oocyte quality of follicles in 2D system were significantly lower than those in 3D system on day 8. The follicle diameter slightly increased (30-60 μm) in the entire process. Taken together, for in vitro culture of follicles within 4 days, the 2D culture system is more suitable. However, when the culture duration is >4 days, the 3D culture system is more suitable.
Collapse
Affiliation(s)
- Yuanyuan He
- Northwest A&F University, College of Veterinary Medicine, Department of Clinical Veterinary Medicine, Yangling 712100 Shaanxi, China
| | - Kai Meng
- Northwest A&F University, College of Veterinary Medicine, Department of Clinical Veterinary Medicine, Yangling 712100 Shaanxi, China
| | - Xiaomei Wang
- Northwest A&F University, College of Veterinary Medicine, Department of Clinical Veterinary Medicine, Yangling 712100 Shaanxi, China
| | - Zhihang Dong
- Northwest A&F University, College of Veterinary Medicine, Department of Clinical Veterinary Medicine, Yangling 712100 Shaanxi, China
| | - Yong Zhang
- Northwest A&F University, College of Veterinary Medicine, Department of Clinical Veterinary Medicine, Yangling 712100 Shaanxi, China
| | - Fusheng Quan
- Northwest A&F University, College of Veterinary Medicine, Department of Clinical Veterinary Medicine, Yangling 712100 Shaanxi, China
| |
Collapse
|
38
|
Jalili C, Khani Hemmatabadi F, Mansouri K, Bakhtiyari M. Effects of sodium alginate capsules as 3D scaffolds on hormones and genes expression in preantral follicles of mice compared to 2D medium: An experimental study. Int J Reprod Biomed 2020; 18:517-530. [PMID: 32803116 PMCID: PMC7385913 DOI: 10.18502/ijrm.v13i7.7369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 06/18/2019] [Accepted: 01/14/2020] [Indexed: 12/02/2022] Open
Abstract
Background The improvement of in vitro maturation methods, which can activate the preantral follicle growth, plays a crucial role in the production of mature oocytes in reproductive technology. Objective To evaluate the different concentrations of 3D scaffolds of sodium alginate on hormones and gene expression in mice preantral follicles. Materials and Methods Immature female BALB/c mice (12-14 days) were sacrificed. The follicles were removed mechanically and transferred into α minimal essential medium with 5% fetal bovine serum. The preantral follicles were incubated with different concentrations of sodium alginate (0.25%, 0.5%, and 1%) and 2D medium for 12 days. The follicles were examined for antral formation following the 10th day and the diameter on days 6 th and 12 th . The levels of hormones (AMH, androstenedione, 17β-estradiol, and progesterone) and the expression of genes (CYP11a1, CYP17a1, CYP19a1, AMH, and GnRH) at the end of the 12 th day. Results Maximum follicle diameter and highest percentage of antrum formation were related to 0.5% concentration (p = 0.00). The levels of hormones in different doses of sodium alginate were increased significantly compared to the control group (p = 0.00). The highest and lowest levels of these hormones were related to 0.5% concentration and 2D medium, respectively. The highest level of genes expression was observed in 0.5% sodium alginate, which showed a significant increase compared to the control group (p = 0.00). Conclusion Proper concentration of alginate hydrogel increases follicle growth, causes follicle maturation, produces steroid hormones, and increases appropriate expression of steroidogenesis-related genes.
Collapse
Affiliation(s)
- Cyrus Jalili
- Department of Anatomical Sciences, Medical Biology Research Center, Kermanshah University of Medical Sciences, Taghbostan, Kermanshah, Iran
| | | | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehrdad Bakhtiyari
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Woodruff TK. Lessons from bioengineering the ovarian follicle: a personal perspective. Reproduction 2020; 158:F113-F126. [PMID: 31846436 DOI: 10.1530/rep-19-0190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
The ovarian follicle and its maturation captivated my imagination and inspired my scientific journey - what we know now about this remarkable structure is captured in this invited review. In the past decade, our knowledge of the ovarian follicle expanded dramatically as cross-disciplinary collaborations brought new perspectives to bear, ultimately leading to the development of extragonadal follicles as model systems with significant clinical implications. Follicle maturation in vitro in an 'artificial' ovary became possible by learning what the follicle is fundamentally and autonomously capable of - which turns out to be quite a lot. Progress in understanding and harnessing follicle biology has been aided by engineers and materials scientists who created hardware that enables tissue function for extended periods of time. The EVATAR system supports extracorporeal ovarian function in an engineered environment that mimics the endocrine environment of the reproductive tract. Finally, applying the tools of inorganic chemistry, we discovered that oocytes require zinc to mature over time - a truly new aspect of follicle biology with no antecedent other than the presence of zinc in sperm. Drawing on the tools and ideas from the fields of bioengineering, materials science and chemistry unlocked follicle biology in ways that we could not have known or even predicted. Similarly, how today's basic science discoveries regarding ovarian follicle maturation are translated to improve the experience of tomorrow's patients is yet to be determined.
Collapse
Affiliation(s)
- Teresa K Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
40
|
Simon LE, Kumar TR, Duncan FE. In vitro ovarian follicle growth: a comprehensive analysis of key protocol variables†. Biol Reprod 2020; 103:455-470. [PMID: 32406908 DOI: 10.1093/biolre/ioaa073] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022] Open
Abstract
Folliculogenesis is a complex process that requires integration of autocrine, paracrine, and endocrine factors together with tightly regulated interactions between granulosa cells and oocytes for the growth and survival of healthy follicles. Culture of ovarian follicles is a powerful approach for investigating folliculogenesis and oogenesis in a tightly controlled environment. This method has not only enabled unprecedented insight into the fundamental biology of follicle development but also has far-reaching translational applications, including in fertility preservation for women whose ovarian follicles may be damaged by disease or its treatment or in wildlife conservation. Two- and three-dimensional follicle culture systems have been developed and are rapidly evolving. It is clear from a review of the literature on isolated follicle culture methods published over the past two decades (1980-2018) that protocols vary with respect to species examined, follicle isolation methods, culture techniques, culture media and nutrient and hormone supplementation, and experimental endpoints. Here we review the heterogeneity among these major variables of follicle culture protocols.
Collapse
Affiliation(s)
- Leah E Simon
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - T Rajendra Kumar
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Obstetrics and Gynecology, University of Colorado, Aurora, Colorado, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
41
|
Distinct expression patterns of TLR transcripts in human oocytes and granulosa cells from primordial and primary follicles. J Reprod Immunol 2020; 140:103125. [PMID: 32454326 DOI: 10.1016/j.jri.2020.103125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 11/22/2022]
Abstract
Ovulation has long been regarded as a process resembling an inflammatory response. Previously, luteinizing hormone (LH) was shown to induce Toll-like receptor 2 (TLR2) and TLR4 in granulosa cells from preovulatory hormone-dependent follicles. However, whether this could already initiate before the hormone-dependent phase is currently unknown. The aim of this study was to investigate TLR genes in human oocytes and granulosa cells from primordial and primary ovarian follicles during the hormone-independent phase. A class-comparison study of existing oocyte and granulosa cell RNA sequencing transcriptomes from primordial (n = 539 follicles) and primary (n = 261) follicles collected from three patients was examined. This revealed a distinct expression pattern of TLR3, TLR4 and TLR5 transcripts. Interestingly, the TLR3 protein was differentially detected in both the oocyte and the granulosa cells in primordial and primary follicles, suggesting that TLR3 is maternally contributed both as mRNA and protein. Intracellularly, the compartmentalized TLR3 dot-like staining in the intersection between the oocyte and the surrounding primordial granulosa cells. The TLR4 protein was detected in both primordial and primary follicles, with a notable staining in the granulosa cells. We functionally challenged ovaries in vitro, by polyinosinic:polycytidylic acid (poly I:C) and LPS, known to activate TLR3 and TLR4, respectively, and found a tendency for increased IL-6 production, which was particular evident in the LPS-treated group. Based on the expression of TLRs, it is notably that human primordial and primary follicles express genes that would allow them to respond to innate immune proteins and cytokines during follicle activation.
Collapse
|
42
|
Hosseini M, Salehpour S, Ghaffari Novin M, Shams Mofarahe Z, Abdollahifar MA, Piryaei A. Improvement of in situ Follicular Activation and Early Development in Cryopreserved Human Ovarian Cortical Tissue by Co-Culturing with Mesenchymal Stem Cells. Cells Tissues Organs 2020; 208:48-58. [PMID: 32203969 DOI: 10.1159/000506303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/03/2020] [Indexed: 12/16/2022] Open
Abstract
Follicular loss and tissue degeneration are great challenges in ovarian tissue culture systems. Mesenchymal stem cells (MSC) secrete a cocktail of growth factors and cytokines which supports adjacent cells and tissues. The aim of the current study was to investigate the impact of human bone marrow (hBM)-MSC, as co-culture cells, on human follicular development in ovarian cortical tissue (OCT) culture. For this purpose, warmed OCT fragments were co-cultured with hBM-MSC for 8 days and compared to monocultured OCT. During the culture period, ovarian follicle survival and development in the OCT were evaluated using histological observation, follicular developmental-related genes expression, and estradiol production. Furthermore, cell proliferation and apoptosis were assessed. The results showed that there were no significant differences in conserved ovarian follicles with a normal morphology between the two groups. However, the percentage of developing follicles, as well as follicular developmental gene expression, significantly increased in the co-culture group compared to the monoculture group. On the other hand, compared with the monoculture group, the co-culture group demonstrated a significant increase in cell proliferation, indicated by Ki67 gene expression, as well as a dramatic decrease in apoptotic cell percentage, revealed by TUNEL assay. These findings indicated that co-culturing of hBM-MSC with OCT could improve follicular activation and early follicular development in human ovarian tissue culture systems.
Collapse
Affiliation(s)
- Marzieh Hosseini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saghar Salehpour
- Department of Obstetrics and Gynecology, Preventative Gynecology Research Center (PGRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,IVF Center, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Shams Mofarahe
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Piryaei
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran, .,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran,
| |
Collapse
|
43
|
Filatov MA, Nikishin DA, Khramova YV, Semenova ML. The in vitro Analysis of Quality of Ovarian Follicle Culture Systems Using Time-Lapse Microscopy and Quantitative Real-Time PCR. J Reprod Infertil 2020; 21:94-106. [PMID: 32500012 PMCID: PMC7253941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The aim of ovarian follicle in vitro culture is to obtain mature oocytes. To evaluate the efficiency of in vitro culture system, the status of the cultured oocyte can be analyzed. METHODS The preantral ovarian follicles retrieved from 14-day-old C57Bl/6J mice were cultured in 3D alginate hydrogel. The status of oocytes obtained from mature (3 months old, group A) and immature (3 weeks old, group B) mice was compared to the status of oocytes retrieved from ovarian follicles cultured in vitro (Group C) using qRT-PCR analysis and time-lapse microscopy. In the qRT-PCR analysis, 8 samples for group A (80 oocytes), 8 samples for group B (80 oocytes), and 6 samples for group C (60 oocytes) were included. Time-lapse analysis was performed in group A (oocytes n=31), group B (n=45), and group C (n=21). Statistical analysis was done by Kruskal-Wallis and chi-square tests and differences were considered statistically significant if p<0,05. RESULTS The diameter of group C oocytes is lower in comparison to group A oocytes (67 μm vs. 75 μm, correspondingly). Groups B and C oocytes exhibited delayed meiosis in comparison to group A oocytes. Expression levels of six oocyte maturation genes (Ccnb, CDK1, Ccnh, Wee2, Mos and Epab) were evaluated using qRT-PCR analysis. Expression levels of Ccnh and Epab are lowered in group C oocytes compared to the expression levels of these genes in groups A and B oocytes (p< 0.05). CONCLUSION Oocytes obtained after ovarian follicles in vitro culture have reduced development competence, future fundamental changes of in vitro culture systems can be expected.
Collapse
Affiliation(s)
- Maxim Alexeevich Filatov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia,Corresponding Author: Maxim Alexeevich Filatov, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia E-mail:
| | - Denis Alexandrovich Nikishin
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
44
|
Salama M, Anazodo A, Woodruff TK. Preserving fertility in female patients with hematological malignancies: a multidisciplinary oncofertility approach. Ann Oncol 2019; 30:1760-1775. [PMID: 31418765 DOI: 10.1093/annonc/mdz284] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Oncofertility is a new interdisciplinary field at the intersection of oncology and reproductive medicine that expands fertility options for young cancer patients. The most common forms of hematological malignancies that occur in girls and young women and therefore necessitate oncofertility care are acute lymphocytic leukemia, acute myeloid leukemia, non-Hodgkin's lymphoma, and Hodgkin's lymphoma. Aggressive gonadotoxic anticancer regimens including alkylating chemotherapy and total body irradiation are used often in treating girls and young women with hematological malignancies. The risks of gonadotoxicity and subsequent iatrogenic premature ovarian insufficiency and fertility loss depend mainly on the type and stage of the disease, dose of anticancer therapy as well as the age of the patient at the beginning of treatment. To avoid or at least mitigate the devastating complications of anticancer therapy-induced gonadotoxicity, effective and comprehensive strategies that integrate different options for preserving and restoring fertility ranging from established to experimental strategies should be offered before, during, and after chemotherapy or radiotherapy. A multidisciplinary approach that involves strong coordination and collaboration between hemato-oncologists, gynecologists, reproductive biologists, research scientists, and patient navigators is essential to guarantee high standard of care.
Collapse
Affiliation(s)
- M Salama
- Department of Obstetrics and Gynecology, Feinberg School of Medicine-Northwestern University, Chicago, USA
| | - A Anazodo
- Kids Cancer Centre, Sydney Children's Hospital, Sydney, Australia; Nelune Cancer Centre, Prince of Wales Hospital, Sydney, Australia; School of Women's and Children's Health, University of New South Wales, Sydney, Australia
| | - T K Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine-Northwestern University, Chicago, USA.
| |
Collapse
|
45
|
Ghatebi M, Zavareh S, Lashkarbolouki T, Elahdadi Salmani M. Implications from early life stress on the development of mouse ovarian follicles: Focus on oxidative stress. J Obstet Gynaecol Res 2019; 45:1506-1514. [PMID: 31207032 DOI: 10.1111/jog.14007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/28/2019] [Indexed: 11/28/2022]
Abstract
AIM The early life stress has significant long-term effects on the development of the offspring. This study was undertaken to verify if maternal separation as a stressor agent affects the oxidative status and developmental competence of mouse pre-antral follicles (PF) during in vitro culture period. METHODS Female litters of National Medical Research Institute mice were divided into two groups: maternally separated group (MS), separated from the mothers for 6 h per day from postnatal days 2-16; and the rest considered as the control group, which left undisturbed over the 14 days. The litters were sacrificed and the ovarian tissue was harvested to isolate the PF. The PF were in vitro cultured up to 12th day when ovulation was induced. The developmental parameters and oxidative status (i.e., total antioxidant capacity and Malondialdehyde levels, as well as the activities of superoxide dismutase, glutathione peroxidase and catalase) were assessed. RESULTS The rates of survival, antrum formation, ovulation and oocyte maturation of PF derived from the MS group were significantly lower compared with those of the control group. Furthermore, the Malondialdehyde level of the MS group was significantly higher than that of the control group. By contrast, the total antioxidant capacity level was lower in the MS group with respect to the control group. Also, the activity of superoxide dismutase, glutathione peroxidase and catalase of PF, derived from the MS group, was significantly lower compared with those of the control group. CONCLUSION Early life stress damages the developmental competence of mouse PF through induction of oxidative stress.
Collapse
Affiliation(s)
- Mina Ghatebi
- School of Biology, Damghan University, Damghan, Iran
| | - Saeed Zavareh
- School of Biology, Damghan University, Damghan, Iran.,Institute of Biological Sciences, Damghan University, Damghan, Iran
| | - Taghi Lashkarbolouki
- School of Biology, Damghan University, Damghan, Iran.,Institute of Biological Sciences, Damghan University, Damghan, Iran
| | - Mahmoud Elahdadi Salmani
- School of Biology, Damghan University, Damghan, Iran.,Institute of Biological Sciences, Damghan University, Damghan, Iran
| |
Collapse
|
46
|
Nagashima JB, Wildt DE, Travis AJ, Songsasen N. Activin promotes growth and antral cavity expansion in the dog ovarian follicle. Theriogenology 2019; 129:168-177. [PMID: 30856402 PMCID: PMC6445547 DOI: 10.1016/j.theriogenology.2019.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/29/2019] [Accepted: 02/21/2019] [Indexed: 01/16/2023]
Abstract
Understanding regulators of folliculogenesis remains limited in the domestic dog (Canis familiaris), which challenges our ability to develop in vitro follicle culture systems for canid genome rescue efforts. Here, we investigated the influence of activin on dog follicle development and survival, oocyte quality, and FSH receptor expression in culture. Preantral (150 - ≤230 μm diameter), early antral (231 - ≤330 μm), and antral (>330-550 μm) stage follicles were encapsulated in a fibrin-alginate hydrogel with 0, 100, or 200 ng/ml rhActivin plus 0, 0.1, 1, or 10 μg/ml FSH for 12 or 21 d of in vitro culture. All follicle groups increased in diameter (P < 0.05) with activin acting synergistically with FSH to improve (P < 0.05) growth and antral cavity expansion (to >630 μm) in early antral and antral cohorts. This complementary effect was not linked to changes in FSHR mRNA expression (P > 0.05). Although not influencing (P > 0.05) follicle survival or transzonal projection (TZP) density in shorter term 12 d culture, activin in the presence of 1 ng/ml FSH maintained TZP density from the 12-21 d interval. Activin also increased oocyte diameter and improved nuclear integrity compared to un-supplemented controls. These results indicate that activin acts synergistically with FSH to promote growth and antral cavity expansion of the dog follicle in vitro, information useful to formulating an effective culture microenvironment for this species.
Collapse
Affiliation(s)
- Jennifer B Nagashima
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA; Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| | - David E Wildt
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
| | - Alexander J Travis
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA; Atkinson Center for a Sustainable Future, Cornell University, Ithaca, NY, 14853, USA
| | - Nucharin Songsasen
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
| |
Collapse
|
47
|
Telfer EE. Future developments: In vitro growth (
IVG
) of human ovarian follicles. Acta Obstet Gynecol Scand 2019; 98:653-658. [PMID: 30801653 DOI: 10.1111/aogs.13592] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/19/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Evelyn E. Telfer
- Institute of Cell Biology and Genes and Development Group CDBS University of Edinburgh Edinburgh UK
| |
Collapse
|
48
|
Zhang X, Jiang L, Tian Y, Xia Y, Yan L, Wu C, Zhang T, Zhu J. Establishment of in-vitro three dimensional rat follicle culture system and validation of the applicability as an in vitro female reproductive toxicity testing system. Toxicol In Vitro 2019; 58:161-169. [PMID: 30902691 DOI: 10.1016/j.tiv.2019.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/25/2019] [Accepted: 03/15/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaofang Zhang
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, Second Military Medical University, Shanghai 200433, China
| | - Lijuan Jiang
- Shanghai Mental Health Center, Shanghai 200030, China
| | - Yijun Tian
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, Second Military Medical University, Shanghai 200433, China
| | - Yi Xia
- Changning District Center for Disease Control and Prevention, Shanghai 200335, China
| | - Lang Yan
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, Second Military Medical University, Shanghai 200433, China
| | - Changzhi Wu
- Jiangxi maternal and child health care hospital, Jiangxi 330006, China
| | - Tianbao Zhang
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, Second Military Medical University, Shanghai 200433, China.
| | - Jiangbo Zhu
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
49
|
Green LJ, Zhou H, Padmanabhan V, Shikanov A. Adipose-derived stem cells promote survival, growth, and maturation of early-stage murine follicles. Stem Cell Res Ther 2019; 10:102. [PMID: 30898159 PMCID: PMC6427888 DOI: 10.1186/s13287-019-1199-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/14/2019] [Accepted: 03/01/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Premature ovarian insufficiency is a common complication of anticancer treatments in young women and girls. The ovary is a complex, highly regulated reproductive organ, whose proper function is contingent upon the bidirectional endocrine, paracrine, and autocrine signaling. These factors facilitate the development of the follicles, the functional units of the ovary, to progress from the gonadotropin-independent, paracrine-controlled early stage to the gonadotropin-dependent, endocrine-controlled later stage. We hypothesized that the low survival rate of individually cultured early-stage follicles could be improved with co-culture of adipose-derived stem cells (ADSCs) that secrete survival- and growth-promoting factors. MATERIALS AND METHODS Ovarian follicles ranging from 85 to 115 μm in diameter, from 10- to 12-day-old B6CBAF1 mice were mechanically isolated and co-encapsulated with ADSCs within alginate-based 3D culture system. The follicles were cultured for 14 days, imaged using light microscopy every 2 days, and matured at the end. Follicle media were changed every 2 days and collected for hormone measurements. Follicle diameter, morphology, number of transzonal projections, and survival and maturation rates were recorded. Statistical analyses using one- and two-way ANOVA were performed to compare hormone levels, survival of the follicles and ADSCs, oocyte maturation rates, and follicle growth. RESULTS The co-encapsulation of the follicles with ADSCs increased follicle survival, ranging from 42.4% for the 86-95 μm to 86.2% for the 106-115-μm follicle size group. Co-culture also improved the follicle growth, the rate of antrum formation and oocyte maturation compared to the follicles cultured alone. The levels of androstenedione, estradiol, and progesterone of co-encapsulated follicles increased progressively with time in culture. CONCLUSIONS To our knowledge, this is the first report of an in vitro system utilizing mouse adipose-derived stem cells to support the development of the mouse follicles. Our findings suggest that co-encapsulation of ADSCs with early-stage follicles supports follicular development, through secretion of cytokines that promote follicular survival, antrum formation, and meiotic competence. The unique 3D culture system that supports the survival of both cell types has translational implications, as ADSCs could be used as an autologous source for in vitro maturation of early-stage human follicles.
Collapse
Affiliation(s)
- Lisa J. Green
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI USA
- Present Address: Department of Obstetrics and Gynecology, University of South Carolina School of Medicine, Greenville, SC USA
| | - Hong Zhou
- Department of Biomedical Engineering, University of Michigan, 2126 Lurie Biomedical Engineering Building, 1101 Beal Ave., Ann Arbor, MI 48109 USA
| | - Vasantha Padmanabhan
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI USA
- Department of Pediatrics, University of Michigan, Ann Arbor, MI USA
- Department Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI USA
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, 2126 Lurie Biomedical Engineering Building, 1101 Beal Ave., Ann Arbor, MI 48109 USA
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
50
|
Lo BKM, Sheikh S, Williams SA. In vitro and in vivo mouse follicle development in ovaries and reaggregated ovaries. Reproduction 2019; 157:135-148. [PMID: 30601757 PMCID: PMC6347279 DOI: 10.1530/rep-18-0115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 11/13/2018] [Indexed: 11/23/2022]
Abstract
Follicle development requires complex and coordinated interactions between both the oocyte and its associated somatic cells. In ovarian dysfunction, follicle development may be abnormal due to defective somatic cell function; for example, premature ovarian insufficiency or malignancies. Replacing defective somatic cells, using the reaggregated ovary (RO) technique, may 'rescue' follicle development. ROs containing mature follicles have been generated when transplanted to a host mouse to develop. We have developed a RO culture technique and the aims were to determine how follicle development differed between transplanted and cultured ROs, and the influence of ovarian age (P2 vs P6). Mouse ROs were cultured for 14 days; P2 and P6 ovaries cultured as Controls. Follicle development was compared to ROs transplanted for 14 days and ovaries from P16 and P20 mice. ROs generated from either P2 or P6 exhibited similar follicle development in culture whereas in vivo follicle development was more advanced in P6 ROs. Follicles were more developed in cultured ROs than transplanted ROs. However, follicles in cultured ROs and ovaries had smaller oocytes with fewer theca and granulosa cells than in vivo counterparts. Our results demonstrate the fluidity of follicle development despite ovary dissociation and that environment is more important to basal lamina formation and theca cell development. Furthermore, follicle development within cultured ROs appears to be independent of oocyte nest breakdown and primordial follicle formation in source ovaries. Our results highlight the need for understanding follicle development in vitro, particularly in the development of the RO technique as a potential fertility treatment.
Collapse
Affiliation(s)
- Belinda K M Lo
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Women’s Centre, Level 3, John Radcliffe Hospital, Oxford, United Kingdom
- IVF Centre, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong
| | - Sairah Sheikh
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Women’s Centre, Level 3, John Radcliffe Hospital, Oxford, United Kingdom
| | - Suzannah A Williams
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Women’s Centre, Level 3, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|