1
|
Roodgar M, Suchy FP, Nguyen LH, Bajpai VK, Sinha R, Vilches-Moure JG, Van Bortle K, Bhadury J, Metwally A, Jiang L, Jian R, Chiang R, Oikonomopoulos A, Wu JC, Weissman IL, Mankowski JL, Holmes S, Loh KM, Nakauchi H, VandeVoort CA, Snyder MP. Chimpanzee and pig-tailed macaque iPSCs: Improved culture and generation of primate cross-species embryos. Cell Rep 2022; 40:111264. [PMID: 36044843 PMCID: PMC10075238 DOI: 10.1016/j.celrep.2022.111264] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/06/2022] [Accepted: 08/04/2022] [Indexed: 12/26/2022] Open
Abstract
As our closest living relatives, non-human primates uniquely enable explorations of human health, disease, development, and evolution. Considerable effort has thus been devoted to generating induced pluripotent stem cells (iPSCs) from multiple non-human primate species. Here, we establish improved culture methods for chimpanzee (Pan troglodytes) and pig-tailed macaque (Macaca nemestrina) iPSCs. Such iPSCs spontaneously differentiate in conventional culture conditions, but can be readily propagated by inhibiting endogenous WNT signaling. As a unique functional test of these iPSCs, we injected them into the pre-implantation embryos of another non-human species, rhesus macaques (Macaca mulatta). Ectopic expression of gene BCL2 enhances the survival and proliferation of chimpanzee and pig-tailed macaque iPSCs within the pre-implantation embryo, although the identity and long-term contribution of the transplanted cells warrants further investigation. In summary, we disclose transcriptomic and proteomic data, cell lines, and cell culture resources that may be broadly enabling for non-human primate iPSCs research.
Collapse
Affiliation(s)
- Morteza Roodgar
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Fabian P Suchy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lan H Nguyen
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Vivek K Bajpai
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jose G Vilches-Moure
- Department of Comparative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kevin Van Bortle
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Joydeep Bhadury
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Biomedicine, Sahlgrenska University Hospital, University of Gothenburg, SE 413 45 Gothenburg, Sweden
| | - Ahmed Metwally
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Lihua Jiang
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Ruiqi Jian
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Rosaria Chiang
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Angelos Oikonomopoulos
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Susan Holmes
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Kyle M Loh
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hiromitsu Nakauchi
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Catherine A VandeVoort
- California National Primate Research Center and Department of Obstetrics and Gynecology, University of California, Davis, Davis, CA, USA.
| | - Michael P Snyder
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Schall PZ, Ruebel ML, Midic U, VandeVoort CA, Latham KE. Temporal patterns of gene regulation and upstream regulators contributing to major developmental transitions during Rhesus macaque preimplantation development. Mol Hum Reprod 2020; 25:111-123. [PMID: 30698740 DOI: 10.1093/molehr/gaz001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/11/2018] [Accepted: 01/24/2019] [Indexed: 02/07/2023] Open
Abstract
The preimplantation period of life in mammals encompasses a tremendous amount of restructuring and remodeling of the embryonic genome and reprogramming of gene expression. These vast changes support metabolic activation and cellular processes that drive early cleavage divisions and enable the creation of the earliest primitive cell lineages. A major question in mammalian embryology is how such vast, sweeping changes in gene expression are orchestrated, so that changes in gene expression are exactly appropriate to meet the developmental needs of the embryo over time. Using the rhesus macaque as an experimentally tractable model species closely related to the human, we combined high quality RNA-seq libraries, in-depth sequencing and advanced systems analysis to discover the underlying mechanisms that drive major changes in gene regulation during preimplantation development. We identified the major changes in mRNA population and the biological pathways and processes impacted by those changes. Most importantly, we identified 24 key upstream regulators that are themselves modulated during development and that are associated with the regulation of over 1000 downstream genes. Through their roles in extensive gene networks, these 24 upstream regulators are situated to either drive major changes in target gene expression or modify the cellular environment in which other genes function, thereby directing major developmental transitions in the preimplantation embryo. The data presented here highlight some of the specific molecular features that likely drive preimplantation development in a nonhuman primate species and provides an extensive database for novel hypothesis-driven studies.
Collapse
Affiliation(s)
- Peter Z Schall
- Department of Animal Science and Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA.,Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, MI, USA
| | - Meghan L Ruebel
- Department of Animal Science and Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| | - Uros Midic
- Department of Animal Science and Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| | - Catherine A VandeVoort
- California National Primate Research Center and Department of Obstetrics and Gynecology, University of California, Davis, CA, USA
| | - Keith E Latham
- Department of Animal Science and Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
3
|
Nieto-Olmedo P, Martín-Cano FE, Gaitskell-Phillips G, Ortiz-Rodríguez JM, Peña FJ, Ortega-Ferrusola C. Power Doppler can detect the presence of 7-8 day conceptuses prior to flushing in an equine embryo transfer program. Theriogenology 2020; 145:1-9. [PMID: 31972496 DOI: 10.1016/j.theriogenology.2020.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 12/26/2022]
Abstract
In order to determine whether differences in uterine blood flow between pregnant and non-pregnant mares can be used to predict the presence of the equine embryo prior to flushing in an embryo transfer program, power Doppler ultrasonography was used on a total of 52 mares on days 7 or 8 post-ovulation. Computer analysis of Doppler images was subsequently performed using ImageJ v1.48 software. Vascular perfusion of the endometrium was analyzed using spot meter techniques, measuring mean pixel intensity and area of blood flow. Mares with positive flushings presented a higher uterine blood flow area (one embryo: 54.01 ± 2.27 mm2 or two embryos: 61.01 ± 6.73 mm2) prior to embryo recovery compared to barren mares (21.77 ± 2.22 mm2) (p≤0.05). However, significant differences in vascular perfusion were not detected between single or twin pregnancies. Blood flow area appears to be a good predictor for differentiation between pregnant and non-pregnant mares with an AUC: 0.869; p≤0.001 and an optimal cut-off value of 37.21 mm2. Both the mare's age and day of embryo recovery caused effects on uterine vascular perfusion. According to Youden's J statistics the uterine blood flow area of young pregnant mares was greater than 25.4 mm2 on day 7 (with a sensitivity of 75% and a specificity of 87.5%) and greater than 21.02 mm2 on day 8 post-ovulation (with a sensitivity of 93.8% and a specificity of 100%). The uterine blood flow area in adult pregnant mares was greater than 41.4 mm2 on day 7 (with a sensitivity of 80% and a specificity of 85.5%) and greater than 35.55 mm2 on day 8 after ovulation (with a sensitivity of 97.2% and a specificity of 85.7%). Evaluation on day 8 is therefore considered to be more reliable. Older and middle aged pregnant mares (5-18 years old) had increased uterine vascularization compared to young pregnant mares (2-5 years old) (p≤0.001). Conversely, older barren mares showed higher endometrial vascularity (35.06 ± 2.56 mm2) than young (17.21 ± 1.26 mm2) and middle aged non-pregnant mares (23.84 ± 1.50 mm2) (p≤0.05). We hypothesized that the higher blood flow area seen in older barren mares may be a consequence of a subclinical endometritis due to repeated flushing for embryo recovery. The results of the present study indicate that power Doppler ultrasound combined with computer assisted analysis of images are reliable techniques to detect early pregnancy prior to embryo recovery.
Collapse
Affiliation(s)
- P Nieto-Olmedo
- CEFIVA-Centro de Fertilización In vitro de Asturias, Spain.
| | - F E Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain.
| | - G Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain.
| | - J M Ortiz-Rodríguez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain.
| | - F J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain.
| | - C Ortega-Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
4
|
Ruebel ML, Schall PZ, Midic U, Vincent KA, Goheen B, VandeVoort CA, Latham KE. Transcriptome analysis of rhesus monkey failed-to-mature oocytes: deficiencies in transcriptional regulation and cytoplasmic maturation of the oocyte mRNA population. Mol Hum Reprod 2019; 24:478-494. [PMID: 30085220 DOI: 10.1093/molehr/gay032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022] Open
Abstract
STUDY QUESTION Which different pathways and functions are altered in rhesus monkey oocytes that fail to mature after an ovulatory stimulus? SUMMARY ANSWER Failed to mature (FTM) oocytes complete a large portion of the transition in transcriptome composition associated with normal maturation, but also manifest numerous differences that indicate incomplete transcriptional repression and cytoplasmic maturation affecting multiple processes. WHAT IS KNOWN ALREADY Oocyte maturation defects contribute to unexplained female infertility. Failure of some oocytes to undergo germinal vesicle breakdown or progress to second meiotic metaphase in response to an ovulatory stimulus can limit the number of high quality oocytes available for ART. STUDY DESIGN, SIZE, DURATION The transcriptome of rhesus monkey oocytes that failed to mature (FTM; n = 11, 5 donors) in response to an ovulatory stimulus in vivo was compared to those of normal germinal vesicle stage (GV, n = 7, 2 donors) and metaphase II stage (MII, n = 7, 5 donors) oocytes by RNA-sequencing (RNAseq). PARTICIPANTS/MATERIALS, SETTING, METHODS Female rhesus monkeys of normal breeding age (6-12 years old) and with regular menstrual cycles were used. Animals underwent a controlled ovarian stimulation protocol for the collection of oocytes by ultrasound-guided needle aspiration of follicles. MAIN RESULTS AND THE ROLE OF CHANCE We obtained a high quality RNAseq dataset consisting of n = 7, n = 7, and n = 11 libraries for normal GV, normal MII and FTM oocytes, respectively. Total reads acquired were an average of 34 million for each GV sample, 41 million for each FTM sample and 59 million for each MII oocyte sample. Approximately 44% of the total reads were exonic reads that successfully aligned to the rhesus monkey genome as unique non-rRNA gene transcript sequences, providing high depth of coverage. Approximately 44% of the mRNAs that undergo changes in abundance during normal maturation display partial modulations to intermediate abundances, and 9.2% fail to diverge significantly from GV stage oocytes. Additionally, a small group of mRNAs are grossly mis-regulated in the FTM oocyte. Differential expression was seen for mRNAs associated with mitochondrial functions, fatty acid beta oxidation, lipid accumulation, meiosis, zona pellucida formation, Hippo pathway signaling, and maternal mRNA regulation. A deficiency DNA methyltransferase one mRNA expression indicates a potential defect in transcriptional silencing. LARGE SCALE DATA All RNAseq data are published in the Gene Expression Omnibus Database (GSE112536). LIMITATIONS, REASONS FOR CAUTION These results do not establish cause of maturation failure but reveal novel correlates of incompetence to mature. Transcriptome studies likely do not capture all post-transcriptional or post-translational events that inhibit maturation, but do reveal mRNA expression changes that lie downstream of such events or that are related to effects on upstream regulators. The use of an animal model allows the study of oocyte maturation failure independent of covariates and confounders, such as pre-existing conditions of the female, which is a significant concern in human studies. Depending on the legislation, it may not be possible to collect and study oocytes from healthy women; and using surplus oocytes from patients undergoing ART may introduce confounders that vary from case to case. FTM oocytes were at various stages of meiotic progression, so correlates of specific times of arrest are not revealed. All the FTM oocytes failed to respond appropriately to an ovulatory stimulus in vivo. Therefore, this analysis informs us about common transcriptome features associated with meiotic incompetence. WIDER IMPLICATIONS OF THE FINDINGS These results reveal that some diagnostic markers of oocyte quality may not reflect developmental competence because even meiotically incompetent oocytes display many normal gene expression features. The results also reveal potential mechanisms by which maternal and environmental factors may impact transcriptional repression and cytoplasmic maturation, and prevent oocyte maturation. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grants from the National Institutes of Health Office of Research Infrastructure Programs Division of Comparative Medicine Grants R24 [OD012221 to K.E.L., OD011107/RR00169 (California National Primate Research Center), and OD010967/RR025880 to C.A.V.]; the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health under the award number T32HD087166; MSU AgBioResearch, Michigan State University. Authors have nothing to disclose.
Collapse
Affiliation(s)
- Meghan L Ruebel
- Department of Animal Science and Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| | - Peter Z Schall
- Department of Animal Science and Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| | - Uros Midic
- Department of Animal Science and Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| | - Kailey A Vincent
- Department of Animal Science and Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| | - Benjamin Goheen
- Department of Animal Science and Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| | - Catherine A VandeVoort
- California National Primate Research Center and Department of Obstetrics and Gynecology, University of California, Davis, CA, USA
| | - Keith E Latham
- Department of Animal Science and Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
5
|
Midic U, Hung PH, Vincent KA, Goheen B, Schupp PG, Chen DD, Bauer DE, VandeVoort CA, Latham KE. Quantitative assessment of timing, efficiency, specificity and genetic mosaicism of CRISPR/Cas9-mediated gene editing of hemoglobin beta gene in rhesus monkey embryos. Hum Mol Genet 2018; 26:2678-2689. [PMID: 28444193 DOI: 10.1093/hmg/ddx154] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/19/2017] [Indexed: 12/26/2022] Open
Abstract
Gene editing technologies offer new options for developing novel biomedical research models and for gene and stem cell based therapies. However, applications in many species demand high efficiencies, specificity, and a thorough understanding of likely editing outcomes. To date, overall efficiencies, rates of off-targeting and degree of genetic mosaicism have not been well-characterized for most species, limiting our ability to optimize methods. As a model gene for measuring these parameters of the CRISPR/Cas9 application in a primate species (rhesus monkey), we selected the β-hemoglobin gene (HBB), which also has high relevance to the potential application of gene editing and stem-cell technologies for treating human disease. Our data demonstrate an ability to achieve a high efficiency of gene editing in rhesus monkey zygotes, with no detected off-target effects at selected off-target loci. Considerable genetic mosaicism and variation in the fraction of embryonic cells bearing targeted alleles are observed, and the timing of editing events is revealed using a new model. The uses of Cas9-WT protein combined with optimized concentrations of sgRNAs are two likely areas for further refinement to enhance efficiency while limiting unfavorable outcomes that can be exceedingly costly for application of gene editing in primate species.
Collapse
Affiliation(s)
- Uros Midic
- Department of Animal Science, and Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI 48824, USA
| | - Pei-Hsuan Hung
- California National Primate Research Center and Department of Obstetrics and Gynecology, University of California, Davis, Davis, CA 95616, USA
| | - Kailey A Vincent
- Department of Animal Science, and Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI 48824, USA
| | - Benjamin Goheen
- Department of Animal Science, and Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI 48824, USA
| | - Patrick G Schupp
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Diane D Chen
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School and Harvard Stem Cell Institute, Harvard University, Boston, MA, USA
| | - Catherine A VandeVoort
- California National Primate Research Center and Department of Obstetrics and Gynecology, University of California, Davis, Davis, CA 95616, USA
| | - Keith E Latham
- Department of Animal Science, and Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
6
|
Marshall SA, Senadheera SN, Parry LJ, Girling JE. The Role of Relaxin in Normal and Abnormal Uterine Function During the Menstrual Cycle and Early Pregnancy. Reprod Sci 2016; 24:342-354. [DOI: 10.1177/1933719116657189] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sarah A. Marshall
- School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Laura J. Parry
- School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Jane E. Girling
- Department of Obstetrics and Gynaecology, Gynaecology Research Centre, The University of Melbourne and Royal Women’s Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Klein C. The role of relaxin in mare reproductive physiology: A comparative review with other species. Theriogenology 2016; 86:451-6. [PMID: 27158127 DOI: 10.1016/j.theriogenology.2016.04.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/23/2015] [Accepted: 03/14/2016] [Indexed: 11/16/2022]
Abstract
Relaxin is a peptide hormone best known for its action during the latter half of pregnancy, in particular for its softening effect on pelvic ligaments that aids in preparation of the birth canal for the impending delivery of the fetus. The source of relaxin during early pregnancy varies across species, with the CL being the main source in a number of species. The main source of relaxin during late equine pregnancy is the placenta. In mares with impaired placental function, circulating relaxin levels decline before abortion. During early pregnancy, relaxin promotes endometrial angiogenesis through upregulating endometrial expression of vascular endothelial growth factor. The horse is unique in that the equine conceptus expresses relaxin messenger RNA as early as 8 days after ovulation, with levels increasing as conceptus development proceeds. Although secretion of functional relaxin has not been verified, it is likely, given that the embryo also expresses transcripts coding for enzymes processing the prohormone to yield the mature hormone. Furin, an enzyme which belongs to the subtilisin-like proprotein convertase family known to process preprorelaxin, appears to be the foremost convertase expressed by equine conceptuses. Conceptus-derived relaxin could drive endometrial angiogenesis and also act in an autocrine fashion to promote the embryo's own development. Relaxin is also expressed by ovarian structures during the nonpregnant estrous cycle. In the mare, follicular expression of relaxin is comparable among follicles of varying size and has been localized to granulosa and theca cells. In women and pigs, relaxin appears to promote follicular development. In the rat, multiple lines of evidence indicate that relaxin is involved in the ovulatory process. In the mare, relaxin might play a similar role in the ovulatory process, as in equine ovarian stromal cells relaxin promotes the secretion of gelatinases and tissue inhibitors of metalloproteinases; local proteolysis of the follicular wall is integral to the ovulatory process. However, functional studies addressing the role of relaxin in the ovulatory process are missing in the mare.
Collapse
Affiliation(s)
- Claudia Klein
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
8
|
VandeVoort CA, Grimsrud KN, Midic U, Mtango N, Latham KE. Transgenerational effects of binge drinking in a primate model: implications for human health. Fertil Steril 2015; 103:560-9. [PMID: 25492684 PMCID: PMC4314404 DOI: 10.1016/j.fertnstert.2014.10.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 10/31/2014] [Accepted: 10/31/2014] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To determine if binge ethanol consumption before ovulation affects oocyte quality, gene expression, and subsequent embryo development. DESIGN Binge levels of ethanol were given twice weekly for 6 months, followed by a standard in vitro fertilization cycle and subsequent natural mating. SETTING National primate research center. ANIMAL(S) Adult female rhesus monkeys. INTERVENTION(S) Binge levels of ethanol, given twice weekly for 6 months before a standard in vitro fertilization cycle with or without embryo culture. With in vivo development, ethanol treatment continued until pregnancy was identified. MAIN OUTCOME MEASURE(S) Oocyte and cumulus/granulosa cell gene expression, embryo development to blastocyst, and pregnancy rate. RESULT(S) Embryo development in vitro was reduced; changes were found in oocyte and cumulus cell gene expression; and spontaneous abortion during very early gestation increased. CONCLUSION(S) This study provides evidence that binge drinking can affect the developmental potential of oocytes even after alcohol consumption has ceased.
Collapse
Affiliation(s)
- Catherine A VandeVoort
- California National Primate Research Center, University of California, Davis, California; Department of Obstetrics and Gynecology, University of California, Davis, California.
| | - Kristin N Grimsrud
- California National Primate Research Center, University of California, Davis, California
| | - Uros Midic
- The Fels Institute for Cancer Research & Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania; Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Namdori Mtango
- The Fels Institute for Cancer Research & Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Keith E Latham
- The Fels Institute for Cancer Research & Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania; Department of Animal Science, Michigan State University, East Lansing, Michigan; Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
Anand-Ivell R, Ivell R. Regulation of the reproductive cycle and early pregnancy by relaxin family peptides. Mol Cell Endocrinol 2014; 382:472-479. [PMID: 23994019 DOI: 10.1016/j.mce.2013.08.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/09/2013] [Accepted: 08/18/2013] [Indexed: 12/16/2022]
Abstract
The relaxin family of peptide hormones are structurally closely related to one another sharing a heterodimeric A-B structure, like that of insulin. They may also be active as unprocessed B-C-A pro-forms. Relaxin has been shown to pay a key role within the ovary, being involved in follicle growth, and ovulation. Relaxin is produced in large amounts also by the corpus luteum where it acts as an endocrine hormone positively affecting implantation, placentation and vascularization during the all-important first trimester phase of pregnancy establishment. Relaxin exerts its functions via the receptor RXFP1. Insulin-like peptide 3 (INSL3) in contrast acts through the related receptor RXFP2, and plays an essential role in the production of androgens within growing antral follicles. INSL3 is also produced in large amounts by the male fetus shortly after sex determination, where it controls the first transabdominal phase of testicular descent. However, this fetal INSL3 is also able to influence placental and maternal physiology, indicating associations with later preeclampsia and/or fetal growth restriction. Other members of this relaxin-like family of peptides, such as INSL4, INSL5 and INSL6 are less well studied, though all suggest modulatory roles in ovarian and/or placental function.
Collapse
Affiliation(s)
| | - Richard Ivell
- Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany.
| |
Collapse
|
10
|
Endocrine and local control of the primate corpus luteum. Reprod Biol 2013; 13:259-71. [PMID: 24287034 DOI: 10.1016/j.repbio.2013.08.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 08/30/2013] [Indexed: 12/16/2022]
Abstract
The primate corpus luteum is a transient endocrine gland that differentiates from the ovulatory follicle midway through the ovarian (menstrual) cycle. Its formation and limited lifespan is critical for fertility, as luteal-derived progesterone is the essential steroid hormone required for embryo implantation and maintenance of intra-uterine pregnancy until the placenta develops. It is well-established that LH and the LH-like hormone, CG, are the vital luteotropic hormones during the menstrual cycle and early pregnancy, respectively. Recent advances, particularly through genome analyses and cellular studies, increased our understanding of various local factors and cellular processes associated with the development, maintenance and repression of the corpus luteum. These include paracrine or autocrine factors associated with angiogenesis (e.g., VEGF), and that mediate LH/CG actions (e.g., progesterone), or counteract luteotropic effects (i.e., local luteolysis; e.g., PGF2α). However, areas of mystery and controversy remain, particularly regarding the signals and events that initiate luteal regression in the non-fecund cycle. Novel approaches capable of gene "knockdown" or amplification", in vivo as well as in vitro, should identify novel or underappreciated gene products that are regulated by or modulate LH/CG actions to control the functional lifespan of the primate corpus luteum. Further advances in our understanding of luteal physiology will help to improve or control fertility for purposes ranging from preservation of endangered primate species to designing novel ovary-based contraceptives and treating ovarian disorders in women.
Collapse
|
11
|
Anand-Ivell R, Dai Y, Ivell R. Neohormones as biomarkers of reproductive health. Fertil Steril 2013; 99:1153-60. [DOI: 10.1016/j.fertnstert.2012.12.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 12/14/2012] [Accepted: 12/14/2012] [Indexed: 12/13/2022]
|
12
|
Bishop CV, Satterwhite S, Xu L, Hennebold JD, Stouffer RL. Microarray analysis of the primate luteal transcriptome during chorionic gonadotrophin administration simulating early pregnancy. Mol Hum Reprod 2011; 18:216-27. [PMID: 22072816 DOI: 10.1093/molehr/gar073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
To explore chorionic gonadotrophin (CG)-regulated gene expression in the primate corpus luteum (CL), adult female rhesus macaques were treated in a model of simulated early pregnancy (SEP). Total RNA was isolated from individual CL after specific intervals of exposure (1, 3, 6 and 9 days) to recombinant hCG in vivo and hybridized to Affymetrix™ GeneChip Rhesus Macaque Genome Arrays. The mRNA levels of 1192 transcripts changed ≥2-fold [one-way ANOVA, false discovery rate (FDR) correction; P< 0.05] during SEP when compared with Day 10 untreated controls. Real-time PCR validation indicated that 15 of 17 genes matched in expression pattern between PCR and microarray. Protein levels of three genes identified as CG-sensitive, CYP19A1 (aromatase), PGRMC1 (progestin-binding protein) and STAR (steroidogenic acute regulatory protein) were quantified by western blot analysis. To further analyze global changes in gene expression induced by CG exposure, luteal gene expression was compared between SEP (rescued) and regressing CL, utilizing previously banked GeneChip data from the luteal phase of the menstrual cycle. Expression patterns and mRNA levels were analyzed between time-matched intervals. Transcripts for 7677 mRNAs differed in expression patterns ≥2-fold (one-way ANOVA, FDR correction; P< 0.05) between the hCG-exposed (SEP) CL and regressing CL. Regressed CL (at menses) were most unlike all other CL. Pathway analysis of significantly affected transcripts was performed; the pathway most impacted by CG exposure was steroid biosynthesis. Further comparisons of the genome-wide changes in luteal gene expression during CG rescue and luteolysis in the natural menstrual cycle should identify additional key regulatory pathways promoting primate fertility.
Collapse
Affiliation(s)
- C V Bishop
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA.
| | | | | | | | | |
Collapse
|