1
|
Mitranovici MI, Costachescu D, Voidazan S, Munteanu M, Buicu CF, Oală IE, Ivan V, Apostol A, Melinte IM, Crisan A, Pușcașiu L, Micu R. Exploring the Shared Pathogenesis Mechanisms of Endometriosis and Cancer: Stemness and Targeted Treatments of Its Molecular Pathways-A Narrative Review. Int J Mol Sci 2024; 25:12749. [PMID: 39684461 DOI: 10.3390/ijms252312749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Endometriosis is a benign disease but with malignant behavior, sharing numerous features with cancers. Endometriosis is the development of endometrial tissue outside the uterus, with the presence of both glands and stroma. Approximately 10% of women of reproductive age suffer from endometriosis; it involves high social costs and affects the patient's quality of life. In this review, we attempt to capture the pathogenesis mechanisms that are common to endometriosis and cancer based on molecular biology, focusing more on the principle of immunological changes and stemness. Clinical applicability will consist of targeted treatments that represent future directions in these diseases, which impose a burden on the healthcare system. Unlike endometriosis, cancer is a disease with fatal evolution, with conventional treatment based on chemo/radiotherapy. Here, we focus on the niche of personalized treatments that target molecular pathways. Our findings show that, in both pathologies, the resistance to treatments is due to the stemness of the stem cells, which might play a role in the appearance and evolution of both diseases. More research is needed before we can draw firm conclusions.
Collapse
Affiliation(s)
- Melinda-Ildiko Mitranovici
- Department of Obstetrics and Gynecology, Emergency County Hospital Hunedoara, 14 Victoriei Street, 331057 Hunedoara, Romania
| | - Dan Costachescu
- Department of Orthopedics-Traumatology, Urology, Radiology and Medical Imaging, University of Medicine and Pharmacy Victor Babes, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Septimiu Voidazan
- Department of Epidemiology, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology, 540142 Targu Mures, Romania
| | - Mihai Munteanu
- Faculty of Electrical Engineering, Technical University, George Baritiu Street, 400394 Cluj-Napoca, Romania
| | - Corneliu-Florin Buicu
- Department of Epidemiology, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology, 540142 Targu Mures, Romania
| | - Ioan Emilian Oală
- Department of Obstetrics and Gynecology, Emergency County Hospital Hunedoara, 14 Victoriei Street, 331057 Hunedoara, Romania
| | - Viviana Ivan
- Department VII, Internal Medicine II, Discipline of Cardiology, University of Medicine and Pharmacy Victor Babes, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Adrian Apostol
- Department VII, Internal Medicine II, Discipline of Cardiology, University of Medicine and Pharmacy Victor Babes, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Ioana M Melinte
- Department of Epidemiology, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology, 540142 Targu Mures, Romania
| | - Andrada Crisan
- Department of Epidemiology, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology, 540142 Targu Mures, Romania
| | - Lucian Pușcașiu
- Department of Epidemiology, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology, 540142 Targu Mures, Romania
| | - Romeo Micu
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy Iuliu Hatieganu, 400347 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Colón-Caraballo M, Flores-Caldera I. Translational aspects of the endometriosis epigenome. EPIGENETICS IN HUMAN DISEASE 2024:883-929. [DOI: 10.1016/b978-0-443-21863-7.00008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Marquardt RM, Tran DN, Lessey BA, Rahman MS, Jeong JW. Epigenetic Dysregulation in Endometriosis: Implications for Pathophysiology and Therapeutics. Endocr Rev 2023; 44:1074-1095. [PMID: 37409951 PMCID: PMC10638603 DOI: 10.1210/endrev/bnad020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 02/15/2023] [Accepted: 07/05/2023] [Indexed: 07/07/2023]
Abstract
Endometriosis is a prevalent gynecological condition associated with pelvic pain and infertility. Despite more than a century of research, the etiology of endometriosis still eludes scientific consensus. This lack of clarity has resulted in suboptimal prevention, diagnosis, and treatment options. Evidence of genetic contributors to endometriosis is interesting but limited; however, significant progress has been made in recent years in identifying an epigenetic role in the pathogenesis of endometriosis through clinical studies, in vitro cell culture experiments, and in vivo animal models. The predominant findings include endometriosis-related differential expression of DNA methyltransferases and demethylases, histone deacetylases, methyltransferases, and demethylases, and regulators of chromatin architecture. There is also an emerging role for miRNAs in controlling epigenetic regulators in the endometrium and endometriosis. Changes in these epigenetic regulators result in differential chromatin organization and DNA methylation, with consequences for gene expression independent of a genetic sequence. Epigenetically altered expression of genes related to steroid hormone production and signaling, immune regulation, and endometrial cell identity and function have all been identified and appear to play into the pathophysiological mechanisms of endometriosis and resulting infertility. This review summarizes and critically discusses early seminal findings, the ever-growing recent evidence of epigenetic contributions to the pathophysiology of endometriosis, and implications for proposed epigenetically targeted therapeutics.
Collapse
Affiliation(s)
- Ryan M Marquardt
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
| | - Dinh Nam Tran
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Bruce A Lessey
- Department of Obstetrics and Gynecology, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Md Saidur Rahman
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| |
Collapse
|
4
|
Zheng H, Liu X, Guo S. Aberrant expression of histone deacetylase 8 in endometriosis and its potential as a therapeutic target. Reprod Med Biol 2023; 22:e12531. [PMID: 37564680 PMCID: PMC10410010 DOI: 10.1002/rmb2.12531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/21/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Purpose To screen Zn2+-dependent histone deacetylase (HDAC) 1-11 in endometriotic cells and then evaluated the HDACs identified from the screening in ovarian endometrioma (OE) and deep endometriotic (DE) lesions, and to evaluate the therapeutic potential of HDAC8 inhibition in mice. Methods Quantification of gene and protein expression levels of HDAC1-11 in endometriotic cells stimulated by TGF-β1, and immunohistochemistry analysis of Class I HDACs and HDAC6 in OE/DE lesion samples. The therapeutic potential of HDAC8 inhibition was evaluated by a mouse model of deep endometriosis. Results The screening identified Class I HDACs and HDAC6 as targets of interest. Immunohistochemistry analysis found a significant elevation in HDAC8 immunostaining in both OE and DE lesions, which was corroborated by gene and protein expression quantification. For other Class I HDACs and HDAC6, their lesional expression was more subtle and nuanced. HDAC1 and HDAC6 staining was significantly elevated in DE lesions while HDAC2 and HDAC3 staining was reduced in DE lesions. Treatment of mice with induced deep endometriosis with an HDAC8 inhibitor resulted in significantly longer hotplate latency, a reduction of lesion weight by nearly two-thirds, and significantly reduced lesional fibrosis. Conclusions These findings highlight the progression-dependent nature of specific HDAC aberrations in endometriosis, and demonstrate, for the first titme, the therapeutic potential of suppressing HDAC8.
Collapse
Affiliation(s)
- Hanxi Zheng
- Department of Gynecology, Shanghai Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
- Present address:
Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouChina
| | - Xishi Liu
- Department of Gynecology, Shanghai Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesFudan UniversityShanghaiChina
| | - Sun‐Wei Guo
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesFudan UniversityShanghaiChina
- Research Institute, Shanghai Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
| |
Collapse
|
5
|
Zheng H, Liu X, Guo S. Corroborating evidence for aberrant expression of histone deacetylase 8 in endometriosis. Reprod Med Biol 2023; 22:e12527. [PMID: 37476367 PMCID: PMC10354415 DOI: 10.1002/rmb2.12527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
Purpose The aim of this study was to evaluate the dynamic change in staining of Class I HDACs and Hdac6 in lesions harvested serially from different time points in mice with induced endometriosis. In addition, the effect of Hdac8 activation as well as Hdac8 and Hdac6 inhibition on lesional progression and fibrogenesis was evaluated. Methods Immunohistochemistry analysis of Class I HDACs and Hdac6 in serially harvested lesion samples in mouse. Hdac8 activation, as well as Hdac6/8 inhibition, was evaluated in mice with induced endometriosis. Results We found a progressive increase in lesional staining of Hdac1, Hdac8, and Hdac6 and gradual decrease in Hdac2 staining and consistently reduced staining of Hdac3 during the course of lesional progression. The stromal Hdac8 staining correlated most prominently with all markers of lesional fibrosis. Hdac8 activation significantly accelerated the progression and fibrogenesis of endometriotic lesions. In contrast, specific inhibition of Hdac8 or Hdac6, especially of Hdac8, significantly hindered lesional progression and fibrogenesis. Conclusions Hdac8 is progressively and aberrantly overexpressed as endometriotic lesions progress. This, along with the documented HDAC1 upregulation in endometriosis and the overwhelming evidence for the therapeutic potentials of HDACIs, calls for further and in-depth investigation of epigenetic aberrations of endometriosis in general and of HDACs in particular.
Collapse
Affiliation(s)
- Hanxi Zheng
- Department of GynecologyShanghai Obstetrics and Gynecology Hospital, Fudan UniversityShanghaiChina
- Present address:
Gusu School, Center for Human Reproduction and GeneticsAffiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical UniversitySuzhouChina
| | - Xishi Liu
- Department of GynecologyShanghai Obstetrics and Gynecology Hospital, Fudan UniversityShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesFudan UniversityShanghaiChina
| | - Sun‐Wei Guo
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesFudan UniversityShanghaiChina
- Research Institute, Shanghai Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
| |
Collapse
|
6
|
Zhu J, Wu P, Zeng C, Xue Q. Increased SUMOylation of TCF21 improves its stability and function in human endometriotic stromal cells†. Biol Reprod 2021; 105:128-136. [PMID: 33693540 DOI: 10.1093/biolre/ioab038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/08/2020] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
Endometriosis is an estrogen-dependent disease. Our previous study demonstrated that elevated levels of transcription factor 21 (TCF21) in endometriotic tissues enhanced steroidogenic factor-1 (SF-1) and estrogen receptor β (ERβ) expression by forming a heterodimer with upstream stimulatory factor 2 (USF2), allowing these TCF21/USF2 complexes to bind to the promoters of SF-1 and ERβ. Furthermore, TCF21 contributed to the increased proliferation of endometriotic stromal cells (ESCs), suggesting that TCF21 may play a vital role in the pathogenesis of endometriosis. SUMOylation is a posttranslational modification that has emerged as a crucial molecular regulatory mechanism. However, the mechanism regulating TCF21 SUMOylation in endometriosis is incompletely characterized. Thus, this study aimed to explore the effect of TCF21 SUMOylation on its expression and regulation in ovarian endometriosis. We found that the levels of SUMOylated TCF21 were increased in endometriotic tissues and stromal cells compared with eutopic endometrial tissues and stromal cells and enhanced by estrogen. Treatment with the SUMOylation inhibitor ginkgolic acid and the results of a protein half-life assay demonstrated that SUMOylation can stabilize the TCF21 protein. A coimmunoprecipitation assay showed that SUMOylation probably increased its interaction with USF2. Further analyses elucidated that SUMOylation of TCF21 significantly increased the binding activity of USF2 to the SF-1 and ERβ promoters. Moreover, the SUMOylation motifs in TCF21 affected the proliferation ability of ESCs. The results of this study suggest that SUMOylation plays a critical role in mediating the high expression of TCF21 in ESCs and may participate in the development of endometriosis.
Collapse
Affiliation(s)
- Jingwen Zhu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Peili Wu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Cheng Zeng
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Qing Xue
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| |
Collapse
|
7
|
Guo SW. Cancer-associated mutations in endometriosis: shedding light on the pathogenesis and pathophysiology. Hum Reprod Update 2020; 26:423-449. [PMID: 32154564 DOI: 10.1093/humupd/dmz047] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/22/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Endometriosis is a benign gynaecological disease. Thus, it came as a complete surprise when it was reported recently that the majority of deep endometriosis lesions harbour somatic mutations and a sizeable portion of them contain known cancer-associated mutations (CAMs). Four more studies have since been published, all demonstrating the existence of CAMs in different subtypes of endometriosis. While the field is still evolving, the confirmation of CAMs has raised many questions that were previously overlooked. OBJECTIVE AND RATIONALE A comprehensive overview of CAMs in endometriosis has been produced. In addition, with the recently emerged understanding of the natural history of endometriotic lesions as well as CAMs in normal and apparently healthy tissues, this review attempts to address the following questions: Why has there been such a wild discrepancy in reported mutation frequencies? Why does ectopic endometrium have a higher mutation rate than that of eutopic endometrium? Would the presence of CAMs in endometriotic lesions increase the risk of cancer to the bearers? Why do endometriotic epithelial cells have much higher mutation frequencies than their stromal counterpart? What clinical implications, if any, do the CAMs have for the bearers? Do these CAMs tell us anything about the pathogenesis and/or pathophysiology of endometriosis? SEARCH METHODS The PubMed database was searched, from its inception to September 2019, for all papers in English using the term 'endometriosis and CAM', 'endometriosis and cancer-driver mutation', 'somatic mutations', 'fibrosis', 'fibrosis and epigenetic', 'CAMs and tumorigenesis', 'somatic mutation and normal tissues', 'oestrogen receptor and fibrosis', 'oxidative stress and fibrosis', 'ARID1A mutation', and 'Kirsten rat sarcoma mutation and therapeutics'. All retrieved papers were read and, when relevant, incorporated into the review results. OUTCOMES Seven papers that identified CAMs in endometriosis using various sequencing methods were retrieved, and their results were somewhat different. Yet, it is apparent that those using microdissection techniques and more accurate sequencing methods found more CAMs, echoing recent discoveries that apparently healthy tissues also harbour CAMs as a result of the replicative aging process. Hence endometriotic lesions, irrespective of subtype, if left intact, would generate CAMs as part of replicative aging, oxidative stress and perhaps other factors yet to be identified and, in some rare cases, develop cancer. The published data still are unable to paint a clear picture on pathogenesis of endometriosis. However, since endometriotic epithelial cells have a higher turnover than their stromal counterpart due to cyclic bleeding, and since the endometriotic stromal component can be formed by refresh influx of mesenchymal cells through epithelial-mesenchymal transition, endothelial-mesenchymal transition, mesothelial-mesenchymal transition and other processes as well as recruitment of bone-marrow-derived stem cells and outflow due to smooth muscle metaplasia, endometriotic epithelial cells have much higher mutation frequencies than their stromal counterpart. The epithelial and stromal cellular components develop in a dependent and co-evolving manner. Genes involved in CAMs are likely to be active players in lesional fibrogenesis, and hyperestrogenism and oxidative stress are likely drivers of both CAMs and fibrogenesis. Finally, endometriotic lesions harbouring CAMs would conceivably be more refractory to medical treatment, due, in no small part, to their high fibrotic content and reduced vascularity and cellularity. WIDER IMPLICATIONS The accumulating data on CAMs in endometriosis have shed new light on the pathogenesis and pathophysiology of endometriosis. They also suggest new challenges in management. The distinct yet co-evolving developmental trajectories of endometriotic stroma and epithelium underscore the importance of the lesional microenvironment and ever-changing cellular identity. Mutational profiling of normal endometrium from women of different ages and reproductive history is needed in order to gain a deeper understanding of the pathogenesis. Moreover, one area that has conspicuously received scant attention is the epigenetic landscape of ectopic, eutopic and normal endometrium.
Collapse
Affiliation(s)
- Sun-Wei Guo
- Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai 200011, China
| |
Collapse
|
8
|
Guo S. Cancer driver mutations in endometriosis: Variations on the major theme of fibrogenesis. Reprod Med Biol 2018; 17:369-397. [PMID: 30377392 PMCID: PMC6194252 DOI: 10.1002/rmb2.12221] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/03/2018] [Accepted: 06/24/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND One recent study reports cancer driver mutations in deep endometriosis, but its biological/clinical significance remains unclear. Since the natural history of endometriosis is essentially gradual progression toward fibrosis, it is thus hypothesized that the six driver genes reported to be mutated in endometriosis (the RP set) may play important roles in fibrogenesis but not necessarily malignant transformation. METHODS Extensive PubMed search to see whether RP and another set of driver genes not yet reported (NR) to be mutated in endometriosis have any roles in fibrogenesis. All studies reporting on the role of fibrogenesis of the genes in both RP and NR sets were retrieved and evaluated in this review. RESULTS All six RP genes were involved in various aspects of fibrogenesis as compared with only three NR genes. These nine genes can be anchored in networks linking with their upstream and downstream genes that are known to be aberrantly expressed in endometriosis, piecing together seemingly unrelated findings. CONCLUSIONS Given that somatic driver mutations can and do occur frequently in physiologically normal tissues, it is argued that these mutations in endometriosis are not necessarily synonymous with malignancy or premalignancy, but the result of enormous pressure for fibrogenesis.
Collapse
Affiliation(s)
- Sun‐Wei Guo
- Shanghai Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesShanghaiChina
| |
Collapse
|
9
|
Colón-Caraballo M, Flores-Caldera I. Translational Aspects of the Endometriosis Epigenome. EPIGENETICS IN HUMAN DISEASE 2018:717-749. [DOI: 10.1016/b978-0-12-812215-0.00023-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Ulrich S, Ricken R, Adli M. Tranylcypromine in mind (Part I): Review of pharmacology. Eur Neuropsychopharmacol 2017; 27:697-713. [PMID: 28655495 DOI: 10.1016/j.euroneuro.2017.05.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 05/02/2017] [Accepted: 05/22/2017] [Indexed: 12/21/2022]
Abstract
It has been over 50 years since a review has focused exclusively on the monoamine oxidase (MAO) inhibitor tranylcypromine (TCP). A new review has therefore been conducted for TCP in two parts which are written to be read preferably in close conjunction: Part I - pharmacodynamics, pharmacokinetics, drug interactions, toxicology; and Part II - clinical studies with meta-analysis of controlled studies in depression, practice of TCP treatment, place in therapy. Pharmacological data of this review part I characterize TCP as an irreversible and nonselective MAO-A/B inhibitor at low therapeutic doses of 20mg/day with supplementary norepinephrine reuptake inhibition at higher doses of 40-60mg/day. Serotonin, norepinephrine, dopamine, and trace amines, such as the "endogenous amphetamine" phenylethylamine, are increased in brain, which leads to changes in neuroplasticity by e.g. increased neurotrophic growth factors and translates to reduced stress-induced hypersecretion of corticotropin releasing factor (CRF) and positive testing in animal studies of depression. TCP has a pharmacokinetic half-life (t1/2) of only 2h which is considerably lower than for most other antidepressant drugs. However, a very long pharmacodynamic half-life of about one week is found because of the irreversible MAO inhibition. New studies show that, except for cytochrome P450 (CYP) 2A6, no other drug metabolizing CYP-enzymes are inhibited by TCP at therapeutic doses which defines a low potential of pharmacokinetic interactions in the direction from TCP to other drugs. Insufficient information is available, however, for plasma concentrations of TCP influenced by comedication. More quantitative data are also needed for TCP metabolites such as p-hydroxytranylcypromine and N-acetyltranylcypromine. Pharmacodynamic drug interactions comprise for instance severe serotonin toxicity (SST) with serotonergic drugs and hypertensive crisis with indirect sympathomimetics. Because of the risk of severe food interaction, TCP treatment remains beset with the need for a mandatory tyramine-restricted diet. Toxicity in overdose is similar to amitriptyline and imipramine according to the distance of therapeutic to toxic doses. In conclusion, TCP is characterized by an exceptional pharmacology which is different to most other antidepressant drugs, and a more special evaluation of clinical efficacy and safety may therefore be needed.
Collapse
Affiliation(s)
- Sven Ulrich
- Aristo Pharma GmbH, Wallenroder Str. 8-10, 13435 Berlin, Germany.
| | - Roland Ricken
- Department of Psychiatry and Psychotherapy, Charité, Campus Charité Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Mazda Adli
- Department of Psychiatry and Psychotherapy, Charité, Campus Charité Mitte, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
11
|
Ito F, Yamada Y, Shigemitsu A, Akinishi M, Kaniwa H, Miyake R, Yamanaka S, Kobayashi H. Role of Oxidative Stress in Epigenetic Modification in Endometriosis. Reprod Sci 2017; 24:1493-1502. [PMID: 28443478 DOI: 10.1177/1933719117704909] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aberrant DNA methylation and histone modification are associated with an increased risk of reproductive disorders such as endometriosis. However, a cause-effect relationship between epigenetic mechanisms and endometriosis development has not been fully determined. This review provides current information based on oxidative stress in epigenetic modification in endometriosis. This article reviews the English-language literature on epigenetics, DNA methylation, histone modification, and oxidative stress associated with endometriosis in an effort to identify epigenetic modification that causes a predisposition to endometriosis. Oxidative stress, secondary to the influx of hemoglobin, heme, and iron during retrograde menstruation, is involved in the expression of CpG demethylases, ten-eleven translocation, and jumonji (JMJ). Ten-eleven translocation and JMJ recognize a wide range of endogenous DNA methyltransferases (DNMTs). The increased expression levels of DNMTs may be involved in the subsequent downregulation of the decidualization-related genes. This review supports the hypothesis that there are at least 2 distinct phases of epigenetic modification in endometriosis: the initial wave of iron-induced oxidative stress would be followed by the second big wave of epigenetic modulation of endometriosis susceptibility genes. We summarize the recent advances in our understanding of the underlying epigenetic mechanisms focusing on oxidative stress in endometriosis.
Collapse
Affiliation(s)
- Fuminori Ito
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Yuki Yamada
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Aiko Shigemitsu
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Mika Akinishi
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Hiroko Kaniwa
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Ryuta Miyake
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Shoichiro Yamanaka
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Hiroshi Kobayashi
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| |
Collapse
|
12
|
Borghese B, Zondervan K, Abrao M, Chapron C, Vaiman D. Recent insights on the genetics and epigenetics of endometriosis. Clin Genet 2016; 91:254-264. [DOI: 10.1111/cge.12897] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/25/2016] [Accepted: 10/14/2016] [Indexed: 12/21/2022]
Affiliation(s)
- B. Borghese
- Cochin Institute, U1016 INSERM, CNRS 8104; Université Paris Descartes; Paris France
- Department of Gynecology Obstetrics II and Reproductive Medicine, Faculté de Médecine, AP-HP, Groupe Hospitalier Ouest; Centre Hospitalier Universitaire Paris Centre; Paris France
| | - K.T. Zondervan
- Nuffield Department of Obstetrics and Gynaecology, Endometriosis Care Centre; University of Oxford; Oxford UK
| | - M.S. Abrao
- Endometriosis Division, Obstetrics and Gynecology Department; Sao Paulo University; Sao Paulo Brazil
- Reproductive Clinic; Sirio Libanes Hospital; Sao Paulo Brazil
| | - C. Chapron
- Cochin Institute, U1016 INSERM, CNRS 8104; Université Paris Descartes; Paris France
- Department of Gynecology Obstetrics II and Reproductive Medicine, Faculté de Médecine, AP-HP, Groupe Hospitalier Ouest; Centre Hospitalier Universitaire Paris Centre; Paris France
| | - D. Vaiman
- Cochin Institute, U1016 INSERM, CNRS 8104; Université Paris Descartes; Paris France
- Department of Gynecology Obstetrics II and Reproductive Medicine, Faculté de Médecine, AP-HP, Groupe Hospitalier Ouest; Centre Hospitalier Universitaire Paris Centre; Paris France
| |
Collapse
|
13
|
Abstract
Hyperinnervation in endometriosis is now well documented, but so far only a few neurotrophins have been identified. Since endometriotic stromal cells secrete thromboxane A2 (TXA2), we sought to determine whether TXA2, derived from endometriotic stromal cells, induces neurite outgrowth. Using primary sensory neurons derived from rat dorsal root ganglia (DRG) and ectopic endometrial stromal cells (EESCs) derived from human ovarian endometrioma tissues, we treated the primary neurons with different concentrations of U-46619, a stable TXA2 mimetic, and performed a neuronal growth assay. The primary neurons were also cocultured with a vehicle, nerve growth factor (NGF, serving as a positive control), the supernatant of EESC culture medium, or the supernatant of EESCs pretreated with ozagrel, a thromboxane synthase inhibitor, and a neuronal growth assay was performed. The total neurite length was evaluated through immunofluorescence microscopy. We found that U-46619 significantly increased the neurite outgrowth in DRG neurons in a concentration-dependent fashion ( P < .001). It also increased the number of neurite ends in a concentration-dependent fashion. Ozagrel treatment alone had no effect on the neurite growth ( P > .05), and the treatment with the supernatant of EESCs induced neurite outgrowth just as potently as that treated with NGF (positive control; P > .05). Remarkably, treatment with the EESC supernatant increased the neurite outgrowth by nearly 3-fold as compared with the control ( P < .01), but the pretreatment with ozagrel abolished the stimulatory effect of the EESC by 31.3% ( P < .05). These findings indicate that EESCs potently induce neurite outgrowth, and endometriosis-derived TXA2 is responsible, at least in part, for this neurotrophic effect.
Collapse
Affiliation(s)
- Dingmin Yan
- 1 Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xishi Liu
- 1 Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,2 Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Sun-Wei Guo
- 1 Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,2 Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Brenner C, Luciani J, Bizet M, Ndlovu M, Josseaux E, Dedeurwaerder S, Calonne E, Putmans P, Cartron PF, Defrance M, Fuks F, Deplus R. The interplay between the lysine demethylase KDM1A and DNA methyltransferases in cancer cells is cell cycle dependent. Oncotarget 2016; 7:58939-58952. [PMID: 27449289 PMCID: PMC5312287 DOI: 10.18632/oncotarget.10624] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/06/2016] [Indexed: 12/12/2022] Open
Abstract
DNA methylation and histone modifications are key epigenetic regulators of gene expression, and tight connections are known between the two. DNA methyltransferases are upregulated in several tumors and aberrant DNA methylation profiles are a cancer hallmark. On the other hand, histone demethylases are upregulated in cancer cells. Previous work on ES cells has shown that the lysine demethylase KDM1A binds to DNMT1, thereby affecting DNA methylation. In cancer cells, the occurrence of this interaction has not been explored. Here we demonstrate in several tumor cell lines an interaction between KDM1A and both DNMT1 and DNMT3B. Intriguingly and in contrast to what is observed in ES cells, KDM1A depletion in cancer cells was found not to trigger any reduction in the DNMT1 or DNMT3B protein level or any change in DNA methylation. In the S-phase, furthermore, KDM1A and DNMT1 were found, to co-localize within the heterochromatin. Using P-LISA, we revealed substantially increased binding of KDM1A to DNMT1 during the S-phase. Together, our findings propose a mechanistic link between KDM1A and DNA methyltransferases in cancer cells and suggest that the KDM1A/DNMT1 interaction may play a role during replication. Our work also strengthens the idea that DNMTs can exert functions unrelated to act on DNA methylation.
Collapse
Affiliation(s)
- Carmen Brenner
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Centre (U-CRC), Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Judith Luciani
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Centre (U-CRC), Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Martin Bizet
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Centre (U-CRC), Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Matladi Ndlovu
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Centre (U-CRC), Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Eleonore Josseaux
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Centre (U-CRC), Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Sarah Dedeurwaerder
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Centre (U-CRC), Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Emilie Calonne
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Centre (U-CRC), Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Pascale Putmans
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Centre (U-CRC), Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Pierre-Francois Cartron
- Centre de Recherche en Cancérologie Nantes-Angers, INSERM, U892, Equipe Apoptose et Progression Tumorale, BP7021, 44007 Nantes, France
- Département de Recherche en Cancérologie, Faculté de Médecine, Université de Nantes, IFR26, F-4400, Nantes, France
- LaBCT, Institut de Cancérologie de l'Ouest, 44805 Nantes, Saint Herblain Cedex, France
| | - Matthieu Defrance
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Centre (U-CRC), Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - François Fuks
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Centre (U-CRC), Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Rachel Deplus
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Centre (U-CRC), Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
15
|
Overexpression of Lysine-Specific Demethylase 1 Is Associated With Tumor Progression and Unfavorable Prognosis in Chinese Patients With Endometrioid Endometrial Adenocarcinoma. Int J Gynecol Cancer 2016; 25:1453-60. [PMID: 26166558 DOI: 10.1097/igc.0000000000000500] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE Lysine-specific demethylase 1 (LSD1) is a kind of flavin adenine dinucleotide-dependent amine oxidase that regulates normal cellular differentiation, gene activation, tumorigenesis, and progression. This study aims to detect the expression level of LSD1 in endometrial cancer and to explore its role in the progression and prognosis of endometrioid endometrial adenocarcinoma (EEA). METHODS Immunohistochemistry was used to examine the expression of LSD1 in 206 EEA specimens, 50 benign endometrial lesion specimens, and 45 normal endometrium specimens. χ Analysis, Kaplan-Meier method, and multivariate Cox proportional hazard analysis were applied for the statistical analysis. RESULTS Compared with normal endometrium and benign endometrial lesion (both P < 0.001), LSD1 was overexpressed in EEA. LSD1 expression was correlated with histological grade, International Federation of Gynecology and Obstetrics (FIGO) stage, vascular/lymphatic invasion, depth of myometrial invasion, and lymph node metastasis. Results of the Kaplan-Meier analysis indicated that LSD1 expression was associated with overall survival (OS) and disease-free survival (DFS) of EEA. The negative expression LSD1 group had longer OS and DFS than did the positive expression group. The difference was significant (both P < 0.001, log-rank test). Multivariate Cox regression analysis revealed that the LSD1 expression status was an independent prognostic factor for both OS (P = 0.027) and DFS (P = 0.016) of patients with EEA. CONCLUSIONS Overexpression of LSD1 may contribute to the progression of EEA and may thus serve as a new biomarker to predict the prognosis of EEA.
Collapse
|
16
|
Sun Q, Ding D, Liu X, Guo SW. Tranylcypromine, a lysine-specific demethylase 1 (LSD1) inhibitor, suppresses lesion growth and improves generalized hyperalgesia in mouse with induced endometriosis. Reprod Biol Endocrinol 2016; 14:17. [PMID: 27062244 PMCID: PMC4826530 DOI: 10.1186/s12958-016-0154-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/05/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Growing evidence indicates that endometriosis is an epigenetic disease. Encouragingly, histone deacetylases (HDACs) and DNA methyltransferases have been shown to be promising targets by numerous in vitro studies. However, only a few studies have shown promising effects of HDAC inhibition in preclinical studies in endometriosis. While lysine-specific demethylase 1 (LSD1) is recently found to be aberrantly expressed in endometriosis, and that the treatment of endometriotic stromal cells with tranylcypromine (TC), an LSD1 inhibitor, significantly reduced cellular proliferation, cell cycle progression, and invasiveness, the in vivo effect of TC treatment is currently lacking. This study sought to evaluate the effect of TC in a mouse model of endometriosis. METHODS Forty-seven female C57BL/6 mice were used in this experimentation. All mice, except those randomly selected to form Sham surgery (M) and specificity control (S) groups, received an endometriosis-inducing surgery. Group S was set up mainly to ensure that the reduced generalized hyperalgesia in mice treated with TC is not due to any possible analgesic effect of TC, but rather resulting from the treatment effect specific to endometriosis. Two weeks after the surgery, mice that received surgery were further divided randomly into 3 groups: 1) untreated group (U); 2) low-dose TC group (L); 3) high-dose TC group (H). Group S received the same treatment as in group H. Two weeks after treatment, all mice were sacrificed and their ectopic endometrial tissues were harvested and analyzed by immunohistochemistry analysis. Hotplate test was administrated to all mice before the induction, treatment and sacrifice. Lesion size, hotplate latency, immunoreactivity against markers of proliferation, angiogenesis, H3K4 methylation, and of epithelial-mesenchymal transition (EMT). RESULTS TC treatment significantly and substantially reduced the lesion size and improved generalized hyperalgesia in a dose-dependent fashion in mice with induced endometriosis. In addition, TC treatment resulted in reduced immunoreactivity to biomarkers of proliferation, angiogenesis, and H3K4 methylation, leading to arrested EMT and lesion growth. CONCLUSION In light of our previously reported reduced cellular proliferation, cell cycle progression and invasiveness resulting from the LSD1 inhibition in in vitro studies, our data strongly suggest that LSD1 is a promising therapeutic target for endometriosis. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Qunyan Sun
- Cixi Child and Maternal Hospital, 1288 Er'Zhaotan Road, Baishalu, Cixi, Zhejiang, China
| | - Ding Ding
- Shanghai Obstetrics and Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai, 200011, China
| | - Xishi Liu
- Shanghai Obstetrics and Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China
| | - Sun-Wei Guo
- Shanghai Obstetrics and Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai, 200011, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
17
|
Kong LL, Man DM, Wang T, Zhang GA, Cui W. Downregulation of LSD1 suppresses the proliferation, tumorigenicity and invasion of papillary thyroid carcinoma K1 cells. Oncol Lett 2016; 11:2475-2480. [PMID: 27073501 DOI: 10.3892/ol.2016.4244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/15/2016] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to evaluate the effects of lysine-specific demethylase 1 (LSD1) downregulation, induced by small interfering RNA (siRNA) transfection, on the proliferation, colony formation, migration and invasion of the papillary thyroid carcinoma K1 cell line. The siRNA targeting LSD1 and scrambled non-targeting siRNA were each transfected into papillary thyroid carcinoma K1 cells. Downregulation of LSD1 mRNA and protein level was evaluated by reverse transcription-quantitative polymerase chain reaction, and immunocytochemical (ICC) analysis and western blotting, respectively. A Cell Counting kit-8 assay was applied to estimate the effect of LSD1-siRNA on cell growth. Migration and invasion abilities were estimated by Transwell chamber assay. A soft agar colony formation assay was performed to estimate the effect of LSD1-siRNA on tumorigenicity in vitro. ICC data showed that LSD1 protein was strongly expressed in the blank and control K1 cells compared with the LSD1-siRNA cells (F=15.192, P<0.01). Compared with the control cells, cells transfected with siRNA targeting LSD1 exhibited significant downregulation of LSD1 mRNA (t=6.845, P<0.01) and protein (F=53.764, P<0.01) levels. siRNA targeting LSD1 also downregulated cell proliferation following transfection for 24, 48 and 72 h (t=4.777, P<0.001; t=3.302, P=0.003; and t=3.017, P=0.006, respectively). Compared with the control group, the amount of cell invasion was gradually reduced in the LSD1-siRNA group (t=12.301, P<0.01). The number of migrating cells was significantly higher in the negative control group compared with the LSD1-siRNA group (t=7.911, P<0.01), and the ability of colony formation in the LSD1-siRNA cells was notably reduced in the soft agar formation assay (t=3.612, P=0.005). siRNA targeting LSD1 efficiently inhibits the proliferation, colony formation, migration and invasion of papillary thyroid carcinoma K1 cells.
Collapse
Affiliation(s)
- Ling-Ling Kong
- Department of Pathology, Basic Science School, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Dong-Mei Man
- Department of Gynecology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Tian Wang
- Department of Electrocardiography, The First Affiliated Hospital of Jining Medical University, Jining, Shandong 272111, P.R. China
| | - Guo-An Zhang
- Department of Pathology, Basic Science School, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Wen Cui
- Department of Pathology, Basic Science School, Jining Medical University, Jining, Shandong 272067, P.R. China
| |
Collapse
|
18
|
Abstract
Epigenetic mechanisms may play an important role in the etiology of endometriosis. The modification of histones by methylation of lysine residues has been shown to regulate gene expression by changing chromatin structure. We have previously shown that endometriotic lesions had aberrant levels of histone acetylation (lower) and methylation (higher) than control tissues. We aimed to determine the levels of trimethylated histone 3 at lysine residue 27 (H3K27me3), a well-known repressive mark, by immunoassay of fresh tissues and immunohistochemistry (IHC) of an endometriosis-focused tissue microarray. Also, we aimed to determine levels of expression of enhancer of zeste homolog 2 (EZH2), the enzyme responsible for trimethylation of H3K27me3, in cell lines. Average levels of H3K27me3 measured by immunoassay were not significantly different in lesions compared to endometrium from patients and controls. However, there was a trend of higher levels of H3K27me3 in secretory versus proliferative endometrium. The results of IHC showed that lesions (ovarian, fallopian, and peritoneal) and secretory endometrium from controls have higher percentage of H3K27me3-positive nuclei than eutopic endometrium from patients. Endometriotic epithelial cells express high levels of EZH2, which is upregulated by progesterone. This study provides evidence in support of a role of H3K27me3 in the pathogenesis of endometriosis and for EZH2 as a potential therapeutic target for this disease, but more studies are necessary to understand the molecular mechanisms at play.
Collapse
Affiliation(s)
- Mariano Colón-Caraballo
- Department of Microbiology, Ponce Health Sciences University-School of Medicine and Ponce Research Institute, Ponce, PR, USA
| | - Janice B Monteiro
- Department of Biochemistry, Ponce Health Sciences University-School of Medicine and Ponce Research Institute, Ponce, PR, USA
| | - Idhaliz Flores
- Department of Microbiology, Ponce Health Sciences University-School of Medicine and Ponce Research Institute, Ponce, PR, USA Department of Obstetrics and Gynaecology, Ponce Health Sciences University-School of Medicine and Ponce Research Institute, Ponce, PR, USA
| |
Collapse
|
19
|
Burg JM, Link JE, Morgan BS, Heller FJ, Hargrove AE, McCafferty DG. KDM1 class flavin-dependent protein lysine demethylases. Biopolymers 2015; 104:213-46. [PMID: 25787087 PMCID: PMC4747437 DOI: 10.1002/bip.22643] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/02/2015] [Accepted: 03/07/2015] [Indexed: 12/11/2022]
Abstract
Flavin-dependent, lysine-specific protein demethylases (KDM1s) are a subfamily of amine oxidases that catalyze the selective posttranslational oxidative demethylation of methyllysine side chains within protein and peptide substrates. KDM1s participate in the widespread epigenetic regulation of both normal and disease state transcriptional programs. Their activities are central to various cellular functions, such as hematopoietic and neuronal differentiation, cancer proliferation and metastasis, and viral lytic replication and establishment of latency. Interestingly, KDM1s function as catalytic subunits within complexes with coregulatory molecules that modulate enzymatic activity of the demethylases and coordinate their access to specific substrates at distinct sites within the cell and chromatin. Although several classes of KDM1-selective small molecule inhibitors have been recently developed, these pan-active site inhibition strategies lack the ability to selectively discriminate between KDM1 activity in specific, and occasionally opposing, functional contexts within these complexes. Here we review the discovery of this class of demethylases, their structures, chemical mechanisms, and specificity. Additionally, we review inhibition of this class of enzymes as well as emerging interactions with coregulatory molecules that regulate demethylase activity in highly specific functional contexts of biological and potential therapeutic importance.
Collapse
|
20
|
Sanchez AM, Viganò P, Somigliana E, Cioffi R, Panina-Bordignon P, Candiani M. The endometriotic tissue lining the internal surface of endometrioma: hormonal, genetic, epigenetic status, and gene expression profile. Reprod Sci 2015; 22:391-401. [PMID: 24700055 PMCID: PMC4812685 DOI: 10.1177/1933719114529374] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ovarian endometriomas are found in a consistent proportion of patients with endometriosis and are associated with a more severe form of the disease. The endometriotic tissue lining the inside of the endometrioma has been extensively studied over the years mostly for the need to compare the molecular and cellular characteristics of eutopic and ectopic endometria. Several aspects of hormonal regulation, response to local inflammation, carcinogenesis, and modifications of the local environment have been investigated in order to characterize also the processes associated with peritoneal endometriosis. In this review, we have summarized the current knowledge of pathophysiology of endometrioma, with a particular focus on the cellular components lining the internal surface of the cyst in order to provide a comprehensive overview of the hormonal, genetic, epigenetic, and gene expression profiles of this essential part of the cyst.
Collapse
Affiliation(s)
- Ana Maria Sanchez
- Division of Genetics and Cell Biology, Reproductive Sciences Laboratory, San Raffaele Scientific Institute, Milano, Italy
| | - Paola Viganò
- Obstetrics and Gynecology Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Edgardo Somigliana
- Department of Obstetrics, Gynecology and Neonatology, Fondazione Cà Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Raffaella Cioffi
- Obstetrics and Gynecology Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Paola Panina-Bordignon
- Division of Genetics and Cell Biology, Reproductive Sciences Laboratory, San Raffaele Scientific Institute, Milano, Italy
| | - Massimo Candiani
- Obstetrics and Gynecology Unit, San Raffaele Scientific Institute, Milano, Italy Obstetrics and Gynecology Unit, San Raffaele Scientific Institute, Vita-Salute University, Milano, Italy
| |
Collapse
|
21
|
Zhang Q, Ding D, Liu X, Guo SW. Activated Platelets Induce Estrogen Receptor β Expression in Endometriotic Stromal Cells. Gynecol Obstet Invest 2015; 80:187-92. [PMID: 25766517 DOI: 10.1159/000377629] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/26/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Endometriosis is viewed first and foremost as an estrogen-dependent disease, featuring not only excessive estrogen production but also aberrant expression of estrogen receptors (ERs), particularly ERβ, that mediate the estrogen action. ERβ is the predominant ER in mediating estrogen action in endometriosis, and estrogen plays a vital role in the development of endometriosis; thus, ERβ is viewed as a strong candidate for therapeutic targeting. Given our recent finding that platelets aggregate in endometriotic lesions, we sought to investigate whether activated platelets can upregulate ERβ. METHODS Using primary endometriotic stromal cells derived from patients with ovarian endometriomas and platelets harvested from healthy donors, we performed real-time RT-PCR analysis of mRNA abundance (n = 8) and Western blot analysis of protein expression (n = 8) of ERα and ERβ when co-cultured with phosphate-buffered saline, platelets, thrombin alone, and platelets plus thrombin for 48 h. RESULTS Treatment of endometriotic stromal cells with activated platelets resulted in the upregulation of ERβ gene and protein expression. CONCLUSION In the presence of aggregated and thus activated platelets in endometriotic lesions, ERβ, but not ERα, is upregulated in endometriotic stromal cells. Our result suggests that the use of antiplatelet therapy may have potential in the treatment of endometriosis.
Collapse
Affiliation(s)
- Qi Zhang
- Shanghai OB/GYN Hospital, Fudan University, Shanghai, PR China
| | | | | | | |
Collapse
|