1
|
Dai Y, Ono M, Suzuki T, Hayashi S, Kojima J, Sasaki T, Fujiwara T, Daikoku T, Terakawa J, Maida Y, Ando H, Fujiwara H, Kuji N, Nishi H. BMAL1 Regulates Collagen Production in the Myometrium and Leiomyomas. Reprod Sci 2025:10.1007/s43032-025-01812-y. [PMID: 39966227 DOI: 10.1007/s43032-025-01812-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/30/2025] [Indexed: 02/20/2025]
Abstract
Infertility and reproductive issues are commonly observed in animals with clock abnormalities. Substantial rodent data is available; however, relatively few studies have investigated the connection between fertility and clock abnormalities in humans. Therefore, this study aimed to analyze the expression of circadian clock genes and their impact on genes involved in collagen production in the human myometrium and leiomyomas (LM). The relationship between the expression of brain and muscle aryl-hydrocarbon-receptor-nuclear-translocator (Arnt)-like protein-1 (BMAL1) and the genes responsible for collagen synthesis in the human MM and LMs were investigated. Human MM and LM tissues were collected for analysis from patients who underwent hysterectomy analysis. Immunohistochemical analysis, cell culturing, immunofluorescence, small interfering RNA transfection, reverse transcription quantitative real-time polymerase chain reaction, scratch wound assays, and transwell assays were employed to gain a comprehensive understanding of the cellular and molecular processes. A correlation was found between BMAL1 expression and genes regulating collagen synthesis in primary cultures of human MM and LM cells. Moreover, the inhibition of BMAL1 differentially increased the migration and invasion of MM and LM cells. This work discloses the role of BMAL1 in collagen production in primary cultures of human MM and LM cells, offering insight into clock gene involvement in both normal and pathological uterine conditions. Furthermore, this study highlights the crucial role of BMAL1 in collagen synthesis in human MM and LM cells, underscoring the significance of BMAL1 in the regulation of reproductive physiology. These results suggest that BMAL1 might be a useful target molecule for anti-LM therapy.
Collapse
Affiliation(s)
- Yidan Dai
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, 160-0023, Japan
| | - Masanori Ono
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, 160-0023, Japan.
| | - Tomoo Suzuki
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, 160-0023, Japan
| | - Shigehiro Hayashi
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, 160-0023, Japan
| | - Junya Kojima
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, 160-0023, Japan
| | - Toru Sasaki
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, 160-0023, Japan
| | - Tomoko Fujiwara
- Department of Human Life Environments, Kyoto Notre Dame University, Kyoto, 606-0848, Japan
| | - Takiko Daikoku
- Division of Animal Disease Model, Research Center for Experimental Modeling of Human Disease, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920-8641, Japan
| | - Jumpei Terakawa
- School of Veterinary Medicine, Azabu University, Kanagawa, 252-0206, Japan
| | - Yoshiko Maida
- Department of Nursing, College of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa, 920-8641, Japan
| | - Hitoshi Ando
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920-8641, Japan
| | - Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920-8641, Japan
| | - Naoaki Kuji
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, 160-0023, Japan
| | - Hirotaka Nishi
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, 160-0023, Japan
| |
Collapse
|
2
|
Massoud G, Parish M, Hazimeh D, Moukarzel P, Singh B, Cayton Vaught KC, Segars J, Islam MS. Unlocking the potential of tranilast: Targeting fibrotic signaling pathways for therapeutic benefit. Int Immunopharmacol 2024; 137:112423. [PMID: 38861914 PMCID: PMC11245748 DOI: 10.1016/j.intimp.2024.112423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Fibrosis is the excessive deposition of extracellular matrix in an organ or tissue that results from an impaired tissue repair in response to tissue injury or chronic inflammation. The progressive nature of fibrotic diseases and limited treatment options represent significant healthcare challenges. Despite the substantial progress in understanding the mechanisms of fibrosis, a gap persists translating this knowledge into effective therapeutics. Here, we discuss the critical mediators involved in fibrosis and the role of tranilast as a potential antifibrotic drug to treat fibrotic conditions. Tranilast, an antiallergy drug, is a derivative of tryptophan and has been studied for its role in various fibrotic diseases. These include scleroderma, keloid and hypertrophic scars, liver fibrosis, renal fibrosis, cardiac fibrosis, pulmonary fibrosis, and uterine fibroids. Tranilast exerts antifibrotic effects by suppressing fibrotic pathways, including TGF-β, and MPAK. Because it disrupts fibrotic pathways and has demonstrated beneficial effects against keloid and hypertrophic scars, tranilast could be used to treat other conditions characterized by fibrosis.
Collapse
Affiliation(s)
- Gaelle Massoud
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA
| | - Maclaine Parish
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA
| | - Dana Hazimeh
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA
| | - Pamela Moukarzel
- American University of Beirut Medical Center, Faculty of Medicine, Riad El Solh, Beirut, Lebanon
| | - Bhuchitra Singh
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA
| | - Kamaria C Cayton Vaught
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA
| | - James Segars
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA.
| | - Md Soriful Islam
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
3
|
Chuang TD, Munoz L, Quintanilla D, Boos D, Khorram O. Therapeutic Effects of Long-Term Administration of Tranilast in an Animal Model for the Treatment of Fibroids. Int J Mol Sci 2023; 24:10465. [PMID: 37445642 PMCID: PMC10341593 DOI: 10.3390/ijms241310465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Tranilast (N-3, 4-dimethoxycinnamoyl anthranilic acid) is an orally administered drug with antiallergic properties and approved in Japan and the Republic of Korea for the treatment of asthma and hypertrophic scars. Previous in vitro studies indicated that tranilast reduced fibroid growth through its inhibitory effects on cell proliferation and induction of apoptosis. The objective of this study was to determine the efficacy of tranilast for treatment of human-derived fibroids in a mouse model. SCID mice (ovariectomized, supplemented with estrogen and progesterone) were implanted with fibroid explants and treated for two months with tranilast (50 m/kg/daily) or the vehicle. After sacrifice, xenografts were excised and analyzed. Tranilast was well tolerated without adverse side effects. There was a 37% reduction in tumor weight along with a significant decrease in staining for Ki67, CCND1, and E2F1; a significant increase in nuclear staining for cleaved caspase 3; and reduced staining for TGF-β3 and Masson's trichrome in the tranilast treated mice. There was a significant inhibition of mRNA and protein expression of fibronectin, COL3A1, CCND1, E2F1, and TGF-β3 in the xenografts from the tranilast-treated mice. These promising therapeutic effects of tranilast warrant additional animal studies and human clinical trials to evaluate its efficacy for treatment of fibroids.
Collapse
Affiliation(s)
- Tsai-Der Chuang
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (L.M.); (D.Q.); (D.B.)
| | - Leslie Munoz
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (L.M.); (D.Q.); (D.B.)
| | - Derek Quintanilla
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (L.M.); (D.Q.); (D.B.)
| | - Drake Boos
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (L.M.); (D.Q.); (D.B.)
| | - Omid Khorram
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (L.M.); (D.Q.); (D.B.)
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Lin J, Wu X. Halofuginone inhibits cell proliferation and AKT/mTORC1 signaling in uterine leiomyoma cells. Growth Factors 2022; 40:212-220. [PMID: 36001478 DOI: 10.1080/08977194.2022.2113394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The present study aimed to explore the effects of antifibrotic agent halofuginone on uterine leiomyomas (ULs) cells. The survival of the uterine smooth muscle (UtSMC) cells and UL ELT3 cells were measured. Flow cytometry was used to assess the cell cycle distribution and apoptosis. Effects of halofuginone on the state of AKT/mTOR pathway were evaluated. Xenograft animal model was applied to explore the effects of halofuginone in vivo. Halofuginone inhibited the proliferation of ELT3 cells dose-dependently without obvious influence on UtSMC cells. Halofuginone suppressed cell cycle progression and promoted apoptosis of ELT3 cells dose-dependently. Also, p-AKT/AKT and p-p70S6/p70S6 were significantly lowered after treatment with 20 nM halofuginone. Additionally, halofuginone reduced ELT3 tumor growth in xenograft tumor animal model. The present study illustrates that halofuginone inhibits cell proliferation of ULs with low side effects on normal smooth muscle cells, and AKT/mTOR signaling pathway was inactivated meanwhile.
Collapse
Affiliation(s)
- Jing Lin
- Department of Gynecology, Longyan People Hospital, Longyan, Fujian Province, China
| | - Xiaochun Wu
- Department of Gynecology, Longyan People Hospital, Longyan, Fujian Province, China
| |
Collapse
|
5
|
Shved N, Egorova A, Osinovskaya N, Kiselev A. Development of Primary Monolayer Cell Model and Organotypic Model of Uterine Leiomyoma. Methods Protoc 2022; 5:mps5010016. [PMID: 35200532 PMCID: PMC8875914 DOI: 10.3390/mps5010016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
Cellular technologies are one of the most promising areas of biomedicine, which is based on the isolation of cells of various types, followed by their cultivation and use, or the use of their metabolic products, for medical purposes. Today, a significant part of biomedical research is carried out in vitro. On the other hand, organotypic culture can be used as a powerful model system and can complement cell culture and in vivo studies in different biomedical applications. Uterine leiomyoma (UL) is a very common benign tumor and often leads to many reproductive complications. Herein we describe a fast and reliable method of isolation and UL primary cells culturing along with the development of a UL organotypic model. We propose the usage of UL primary cells in experimental work at a first passage to prevent loss of driver mutations in MED12 and HMGA2 genes. New optimized conditions for the growth and maintenance of 2D and 3D models of uterine leiomyoma in vitro are suggested.
Collapse
|
6
|
Bernacchioni C, Ciarmela P, Vannuzzi V, Greco S, Vannuccini S, Malentacchi F, Pellegrino P, Capezzuoli T, Sorbi F, Cencetti F, Bruni P, Donati C, Petraglia F. Sphingosine 1-phosphate signaling in uterine fibroids: implication in activin A pro-fibrotic effect. Fertil Steril 2021; 115:1576-1585. [PMID: 33500141 DOI: 10.1016/j.fertnstert.2020.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To explore the link between sphingosine 1-phosphate (S1P) signaling and leiomyoma and the possible S1P cross-talk with the fibrotic effect of activin A. DESIGN Case-control laboratory study. SETTING University institute and university hospital. PATIENT(S) Patients with uterine fibroids (n = 26). INTERVENTIONS(S) Tissue specimens of leiomyoma and normal myometrium were obtained from patients undergoing myomectomy or total hysterectomy. MAIN OUTCOME MEASURE(S) Expression of mRNA levels of the enzyme involved in S1P metabolism, S1P receptors, and S1P transporter Spns2 was evaluated in matched leiomyoma/myometrium specimens and cell populations. The effects of inhibition of S1P metabolism and signaling was evaluated on activin A-induced fibrotic action in leiomyoma cell lines. RESULT(S) The expression of the enzymes responsible for S1P formation, sphingosine kinase (SK) 1 and 2, and S1P2, S1P3, and S1P5 receptors was significantly augmented in leiomyomas compared with adjacent myometrium. In leiomyoma cells, but not in myometrial cells, activin A increased mRNA expression levels of SK1, SK2, and S1P2. The profibrotic action of activin A was abolished when SK1/2 were inhibited or S1P2/3 were blocked. Finally, S1P augmented by itself mRNA levels of fibrotic markers (fibronectin, collagen 1A1) and activin A in leiomyomas but not in myometrial cells. CONCLUSION(S) This study shows that S1P signaling is dysregulated in uterine fibroids and involved in activin A-induced fibrosis, opening new perspectives for uterine fibroid treatment.
Collapse
Affiliation(s)
- Caterina Bernacchioni
- Department of Experimental and Clinical Biomedical Sciences "M. Serio," University of Florence, Florence, Italy
| | - Pasquapina Ciarmela
- Department of Experimental and Clinical Medicine, Faculty of Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Valentina Vannuzzi
- Department of Experimental and Clinical Biomedical Sciences "M. Serio," University of Florence, Florence, Italy
| | - Stefania Greco
- Department of Experimental and Clinical Medicine, Faculty of Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Silvia Vannuccini
- Department of Experimental and Clinical Biomedical Sciences "M. Serio," University of Florence, Florence, Italy
| | - Francesca Malentacchi
- Department of Experimental and Clinical Biomedical Sciences "M. Serio," University of Florence, Florence, Italy
| | - Pamela Pellegrino
- Department of Experimental and Clinical Medicine, Faculty of Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Tommaso Capezzuoli
- Department of Experimental and Clinical Biomedical Sciences "M. Serio," University of Florence, Florence, Italy
| | - Flavia Sorbi
- Department of Experimental and Clinical Biomedical Sciences "M. Serio," University of Florence, Florence, Italy
| | - Francesca Cencetti
- Department of Experimental and Clinical Biomedical Sciences "M. Serio," University of Florence, Florence, Italy
| | - Paola Bruni
- Department of Experimental and Clinical Biomedical Sciences "M. Serio," University of Florence, Florence, Italy
| | - Chiara Donati
- Department of Experimental and Clinical Biomedical Sciences "M. Serio," University of Florence, Florence, Italy.
| | - Felice Petraglia
- Department of Experimental and Clinical Biomedical Sciences "M. Serio," University of Florence, Florence, Italy
| |
Collapse
|
7
|
Ciebiera M, Włodarczyk M, Zgliczyński S, Łoziński T, Walczak K, Czekierdowski A. The Role of miRNA and Related Pathways in Pathophysiology of Uterine Fibroids-From Bench to Bedside. Int J Mol Sci 2020; 21:ijms21083016. [PMID: 32344726 PMCID: PMC7216240 DOI: 10.3390/ijms21083016] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Uterine fibroids (UFs) are the most common benign tumors of the female genital tract. Their prevalence usually is estimated at 30-40%, but may reach up to 70-80% in predisposed groups of women. UFs may cause various clinical issues which might constitute the major reason of the overall deterioration of the quality of life. The mechanisms leading to UFs formation and growth still remain poorly understood. The transformation of smooth muscle cells of the uterus into abnormal, immortal cells, capable of clonal division, is thought to be a starting point of all pathways leading to UF formation. Micro-ribonucleic acids (miRNAs) are non-coding single-stranded RNAs about 22 nucleotides in length, that regulate gene expression. One of recent advances in this field is the comprehension of the role of miRNAs in tumorigenesis. Alterations in the levels of miRNAs are related to the formation and growth of several tumors which show a distinct miRNA signature. The aim of this review is to summarize the current data about the role of miRNAs in the pathophysiology of UFs. We also discuss future directions in the miRNA research area with an emphasis on novel diagnostic opportunities or patient-tailored therapies. In our opinion data concerning the regulation of miRNA and its gene targets in the UFs are still insufficient in comparison with gynecological malignancies. The potential translational use of miRNA and derived technologies in the clinical care is at the early phase and needs far more evidence. However, it is one of the main areas of interest for the future as the use of miRNAs in the diagnostics and treatment of UFs is a new and exciting opportunity.
Collapse
Affiliation(s)
- Michał Ciebiera
- Second Department of Obstetrics and Gynecology, The Center of Postgraduate Medical Education, 01-809 Warsaw, Poland
- Correspondence: ; Tel.: +48-607-155-177
| | - Marta Włodarczyk
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Center for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Stanisław Zgliczyński
- Department of Internal Diseases and Endocrinology, Central Teaching Clinical Hospital, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Tomasz Łoziński
- Department of Obstetrics and Gynecology, Pro-Familia Hospital, 35-302 Rzeszów, Poland;
| | - Klaudia Walczak
- Students’ Scientific Association at the Department of Endocrinology, The Center of Postgraduate Medical Education, 01-809 Warsaw, Poland;
| | - Artur Czekierdowski
- Department of Gynecological Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland;
| |
Collapse
|
8
|
Tranilast induces MiR-200c expression through blockade of RelA/p65 activity in leiomyoma smooth muscle cells. Fertil Steril 2020; 113:1308-1318. [PMID: 32199621 DOI: 10.1016/j.fertnstert.2019.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/07/2019] [Accepted: 12/02/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To determine the mechanism by which tranilast induces miR-200c expression in leiomyoma smooth muscle cells (LSMCs). DESIGN Experimental study. SETTING Academic research laboratory. PATIENT(S) Women undergoing hysterectomy for leiomyoma. INTERVENTION(S) Blockade of RelA/p65. MAIN OUTCOME MEASURE(S) Effects of tranilast and blockade of RelA/p65 on miR-200c expression. RESULT(S) Tranilast, an inflammation inhibitor, dose-dependently induced miR-200c in LSMCs and myometrium smooth muscle cells (MSMCs), with a more profound effect in LSMCs than in MSMCs. The treatment of LSMCs with Bay 117082, an inhibitor of IκB phosphorylation, further enhanced miR-200c induction by tranilast. The knockdown of RelA/p65 by small interfering RNA also induced miR-200c expression in LSMCs. Although tranilast had no effect on total RelA/p65 protein levels in LSMCs, it significantly induced RelA/p65 phosphorylation at S536 while reducing its activity as well as its nuclear translocation. ChIP assay indicated that tranilast reduces the binding ability of RelA/p65 to miR-200c promoter, resulting in miR-200c induction. Tranilast also inhibited interleukin-8 (IL8) expression in LSMCs. The induction of miR-200c by tranilast partially mediates the inhibitory effect of tranilast on the expression of IL8 and cyclin-dependent kinase 2 in LSMCs. CONCLUSION(S) Induction of miR-200c by tranilast in LSMCs is mediated through a transcriptional mechanism involving inhibition of the nuclear factor κB signaling pathway. These results highlight the significance of inflammation in the pathogenesis of leiomyoma and the potential utility of antiinflammatory drugs for treatment of leiomyomas.
Collapse
|
9
|
Khazaei M, Pazhouhi M, Khazaei S. Temozolomide and tranilast synergistic antiproliferative effect on human glioblastoma multiforme cell line (U87MG). Med J Islam Repub Iran 2019; 33:39. [PMID: 31456963 PMCID: PMC6708108 DOI: 10.34171/mjiri.33.39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Indexed: 12/28/2022] Open
Abstract
Background: Glioblastoma multiforme (GBM) is the most malignant primary brain tumor. Temozolomide (TMZ) is a chemotherapeutic agent that has been used in GBM treatment. Resistance to TMZ is a major obstacle to successful GBM treatment. The aim of the present study was to investigate the effect of TMZ and tranilast on human GBM cell line (U87MG). Methods: In this in vitro experimental study, the effect of TMZ and tranilast on cell proliferation was measured using the MTT assay. Median effect analysis was performed to determine the TMZ and tranilast interaction. Lactate dehydrogenase assay was used to determine TMZ and tranilast cytotoxicity. Cell fluorescent staining and real-time PCR were used for apoptosis evaluation. The effect of TMZ and tranilast on U87MG nitric oxide (NO) production was evaluated by Griess assay. Results: TMZ and tranilast had a significant dose- and time-dependent inhibitory effect on cell proliferation. The mean combination index values represented a synergistic effect, and dose reduction index values suggested the advantages of reducing the toxicity, adverse effects, and drug resistance in combination of TMZ and tranilast. Apoptosis cell death was induced by TMZ and/or tranilast in cells. TMZ and tranilast reduced NO. production in cells. Conclusion: TMZ and tranilast combination inhibited the GBM cells growth effectively.
Collapse
Affiliation(s)
- Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mona Pazhouhi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saber Khazaei
- Department of Endodontics, Dental Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Advanced 3D Imaging of Uterine Leiomyoma's Morphology by Propagation-based Phase-Contrast Microtomography. Sci Rep 2019; 9:10580. [PMID: 31332223 PMCID: PMC6646365 DOI: 10.1038/s41598-019-47048-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022] Open
Abstract
Uterine leiomyoma is the most common benign smooth muscle tumor in women pelvis, originating from the myometrium. It is caused by a disorder of fibrosis, with a large production and disruption of extracellular matrix (ECM). Medical treatments are still very limited and no preventative therapies have been developed. We supposed that synchrotron-based phase-contrast microtomography (PhC-microCT) may be an appropriate tool to assess the 3D morphology of uterine leiomyoma, without the use of any contrast agent. We used this technique to perform the imaging and the quantitative morphometric analysis of healthy myometrium and pathologic leiomyomas. The quantitative morphometric analysis of collagen bundles was coupled to the Roschger approach. This method, previously only used to evaluate mineralized bone density distribution, was applied here to study the fibrosis mass density distribution in healthy and pathologic biopsies from two patients. This protocol was shown to be powerful in studying uterine leiomyomas, detecting also small signs of the ECM alteration. This is of paramount importance not only for the follow-up of the present study, i.e. the investigation of different compounds and their possible therapeutic benefits, but also because it offers new methodologic possibilities for future studies of the ECM in soft tissues of different body districts.
Collapse
|
11
|
Ng SSM, Jorge S, Malik M, Britten J, Su SC, Armstrong CR, Brennan JT, Chang S, Baig KM, Driggers PH, Segars JH. A-Kinase Anchoring Protein 13 (AKAP13) Augments Progesterone Signaling in Uterine Fibroid Cells. J Clin Endocrinol Metab 2019; 104:970-980. [PMID: 30239831 PMCID: PMC6365770 DOI: 10.1210/jc.2018-01216] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/10/2018] [Indexed: 01/11/2023]
Abstract
CONTEXT Uterine leiomyomata (fibroids) are prevalent sex hormone‒dependent tumors with an altered response to mechanical stress. Ulipristal acetate, a selective progesterone receptor (PR) modulator, significantly reduces fibroid size in patients. However, PR signaling in fibroids and its relationship to mechanical signaling are incompletely understood. OBJECTIVE Our prior studies revealed that A-kinase anchoring protein 13 (AKAP13) was overexpressed in fibroids and contributed to altered mechanotransduction in fibroids. Because AKAP13 augmented nuclear receptor signaling in other tissues, we sought to determine whether AKAP13 might influence PR signaling in fibroids. METHODS AND RESULTS Fibroid samples from patients treated with ulipristal acetate or placebo were examined for AKAP13 expression by using immunohistochemistry. In immortalized uterine fibroid cell lines and COS-7 cells, we observed that AKAP13 increased ligand-dependent PR activation of luciferase reporters and endogenous progesterone-responsive genes for PR-B but not PR-A. Inhibition of ERK reduced activation of PR-dependent signaling by AKAP13, but inhibition of p38 MAPK had no effect. In addition, glutathione S-transferase‒binding assays revealed that AKAP13 was bound to PR-B through its carboxyl terminus. CONCLUSION These data suggest an intersection of mechanical signaling and PR signaling involving AKAP13 through ERK. Further elucidation of the integration of mechanical and hormonal signaling pathways in fibroids may provide insight into fibroid development and suggest new therapeutic strategies for treatment.
Collapse
Affiliation(s)
- Sinnie Sin Man Ng
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - Soledad Jorge
- Section on Reproductive Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington
| | - Minnie Malik
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Joy Britten
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Szu-Chi Su
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - Charles R Armstrong
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - Joshua T Brennan
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - Sydney Chang
- Section on Reproductive Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
- Department of OBGYN and Reproductive Science, Mount Sinai School of Medicine, New York, New York
| | - Kimberlyn Maravet Baig
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
- Section on Reproductive Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Paul H Driggers
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - James H Segars
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
- Correspondence and Reprint Requests: James H. Segars, MD, Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Ross Building 624, 720 Rutland Avenue, Baltimore, Maryland 21205. E-mail address:
| |
Collapse
|
12
|
Bloch J, Holzmann C, Koczan D, Helmke BM, Bullerdiek J. Factors affecting the loss of MED12-mutated leiomyoma cells during in vitro growth. Oncotarget 2018; 8:34762-34772. [PMID: 28410233 PMCID: PMC5471009 DOI: 10.18632/oncotarget.16711] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 03/08/2017] [Indexed: 01/21/2023] Open
Abstract
Uterine leiomyomas (UL) are the most prevalent symptomatic human tumors at all and somatic mutations of the gene encoding mediator subcomplex 12 (MED12) constitute the most frequent driver mutations in UL. Recently, a rapid loss of mutated cells during in vitro growth of UL-derived cell cultures was reported, resulting in doubts about the benefits of UL-derived cell cultures. To evaluate if the rapid loss of MED12-mutated cells in UL cell cultures depends on in vitro passaging, we set up cell cultures from nine UL from 40–50 year old Caucasian patients with at least one UL. Cultured UL cells were investigated for loss of MED12-mutated cells. Genetic characterization of native tumor samples and adjacent myometrium was done by array analysis. “Aged” primary cultures without passaging were compared to cells of three subsequent passages. Comparative analyses of the mutated/non-mutated ratios between native tissue, primary cells, and cultured tumor cells revealed a clear decrease of MED12-mutated cells. None of the tumors showed gross alterations of the array profiles, excluding the presence of gross genomic imbalances besides the MED12 mutations as a reason for the intertumoral variation in the loss of MED12-mutated cells. Albeit at a lesser rate, loss of MED12-mutated cells from cell cultures of UL occurs even without passaging thus indicating the requirement of soluble factors or matrix components lacking in vitro. Identification of these factors can help to understand the mechanisms of the growth of the most frequent type of uterine leiomyomas and to decipher novel drug targets.
Collapse
Affiliation(s)
- Jeannine Bloch
- Institute of Medical Genetics, University Rostock Medical Center, D-18057 Rostock, Germany
| | - Carsten Holzmann
- Institute of Medical Genetics, University Rostock Medical Center, D-18057 Rostock, Germany
| | - Dirk Koczan
- Institute of Immunology, University Rostock Medical Center, D-18057 Rostock, Germany
| | | | - Jörn Bullerdiek
- Institute of Medical Genetics, University Rostock Medical Center, D-18057 Rostock, Germany.,Center of Human Genetics, University of Bremen, D-28359 Bremen, Germany
| |
Collapse
|
13
|
Gueye NA, Mead TJ, Koch CD, Biscotti CV, Falcone T, Apte SS. Versican Proteolysis by ADAMTS Proteases and Its Influence on Sex Steroid Receptor Expression in Uterine Leiomyoma. J Clin Endocrinol Metab 2017; 102:1631-1641. [PMID: 28323982 PMCID: PMC5443325 DOI: 10.1210/jc.2016-3527] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/01/2017] [Indexed: 11/19/2022]
Abstract
CONTEXT Leiomyomas have abundant extracellular matrix (ECM), with upregulation of versican, a large proteoglycan. OBJECTIVE We investigated ADAMTS (a disintegrin-like and metalloprotease with thrombospondin type 1 motifs) protease-mediated versican cleavage in myometrium and leiomyoma and the effect of versican knockdown in leiomyoma cells. DESIGN We used quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blotting, immunohistochemistry, and RNA in situ hybridization for analysis of myometrium, leiomyoma and immortalized myometrium and leiomyoma cells. Short interfering RNA (siRNA) was used to knockdown versican in leiomyoma cells. SETTING This study was performed in an academic laboratory. PATIENTS Study subjects were women with symptomatic or asymptomatic leiomyoma. MAIN OUTCOME MEASURES We quantified messenger RNAs (mRNAs) for versican splice variants. We identified ADAMTS-cleaved versican in myometrium and leiomyoma and ADAMTS messenger RNAs and examined the effect of VCAN siRNA on smooth muscle differentiation and expression of estrogen and progesterone receptors. RESULTS The women in the symptomatic group (n = 7) had larger leiomyoma (P = 0.01), heavy menstrual bleeding (P < 0.01), and lower hemoglobin levels (P = 0.02) compared with the asymptomatic group (n = 7), but were similar in age and menopausal status. Versican V0 and V1 isoforms were upregulated in the leiomyomas of symptomatic versus asymptomatic women (P = 0.03 and P = 0.04, respectively). Abundant cleaved versican was detected in leiomyoma and myometrium, as well as in myometrial and leiomyoma cell lines. ADAMTS4 (P = 0.03) and ADAMTS15 (P = 0.04) were upregulated in symptomatic leiomyomas. VCAN siRNA did not effect cell proliferation, apoptosis, or smooth muscle markers, but reduced ESR1 and PR-A expression (P = 0.001 and P = 0.002, respectively). CONCLUSIONS Versican in myometrium, leiomyomas and in the corresponding immortalized cells is cleaved by ADAMTS proteases. VCAN siRNA suppresses production of estrogen receptor 1 and progesterone receptor-A. These findings have implications for leiomyoma growth.
Collapse
Affiliation(s)
- Ndeye-Aicha Gueye
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Department of Obstetrics and Gynecology and Women’s Health Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Timothy J. Mead
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Christopher D. Koch
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115
| | | | - Tommaso Falcone
- Department of Obstetrics and Gynecology and Women’s Health Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Suneel S. Apte
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
14
|
Chuang TD, Khorram O. Tranilast Inhibits Genes Functionally Involved in Cell Proliferation, Fibrosis, and Epigenetic Regulation and Epigenetically Induces miR-29c Expression in Leiomyoma Cells. Reprod Sci 2016; 24:1253-1263. [PMID: 28114878 DOI: 10.1177/1933719116682878] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tranilast (N-3,4-dimethoxycinnamoyl anthranilic acid) is an antiallergic agent with inhibitory effects on cell proliferation and extracellular matrix production. Here we assess the effect of tranilast on the expression of miR-29c and genes functionally involved in cell proliferation, fibrosis, and epigenetic regulation in isolated leiomyoma smooth muscle cells (LSMC). Tranilast significantly inhibited the rate of LSMC proliferation, which was associated with downregulation of cell cycle progression genes cyclin D1 (CCND1) and cyclin-dependent kinase 2 (CDK2) expression at messenger RNA and protein levels ( P < .05). Tranilast also suppressed the expression of collagen type I (COL1), collagen type III alpha 1 chain (COL3A1), the profibrotic cytokine, transforming growth factor β-3 (TGF-β3), DNA (cytosine-5)-methyltransferase 1 (DNMT1), and enhancer of zeste homolog 2 (EZH2), which regulate epigenetic status of gene promoters ( P < .05). Tranilast also significantly induced the expression of cellular and secreted miR-29c through downregulation of methylation status of miR-29c promoter ( P < .05). In addition, tranilast suppressed the activity of luciferase reporter containing 3'UTR of COL3A1 and CDK2, which are downstream targets of miR-29c ( P < .05). Knockdown of miR-29c expression attenuated the inhibitory effects of tranilast on COL3A1 and CDK2 protein expression ( P < .05). Collectively, these findings suggest that tranilast could have therapeutic potential as an inhibitory agent for leiomyoma growth and its associated symptoms.
Collapse
Affiliation(s)
- Tsai-Der Chuang
- 1 Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center and LA Biomed Research Institute, Torrance, CA, USA
| | - Omid Khorram
- 1 Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center and LA Biomed Research Institute, Torrance, CA, USA
| |
Collapse
|
15
|
Growth factors and pathogenesis. Best Pract Res Clin Obstet Gynaecol 2015; 34:25-36. [PMID: 26527305 DOI: 10.1016/j.bpobgyn.2015.08.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 08/27/2015] [Indexed: 12/25/2022]
Abstract
Growth factors are relatively small and stable, secreted or membrane-bound polypeptide ligands, which play an important role in proliferation, differentiation, angiogenesis, survival, inflammation, and tissue repair, or fibrosis. They exert multiple effects through the activation of signal transduction pathways by binding to their receptors on the surface of target cells. A number of studies have demonstrated the central role of growth factors and their signaling pathways in the pathogenesis of uterine leiomyomas. Numerous differentially expressed growth factors have been identified in leiomyoma and myometrial cells. These growth factors can activate multiple signaling pathways (Smad 2/3, ERK 1/2, PI3K, and β-catenin) and regulate major cellular processes, including inflammation, proliferation, angiogenesis, and fibrosis which are linked to uterine leiomyoma development and growth. In this chapter, we discuss the role of growth factors and their signaling pathways in the pathogenesis of uterine leiomyomas.
Collapse
|
16
|
Borahay MA, Al-Hendy A, Kilic GS, Boehning D. Signaling Pathways in Leiomyoma: Understanding Pathobiology and Implications for Therapy. Mol Med 2015; 21:242-56. [PMID: 25879625 DOI: 10.2119/molmed.2014.00053] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/13/2015] [Indexed: 12/15/2022] Open
Abstract
Uterine leiomyomas are the most common tumors of the female genital tract, affecting 50% to 70% of females by the age of 50. Despite their prevalence and enormous medical and economic impact, no effective medical treatment is currently available. This is, in part, due to the poor understanding of their underlying pathobiology. Although they are thought to start as a clonal proliferation of a single myometrial smooth muscle cell, these early cytogenetic alterations are considered insufficient for tumor development and additional complex signaling pathway alterations are crucial. These include steroids, growth factors, transforming growth factor-beta (TGF-β)/Smad; wingless-type (Wnt)/β-catenin, retinoic acid, vitamin D, and peroxisome proliferator-activated receptor γ (PPARγ). An important finding is that several of these pathways converge in a summative way. For example, mitogen-activated protein kinase (MAPK) and Akt pathways seem to act as signal integrators, incorporating input from several signaling pathways, including growth factors, estrogen and vitamin D. This underlines the multifactorial origin and complex nature of these tumors. In this review, we aim to dissect these pathways and discuss their interconnections, aberrations and role in leiomyoma pathobiology. We also aim to identify potential targets for development of novel therapeutics.
Collapse
Affiliation(s)
- Mostafa A Borahay
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas, United States of America.,Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Gokhan S Kilic
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Darren Boehning
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, Texas, United States of America
| |
Collapse
|
17
|
Darakhshan S, Pour AB. Tranilast: a review of its therapeutic applications. Pharmacol Res 2014; 91:15-28. [PMID: 25447595 DOI: 10.1016/j.phrs.2014.10.009] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 12/14/2022]
Abstract
Tranilast (N-[3',4'-dimethoxycinnamoyl]-anthranilic acid) is an analog of a tryptophan metabolite. Initially, tranilast was identified as an anti-allergic agent, and used in the treatment of inflammatory diseases, such as bronchial asthma, atypical dermatitis, allergic conjunctivitis, keloids and hypertrophic scars. Subsequently, the results showed that it could be also effective in the management of a wide range of conditions. The beneficial effects of tranilast have also been seen in a variety of disease states, such as fibrosis, proliferative disorders, cancer, cardiovascular problems, autoimmune disorders, ocular diseases, diabetes and renal diseases. Moreover, several trials have shown that it has very low adverse effects and it is generally well tolerated by patients. In this review, we have attempted to accurately summarize previously published studies relating to the use of tranilast for a range of disorders and discuss the drug's possible mode of action. The major mode of the drug's efficacy appears to be the suppression of the expression and/or action of the TGF-β pathway, but the drug affects other factors as well. The findings presented in this review demonstrate the potential of tranilast for the control of a vast array of pathological situations, furthermore, it is a prescribed drug without severe side effects.
Collapse
Affiliation(s)
- Sara Darakhshan
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Ali Bidmeshki Pour
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
| |
Collapse
|