1
|
Herlin MK. Genetics of Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome: advancements and implications. Front Endocrinol (Lausanne) 2024; 15:1368990. [PMID: 38699388 PMCID: PMC11063329 DOI: 10.3389/fendo.2024.1368990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is a congenital anomaly characterized by agenesis/aplasia of the uterus and upper part of the vagina in females with normal external genitalia and a normal female karyotype (46,XX). Patients typically present during adolescence with complaints of primary amenorrhea where the diagnosis is established with significant implications including absolute infertility. Most often cases appear isolated with no family history of MRKH syndrome or related anomalies. However, cumulative reports of familial recurrence suggest genetic factors to be involved. Early candidate gene studies had limited success in their search for genetic causes of MRKH syndrome. More recently, genomic investigations using chromosomal microarray and genome-wide sequencing have been successful in detecting promising genetic variants associated with MRKH syndrome, including 17q12 (LHX1, HNF1B) and 16p11.2 (TBX6) deletions and sequence variations in GREB1L and PAX8, pointing towards a heterogeneous etiology with various genes involved. With uterus transplantation as an emerging fertility treatment in MRKH syndrome and increasing evidence for genetic etiologies, the need for genetic counseling concerning the recurrence risk in offspring will likely increase. This review presents the advancements in MRKH syndrome genetics from early familial occurrences and candidate gene searches to current genomic studies. Moreover, the review provides suggestions for future genetic investigations and discusses potential implications for clinical practice.
Collapse
Affiliation(s)
- Morten Krogh Herlin
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
2
|
Pietzsch M, Schönfisch B, Höller A, Koch A, Staebler A, Dreser K, Bettecken K, Schaak L, Brucker SY, Rall K. A Cohort of 469 Mayer-Rokitansky-Küster-Hauser Syndrome Patients-Associated Malformations, Syndromes, and Heterogeneity of the Phenotype. J Clin Med 2024; 13:607. [PMID: 38276113 PMCID: PMC10816094 DOI: 10.3390/jcm13020607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The Mayer-Rokitansky-Küster-Hauser syndrome is characterized by aplasia of the uterus and upper two-thirds of the vagina. While it can appear as an isolated genital malformation, it is often associated with extragenital abnormalities, with little still known about the pathogenetic background. To provide an overview of associated malformations and syndromes as well as to examine possible ties between the rudimentary tissue and patient characteristics, we analyzed a cohort of 469 patients with MRKHS as well as 298 uterine rudiments removed during surgery. A total of 165 of our patients (35.2%) had associated malformations (MRKHS type II). Renal defects were the most common associated malformation followed by skeletal abnormalities. Several patients had atypical associated malformations or combined syndromes. Uterine rudiments were rarer in patients with associated malformations than in patients without them. Rudiment size ranged from 0.3 cm3 to 184.3 cm3 with a mean value of 7.9 cm3. Importantly, MRKHS subtype or concomitant malformations were associated with a different frequency of uterine tissue as well as a different rudiment size and incidence of endometrial tissue, thereby indicating a clear heterogeneity of the phenotype. Further research into the associated molecular pathways and potential differences between MRKHS subtypes is needed.
Collapse
Affiliation(s)
- Martin Pietzsch
- Department of Obstetrics and Gynecology, University of Tübingen, 72076 Tübingen, Germany; (M.P.); (S.Y.B.)
| | - Birgitt Schönfisch
- Department of Obstetrics and Gynecology, University of Tübingen, 72076 Tübingen, Germany; (M.P.); (S.Y.B.)
| | - Alice Höller
- Department of Obstetrics and Gynecology, University of Tübingen, 72076 Tübingen, Germany; (M.P.); (S.Y.B.)
| | - André Koch
- Research Institute for Women’s Health, University of Tübingen, 72076 Tübingen, Germany;
| | - Annette Staebler
- Department of Pathology, University of Tübingen, 72076 Tübingen, Germany
| | - Katharina Dreser
- Department of Obstetrics and Gynecology, University of Tübingen, 72076 Tübingen, Germany; (M.P.); (S.Y.B.)
| | - Kristina Bettecken
- Department of Obstetrics and Gynecology, University of Tübingen, 72076 Tübingen, Germany; (M.P.); (S.Y.B.)
| | - Lisa Schaak
- Department of Obstetrics and Gynecology, University of Tübingen, 72076 Tübingen, Germany; (M.P.); (S.Y.B.)
| | - Sara Yvonne Brucker
- Department of Obstetrics and Gynecology, University of Tübingen, 72076 Tübingen, Germany; (M.P.); (S.Y.B.)
| | - Katharina Rall
- Department of Obstetrics and Gynecology, University of Tübingen, 72076 Tübingen, Germany; (M.P.); (S.Y.B.)
| |
Collapse
|
3
|
Dube R, Kar SS, Jhancy M, George BT. Molecular Basis of Müllerian Agenesis Causing Congenital Uterine Factor Infertility-A Systematic Review. Int J Mol Sci 2023; 25:120. [PMID: 38203291 PMCID: PMC10778982 DOI: 10.3390/ijms25010120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Infertility affects around 1 in 5 couples in the world. Congenital absence of the uterus results in absolute infertility in females. Müllerian agenesis is the nondevelopment of the uterus. Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is a condition of uterovaginal agenesis in the presence of normal ovaries and the 46 XX Karyotype. With advancements in reproductive techniques, women with MA having biological offspring is possible. The exact etiology of MA is unknown, although several genes and mechanisms affect the development of Müllerian ducts. Through this systematic review of the available literature, we searched for the genetic basis of MA. The aims included identification of the genes, chromosomal locations, changes responsible for MA, and fertility options, in order to offer proper management and counseling to these women with MA. A total of 85 studies were identified through searches. Most of the studies identified multiple genes at various locations, although the commonest involved chromosomes 1, 17, and 22. There is also conflicting evidence of the involvement of various candidate genes in the studies. The etiology of MA seems to be multifactorial and complex, involving multiple genes and mechanisms including various mutations and mosaicism.
Collapse
Affiliation(s)
- Rajani Dube
- Department of Obstetrics and Gynaecology, RAK College of Medical Sciences, RAK Medical & Health Sciences University, Ras al Khaimah P.O. Box 11172, United Arab Emirates
| | - Subhranshu Sekhar Kar
- Department of Paediatrics and Neonatology, RAK College of Medical Sciences, RAK Medical & Health Sciences University, Ras al Khaimah P.O. Box 11172, United Arab Emirates; (S.S.K.); (M.J.)
| | - Malay Jhancy
- Department of Paediatrics and Neonatology, RAK College of Medical Sciences, RAK Medical & Health Sciences University, Ras al Khaimah P.O. Box 11172, United Arab Emirates; (S.S.K.); (M.J.)
| | - Biji Thomas George
- Department of General Surgery, RAK College of Medical Sciences, RAK Medical & Health Sciences University, Ras al Khaimah P.O. Box 11172, United Arab Emirates;
| |
Collapse
|
4
|
Chen N, Song S, Bao X, Zhu L. Update on Mayer-Rokitansky-Küster-Hauser syndrome. Front Med 2022; 16:859-872. [PMID: 36562950 DOI: 10.1007/s11684-022-0969-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/12/2022] [Indexed: 12/24/2022]
Abstract
This review presents an update of Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome on its etiologic, clinical, diagnostic, psychological, therapeutic, and reproductive aspects. The etiology of MRKH syndrome remains unclear due to its intrinsic heterogeneity. Nongenetic and genetic causes that may interact during the embryonic development have been proposed with no definitive etiopathogenesis identified. The proportion of concomitant extragenital malformations varies in different studies, and the discrepancies may be explained by ethnic differences. In addition to physical examination and pelvic ultrasound, the performance of pelvic magnetic resonance imaging is crucial in detecting the presence of rudimentary uterine endometrium. MRKH syndrome has long-lasting psychological effects on patients, resulting in low esteem, poor coping strategies, depression, and anxiety symptoms. Providing psychological counseling and peer support to diagnosed patients is recommended. Proper and timely psychological intervention could significantly improve a patient's outcome. Various nonsurgical and surgical methods have been suggested for treatment of MRKH syndrome. Due to the high success rate and minimal risk of complications, vaginal dilation has been proven to be the first-line therapy. Vaginoplasty is the second-line option for patients experiencing dilation failure. Uterine transplantation and gestational surrogacy are options for women with MRKH syndrome to achieve biological motherhood.
Collapse
Affiliation(s)
- Na Chen
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Shuang Song
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xinmiao Bao
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- Peking Union Medical College, M.D. Program, Beijing, 100730, China
| | - Lan Zhu
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
5
|
Buchert R, Schenk E, Hentrich T, Weber N, Rall K, Sturm M, Kohlbacher O, Koch A, Riess O, Brucker SY, Schulze-Hentrich JM. Genome Sequencing and Transcriptome Profiling in Twins Discordant for Mayer-Rokitansky-Küster-Hauser Syndrome. J Clin Med 2022; 11:jcm11195598. [PMID: 36233463 PMCID: PMC9573672 DOI: 10.3390/jcm11195598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022] Open
Abstract
To identify potential genetic causes for Mayer-Rokitansky-Küster-Hauser syndrome (MRKH), we analyzed blood and rudimentary uterine tissue of 5 MRKH discordant monozygotic twin pairs. Assuming that a variant solely identified in the affected twin or affected tissue could cause the phenotype, we identified a mosaic variant in ACTR3B with high allele frequency in the affected tissue, low allele frequency in the blood of the affected twin, and almost absent in blood of the unaffected twin. Focusing on MRKH candidate genes, we detected a pathogenic variant in GREB1L in one twin pair and their unaffected mother showing a reduced phenotypic penetrance. Furthermore, two variants of unknown clinical significance in PAX8 and WNT9B were identified. In addition, we conducted transcriptome analysis of affected tissue and observed perturbations largely similar to those in sporadic cases. These shared transcriptional changes were enriched for terms associated with estrogen and its receptors pointing at a role of estrogen in MRKH pathology. Our genome sequencing approach of blood and uterine tissue of discordant twins is the most extensive study performed on twins discordant for MRKH so far. As no clear pathogenic differences were detected, research to evaluate other regulatory layers are required to better understand the complex etiology of MRKH.
Collapse
Affiliation(s)
- Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Elisabeth Schenk
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Thomas Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Nico Weber
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
| | - Katharina Rall
- Department of Women’s Health, University of Tübingen, 72076 Tübingen, Germany
- Rare Disease Center Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Oliver Kohlbacher
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany
- Institute for Translational Bioinformatics, University Hospital Tübingen, 72076 Tübingen, Germany
| | - André Koch
- Research Institute for Women’s Health, University of Tübingen, 72076 Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
- Rare Disease Center Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Sara Y. Brucker
- Department of Women’s Health, University of Tübingen, 72076 Tübingen, Germany
- Rare Disease Center Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Julia M. Schulze-Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany
- Correspondence: ; Tel.: +49-7071-29-72276
| |
Collapse
|
6
|
Triantafyllidi VE, Mavrogianni D, Kalampalikis A, Litos M, Roidi S, Michala L. Identification of Genetic Causes in Mayer-Rokitansky-Küster-Hauser (MRKH) Syndrome: A Systematic Review of the Literature. CHILDREN (BASEL, SWITZERLAND) 2022; 9:961. [PMID: 35883945 PMCID: PMC9322756 DOI: 10.3390/children9070961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 01/17/2023]
Abstract
Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is a congenital condition characterizing females with absence of the uterus and part of the vagina. Several genetic defects have been correlated with the presence of MRKH; however, the exact etiology is still unknown due to the complexity of the genetic pathways implicated during the embryogenetic development of the Müllerian ducts. A systematic review (SR) of the literature was conducted to investigate the genetic causes associated with MRKH syndrome and Congenital Uterine Anomalies (CUAs). This study aimed to identify the most affected chromosomal areas and genes along with their associated clinical features in order to aid clinicians in distinguishing and identifying the possible genetic cause in each patient offering better genetic counseling. We identified 76 studies describing multiple genetic defects potentially contributing to the pathogenetic mechanism of MRKH syndrome. The most reported chromosomal regions and the possible genes implicated were: 1q21.1 (RBM8A gene), 1p31-1p35 (WNT4 gene), 7p15.3 (HOXA gene), 16p11 (TBX6 gene), 17q12 (LHX1 and HNF1B genes), 22q11.21, and Xp22. Although the etiology of MRKH syndrome is complex, associated clinical features can aid in the identification of a specific genetic defect.
Collapse
Affiliation(s)
- Varvara Ermioni Triantafyllidi
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Ave, 11528 Athens, Greece; (A.K.); (S.R.); (L.M.)
| | - Despoina Mavrogianni
- Molecular Biology Unit, Division of Human Reproduction, 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Ave, 11528 Athens, Greece;
| | - Andreas Kalampalikis
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Ave, 11528 Athens, Greece; (A.K.); (S.R.); (L.M.)
| | - Michael Litos
- Department of Obstetrics & Gynecology, Konstantopouleio General Hospital of Nea Ionia, 14233 Athens, Greece;
| | - Stella Roidi
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Ave, 11528 Athens, Greece; (A.K.); (S.R.); (L.M.)
| | - Lina Michala
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Ave, 11528 Athens, Greece; (A.K.); (S.R.); (L.M.)
| |
Collapse
|
7
|
Brucker SY, Hentrich T, Schulze-Hentrich JM, Pietzsch M, Wajngarten N, Singh AR, Rall K, Koch A. Endometrial organoids derived from Mayer-Rokitansky-Küster-Hauser syndrome patients provide insights into disease-causing pathways. Dis Model Mech 2022; 15:dmm049379. [PMID: 35394036 PMCID: PMC9118093 DOI: 10.1242/dmm.049379] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 03/31/2022] [Indexed: 12/13/2022] Open
Abstract
The uterus is responsible for the nourishment and mechanical protection of the developing embryo and fetus and is an essential part in mammalian reproduction. Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is characterized by agenesis of the uterus and upper part of the vagina in females with normal ovarian function. Although heavily studied, the cause of the disease is still enigmatic. Current research in the field of MRKH mainly focuses on DNA-sequencing efforts and, so far, has been unable to decipher the nature and heterogeneity of the disease, thereby holding back scientific and clinical progress. Here, we developed long-term expandable organoid cultures from endometrium found in uterine rudiment horns of MRKH patients. Phenotypically, they share great similarity with healthy control organoids and are surprisingly fully hormone responsive. Transcriptome analyses, however, identified an array of dysregulated genes that point to potentially disease-causing pathways altered during the development of the female reproductive tract. We consider the endometrial organoid cultures to be a powerful research tool that promise to enable an array of studies into the pathogenic origins of MRKH syndrome and possible treatment opportunities to improve patient quality of life.
Collapse
Affiliation(s)
- Sara Y. Brucker
- Department of Women's Health, University of Tübingen, 72076 Tübingen, Germany
- Rare Disease Center Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Thomas Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Julia M. Schulze-Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
| | - Martin Pietzsch
- Department of Women's Health, University of Tübingen, 72076 Tübingen, Germany
| | - Noel Wajngarten
- Research Institute for Women's Health, University of Tübingen, 72076 Tübingen, Germany
| | - Anjali Ralhan Singh
- Research Institute for Women's Health, University of Tübingen, 72076 Tübingen, Germany
| | - Katharina Rall
- Department of Women's Health, University of Tübingen, 72076 Tübingen, Germany
- Rare Disease Center Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - André Koch
- Research Institute for Women's Health, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
8
|
Kyei-Barffour I, Margetts M, Vash-Margita A, Pelosi E. The Embryological Landscape of Mayer-Rokitansky-Kuster-Hauser Syndrome: Genetics and Environmental Factors. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2021; 94:657-672. [PMID: 34970104 PMCID: PMC8686787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is a disorder caused by Müllerian ducts dysgenesis affecting 1 in 5000 women with a typical 46,XX karyotype. The etiology of MRKH syndrome is complex and largely unexplained. Familial clustering suggests a genetic component and the spectrum of clinical presentations seems consistent with an inheritance pattern characterized by incomplete penetrance and variable expressivity. Mutations of several candidate genes have been proposed as possible causes based on genetic analyses of human patients and animal models. In addition, studies of monozygotic twins with discordant phenotypes suggest a role for epigenetic changes following potential exposure to environmental compounds. The spectrum of clinical presentations is consistent with intricate disruptions of shared developmental pathways or signals during early organogenesis. However, the lack of functional validation and translational studies have limited our understanding of the molecular mechanisms involved in this condition. The clinical management of affected women, including early diagnosis, genetic testing of MRKH syndrome, and the implementation of counseling strategies, is significantly impeded by these knowledge gaps. Here, we illustrate the embryonic development of tissues and organs affected by MRKH syndrome, highlighting key pathways that could be involved in its pathogenesis. In addition, we will explore the genetics of this condition, as well as the potential role of environmental factors, and discuss their implications to clinical practice.
Collapse
Affiliation(s)
- Isaac Kyei-Barffour
- Department of Biomedical Sciences, University of Cape
Coast, Cape Coast, Ghana
| | - Miranda Margetts
- Center for American Indian and Rural Health Equity,
Montana State University, Bozeman, MT, USA
| | - Alla Vash-Margita
- Department of Obstetrics, Gynecology and Reproductive
Sciences, Division of Pediatric and Adolescent Gynecology, Yale University
School of Medicine, New Haven, CT, USA
| | - Emanuele Pelosi
- Centre for Clinical Research, The University of
Queensland, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Kapczuk K, Kędzia W. Primary Amenorrhea Due to Anatomical Abnormalities of the Reproductive Tract: Molecular Insight. Int J Mol Sci 2021; 22:ijms222111495. [PMID: 34768925 PMCID: PMC8584168 DOI: 10.3390/ijms222111495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Congenital anomalies of the female reproductive tract that present with primary amenorrhea involve Müllerian aplasia, also known as Mayer-Rokitansky-Küster-Hauser syndrome (MRKHS), and cervical and vaginal anomalies that completely obstruct the reproductive tract. Karyotype abnormalities do not exclude the diagnosis of MRKHS. Familial cases of Müllerian anomalies and associated malformations of the urinary and skeletal systems strongly suggest a complex genetic etiology, but so far, the molecular mechanism in the vast majority of cases remains unknown. Primary amenorrhea may also be the first presentation of complete androgen insensitivity syndrome, steroid 5α-reductase type 2 deficiency, 17β-hydroxysteroid dehydrogenase type 3 deficiency, and Leydig cells hypoplasia type 1; therefore, these disorders should be considered in the differential diagnosis of the congenital absence of the uterus and vagina. The molecular diagnosis in the majority of these cases can be established.
Collapse
|
10
|
Enck P, Goebel-Stengel M, Rieß O, Hübener-Schmid J, Kagan KO, Nieß AM, Tümmers H, Wiesing U, Zipfel S, Stengel A. [Twin research in Germany]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2021; 64:1298-1306. [PMID: 34524474 PMCID: PMC8441034 DOI: 10.1007/s00103-021-03400-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 07/23/2021] [Indexed: 12/16/2022]
Abstract
Nach dem Zweiten Weltkrieg wurden weltweit Zwillingskohorten aufgebaut, die inzwischen ca. 1,5 Mio. Zwillinge umfassen und zwischen 1950 und 2012 über 2748 Zwillingsstudien hervorgebracht haben. Diese Zahl steigt jedes Jahr um weitere 500 bis 1000. Die Unterrepräsentanz deutscher Zwillingsstudien in diesen Datenbanken lässt sich nicht allein durch den Missbrauch medizinischer Forschung im Nationalsozialismus erklären. Entwicklung und Ausbau großer Zwillingskohorten sind ethisch und datenschutzrechtlich eine Herausforderung. Zwillingskohorten ermöglichen jedoch die Langzeit- und Echtzeiterforschung vieler medizinischer Fragestellungen; und die Zwillingsstudien tragen auch nach der Entschlüsselung des Humangenoms erheblich zur Beantwortung der Frage nach Anlage oder Umwelt als mögliche Erkrankungsauslöser bei. Derzeit gibt es 2 deutsche Zwillingskohorten: die biomedizinische Kohorte HealthTwiSt mit ca. 1500 Zwillingspaaren und TwinLife, eine soziologisch-psychologische Kohorte mit ca. 4000 Zwillingspaaren. Daneben gibt es krankheitsspezifische Kohorten. 2016 startete das TwinHealth-Konsortium der Medizinischen Fakultät der Universität Tübingen mit dem Ziel, eine forschungsoffene und nachhaltige Zwillingsforschung am Standort Tübingen zur Bearbeitung unterschiedlicher Fragestellungen zu etablieren. Der Artikel bietet mithilfe einer systematischen Literaturrecherche und einer medizinhistorischen Betrachtung einen Überblick über die weltweite und nationale Entwicklung von Zwillingsstudien und -datenbanken der letzten 100 Jahre. Anhand der Tübinger TwinHealth-Initiative beleuchtet er den Aufbau eines Zwillingskollektivs und dessen juristische, ethische und Datenschutzaspekte.
Collapse
Affiliation(s)
- Paul Enck
- Innere Medizin VI, Psychosomatische Medizin und Psychotherapie, Universitätsklinikum Tübingen, Osianderstr. 5, 72076, Tübingen, Deutschland
| | - Miriam Goebel-Stengel
- Innere Medizin VI, Psychosomatische Medizin und Psychotherapie, Universitätsklinikum Tübingen, Osianderstr. 5, 72076, Tübingen, Deutschland. .,Klinik für Innere Medizin, Helios Klinik Rottweil, Rottweil, Deutschland.
| | - Olaf Rieß
- Institut für Medizinische Genetik und Angewandte Genomik, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - Jeannette Hübener-Schmid
- Institut für Medizinische Genetik und Angewandte Genomik, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - Karl Oliver Kagan
- Department für Frauengesundheit, Universitäts-Frauenklinik, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - Andreas Michael Nieß
- Innere Medizin V, Sportmedizin, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - Henning Tümmers
- Institut für Ethik und Geschichte der Medizin, Universität Tübingen, Tübingen, Deutschland
| | - Urban Wiesing
- Institut für Ethik und Geschichte der Medizin, Universität Tübingen, Tübingen, Deutschland
| | - Stephan Zipfel
- Innere Medizin VI, Psychosomatische Medizin und Psychotherapie, Universitätsklinikum Tübingen, Osianderstr. 5, 72076, Tübingen, Deutschland
| | - Andreas Stengel
- Innere Medizin VI, Psychosomatische Medizin und Psychotherapie, Universitätsklinikum Tübingen, Osianderstr. 5, 72076, Tübingen, Deutschland
| | | |
Collapse
|
11
|
Pontecorvi P, Megiorni F, Camero S, Ceccarelli S, Bernardini L, Capalbo A, Anastasiadou E, Gerini G, Messina E, Perniola G, Benedetti Panici P, Grammatico P, Pizzuti A, Marchese C. Altered Expression of Candidate Genes in Mayer-Rokitansky-Küster-Hauser Syndrome May Influence Vaginal Keratinocytes Biology: A Focus on Protein Kinase X. BIOLOGY 2021; 10:biology10060450. [PMID: 34063745 PMCID: PMC8223793 DOI: 10.3390/biology10060450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022]
Abstract
Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is a rare and complex disease defined by congenital aplasia of the vagina and uterus in 46,XX women, often associated with kidney and urinary tract anomalies. The aetiopathogenesis of MRKH syndrome is still largely unknown. Herein, we investigated the role of selected candidate genes in the aetiopathogenesis of MRKH syndrome, with a focus on PRKX, which encodes for protein kinase X. Through RT-qPCR analyses performed on vaginal dimple samples from patients, and principal component analysis (PCA), we highlighted a phenotype-related expression pattern of PRKX, MUC1, HOXC8 and GREB1L in MRKH patients. By using an in vitro approach, we proved that PRKX ectopic overexpression in a cell model of vaginal keratinocytes promotes cell motility through epithelial-to-mesenchymal transition (EMT) activation, a fundamental process in urogenital tract morphogenesis. Moreover, our findings showed that PRKX upregulation in vaginal keratinocytes is able to affect transcriptional levels of HOX genes, implicated in urinary and genital tract development. Our study identified the dysregulation of PRKX expression as a possible molecular cause for MRKH syndrome. Moreover, we propose the specific role of PRKX in vaginal keratinocyte biology as one of the possible mechanisms underlying this complex disease.
Collapse
Affiliation(s)
- Paola Pontecorvi
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
| | - Francesca Megiorni
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
| | - Simona Camero
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (S.C.); (G.P.); (P.B.P.)
| | - Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
| | - Laura Bernardini
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Foundation-Viale Cappuccini, 1, 71013 San Giovanni Rotondo (FG), Italy; (L.B.); (A.C.)
| | - Anna Capalbo
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Foundation-Viale Cappuccini, 1, 71013 San Giovanni Rotondo (FG), Italy; (L.B.); (A.C.)
| | - Eleni Anastasiadou
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
| | - Giulia Gerini
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
| | - Elena Messina
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
| | - Giorgia Perniola
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (S.C.); (G.P.); (P.B.P.)
| | - Pierluigi Benedetti Panici
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (S.C.); (G.P.); (P.B.P.)
| | - Paola Grammatico
- Division of Medical Genetics, Department of Molecular Medicine, Sapienza University of Rome-San Camillo-Forlanini Hospital, Circonvallazione Gianicolense, 87, 00152 Rome, Italy;
| | - Antonio Pizzuti
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Foundation-Viale Cappuccini, 1, 71013 San Giovanni Rotondo (FG), Italy; (L.B.); (A.C.)
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
- Correspondence: ; Tel.: +39-06-4997-2872
| |
Collapse
|
12
|
Mikhael S, Dugar S, Morton M, Chorich LP, Tam KB, Lossie AC, Kim HG, Knight J, Taylor HS, Mukherjee S, Capra JA, Phillips JA, Friez M, Layman LC. Genetics of agenesis/hypoplasia of the uterus and vagina: narrowing down the number of candidate genes for Mayer-Rokitansky-Küster-Hauser Syndrome. Hum Genet 2021; 140:667-680. [PMID: 33469725 PMCID: PMC9211441 DOI: 10.1007/s00439-020-02239-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/13/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome consists of congenital absence of the uterus and vagina and is often associated with renal, skeletal, cardiac, and auditory defects. The genetic basis is largely unknown except for rare variants in several genes. Many candidate genes have been suggested by mouse models and human studies. The purpose of this study was to narrow down the number of candidate genes. METHODS Whole exome sequencing was performed on 111 unrelated individuals with MRKH; variant analysis focused on 72 genes suggested by mouse models, human studies of physiological candidates, or located near translocation breakpoints in t(3;16). Candidate variants (CV) predicted to be deleterious were confirmed by Sanger sequencing. RESULTS Sanger sequencing verified 54 heterozygous CV from genes identified through mouse (13 CV in 6 genes), human (22 CV in seven genes), and translocation breakpoint (19 CV in 11 genes) studies. Twelve patients had ≥ 2 CVs, including four patients with two variants in the same gene. One likely digenic combination of LAMC1 and MMP14 was identified. CONCLUSION We narrowed 72 candidate genes to 10 genes that appear more likely implicated. These candidate genes will require further investigation to elucidate their role in the development of MRKH.
Collapse
Affiliation(s)
- Sasha Mikhael
- Section of Reproductive Endocrinology, Infertility, and Genetics, Department of Obstetrics and Gynecology, Neuroscience Program, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Sonal Dugar
- Section of Reproductive Endocrinology, Infertility, and Genetics, Department of Obstetrics and Gynecology, Neuroscience Program, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Madison Morton
- Section of Reproductive Endocrinology, Infertility, and Genetics, Department of Obstetrics and Gynecology, Neuroscience Program, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Lynn P Chorich
- Section of Reproductive Endocrinology, Infertility, and Genetics, Department of Obstetrics and Gynecology, Neuroscience Program, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Kerlene Berwick Tam
- Section of Reproductive Endocrinology, Infertility, and Genetics, Department of Obstetrics and Gynecology, Neuroscience Program, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Amy C Lossie
- Beautiful You MRKH Foundation, Inc., 13301 Clifton Rd, Silver Spring, MD, 20904, USA
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - James Knight
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - Hugh S Taylor
- Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, CT, USA
| | - Souhrid Mukherjee
- Department of Biological Sciences, Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - John A Capra
- Department of Biological Sciences, Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - John A Phillips
- Division of Medical Genetics and Genomic Medicine, Department of Pediatrics, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN, 37232, USA
| | - Michael Friez
- Greenwood Genetic Center, 106 Gregor Mendel Circle, Greenwood, SC, 29646, USA
| | - Lawrence C Layman
- Section of Reproductive Endocrinology, Infertility, and Genetics, Department of Obstetrics and Gynecology, Neuroscience Program, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
- Department of Neuroscience and Regenerative Medicine, Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
13
|
Kyei Barffour I, Kyei Baah Kwarkoh R. GREB1L as a candidate gene of Mayer-Rokitansky-Küster-Hauser Syndrome. Eur J Med Genet 2021; 64:104158. [PMID: 33548512 DOI: 10.1016/j.ejmg.2021.104158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/10/2020] [Accepted: 01/30/2021] [Indexed: 01/14/2023]
Abstract
Mayer-Rokitansky-Küster-Hauser (MRKH) Syndrome is a sex development disorder that affects 1 in every 4500 46, XX live births. At least a subset of MRKH syndrome is genetically related to which various candidate genes have been identified. The growth regulation by estrogen in breast cancer 1-like gene (GREB1L) is an androgen-regulated gene reported to be a co-activator of the retinoic acid receptor gene (RAR). Thus expression levels of GREB1L have implications on renal system cellular differentiation, morphogenesis, and homeostasis in vertebrates. Variants of GREB1L have been reported in familial and sporadic MRKH Syndrome and more importantly, in a three-generation family ofMRKH syndrome propositae. Much the same way, Mutants of GREB1L have also been identified in isolated bilateral renal agenesis and deafness both of which are extra-genital tract anomalies in MRKH type 2. Again, renal agenesis transgenic mice have been produced from an E13.5 CRISPR/cas9 GREB1L mutagenesis. Though no GREB1L mutation has been reported in cardiac malformation, there is evidence that GREB1L is involved in ventricular development. Here, we intorigate evidence that projects GREB1L as a candidate gene of Mayer-Rokitansky-Küster-Hauser Syndrome and propose that functional validation analysis to that effect is imparative.
Collapse
Affiliation(s)
- Isaac Kyei Barffour
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Ghana.
| | - Roselind Kyei Baah Kwarkoh
- Department of Physician Assistant Studies, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Ghana
| |
Collapse
|
14
|
Pontecorvi P, Bernardini L, Capalbo A, Ceccarelli S, Megiorni F, Vescarelli E, Bottillo I, Preziosi N, Fabbretti M, Perniola G, Benedetti Panici P, Pizzuti A, Grammatico P, Marchese C. Protein-protein interaction network analysis applied to DNA copy number profiling suggests new perspectives on the aetiology of Mayer-Rokitansky-Küster-Hauser syndrome. Sci Rep 2021; 11:448. [PMID: 33432050 PMCID: PMC7801512 DOI: 10.1038/s41598-020-79827-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022] Open
Abstract
Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is a rare disease, characterised by the aplasia of vagina and uterus in women with a 46,XX karyotype. Most cases are sporadic, but familial recurrence has also been described. Herein, we investigated an Italian cohort of 36 unrelated MRKH patients to explore the presence of pathogenic copy number variations (CNVs) by array-CGH and MLPA assays. On the whole, aberrations were found in 9/36 (25%) patients. Interestingly, one patient showed a novel heterozygous microduplication at Xp22.33, not yet described in MRKH patients, containing the PRKX gene. Moreover, a novel duplication of a specific SHOX enhancer was highlighted by MLPA. To predict the potential significance of CNVs in MRKH pathogenesis, we provided a network analysis for protein-coding genes found in the altered genomic regions. Although not all of these genes taken individually showed a clear clinical significance, their combination in a computational network highlighted that the most relevant biological connections are related to the anatomical structure development. In conclusion, the results described in the present study identified novel genetic alterations and interactions that may be likely involved in MRKH phenotype determination, so adding new insights into the complex puzzle of MRKH disease.
Collapse
Affiliation(s)
- Paola Pontecorvi
- Department of Experimental Medicine, Sapienza Università Di Roma, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Laura Bernardini
- Division of Medical Genetics, IRCCS Casa Sollievo Della Sofferenza Foundation, San Giovanni Rotondo, FG, Italy
| | - Anna Capalbo
- Division of Medical Genetics, IRCCS Casa Sollievo Della Sofferenza Foundation, San Giovanni Rotondo, FG, Italy
| | - Simona Ceccarelli
- Department of Experimental Medicine, Sapienza Università Di Roma, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Francesca Megiorni
- Department of Experimental Medicine, Sapienza Università Di Roma, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Enrica Vescarelli
- Department of Experimental Medicine, Sapienza Università Di Roma, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Irene Bottillo
- Division of Medical Genetics, Department of Molecular Medicine, Sapienza Università di Roma, Rome, Italy
| | - Nicoletta Preziosi
- Division of Medical Genetics, Department of Molecular Medicine, Sapienza Università di Roma, Rome, Italy
| | - Maria Fabbretti
- Division of Medical Genetics, IRCCS Casa Sollievo Della Sofferenza Foundation, San Giovanni Rotondo, FG, Italy
| | - Giorgia Perniola
- Department of Maternal, Infantile and Urological Sciences, Sapienza Università di Roma, Rome, Italy
| | | | - Antonio Pizzuti
- Department of Experimental Medicine, Sapienza Università Di Roma, Viale del Policlinico, 155, 00161, Rome, Italy.,Division of Medical Genetics, IRCCS Casa Sollievo Della Sofferenza Foundation, San Giovanni Rotondo, FG, Italy
| | - Paola Grammatico
- Division of Medical Genetics, Department of Molecular Medicine, Sapienza Università di Roma, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza Università Di Roma, Viale del Policlinico, 155, 00161, Rome, Italy.
| |
Collapse
|
15
|
Coelingh Bennink HJT, Egberts JFM, Mol JA, Roes KCB, van Diest PJ. Breast Cancer and Major Deviations of Genetic and Gender-related Structures and Function. J Clin Endocrinol Metab 2020; 105:5864415. [PMID: 32594127 DOI: 10.1210/clinem/dgaa404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/24/2020] [Indexed: 11/19/2022]
Abstract
We have searched the literature for information on the risk of breast cancer (BC) in relation to gender, breast development, and gonadal function in the following 8 populations: 1) females with the Turner syndrome (45, XO); 2) females and males with congenital hypogonadotropic hypogonadism and the Kallmann syndrome; 3) pure gonadal dysgenesis (PGD) in genotypic and phenotypic females and genotypic males (Swyer syndrome); 4) males with the Klinefelter syndrome (47, XXY); 5) male-to-female transgender individuals; 6) female-to-male transgender individuals; 7) genotypic males, but phenotypic females with the complete androgen insensitivity syndrome, and 8) females with Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome (müllerian agenesis). Based on this search, we have drawn 3 major conclusions. First, the presence of a Y chromosome protects against the development of BC, even when female-size breasts and female-level estrogens are present. Second, without menstrual cycles, BC hardly occurs with an incidence comparable to males. There is a strong correlation between the lifetime number of menstrual cycles and the risk of BC. In our populations the BC risk in genetic females not exposed to progesterone (P4) is very low and comparable to males. Third, BC has been reported only once in genetic females with MRKH syndrome who have normal breasts and ovulating ovaries with normal levels of estrogens and P4. We hypothesize that the oncogenic glycoprotein WNT family member 4 is the link between the genetic cause of MRKH and the absence of BC women with MRKH syndrome.
Collapse
Affiliation(s)
| | | | - Jan A Mol
- Faculty of Veterinary Medicine, University of Utrecht, GA Utrecht, the Netherlands
| | - Kit C B Roes
- Department of Health Evidence, Section Biostatistics, Radboud University Medical Centre, GA Nijmegen, the Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, GA Utrecht, the Netherlands
| |
Collapse
|
16
|
Brucker SY, Pösch LS, Graf J, Sokolov AN, Schaeffeler N, Kronenthaler A, Hiltner H, Wagner A, Ueding E, Rieger MA, Schöller D, Stefanescu D, Rall KK, Wallwiener D, Simoes E. Rare genital malformations in women's health research: sociodemographic, regional, and disease-related characteristics of patients with Mayer-Rokitansky-Küster-Hauser syndrome. BMC WOMENS HEALTH 2020; 20:135. [PMID: 32600323 PMCID: PMC7322870 DOI: 10.1186/s12905-020-00969-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 05/04/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND The Mayer-Rokitansky-Küster-Hauser syndrome, MRKHS, is a rare (orphan) disease characterized by the aplasia or hypoplasia of the uterus and the vagina. In women's health research, little is known as to how much care provision for patients with MRKHS takes into account their socio-demographic together with their clinical characteristics. This work examines the patients' socio-demographic characteristics, highlighting issues of inappropriate and deficient provision of care. METHODS The study was carried out as part of the larger TransCareO project and included a group of N=129 MRKHS patients who underwent surgery between 2008 and 2012. Using a specially developed questionnaire, we analyzed MRKHS patients' data found both in the clinical documentation of the Department for Women's Health, University Hospital of Tübingen and the patient surveys of the Center for Rare Genital Malformations (CRGM/ ZSGF). Patients who took part in interviews were compared with non-respondents. RESULTS Patient respondents and non-respondents did not differ as to the parameters of interest. In most cases, primary amenorrhea was reported as an admission reason. In 24% of patients, a medical intervention (hymenal incision or hormone treatment) already occurred before admission to the Center in Tübingen and proper diagnosis of MRKHS. About one third received in advance inappropriate treatment. During the therapy, more than half of the patients were in a solid partnership. 10% of the family anamneses documented the occurrence of urogenital malformations. CONCLUSIONS Care provision for MRKHS patients is largely characterized by delayed proper diagnosis and in part, by inappropriate treatment attempts; there are also indications of regional differences. Anamnestic clues such as an asymptomatic amenorrhea or renal abnormalities of unclear origin still fail to result early enough in referral to a center on the basis of suspected MRKHS diagnosis. Urogenital malformations in the family are more common in patients than in the general population. For patients, a wide range of burdens are associated with the diagnosis. Abnormalities compared to their female peers occur, for instance, in the partnership status: MRKHS patients have more rarely a partner.
Collapse
Affiliation(s)
- Sara Yvonne Brucker
- University Hospital Tübingen, Department of Women's Health, Tübingen, Germany.,University Hospital Tübingen, Department of Women's Health, Research Institute for Women's Health, Tübingen, Germany
| | - Leonie-Sophia Pösch
- University Hospital Tübingen, Department of Women's Health, Tübingen, Germany.,University Hospital Tübingen, Department of Women's Health, Research Institute for Women's Health, Tübingen, Germany
| | - Joachim Graf
- University Hospital Tübingen, Department of Women's Health, Tübingen, Germany. .,University Hospital Tübingen, Department of Women's Health, Research Institute for Women's Health, Tübingen, Germany. .,University Hospital Tübingen, Institute for Health Sciences, Section of Midwifery Science, Tübingen, Germany.
| | - Alexander N Sokolov
- University Hospital Tübingen, Department of Women's Health, Tübingen, Germany.,University Hospital Tübingen, Department of Women's Health, Research Institute for Women's Health, Tübingen, Germany.,Department for Psychiatry and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Norbert Schaeffeler
- University Hospital Tübingen, Internal Medicine, Department of Psychosomatic Medicine and Psychotherapy, Tübingen, Germany
| | | | - Hanna Hiltner
- University of Tübingen, Department of Sociology, Tübingen, Germany
| | - Anke Wagner
- University Hospital Tübingen, Institute of Occupational and Social Medicine and Health Services Research, Tübingen, Germany
| | - Esther Ueding
- University Hospital Tübingen, Department of Women's Health, Research Institute for Women's Health, Tübingen, Germany
| | - Monika A Rieger
- University Hospital Tübingen, Institute of Occupational and Social Medicine and Health Services Research, Tübingen, Germany
| | - Dorit Schöller
- University Hospital Tübingen, Department of Women's Health, Tübingen, Germany
| | - Diana Stefanescu
- University Hospital Tübingen, Department of Women's Health, Tübingen, Germany
| | | | - Diethelm Wallwiener
- University Hospital Tübingen, Department of Women's Health, Tübingen, Germany
| | - Elisabeth Simoes
- University Hospital Tübingen, Department of Women's Health, Tübingen, Germany.,University Hospital Tübingen, Department of Women's Health, Research Institute for Women's Health, Tübingen, Germany.,University Hospital Tübingen, Staff Section Social Medicine, Tübingen, Germany
| |
Collapse
|
17
|
Detection of de novo genetic variants in Mayer-Rokitansky-Küster-Hauser syndrome by whole genome sequencing. Eur J Obstet Gynecol Reprod Biol X 2019; 4:100089. [PMID: 31517310 PMCID: PMC6728744 DOI: 10.1016/j.eurox.2019.100089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/09/2019] [Accepted: 07/28/2019] [Indexed: 11/22/2022] Open
Abstract
Objective The aim of this study was to use whole genome sequencing (WGS) help detect de novo mutations or pathogenic genes of Mayer-Rokitansky-Küster-Hauser syndrome type 1(MRKH syndrome type 1). Study design This was a case-parent trios study. Nine unrelated probands, with MRKH syndrome type 1 and their parents were enrolled. The enrollment, sequencing process, establishment of the de novo mutations detecting procedure and experiment part were performed over a 2-year period. Results we detected 632 de novo single nucleotide variants (SNVs), 267 de novo small insertions/deletions (indels), 39 de novo structural variations (SVs) and 28 de novo copy number alterations (CNAs). Three novel damaging coding de novo SNVs with three damaging coding de novo genes (PIK3CD, SLC4A10 and TNK2) were revealed. Two SNVs were annotated of the promoter region of gene NBPF10 and 3'UTR of NOTCH2NL, potentially contributing to the pathogenesis of MRKH. Conclusion We identified five de novo mutations in BAZ2B, KLHL18, PIK3CD, SLC4A10 and TNK2 by performing WGS, the functional involvement of all deleterious mutations in MRKH candidate genes of the trios warrant further study. WGS may complement conventional array to capture the complete landscape of the genome in MRKH.
Collapse
|
18
|
Tewes AC, Hucke J, Römer T, Kapczuk K, Schippert C, Hillemanns P, Wieacker P, Ledig S. Sequence Variants in TBX6 Are Associated with Disorders of the Müllerian Ducts: An Update. Sex Dev 2019; 13:35-40. [DOI: 10.1159/000496819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2018] [Indexed: 12/22/2022] Open
|
19
|
Backhouse B, Hanna C, Robevska G, van den Bergen J, Pelosi E, Simons C, Koopman P, Juniarto AZ, Grover S, Faradz S, Sinclair A, Ayers K, Tan TY. Identification of Candidate Genes for Mayer-Rokitansky-Küster-Hauser Syndrome Using Genomic Approaches. Sex Dev 2018; 13:26-34. [PMID: 30504698 DOI: 10.1159/000494896] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2018] [Indexed: 12/21/2022] Open
Abstract
Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is a disorder of sex development which affects 1 in 4,500 females and is characterized by agenesis of müllerian structures, including the uterus, cervix, and upper vagina. It can occur in isolation (type 1) or in conjunction with various anomalies (type 2), with a subset of these comprising müllerian, renal, and cervicothoracic abnormalities (MURCS) association. The genetic causes of MRKH have been investigated previously yielding limited results, with massive parallel sequencing becoming increasingly utilized. We sought to identify genetic contributions to MRKH using a combination of microarray and whole exome sequencing (WES) on a cohort of 8 unrelated women with MRKH and MURCS. WES data were analysed using a candidate gene approach to identify potential contributing variants. Microarray analysis identified a 0.6-Mb deletion in the previously implicated 16p11.2 region in a patient with MRKH type 2. WES revealed 16 rare nonsynonymous variants in MRKH candidate genes across the cohort. These included variants in several genes, such as LRP10 and DOCK4, associated with disorders with müllerian anomalies. Further functional studies of these variants will help to delineate their biological significance and expand the genotypic spectrum of MRKH.
Collapse
|
20
|
Demir Eksi D, Shen Y, Erman M, Chorich LP, Sullivan ME, Bilekdemir M, Yılmaz E, Luleci G, Kim HG, Alper OM, Layman LC. Copy number variation and regions of homozygosity analysis in patients with MÜLLERIAN aplasia. Mol Cytogenet 2018; 11:13. [PMID: 29434669 PMCID: PMC5797403 DOI: 10.1186/s13039-018-0359-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 01/16/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Little is known about the genetic contribution to Müllerian aplasia, better known to patients as Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome. Mutations in two genes (WNT4 and HNF1B) account for a small number of patients, but heterozygous copy number variants (CNVs) have been described. However, the significance of these CNVs in the pathogenesis of MRKH is unknown, but suggests possible autosomal dominant inheritance. We are not aware of CNV studies in consanguineous patients, which could pinpoint genes important in autosomal recessive MRKH. We therefore utilized SNP/CGH microarrays to identify CNVs and define regions of homozygosity (ROH) in Anatolian Turkish MRKH patients. RESULTS Five different CNVs were detected in 4/19 patients (21%), one of which is a previously reported 16p11.2 deletion containing 32 genes, while four involved smaller regions each containing only one gene. Fourteen of 19 (74%) of patients had parents that were third degree relatives or closer. There were 42 regions of homozygosity shared by at least two MRKH patients which was spread throughout most chromosomes. Of interest, eight candidate genes suggested by human or animal studies (RBM8A, CMTM7, CCR4, TRIM71, CNOT10, TP63, EMX2, and CFTR) reside within these ROH. CONCLUSIONS CNVs were found in about 20% of Turkish MRKH patients, and as in other studies, proof of causation is lacking. The 16p11.2 deletion seen in mixed populations is also identified in Turkish MRKH patients. Turkish MRKH patients have a higher likelihood of being consanguineous than the general Anatolian Turkish population. Although identified single gene mutations and heterozygous CNVs suggest autosomal dominant inheritance for MRKH in much of the western world, regions of homozygosity, which could contain shared mutant alleles, make it more likely that autosomal recessively inherited causes will be manifested in Turkish women with MRKH.
Collapse
Affiliation(s)
- Durkadin Demir Eksi
- Department of Medical Biology, Alanya Alaaddin Keykubat University, Faculty of Medicine, Antalya, Turkey
| | - Yiping Shen
- Guangxi Maternal and Child Health Hospital, Nanning, China
- Department of Pathology, Harvard Medical School, Boston, MA 02115 USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115 USA
- Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127 China
| | - Munire Erman
- Department of Obstetrics and Gynecology, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| | - Lynn P. Chorich
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology Medical College of Georgia at Augusta University, Augusta, GA USA
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, 1120 15th Street, CA2041, Augusta, GA 30912 USA
| | - Megan E. Sullivan
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology Medical College of Georgia at Augusta University, Augusta, GA USA
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, 1120 15th Street, CA2041, Augusta, GA 30912 USA
| | - Meric Bilekdemir
- Department of Obstetrics and Gynecology, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| | - Elanur Yılmaz
- Department of Medical Biology and Genetics, Akdeniz University, Faculty of Medicine, 07058 Antalya, Turkey
| | - Guven Luleci
- Department of Medical Biology and Genetics, Akdeniz University, Faculty of Medicine, 07058 Antalya, Turkey
| | - Hyung-Goo Kim
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology Medical College of Georgia at Augusta University, Augusta, GA USA
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, 1120 15th Street, CA2041, Augusta, GA 30912 USA
| | - Ozgul M. Alper
- Department of Medical Biology and Genetics, Akdeniz University, Faculty of Medicine, 07058 Antalya, Turkey
| | - Lawrence C. Layman
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology Medical College of Georgia at Augusta University, Augusta, GA USA
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, 1120 15th Street, CA2041, Augusta, GA 30912 USA
| |
Collapse
|
21
|
Castellani CA, Melka MG, Gui JL, Gallo AJ, O'Reilly RL, Singh SM. Post-zygotic genomic changes in glutamate and dopamine pathway genes may explain discordance of monozygotic twins for schizophrenia. Clin Transl Med 2017; 6:43. [PMID: 29181591 PMCID: PMC5704032 DOI: 10.1186/s40169-017-0174-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/05/2017] [Indexed: 01/06/2023] Open
Abstract
Background Monozygotic twins are valuable in assessing the genetic vs environmental contribution to diseases. In the era of complete genome sequences, they allow identification of mutational mechanisms and specific genes and pathways that offer predisposition to the development of complex diseases including schizophrenia. Methods We sequenced the complete genomes of two pairs of monozygotic twins discordant for schizophrenia (MZD), including one representing a family tetrad. The family specific complete sequences have allowed identification of post zygotic mutations between MZD genomes. It allows identification of affected genes including relevant network and pathways that may account for the diseased state in pair specific patient. Results We found multiple twin specific sequence differences between co-twins that included small nucleotides [single nucleotide variants (SNV), small indels and block substitutions], copy number variations (CNVs) and structural variations. The genes affected by these changes belonged to a number of canonical pathways, the most prominent ones are implicated in schizophrenia and related disorders. Although these changes were found in both twins, they were more frequent in the affected twin in both pairs. Two specific pathway defects, glutamate receptor signaling and dopamine feedback in cAMP signaling pathways, were uniquely affected in the two patients representing two unrelated families. Conclusions We have identified genome-wide post zygotic mutations in two MZD pairs affected with schizophrenia. It has allowed us to use the threshold model and propose the most likely cause of this disease in the two patients studied. The results support the proposition that each schizophrenia patient may be unique and heterogeneous somatic de novo events may contribute to schizophrenia threshold and discordance of the disease in monozygotic twins. Electronic supplementary material The online version of this article (10.1186/s40169-017-0174-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C A Castellani
- Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada. .,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - M G Melka
- Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - J L Gui
- Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - A J Gallo
- Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - R L O'Reilly
- Department of Psychiatry, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - S M Singh
- Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada.,Department of Psychiatry, The University of Western Ontario, London, ON, N6A 5B7, Canada
| |
Collapse
|
22
|
Choussein S, Nasioudis D, Schizas D, Economopoulos KP. Mullerian dysgenesis: a critical review of the literature. Arch Gynecol Obstet 2017; 295:1369-1381. [DOI: 10.1007/s00404-017-4372-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 04/18/2017] [Indexed: 01/02/2023]
|
23
|
Kapczuk K, Iwaniec K, Friebe Z, Kędzia W. Congenital malformations and other comorbidities in 125 women with Mayer-Rokitansky-Küster-Hauser syndrome. Eur J Obstet Gynecol Reprod Biol 2016; 207:45-49. [DOI: 10.1016/j.ejogrb.2016.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 10/09/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
|
24
|
Fontana L, Gentilin B, Fedele L, Gervasini C, Miozzo M. Genetics of Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome. Clin Genet 2016; 91:233-246. [PMID: 27716927 DOI: 10.1111/cge.12883] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 12/16/2022]
Abstract
Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome, also referred to as Müllerian agenesis, is the second most common cause of primary amenorrhea. It is characterized by congenital absence of the uterus, cervix, and the upper part of the vagina in otherwise phenotypically normal 46,XX females. MRKH syndrome has an incidence of about 1 in 4,500-5,000 newborn females and it is generally divided into two subtypes: MRKH type 1, in which only the upper vagina, cervix and the uterus are affected, and MRKH type 2, which is associated with additional malformations generally affecting the renal and skeletal systems, and also includes MURCS (MÜllerian Renal Cervical Somite) characterized by cervico-thoracic defects. MRKH syndrome is mainly sporadic; however, familial cases have been described indicating that, at least in a subset of patients, MRKH may be an inherited disorder. The syndrome appears to demonstrate an autosomal dominant inheritance pattern, with incomplete penetrance and variable expressivity. The etiology of MRKH syndrome is still largely unknown, probably because of its intrinsic heterogeneity. Several candidate causative genes have been investigated, but to date only WNT4 has been associated with MRKH with hyperandrogenism. This review summarizes and discusses the clinical features and details progress to date in understanding the genetics of MRKH syndrome.
Collapse
Affiliation(s)
- L Fontana
- Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milano, Italy
| | - B Gentilin
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - L Fedele
- Department of Obstetrics and Gynecology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milano, Italy
| | - C Gervasini
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | - M Miozzo
- Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milano, Italy.,Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| |
Collapse
|
25
|
Jacquinet A, Millar D, Lehman A. Etiologies of uterine malformations. Am J Med Genet A 2016; 170:2141-72. [PMID: 27273803 DOI: 10.1002/ajmg.a.37775] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 03/10/2016] [Indexed: 12/11/2022]
Abstract
Ranging from aplastic uterus (including Mayer-Rokitansky-Kuster-Hauser syndrome) to incomplete septate uterus, uterine malformations as a group are relatively frequent in the general population. Specific causes remain largely unknown. Although most occurrences ostensibly seem sporadic, familial recurrences have been observed, which strongly implicate genetic factors. Through the study of animal models, human syndromes, and structural chromosomal variation, several candidate genes have been proposed and subsequently tested with targeted methods in series of individuals with isolated, non-isolated, or syndromic uterine malformations. To date, a few genes have garnered strong evidence of causality, mainly in syndromic presentations (HNF1B, WNT4, WNT7A, HOXA13). Sequencing of candidate genes in series of individuals with isolated uterine abnormalities has been able to suggest an association for several genes, but confirmation of a strong causative effect is still lacking for the majority of them. We review the current state of knowledge about the developmental origins of uterine malformations, with a focus on the genetic variants that have been implicated or associated with these conditions in humans, and we discuss potential reasons for the high rate of negative results. The evidence for various environmental and epigenetic factors is also reviewed. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Adeline Jacquinet
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Center for Human Genetics, Centre Hospitalier Universitaire and University of Liège, Liège, Belgium
| | - Debra Millar
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Child and Family Research Institute, Vancouver, Canada
| |
Collapse
|
26
|
Qin C, Luo G, Du M, Liao S, Wang C, Xu K, Tang J, Li B, Zhang J, Pan H, Ball TW, Fang Y. The clinical application of laparoscope-assisted peritoneal vaginoplasty for the treatment of congenital absence of vagina. Int J Gynaecol Obstet 2016; 133:320-4. [DOI: 10.1016/j.ijgo.2015.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 11/11/2015] [Accepted: 02/17/2016] [Indexed: 10/22/2022]
|
27
|
Zeidán-Chuliá F, Gürsoy M, Neves de Oliveira BH, Özdemir V, Könönen E, Gürsoy UK. A Systems Biology Approach to Reveal Putative Host-Derived Biomarkers of Periodontitis by Network Topology Characterization of MMP-REDOX/NO and Apoptosis Integrated Pathways. Front Cell Infect Microbiol 2016; 5:102. [PMID: 26793622 PMCID: PMC4707239 DOI: 10.3389/fcimb.2015.00102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/15/2015] [Indexed: 01/27/2023] Open
Abstract
Periodontitis, a formidable global health burden, is a common chronic disease that destroys tooth-supporting tissues. Biomarkers of the early phase of this progressive disease are of utmost importance for global health. In this context, saliva represents a non-invasive biosample. By using systems biology tools, we aimed to (1) identify an integrated interactome between matrix metalloproteinase (MMP)-REDOX/nitric oxide (NO) and apoptosis upstream pathways of periodontal inflammation, and (2) characterize the attendant topological network properties to uncover putative biomarkers to be tested in saliva from patients with periodontitis. Hence, we first generated a protein-protein network model of interactions ("BIOMARK" interactome) by using the STRING 10 database, a search tool for the retrieval of interacting genes/proteins, with "Experiments" and "Databases" as input options and a confidence score of 0.400. Second, we determined the centrality values (closeness, stress, degree or connectivity, and betweenness) for the "BIOMARK" members by using the Cytoscape software. We found Ubiquitin C (UBC), Jun proto-oncogene (JUN), and matrix metalloproteinase-14 (MMP14) as the most central hub- and non-hub-bottlenecks among the 211 genes/proteins of the whole interactome. We conclude that UBC, JUN, and MMP14 are likely an optimal candidate group of host-derived biomarkers, in combination with oral pathogenic bacteria-derived proteins, for detecting periodontitis at its early phase by using salivary samples from patients. These findings therefore have broader relevance for systems medicine in global health as well.
Collapse
Affiliation(s)
- Fares Zeidán-Chuliá
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil; Department of Periodontology, Institute of Dentistry, University of TurkuTurku, Finland
| | - Mervi Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku Turku, Finland
| | - Ben-Hur Neves de Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil
| | - Vural Özdemir
- Faculty of Communications and Office of the President, International Technology and Innovation Policy, Gaziantep UniversityGaziantep, Turkey; Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham (Amrita University)Kollam, India
| | - Eija Könönen
- Department of Periodontology, Institute of Dentistry, University of TurkuTurku, Finland; Oral Health Care, Welfare DivisionTurku, Finland
| | - Ulvi K Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku Turku, Finland
| |
Collapse
|
28
|
Ma W, Li Y, Wang M, Li H, Su T, Li Y, Wang S. Associations of Polymorphisms in WNT9B and PBX1 with Mayer-Rokitansky-Küster-Hauser Syndrome in Chinese Han. PLoS One 2015; 10:e0130202. [PMID: 26075712 PMCID: PMC4468103 DOI: 10.1371/journal.pone.0130202] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/16/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is a rare syndrome that is characterized by congenital aplasia of the uterus and the upper portion (2/3) of the vagina. Previous attempts to identify causal mutations of MRKH syndrome have primarily resulted in negative outcomes. We investigated whether these reported variants are associated with MRKH syndrome (types I and II) in a relatively large sample size of Chinese Han patients, and whether any gene-gene epistatic interactions exist among these variants. METHODS This study included 182 unrelated Chinese women with MRKH syndrome (155 with type I and 27 with type II) and 228 randomized female controls. Seventeen candidate loci in the AMH, PBX1, WNT4, WNT7A, WNT9B, HOXA10, HOXA11, LHXA1 and GALT genes were genotyped using the Sequenom MassARRAY iPLEX platform. Single-marker association, additive effects and multifactor interactions were investigated. RESULTS The gene frequency distributions of MRKH type 1 and type 2 were similar. Rs34072914 in WNT9B was found to be associated with MRKH syndrome (P = 0.024, OR = 2.65, 95%CI = 1.14-6.17). The dominant models of rs34072914 and rs2275558 in WNT9B and PBX1, respectively, were significantly associated with MRKH syndrome risk in the Chinese Han patients. Additive gene-gene interaction analyses indicated a significant synergetic interaction between WNT9B and PBX1 (RERI = 1.397, AP = 0.493, SI = 4.204). Multifactor dimensionality reduction (MDR) analysis revealed novel dimensional epistatic four-gene effects (AMH, PBX1, WNT7A and WNT9B) in MRKH syndrome. CONCLUSIONS This association study successfully identified two susceptibility SNPs (WNT9B and PBX1) associated with MRKH syndrome risk, both separately and interactively. The discovery of a four-gene epistatic effect (AMH, PBX1, WNT7A and WNT9B) in MRKH syndrome provides novel information for the elucidation of the genetic mechanism underlying the etiology of MRKH syndrome.
Collapse
Affiliation(s)
- Wenqing Ma
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Ya Li
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Man Wang
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Haixia Li
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Tiefen Su
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Yan Li
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Shixuan Wang
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| |
Collapse
|