1
|
Rosenfield RL. The Search for the Causes of Common Hyperandrogenism, 1965 to Circa 2015. Endocr Rev 2024; 45:553-592. [PMID: 38457123 DOI: 10.1210/endrev/bnae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/23/2023] [Accepted: 03/06/2024] [Indexed: 03/09/2024]
Abstract
From 1965 to 2015, immense strides were made into understanding the mechanisms underlying the common androgen excess disorders, premature adrenarche and polycystic ovary syndrome (PCOS). The author reviews the critical discoveries of this era from his perspective investigating these disorders, commencing with his early discoveries of the unique pattern of plasma androgens in premature adrenarche and the elevation of an index of the plasma free testosterone concentration in most hirsute women. The molecular genetic basis, though not the developmental biologic basis, for adrenarche is now known and 11-oxytestosterones shown to be major bioactive adrenal androgens. The evolution of the lines of research into the pathogenesis of PCOS is historically traced: research milestones are cited in the areas of neuroendocrinology, insulin resistance, hyperinsulinism, type 2 diabetes mellitus, folliculogenesis, androgen secretion, obesity, phenotyping, prenatal androgenization, epigenetics, and complex genetics. Large-scale genome-wide association studies led to the 2014 discovery of an unsuspected steroidogenic regulator DENND1A (differentially expressed in normal and neoplastic development). The splice variant DENND1A.V2 is constitutively overexpressed in PCOS theca cells in long-term culture and accounts for their PCOS-like phenotype. The genetics are complex, however: DENND1A intronic variant copy number is related to phenotype severity, and recent data indicate that rare variants in a DENND1A regulatory network and other genes are related to PCOS. Obesity exacerbates PCOS manifestations via insulin resistance and proinflammatory cytokine excess; excess adipose tissue also forms testosterone. Polycystic ovaries in 40 percent of apparently normal women lie on the PCOS functional spectrum. Much remains to be learned.
Collapse
Affiliation(s)
- Robert L Rosenfield
- Department of Pediatrics and Medicine, The University of Chicago, Chicago, IL 94109, USA
- Department of Pediatrics, The University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
2
|
Chen Y, Wang G, Chen J, Wang C, Dong X, Chang HM, Yuan S, Zhao Y, Mu L. Genetic and Epigenetic Landscape for Drug Development in Polycystic Ovary Syndrome. Endocr Rev 2024; 45:437-459. [PMID: 38298137 DOI: 10.1210/endrev/bnae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/26/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
The treatment of polycystic ovary syndrome (PCOS) faces challenges as all known treatments are merely symptomatic. The US Food and Drug Administration has not approved any drug specifically for treating PCOS. As the significance of genetics and epigenetics rises in drug development, their pivotal insights have greatly enhanced the efficacy and success of drug target discovery and validation, offering promise for guiding the advancement of PCOS treatments. In this context, we outline the genetic and epigenetic advancement in PCOS, which provide novel insights into the pathogenesis of this complex disease. We also delve into the prospective method for harnessing genetic and epigenetic strategies to identify potential drug targets and ensure target safety. Additionally, we shed light on the preliminary evidence and distinctive challenges associated with gene and epigenetic therapies in the context of PCOS.
Collapse
Affiliation(s)
- Yi Chen
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- The First School of Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Guiquan Wang
- Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen 361003, China
- Xiamen Key Laboratory of Reproduction and Genetics, Xiamen University, Xiamen 361023, China
| | - Jingqiao Chen
- The First School of Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Congying Wang
- The Department of Cardiology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang 322000, China
| | - Xi Dong
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung 40400, Taiwan
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm 171 65, Sweden
| | - Yue Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100007, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University, Beijing 100191, China
| | - Liangshan Mu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Govahi Kakhki F, Sargazi S, Montazerifar F, Majidpour M, Karajibani A, Karajibani M, Ghasemi M. IGF2BP2 and IGFBP3 Genotypes, Haplotypes, and Genetic Models Studies in Polycystic Ovary Syndrome. J Clin Lab Anal 2024; 38:e25021. [PMID: 38468402 PMCID: PMC10959184 DOI: 10.1002/jcla.25021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/20/2024] [Accepted: 02/15/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Insulin resistance has been correlated with the genetic diversity within the insulin-like binding proteins genes. Moreover, insulin resistance is one of the key characteristics of the widespread reproductive endocrine condition known as polycystic ovarian syndrome (PCOS). Hence, this study is aimed to determine the association between IGFBP3 and IGF2BP2 gene variants and PCOS risk. METHODS A total of 300 subjects (150 PCOS cases diagnosed based on Rotterdam ESHRE/ASRM consensus criteria and 150 healthy subjects) were recruited in this case-control cross-sectional study. Tetra-primer amplification refractory mutation system polymerase chain reaction (ARMS-PCR) was used for genotyping rs11705701, whereas genotyping of rs1470579 and rs2854744 was done employing PCR-restriction fragment length polymorphism (PCR-RFLP) technique. RESULTS The CC and AA+AC genotypes of rs1470579 conferred an increased risk of PCOS in our population. Regarding the rs2854744, an increased risk of PCOS was observed under the codominant homozygous (TT vs. GG) model by 2.54 fold. The C allele of rs1470579 and T allele of rs2854744 enhanced PCOS risk by 1.97 and 1.46 folds, respectively. Haplotype analysis showed that the Ars1470579Ars11705701 haplotype conferred a decreased risk of PCOS (odds ratio = 0.53, 95% confidence interval = 0.34-0.83, p = 0.006). The AC/GG/GT, AA/GA/GT, AC/GA/GG, and AC/GA/GT genotype combinations of rs1470579/rs11705701/rs2854744 were associated with a decreased risk of the disease. CONCLUSIONS IGF2BP2 rs1470579 and IGFBP3 rs2854744 enhanced PCOS susceptibility in a Southeastern Iranian population. Further investigation involving larger cohorts representing diverse ethnic backgrounds is needed to confirm the current findings.
Collapse
Affiliation(s)
- Fatemeh Govahi Kakhki
- Department of Nutrition, School of MedicineZahedan University of Medical SciencesZahedanIran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious DiseasesZahedan University of Medical SciencesZahedanIran
- Department of Clinical Biochemistry, School of MedicineZahedan University of Medical SciencesZahedanIran
| | - Farzaneh Montazerifar
- Department of Nutrition, School of MedicineZahedan University of Medical SciencesZahedanIran
- Pregnancy Health Research CenterZahedan University of Medical SciencesZahedanIran
| | - Mahdi Majidpour
- Clinical Immunology Research Center, Zahedan University of Medical SciencesZahedanIran
| | - Atena Karajibani
- Department of BiologyUniversity of Sistan and BaluchestanZahedanIran
| | - Mansour Karajibani
- Department of Nutrition, School of MedicineZahedan University of Medical SciencesZahedanIran
- Health Promotion Research CenterZahedan University of Medical SciencesZahedanIran
| | - Marzieh Ghasemi
- Pregnancy Health Research CenterZahedan University of Medical SciencesZahedanIran
- Moloud Infertility Center, Ali Ibn Abitaleb HospitalZahedan University of Medical SciencesZahedanIran
| |
Collapse
|
4
|
Xu Y, Zhou Z, Zhang G, Yang Z, Shi Y, Jiang Z, Liu Y, Chen H, Huang H, Zhang Y, Pan J. Metabolome implies increased fatty acid utilization and histone methylation in the follicles from hyperandrogenic PCOS women. J Nutr Biochem 2024; 125:109548. [PMID: 38104867 DOI: 10.1016/j.jnutbio.2023.109548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Well-balanced metabolism is essential for the high-quality of oocytes, and metabolic fluctuations of follicular microenvironment potentially encourage functional changes in follicle cells, ultimately impacting the developmental potential of oocytes. Here, the global metabolomic profiles of follicular fluid from PCOS women with ovarian hyperandrogenism and nonhyperandrogenism were depicted by untargeted metabolome and transcriptome. In parallel, functional methods were employed to evaluate the possible impact of dysregulated metabolites on oocyte and embryo development. Our findings demonstrated that PCOS women exhibited distinct metabolic features in follicles, such as the increase in fatty acid utilization and the downregulation in amino acid metabolism. And intrafollicular androgen levels were positively correlated with contents of multiple fatty acids, suggesting androgen as one of the contributing factors to the metabolic abnormalities in PCOS follicles. Moreover, we further demonstrated that elevated levels of α-linolenic acid and H3K27me3 could hinder oocyte maturation, fertilization, and early embryo development. Hopefully, our data serve as a broad resource on the metabolic abnormalities of PCOS follicles, and advances in the relevant knowledge will allow the identification of biomarkers that predict the progression of PCOS and its poor pregnancy outcomes.
Collapse
Affiliation(s)
- Yue Xu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
| | - Zhiyang Zhou
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
| | - Gaochen Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
| | - Zuwei Yang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China; The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Shi
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
| | - Zhaoying Jiang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ye Liu
- The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huixi Chen
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China; The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hefeng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China; The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yu Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China.
| | - Jiexue Pan
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China; The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
5
|
Włodarczyk M, Ciebiera M, Nowicka G, Łoziński T, Ali M, Al-Hendy A. Epigallocatechin Gallate for the Treatment of Benign and Malignant Gynecological Diseases-Focus on Epigenetic Mechanisms. Nutrients 2024; 16:559. [PMID: 38398883 PMCID: PMC10893337 DOI: 10.3390/nu16040559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The most common malignant gynecologic diseases are cervical, uterine, ovarian, vaginal, and vulvar cancer. Among them, ovarian cancer causes more deaths than any other cancer of the female reproductive system. A great number of women suffer from endometriosis, uterine fibroids (UFs), adenomyosis, dysmenorrhea, and polycystic ovary syndrome (PCOS), which are widespread benign health problems causing troublesome and painful symptoms and significantly impairing the quality of life of affected women, and they are some of the main causes of infertility. In addition to the available surgical and pharmacological options, the effects of supporting standard treatment with naturally occurring compounds, mainly polyphenols, are being studied. Catechins are responsible for the majority of potential health benefits attributed to green tea consumption. Epigallocatechin gallate (EGCG) is considered a non-toxic, natural compound with potential anticancer properties. Antioxidant action is its most common function, but attention is also drawn to its participation in cell division inhibition, apoptosis stimulation and epigenetic regulation. In this narrative review, we describe the role of EGCG consumption in preventing the development of benign reproductive disorders such as UF, endometriosis, and PCOS, as well as malignant gynecologic conditions. We discuss possible epigenetic mechanisms that may be related to the action of EGCG.
Collapse
Affiliation(s)
- Marta Włodarczyk
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Michał Ciebiera
- Second Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 00-189 Warsaw, Poland;
- Warsaw Institute of Women’s Health, 00-189 Warsaw, Poland
- Development and Research Center of Non-Invasive Therapies, Pro-Familia Hospital, 35-302 Rzeszów, Poland
| | - Grażyna Nowicka
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Tomasz Łoziński
- Department of Obstetrics and Gynecology, Pro-Familia Hospital, 35-302 Rzeszow, Poland;
- Department of Gynecology and Obstetrics, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (M.A.); (A.A.-H.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (M.A.); (A.A.-H.)
| |
Collapse
|
6
|
Miranda AG, Seneda MM, Faustino LR. DNA methylation associated with polycystic ovary syndrome: a systematic review. Arch Gynecol Obstet 2024; 309:373-383. [PMID: 37119419 DOI: 10.1007/s00404-023-07025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 03/08/2023] [Indexed: 05/01/2023]
Abstract
PURPOSE Polycystic ovary syndrome (PCOS) is an endocrine metabolic disease that affects women of reproductive age and is one of the main causes of anovulatory infertility. However, the cause of PCOS is yet fully understood, and genetic factors play an important role in its etiology. In this study, we reviewed the main genes involved in the etiology of PCOS and the influence of DNA methylation, aiming to answer the study´s guiding question: 'What is the influence of DNA methylation on the main genes involved in PCOS?'. METHODS We used the MEDLINE database, and inclusion criteria (primary and original articles, written in English, found through our entry terms) and exclusion criteria (literature reviews and articles that used animals to perform the experiments and that focused in other epigenetics mechanism without being DNA methylation) were applied. RESULTS Twenty-three scientific articles, from a total of 43 articles read in full, were chosen for this study. Eighteen studies confirmed DNA methylation associated with PCOS. CONCLUSION The most relevant genes related to PCOS were INSR, LHCGR, and RAB5B, which may be epigenetically altered in DNA, with the first two genes hypomethylated and the last hypermethylated. The epigenetic changes presented in the genes related to PCOS or their promoters were only at the CpG sites.
Collapse
Affiliation(s)
- Arícia Gomes Miranda
- Curso de Medicina, Campus Ministro Reis Velloso, Universidade Federal do Delta do Parnaíba (UFDPar), Parnaíba, Piauí, Brazil
| | - Marcelo Marcondes Seneda
- Laboratório de Reprodução Animal, Centro de Ciências Agrárias, Universidade Estadual de Londrina (UEL), Londrina, Paraná, Brazil
| | - Luciana Rocha Faustino
- Curso de Medicina, Campus Ministro Reis Velloso, Universidade Federal do Delta do Parnaíba (UFDPar), Parnaíba, Piauí, Brazil.
| |
Collapse
|
7
|
Shafiei G, Saheli M, Ganjalikhan-Hakemi S, Haghpanah T, Nematollahi-Mahani SN. Administration of adipose-derived mesenchymal stem cell conditioned medium improves ovarian function in polycystic ovary syndrome rats: involvement of epigenetic modifiers system. J Ovarian Res 2023; 16:238. [PMID: 38102694 PMCID: PMC10722730 DOI: 10.1186/s13048-023-01317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a widespread heterogeneous disease that is in association with genetic, epigenetic, endocrine and environmental factors. Adipose-derived mesenchymal stem cell (ASC) and ASC-conditioned medium (ASC-CM) have shown promising abilities in tissue regeneration. In the present study, we aimed to investigate the effects of ASC and ASC-CM on epigenetic regulators, steroidal function and folliculogenesis in the letrozole-induced PCOS rats. RESULTS Based on the measurement of the oral glucose tolerance test and physical parameters including body weight, estrus cycle pattern as well as ovary dimensions, PCOS-induced rats in sham and control (CTRL) groups showed signs of reproductive dysfunctions such as lack of regular estrus cyclicity, metabolic disorders such as increased ovary dimension, body weight and blood glucose level alteration which were improved especially by ASC-CM administration.
Collapse
Affiliation(s)
- Golnaz Shafiei
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mona Saheli
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sepideh Ganjalikhan-Hakemi
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Haghpanah
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Seyed Noureddin Nematollahi-Mahani
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
8
|
Gurule S, Sustaita-Monroe J, Padmanabhan V, Cardoso R. Developmental programming of the neuroendocrine axis by steroid hormones: Insights from the sheep model of PCOS. Front Endocrinol (Lausanne) 2023; 14:1096187. [PMID: 36755919 PMCID: PMC9899912 DOI: 10.3389/fendo.2023.1096187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/06/2023] [Indexed: 01/25/2023] Open
Abstract
The reproductive neuroendocrine system is a key target for the developmental programming effects of steroid hormones during early life. While gonadal steroids play an important role in controlling the physiological development of the neuroendocrine axis, human fetuses are susceptible to adverse programming due to exposure to endocrine disrupting chemicals with steroidal activity, inadvertent use of contraceptive pills during pregnancy, as well as from disease states that result in abnormal steroid production. Animal models provide an unparalleled resource to understand the effects of steroid hormones on the development of the neuroendocrine axis and their role on the developmental origins of health and disease. In female sheep, exposure to testosterone (T) excess during fetal development results in an array of reproductive disorders that recapitulate those seen in women with polycystic ovary syndrome (PCOS), including disrupted neuroendocrine feedback mechanisms, increased pituitary responsiveness to gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH) hypersecretion, functional hyperandrogenism, multifollicular ovarian morphology, and premature reproductive failure. Similar to a large proportion of women with PCOS, these prenatally T-treated sheep also manifest insulin resistance and cardiovascular alterations, including hypertension. This review article focuses on the effects of prenatal androgens on the developmental programming of hypothalamic and pituitary alterations in the sheep model of PCOS phenotype, centering specifically on key neurons, neuropeptides, and regulatory pathways controlling GnRH and LH secretion. Insights obtained from the sheep model as well as other animal models of perinatal androgen excess can have important translational relevance to treat and prevent neuroendocrine dysfunction in women with PCOS and other fertility disorders.
Collapse
Affiliation(s)
- Sara Gurule
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | | | | | - Rodolfo Cardoso
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| |
Collapse
|
9
|
Rani S, Chandna P. Multiomics Analysis-Based Biomarkers in Diagnosis of Polycystic Ovary Syndrome. Reprod Sci 2023; 30:1-27. [PMID: 35084716 PMCID: PMC10010205 DOI: 10.1007/s43032-022-00863-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 01/20/2022] [Indexed: 01/06/2023]
Abstract
Polycystic ovarian syndrome is an utmost communal endocrine, psychological, reproductive, and metabolic disorder that occurs in women of reproductive age with extensive range of clinical manifestations. This may even lead to long-term multiple morbidities including obesity, diabetes mellitus, insulin resistance, cardiovascular disease, infertility, cerebrovascular diseases, and ovarian and endometrial cancer. Women affliction from PCOS in midst assemblage of manifestations allied with menstrual dysfunction and androgen exorbitance, which considerably affects eminence of life. PCOS is recognized as a multifactorial disorder and systemic syndrome in first-degree family members; therefore, the etiology of PCOS syndrome has not been copiously interpreted. The disorder of PCOS comprehends numerous allied health conditions and has influenced various metabolic processes. Due to multifaceted pathophysiology engaging several pathways and proteins, single genetic diagnostic tests cannot be supportive to determine in straight way. Clarification of cellular and biochemical pathways and various genetic players underlying PCOS could upsurge our consideration of pathophysiology of this syndrome. It is requisite to know pathophysiological relationship between biomarker and their reflection towards PCOS disease. Biomarkers deliver vibrantly and potent ways to apprehend the spectrum of PCOS with applications in screening, diagnosis, characterization, and monitoring. This paper relies on the endeavor to point out many candidates as potential biomarkers based on omics technologies, thus highlighting correlation between PCOS disease with innovative technologies. Therefore, the objective of existing review is to encapsulate more findings towards cutting-edge advances in prospective use of biomarkers for PCOS disease. Discussed biomarkers may be fruitful in guiding therapies, addressing disease risk, and predicting clinical outcomes in future.
Collapse
Affiliation(s)
- Shikha Rani
- Department of Biophysics, University of Delhi, South Campus, Benito Juarez Road, New Delhi , 110021, India.
| | - Piyush Chandna
- Natdynamics Biosciences Confederation, Gurgaon, Haryana, 122001, India
| |
Collapse
|
10
|
Szukiewicz D, Trojanowski S, Kociszewska A, Szewczyk G. Modulation of the Inflammatory Response in Polycystic Ovary Syndrome (PCOS)-Searching for Epigenetic Factors. Int J Mol Sci 2022; 23:ijms232314663. [PMID: 36498989 PMCID: PMC9736994 DOI: 10.3390/ijms232314663] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women of reproductive age. Despite its incidence, the syndrome is poorly understood and remains underdiagnosed, and female patients are diagnosed with a delay. The heterogenous nature of this complex disorder results from the combined occurrence of genetic, environmental, endocrine, and behavioral factors. Primary clinical manifestations of PCOS are derived from the excess of androgens (anovulation, polycystic ovary morphology, lack of or scanty, irregular menstrual periods, acne and hirsutism), whereas the secondary manifestations include multiple metabolic, cardiovascular, and psychological disorders. Dietary and lifestyle factors play important roles in the development and course of PCOS, which suggests strong epigenetic and environmental influences. Many studies have shown a strong association between PCOS and chronic, low-grade inflammation both in the ovarian tissue and throughout the body. In the vast majority of PCOS patients, elevated values of inflammatory markers or their gene markers have been reported. Development of the vicious cycle of the chronic inflammatory state in PCOS is additionally stimulated by hyperinsulinemia and obesity. Changes in DNA methylation, histone acetylation and noncoding RNA levels are presented in this review in the context of oxidative stress, reactive oxygen species, and inflammatory signaling in PCOS. Epigenetic modulation of androgenic activity in response to inflammatory signaling is also discussed.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
- Correspondence:
| | - Seweryn Trojanowski
- Chair and Department of Obstetrics, Gynecology and Gynecological Oncology, Medical University of Warsaw, 03-242 Warsaw, Poland
| | - Anna Kociszewska
- Chair and Department of Obstetrics, Gynecology and Gynecological Oncology, Medical University of Warsaw, 03-242 Warsaw, Poland
| | - Grzegorz Szewczyk
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
11
|
Lunddorf LLH, Arendt LH, Ernst A, Brix N, Knudsen UB, Olsen J, Ramlau-Hansen CH. Maternal polycystic ovarian syndrome and pubertal development in daughters and sons: a population-based cohort study. Hum Reprod 2022; 37:2623-2634. [PMID: 36099165 DOI: 10.1093/humrep/deac197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/09/2022] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION Does maternal polycystic ovarian syndrome (PCOS) affect the timing of pubertal development in daughters and sons? SUMMARY ANSWER Maternal PCOS was associated with earlier adrenarche in daughters. WHAT IS KNOWN ALREADY Female adolescents with PCOS often experience earlier adrenarche compared to adolescents without PCOS, due to hyperandrogenism. Likewise, they usually have hyperandrogenism during pregnancy, which might potentially affect the development of the foetus, including its future reproductive health. STUDY DESIGN, SIZE, DURATION In this population-based cohort study, we included 15 596 mothers-child pairs from the Danish National Birth Cohort (DNBC) Puberty Cohort, who were followed from foetal life until full sexual maturation or 18 years of age. PARTICIPANTS/MATERIALS, SETTING, METHODS Using register-based and self-reported information on maternal PCOS and menstrual irregularities, collected during pregnancy, we categorized the mothers as having PCOS (n = 251), oligomenorhoea (n = 134), 'other menstrual irregularities' (n = 2411) or no menstrual abnormalities (reference group, n = 12 800). The children provided self-reported information on pubertal development every 6 months from the age of 11 years. The main outcome measures were adjusted mean age differences (in months) at attaining several individual pubertal milestones using an interval-censored regression model, as well as the average difference in age at attaining all pubertal milestones combined into a single estimate using Huber-White robust variance estimation. MAIN RESULTS AND THE ROLE OF CHANCE We found that maternal PCOS was associated with an accelerated pubertal development in daughters with an overall average difference of -3.3 (95% CI: -6.3; -0.4) months based on all pubertal milestones compared to the reference group. When further looking into the average difference for adrenarche only (pubarche, axillary hair and acne), the average difference was -5.4 (95% CI: -8.7; -2.1) months compared to the reference group; whereas thelarche and menarche did not occur earlier in daughters of mothers with PCOS (average difference: -0.8 (95% CI: -3.9; 2.4) months). Oligomenorrhoea and 'other menstrual irregularities' were not associated with pubertal development in daughters. Neither PCOS, oligomenorrhoea nor 'other menstrual irregularities' were associated with pubertal development in sons. LIMITATIONS, REASONS FOR CAUTION We expect some degree of non-differential misclassification of maternal PCOS and menstrual irregularities as well as pubertal development in the children. WIDER IMPLICATIONS OF THE FINDINGS Maternal PCOS might accelerate adrenarche in daughters. Whether this is due to genetics, epigenetics or prenatal programming by hyperandrogenism in foetal life remains unsolved. The results from the present study can be generalized to Caucasian populations. STUDY FUNDING/COMPETING INTEREST(S) The study is funded by the Faculty of Health at Aarhus University. The authors have no financial relationships or competing interests to disclose. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
| | - Linn Håkonsen Arendt
- Department of Public Health, Research Unit for Epidemiology, Aarhus University, Aarhus C, Denmark.,Department of Obstetrics and Gynaecology, Horsens Regional Hospital, Horsens, Denmark
| | - Andreas Ernst
- Department of Public Health, Research Unit for Epidemiology, Aarhus University, Aarhus C, Denmark.,Department of Urology, Aarhus University Hospital, Aarhus N, Denmark
| | - Nis Brix
- Department of Public Health, Research Unit for Epidemiology, Aarhus University, Aarhus C, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Aarhus N, Denmark
| | - Ulla Brent Knudsen
- Department of Obstetrics and Gynaecology, Horsens Regional Hospital, Horsens, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Jørn Olsen
- Department of Public Health, Research Unit for Epidemiology, Aarhus University, Aarhus C, Denmark.,Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus N, Denmark
| | | |
Collapse
|
12
|
MIR146A and ADIPOQ genetic variants are associated with birth weight in relation to gestational age: a cohort study. J Assist Reprod Genet 2022; 39:1873-1886. [PMID: 35689735 PMCID: PMC9428086 DOI: 10.1007/s10815-022-02532-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/01/2022] [Indexed: 01/19/2023] Open
Abstract
PURPOSE To evaluate the genetic variants related to polycystic ovary syndrome (PCOS) and its metabolic complications in girls born small for gestational age (SGA). DESIGN Retrospective birth cohort study. MATERIALS AND METHODS We evaluated 66 women of reproductive age born at term (37-42 weeks of gestational age) according to the birth weight in relation to gestational age: 26 SGA and 40 AGA (Adequate for gestational age). Anthropometric and biochemical characteristics were measured, as well as the PCOS prevalence. We analyzed 48 single nucleotide polymorphisms (SNPs) previously associated with PCOS and its comorbidities using TaqMan Low-Density Array (TLDA). miRNet and STRING databases were used to predict target and disease networks. RESULTS Anthropometric and biochemical characteristics did not differ between the SGA and AGA groups, as well as insulin resistance and PCOS prevalence. Two SNPs were not in Hardy-Weinberg equilibrium, the rs2910164 (MIR146A C > G) and rs182052 (ADIPOQ G > A). The rs2910164 minor allele frequency (MAF) was increased in SGA (OR, 2.77; 95%; CI, 1.22-6.29), while the rs182052 was increased AGA (OR, 0.34; 95%; CI, 0.13 - 0.88). The alleles related to reduced miRNA-146a (C) and ADIPOQ (A) activity showed increased frequency in SGA. The mature miR-146a targets 319 genes, been the CXCR4, TMEM167A and IF144L common targets and contributes to PCOS. The ADIPOQ main protein interactions were ERP44, PPARGCIA and CDH13. CONCLUSIONS The miR-146a (rs2910164) and ADIPOQ (rs182052) allelic variants are related to birth weight in SGA and may predict health-related outcomes, such as PCOS and obesity risk.
Collapse
|
13
|
Rawat K, Sandhu A, Gautam V, Saha PK, Saha L. Role of genomic DNA methylation in PCOS pathogenesis: a systematic review and meta-analysis involving case controlled clinical studies. Mol Hum Reprod 2022; 28:6631266. [PMID: 35789386 DOI: 10.1093/molehr/gaac024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
PCOS is often associated with aberrant DNA methylation. Despite the advances in diagnostics and treatment of PCOS, the pathophysiological mechanism remain unknown. Several genes are epigenetically dysregulated in PCOS and associated with pathological consequences of PCOS and metabolic comorbidities, however the methylation status of specific genes and to what extent the genes are deregulated in terms of methylation pattern are unknown. This review aimed to analyse the existing data for specific genes and find conclusive evidence of their involvement in PCOS and associated risks. A comprehensive literature search was conducted in five electronic databases. The case-controlled clinical studies using both PCOS and healthy women and evaluating the methylation pattern without any treatment or intervention were included in the study. A random-effect model was used to extract the data for meta-analysis, and outcomes were expressed as standardized mean difference with a 95% CI. From 541 screened records, 41 studies were included in the review and 21 of them were used for meta-analysis of 20 genes. Meta-analysis revealed a significant global DNA hypomethylation in different tissues and peripheral blood of patients with PCOS compared to healthy controls. Specific gene methylation assessment revealed that genes associated with several functions were significantly hypomethylated and hypermethylated in patients with PCOS. This review provides conclusive evidence of epigenetic deregulation of specific genes in PCOS. These genes can potentially be used to develop diagnostic biomarkers or as targets for personalised therapy.
Collapse
Affiliation(s)
- Kajal Rawat
- Department of Pharmacology Post Graduate Institute of Medical Education & Research (PGIMER), 4th Floor, Research Block B, Chandigarh, India- 160012
| | - Arushi Sandhu
- Department of Pharmacology Post Graduate Institute of Medical Education & Research (PGIMER), 4th Floor, Research Block B, Chandigarh, India- 160012
| | - Vipasha Gautam
- Department of Pharmacology Post Graduate Institute of Medical Education & Research (PGIMER), 4th Floor, Research Block B, Chandigarh, India- 160012
| | - Pradip Kumar Saha
- Department of Obstetrics and Gynecology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India- 160012
| | - Lekha Saha
- Department of Pharmacology Post Graduate Institute of Medical Education & Research (PGIMER), 4th Floor, Research Block B, Chandigarh, India- 160012
| |
Collapse
|
14
|
Sagvekar P, Shinde G, Mangoli V, Desai SK, Mukherjee S. Evidence for TET-mediated DNA demethylation as an epigenetic alteration in cumulus granulosa cells of women with polycystic ovary syndrome. Mol Hum Reprod 2022; 28:6595033. [PMID: 35640568 DOI: 10.1093/molehr/gaac019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/09/2022] [Indexed: 11/13/2022] Open
Abstract
Peripheral and tissue-specific alterations in global DNA methylation (5mC) and hydroxymethylation (5hmC) profiles have been charted as biomarkers for disease prediction and as hallmarks of dysregulated localized gene networks. Global and gene-specific epigenetic alterations in the 5mC profiles have shown widespread implications in etiology of polycystic ovary syndrome (PCOS). However, there has been no study in PCOS that integrates the quantification of 5mC and 5hmC signatures alongside the expression levels of DNA methylating and demethylating enzymes as respective indicators of methylation and demethylation pathways. Having previously shown that the 5mC signatures are not greatly altered in PCOS, we assessed the global 5hmC levels in peripheral blood leukocytes (PBLs) and cumulus granulosa cells (CGCs) of 40 controls and 40 women with PCOS. This analysis revealed higher 5hmC levels in CGCs of PCOS women, indicating a more dominant demethylation pathway. Further, we assessed the transcript and protein expression levels of DNA demethylating and methylating enzymes, i.e. ten-eleven translocation methylcytosine dioxygenases (TET1, TET2, TET3) and DNA methyltransferases (DNMT1, DNMT3A and DNMT3B), respectively, in CGCs. The relative transcript and protein expression levels of all three TETs were found to be higher in women with PCOS; and the TET mRNA expression profiles were positively correlated with 5hmC levels in CGCs. Also, all three DNMT genes showed altered transcript expression in PCOS, although only the downregulated DNMT3A transcript was correlated with decreasing 5mC levels. At the protein level, the expression of DNMT1 (maintenance methylation enzyme) was higher, while that of DNMT3A (denovo methylation enzyme) was found to be lower in PCOS compared to controls. Overall, these results indicate that DNA methylation changes in CGCs of PCOS women may arise partly due to intrinsic alterations in the transcriptional regulation of TETs and DNMT3A.
Collapse
Affiliation(s)
- Pooja Sagvekar
- Department of Molecular Endocrinology, National Institute for Research in Reproductive Health (ICMR-NIRRH), J.M. Street, Parel, Mumbai, 400012, India
| | - Gayatri Shinde
- Department of Molecular Endocrinology, National Institute for Research in Reproductive Health (ICMR-NIRRH), J.M. Street, Parel, Mumbai, 400012, India
| | - Vijay Mangoli
- Fertility Clinic and IVF Center, 12-Springfield, 19-Vachha Gandhi Road, Gamdevi, Mumbai-, 400007, Maharashtra, India
| | - Sadhana K Desai
- Fertility Clinic and IVF Center, 12-Springfield, 19-Vachha Gandhi Road, Gamdevi, Mumbai-, 400007, Maharashtra, India
| | - Srabani Mukherjee
- Department of Molecular Endocrinology, National Institute for Research in Reproductive Health (ICMR-NIRRH), J.M. Street, Parel, Mumbai, 400012, India
| |
Collapse
|
15
|
The process of ovarian aging: it is not just about oocytes and granulosa cells. J Assist Reprod Genet 2022; 39:783-792. [PMID: 35352316 PMCID: PMC9051003 DOI: 10.1007/s10815-022-02478-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ovarian age is classically considered the main cause of female reproductive infertility. In women, the process proceeds as an ongoing decline in the primordial follicle stockpile and it is associated with reduced fertility in the mid-thirties, irregular menstruation from the mid-forties, cessation of fertility, and, eventually, menopause in the early fifties. Reproductive aging is historically associated with changes in oocyte quantity and quality. However, besides the oocyte, other cellular as well as environmental factors have been the focus of more recent investigations suggesting that ovarian decay is a complex and multifaceted process. Among these factors, we will consider mitochondria and oxidative stress as related to nutrition, changes in extracellular matrix molecules, and the associated ovarian stromal compartment where immune cells of both the native and adaptive systems seem to play an important role. Understanding such processes is crucial to design treatment strategies to slow down ovarian aging and consequently prolong reproductive lifespan and, more to this, alleviaingt side effects of menopause on the musculoskeletal, cardiovascular, and nervous systems.
Collapse
|
16
|
Divoux A, Erdos E, Whytock K, Osborne TF, Smith SR. Transcriptional and DNA Methylation Signatures of Subcutaneous Adipose Tissue and Adipose-Derived Stem Cells in PCOS Women. Cells 2022; 11:cells11050848. [PMID: 35269469 PMCID: PMC8909136 DOI: 10.3390/cells11050848] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is often associated with metabolic syndrome features, including central obesity, suggesting that adipose tissue (AT) is a key organ in PCOS pathobiology. In this study, we compared both abdominal (ABD) and gluteofemoral (GF) subcutaneous AT in women with and without PCOS. ABD and GF subcutaneous ATs from PCOS and BMI/WHR-matched control women were analyzed by RT-qPCR, FACS and histology. ABD and GF adipose-derived stem cell (ASC) transcriptome and methylome were analyzed by RNA-seq and DNA methylation array. Similar to the control group with abdominal obesity, the GF AT of PCOS women showed lower expression of genes involved in lipid accumulation and angiogenesis compared to ABD depot. FACS analysis revealed an increase in preadipocytes number in both AT depots from PCOS. Further pathway analysis of RNA-seq comparisons demonstrated that the ASCs derived from PCOS are pro-inflammatory and exhibit a hypoxic signature in the ABD depot and have lower expression of adipogenic genes in GF depot. We also found a higher CpG methylation level in PCOS compared to control exclusively in GF-ASCs. Our data suggest that ASCs play an important role in the etiology of PCOS, potentially by limiting expansion of the healthy lower-body AT.
Collapse
Affiliation(s)
- Adeline Divoux
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA; (K.W.); (S.R.S.)
- Correspondence: ; Tel.: +1-(407)-303-7100 (ext. 1101628)
| | - Edina Erdos
- Departments of Medicine and Biological Chemistry, Division of Diabetes Endocrinology and Metabolism, Institute for Fundamental Biomedical Research, Pediatrics Johns Hopkins University School of Medicine, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA; (E.E.); (T.F.O.)
| | - Katie Whytock
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA; (K.W.); (S.R.S.)
| | - Timothy F. Osborne
- Departments of Medicine and Biological Chemistry, Division of Diabetes Endocrinology and Metabolism, Institute for Fundamental Biomedical Research, Pediatrics Johns Hopkins University School of Medicine, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA; (E.E.); (T.F.O.)
| | - Steven R. Smith
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA; (K.W.); (S.R.S.)
| |
Collapse
|
17
|
Yao X, Li F, Wei Z, EI-Samahy MA, Feng X, Yang F, Wang F. Integrative Genome-Wide DNA Methylome and Transcriptome Analysis of Ovaries from Hu Sheep with High and Low Prolific. Front Cell Dev Biol 2022; 10:820558. [PMID: 35186931 PMCID: PMC8850840 DOI: 10.3389/fcell.2022.820558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/14/2022] [Indexed: 12/20/2022] Open
Abstract
DNA methylation plays an important role in biological processes by affecting gene expression. However, how DNA methylation regulates phenotypic variation in Hu sheep remains unclear. Therefore, we generated genome-wide DNA methylation and transcriptomic profiles in the ovaries of Hu sheep with different prolificacies and genotypes (FecBB and FecB+). Results showed that ovary DNA methylome and transcriptome were significantly different between high prolificacy and low prolificacy Hu sheep. Comparative methylome analyses identified 10,644, 9,594, and 12,214 differentially methylated regions and 87, 1,121, and 2,375 genes, respectively, showing differential expression levels in three different comparison groups. Female reproduction-associated differentially methylated regions-related genes and differentially expressed genes were enriched, thereby the respective interaction networks were constructed. Furthermore, systematical integrative analyses revealed a negative correlation between DNA methylation around the transcriptional start site and gene expression levels, which was confirmed by testing the expression of integrin β2 subunit (ITGB2) and lysosome-associated protein transmembrane-4 beta (LAPTM4B) in vivo and in vitro. These findings demonstrated that DNA methylation influences the propensity for prolificacy by affecting gene expression in the ovaries, which may contribute to a greater understanding of the epigenome and transcriptome that will be useful for animal breeding.
Collapse
Affiliation(s)
- Xiaolei Yao
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, China
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Fengzhe Li
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, China
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Zongyou Wei
- Taicang Agricultural and Rural Science and Technology Service Center, and Graduate Workstation, Taicang, China
| | - M. A. EI-Samahy
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, China
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
- Animal Production Research Institute, ARC, Ministry of Agriculture, Giza, Egypt
| | - Xu Feng
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, China
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Fan Yang
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, China
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Feng Wang
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, China
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Feng Wang,
| |
Collapse
|
18
|
Stener-Victorin E, Deng Q. Epigenetic inheritance of polycystic ovary syndrome - challenges and opportunities for treatment. Nat Rev Endocrinol 2021; 17:521-533. [PMID: 34234312 DOI: 10.1038/s41574-021-00517-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the main cause of female infertility worldwide and is associated with a substantially increased lifetime risk of comorbidities, including type 2 diabetes mellitus, psychiatric disorders and gynaecological cancers. Despite its high prevalence (~15%) and substantial economic burden, the aetiology of PCOS remains elusive. The genetic loci linked to PCOS so far account for only ~10% of its heritability, which is estimated at 70%. However, growing evidence suggests that altered epigenetic and developmental programming resulting from hormonal dysregulation of the maternal uterine environment contributes to the pathogenesis of PCOS. Male as well as female relatives of women with PCOS are also at an increased risk of developing PCOS-associated reproductive and metabolic disorders. Although PCOS phenotypes are highly heterogenous, hyperandrogenism is thought to be the principal driver of this condition. Current treatments for PCOS are suboptimal as they can only alleviate some of the symptoms; preventative and targeted treatments are sorely needed. This Review presents an overview of the current understanding of the aetiology of PCOS and focuses on the developmental origin and epigenetic inheritance of this syndrome.
Collapse
Affiliation(s)
| | - Qiaolin Deng
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
19
|
Xie L, Jiang X, Chen Y, Huang C, Chen Y, Liu G, Sun W, Zeng L, Lu R. 3 CpG methylation biomarkers for the diagnosis of polycystic ovary syndrome (PCOS) in blood. Comb Chem High Throughput Screen 2021; 25:1304-1313. [PMID: 34080962 DOI: 10.2174/1386207321666210602170054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a common endocrine disease in women that seriously interferes with the patient's metabolic and reproductive functions. The current diagnostic criteria for PCOS are expert-based and still disputed. Previous studies have identified changes in DNA methylation in peripheral blood of women with PCOS, but their diagnostic potential for PCOS remains to be studied. OBJECTIVE The present study aimed to identify potential methylation biomarkers for the diagnosis of PCOS in blood. METHODS Methylation profiles of peripheral blood were downloaded from a public database, Gene Expression Omnibus (GEO), of 30 PCOS patients (diagnosed with the revised 2003 Rotterdam consensus criteria), and 30 age-matched healthy women were recruited from the Centre of Reproductive Medicine, Linyi People's Hospital, Shandong, China. Weighted gene co-expression network analysis (WGCNA) was utilized to identify PCOS-related co-methylation CpG sites (co-MPs). Functional enrichment analysis was performed on the localized genes of PCOS-related co-MPs. The least absolute shrinkage and selection operator (LASSO) regression was used to screen CpG methylation signatures for PCOS diagnosis and receiver operating characteristic (ROC) analysis was conducted to evaluate their diagnostic accuracy, respectively. To assess the accuracy of the combination of the investigated indicators, multivariate ROC analysis was performed on the predicted probability values obtained using binary logistic regression on the methylation levels of selected CpGs together. RESULTS Seven co-methylation modules were obtained, most relevant to PCOS of which was the turquoise module, containing 194 co-MPs. The genes that these co-MPs located in were mainly associated with the immune-related pathway. According to LASSO regression, three Co-MPs (cg23464743, cg06834912, cg00103771) were identified as potential diagnostic biomarkers of PCOS. ROC analysis showed an AUC (area under the curve) of 0.7556 (sensitivity 60.0%, specificity 83.3%) for cg23464743, 0.7822 (sensitivity 70.0%, specificity 80.0%) for cg06834912, and 0.7611 (sensitivity 63.3%, specificity 83.3%) for cg00103771. The diagnostic accuracy of the combination of these 3 indicators presented to be higher than any single one of them, with an AUC of 0.8378 (sensitivity 73.3%, specificity 93.3%). CONCLUSION The combination of 3 CpG methylation signatures in blood was identified with a good diagnostic accuracy for PCOS, which may bring new insight into the development of PCOS diagnostic markers in the future.
Collapse
Affiliation(s)
- Linling Xie
- Guangzhou University of Chinese Medicine, Guangzhou 515000, China
| | - Xiaotao Jiang
- Guangzhou University of Chinese Medicine, Guangzhou 515000, China
| | - Yi Chen
- Guangzhou University of Chinese Medicine, Guangzhou 515000, China
| | - Cihui Huang
- Guangzhou University of Chinese Medicine, Guangzhou 515000, China
| | - Yanfen Chen
- Guangzhou University of Chinese Medicine, Guangzhou 515000, China
| | - Guantong Liu
- Guangzhou University of Chinese Medicine, Guangzhou 515000, China
| | - Wenxi Sun
- Guangzhou University of Chinese Medicine, Guangzhou 515000, China
| | - Lei Zeng
- Guangzhou University of Chinese Medicine, Guangzhou 515000, China
| | - Ruling Lu
- Guangzhou University of Chinese Medicine, Guangzhou 515000, China
| |
Collapse
|
20
|
Cao P, Yang W, Wang P, Li X, Nashun B. Characterization of DNA Methylation and Screening of Epigenetic Markers in Polycystic Ovary Syndrome. Front Cell Dev Biol 2021; 9:664843. [PMID: 34113617 PMCID: PMC8186667 DOI: 10.3389/fcell.2021.664843] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine and metabolic disorder in women, which is characterized by androgen excess, ovulation dysfunction, and polycystic ovary. Although the etiology of PCOS is largely unknown, many studies suggest that aberrant DNA methylation is an important contributing factor for its pathological changes. In this study, we investigated DNA methylation characteristics and their impact on gene expression in granulosa cells obtained from PCOS patients. Transcriptome analysis found that differentially expressed genes were mainly enriched in pathways of insulin resistance, fat cell differentiation, and steroid metabolism in PCOS. Overall DNA methylation level in granulosa cells was reduced in PCOS, and the first introns were found to be the major genomic regions that were hypomethylated in PCOS. Integrated analysis of transcriptome, DNA methylation, and miRNAs in ovarian granulosa cells revealed a DNA methylation and miRNA coregulated network and identified key candidate genes for pathogenesis of PCOS, including BMP4, ETS1, and IRS1. Our study shed more light on epigenetic mechanism of PCOS and provided valuable reference for its diagnosis and treatment.
Collapse
Affiliation(s)
- Pengbo Cao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Wanting Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Peijun Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xihe Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.,Research Center for Animal Genetic Resources of Mongolia Plateau, School of Life Sciences, Inner Mongolia University, Hohhot, China.,Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animals, Hohhot, China
| | - Buhe Nashun
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
21
|
Zhao R, Jiang Y, Zhao S, Zhao H. Multiomics Analysis Reveals Molecular Abnormalities in Granulosa Cells of Women With Polycystic Ovary Syndrome. Front Genet 2021; 12:648701. [PMID: 34084179 PMCID: PMC8168535 DOI: 10.3389/fgene.2021.648701] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/06/2021] [Indexed: 01/15/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common complex endocrine and metabolic disease in women of reproductive age. It is characterized by anovulatory infertility, hormone disorders, and polycystic ovarian morphology. Regarding the importance of granulosa cells (GCs) in the pathogenesis of PCOS, few studies have investigated the etiology at a single “omics” level, such as with an mRNA expression array or methylation profiling assay, but this can provide only limited insights into the biological mechanisms. Here, genome-wide DNA methylation together with lncRNA-miRNA-mRNA profiles were simultaneously detected in GCs of PCOS cases and controls. A total of 3579 lncRNAs, 49 miRNAs, 669 mRNAs, and 890 differentially methylated regions (DMR)-associated genes were differentially expressed between PCOS cases and controls. Pathway analysis indicated that these differentially expressed genes were commonly associated with steroid biosynthesis and metabolism-related signaling, such as glycolysis/gluconeogenesis. In addition, we constructed ceRNA networks and identified some known ceRNA axes, such as lncRNAs-miR-628-5p-CYP11A1/HSD17B7. We also identified many new ceRNA axes, such as lncRNAs-miR-483-5p-GOT2. Interestingly, most ceRNA axes were also closely related to steroid biosynthesis and metabolic pathways. These findings suggest that it is important to systematically consider the role of reproductive and metabolic genes in the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Rusong Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
| | - Yonghui Jiang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
| | - Shigang Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
| | - Han Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
| |
Collapse
|
22
|
Eiras MC, Pinheiro DP, Romcy KAM, Ferriani RA, Reis RMD, Furtado CLM. Polycystic Ovary Syndrome: the Epigenetics Behind the Disease. Reprod Sci 2021; 29:680-694. [PMID: 33826098 DOI: 10.1007/s43032-021-00516-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/21/2021] [Indexed: 10/21/2022]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders, affecting approximately 5-20% of women of reproductive age. PCOS is a multifactorial, complex, and heterogeneous disease, characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovaries, which may lead to impaired fertility. Besides the reproductive outcomes, multiple comorbidities, such as metabolic disturbances, insulin resistance, obesity, diabetes, and cardiovascular disease, are associated with PCOS. In addition to the clear genetic basis, epigenetic alterations may also play a central role in PCOS outcomes, as environmental and hormonal alterations directly affect clinical manifestations and PCOS development. Here, we highlighted the epigenetic modifications in the multiplicity of clinical manifestations, as well as environmental epigenetic disruptors, as intrauterine hormonal and metabolic alterations affecting embryo development and the adulthood lifestyle, which may contribute to PCOS development. Additionally, we also discussed the new approaches for future studies and potential epigenetic biomarkers for the treatment of associated comorbidities and improvement in quality of life of women with PCOS.
Collapse
Affiliation(s)
- Matheus Credendio Eiras
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Av Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, SP, Brazil
| | - Daniel Pascoalino Pinheiro
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceara, Coronel Nunes de Melo, 1000, Rodolfo Teófilo, Fortaleza, 60430-275, CE, Brazil
| | - Kalil Andrade Mubarac Romcy
- Drug Research and Development Center, Postgraduate Program in Medical and Surgical Sciences, Federal University of Ceara, Coronel Nunes de Melo, 1000, Rodolfo Teófilo, Fortaleza, CE, 60430-275, Brazil
| | - Rui Alberto Ferriani
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Av Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, SP, Brazil
| | - Rosana Maria Dos Reis
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Av Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, SP, Brazil.
| | - Cristiana Libardi Miranda Furtado
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Av Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, SP, Brazil. .,Drug Research and Development Center, Postgraduate Program in Medical and Surgical Sciences, Federal University of Ceara, Coronel Nunes de Melo, 1000, Rodolfo Teófilo, Fortaleza, CE, 60430-275, Brazil.
| |
Collapse
|
23
|
Qin Y, Li T, Zhao H, Mao Z, Ding C, Kang Y. Integrated Transcriptomic and Epigenetic Study of PCOS: Impact of Map3k1 and Map1lc3a Promoter Methylation on Autophagy. Front Genet 2021; 12:620241. [PMID: 33763111 PMCID: PMC7982605 DOI: 10.3389/fgene.2021.620241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent heterogeneous endocrine and metabolic disorder in women of reproductive age. Epigenetic mechanisms contribute to the development of PCOS. Nevertheless, the role of DNA methylation in the development of PCOS remains unclear. To investigate the molecular mechanisms underlying the hyperandrogenic phenotype of PCOS, dihydrotestosterone (DHT)-induced prenatally androgenized (PNA) mice were used to mimic this phenotype. Ovarian samples from PNA and control mice were subjected to methyl-CpG-binding domain (MBD)-seq and RNA-seq, and validation was conducted using methylation-specific polymerase chain reaction (MSP) and quantitative real-time PCR (RT-qPCR). Immunohistochemical analysis (using anti-LC3II antibody) and transmission electron microscopy were conducted using ovarian tissue sections (which included granulosa cells) from PNA and control mice. There were 857 genes with differentially methylated promoter regions and 3,317 differentially expressed genes (DEGs) in the PNA mice compared to the control mice. Downregulation of Dnmt1 (which encodes DNA methyltransferase 1), accompanied by global hypomethylation, was observed in the PNA mice compared to the control mice. The promoter regions of Map3k1 (which encodes MEKK1) and Map1lc3a (which encodes LC3II) were hypomethylated, accompanied by upregulation of Map3k1 and Map1lc3a mRNA expression. The autophagy profiling results showed that LC3II protein expression and autophagosomes were significantly increased in the granulosa cells of PNA mice. Additionally, the mRNA expression of genes related to the mitogen-activated protein kinase (MAPK)/p53 pathway (Mapk14, Mapkapk3, and Trp53) and the autophagy-related gene Becn1 were significantly increased. DHT could change the DNA methylation and transcription level of Map3k1 and lead to an activation of autophagy in granulosa cells. These observations indicated that the change in autophagy may be driven by MAPK/p53 pathway activation, which may have been caused by DHT-induced transcriptional, and the methylation level changed of the key upstream gene Map3k1. Our study provides a novel genetic basis and new insights regarding the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Yulan Qin
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Li
- Department of Obstetrics and Gynecology, Yuncheng Central Hospital, Yuncheng, China
| | - Hui Zhao
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, China
| | - Zhanrui Mao
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, China
| | - Chunxia Ding
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yani Kang
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Mimouni NEH, Paiva I, Barbotin AL, Timzoura FE, Plassard D, Le Gras S, Ternier G, Pigny P, Catteau-Jonard S, Simon V, Prevot V, Boutillier AL, Giacobini P. Polycystic ovary syndrome is transmitted via a transgenerational epigenetic process. Cell Metab 2021; 33:513-530.e8. [PMID: 33539777 PMCID: PMC7928942 DOI: 10.1016/j.cmet.2021.01.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/20/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022]
Abstract
Polycystic ovary syndrome (PCOS) is the most common reproductive and metabolic disorder affecting women of reproductive age. PCOS has a strong heritable component, but its pathogenesis has been unclear. Here, we performed RNA sequencing and genome-wide DNA methylation profiling of ovarian tissue from control and third-generation PCOS-like mice. We found that DNA hypomethylation regulates key genes associated with PCOS and that several of the differentially methylated genes are also altered in blood samples from women with PCOS compared with healthy controls. Based on this insight, we treated the PCOS mouse model with the methyl group donor S-adenosylmethionine and found that it corrected their transcriptomic, neuroendocrine, and metabolic defects. These findings show that the transmission of PCOS traits to future generations occurs via an altered landscape of DNA methylation and propose methylome markers as a possible diagnostic landmark for the condition, while also identifying potential candidates for epigenetic-based therapy.
Collapse
Affiliation(s)
- Nour El Houda Mimouni
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Postnatal Brain, Lille Neuroscience & Cognition, UMR-S1172, FHU 1000 days for health, 59000 Lille, France
| | - Isabel Paiva
- Université de Strasbourg, UMR 7364 CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 12 Rue Goethe, Strasbourg 67000, France
| | - Anne-Laure Barbotin
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Postnatal Brain, Lille Neuroscience & Cognition, UMR-S1172, FHU 1000 days for health, 59000 Lille, France
| | - Fatima Ezzahra Timzoura
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Postnatal Brain, Lille Neuroscience & Cognition, UMR-S1172, FHU 1000 days for health, 59000 Lille, France
| | - Damien Plassard
- CNRS UMR 7104, INSERM U1258, GenomEast Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
| | - Stephanie Le Gras
- CNRS UMR 7104, INSERM U1258, GenomEast Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
| | - Gaetan Ternier
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Postnatal Brain, Lille Neuroscience & Cognition, UMR-S1172, FHU 1000 days for health, 59000 Lille, France
| | - Pascal Pigny
- CHU Lille, Service de Biochimie et Hormonologie, Centre de Biologie Pathologie, Lille, France
| | - Sophie Catteau-Jonard
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Postnatal Brain, Lille Neuroscience & Cognition, UMR-S1172, FHU 1000 days for health, 59000 Lille, France; CHU Lille, Service de Gynécologie Médicale, Hôpital Jeanne de Flandre, Lille, France
| | - Virginie Simon
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Postnatal Brain, Lille Neuroscience & Cognition, UMR-S1172, FHU 1000 days for health, 59000 Lille, France; CHU Lille, Service de Gynécologie Médicale, Hôpital Jeanne de Flandre, Lille, France
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Postnatal Brain, Lille Neuroscience & Cognition, UMR-S1172, FHU 1000 days for health, 59000 Lille, France
| | - Anne-Laurence Boutillier
- Université de Strasbourg, UMR 7364 CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 12 Rue Goethe, Strasbourg 67000, France.
| | - Paolo Giacobini
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Postnatal Brain, Lille Neuroscience & Cognition, UMR-S1172, FHU 1000 days for health, 59000 Lille, France.
| |
Collapse
|
25
|
Mao Z, Li T, Zhao H, Wang X, Kang Y, Kang Y. Methylome and transcriptome profiling revealed epigenetic silencing of LPCAT1 and PCYT1A associated with lipidome alterations in polycystic ovary syndrome. J Cell Physiol 2021; 236:6362-6375. [PMID: 33521992 DOI: 10.1002/jcp.30309] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/16/2022]
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine diseases of fertile women and a major cause of infertility. The regulatory effects of DNA methylation on gene transcription and downstream lipid metabolism have not been explored in PCOS. In this study, MBD-seq and RNA-seq were performed on ovarian granulosa cells of PCOS patients and controls, and methylation specific PCR and quantitative polymerase chain reaction were used to validate the results. Then lipidomic profiling was conducted on serum of PCOS patients and controls using UPLC-MS. We identified 73 genes with differently methylated promoters and 830 differently expressed genes. The promoter regions of LPCAT1 and PCYT1A were hypermethylated, accompanied by downregulation of their messenger RNA expression, which may be involved in the regulation of PCOS through downstream glycerophospholipid metabolism and phosphatidylcholine synthesis. The lipid profiling results showed significant changes in 21 lipids, which demonstrated the disturbance in glycerophospholipid metabolism and glycerolipid metabolism pathways. Furthermore, the metabolites-genes interaction network was constructed to illustrate the association of aberrant methylome and transcriptome with lipidome alterations in glycerolipid and glycerophospholipid metabolism pathways. Our study suggested that the methylation silencing of LPCAT1 and PCYT1A may promote glycerophospholipids metabolism dysregulation, which provided a novel genetic and lipometabolic basis for the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Zhanrui Mao
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Li
- Department of Obstetrics and Gynecology, Yuncheng Central Hospital, Yuncheng, Shanxi, China
| | - Hui Zhao
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyan Wang
- Shanghai Center for Systems Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yixin Kang
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yani Kang
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
26
|
Shpakov AO. Improvement Effect of Metformin on Female and Male Reproduction in Endocrine Pathologies and Its Mechanisms. Pharmaceuticals (Basel) 2021; 14:ph14010042. [PMID: 33429918 PMCID: PMC7826885 DOI: 10.3390/ph14010042] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Metformin (MF), a first-line drug to treat type 2 diabetes mellitus (T2DM), alone and in combination with other drugs, restores the ovarian function in women with polycystic ovary syndrome (PCOS) and improves fetal development, pregnancy outcomes and offspring health in gestational diabetes mellitus (GDM) and T2DM. MF treatment is demonstrated to improve the efficiency of in vitro fertilization and is considered a supplementary drug in assisted reproductive technologies. MF administration shows positive effect on steroidogenesis and spermatogenesis in men with metabolic disorders, thus MF treatment indicates prospective use for improvement of male reproductive functions and fertility. MF lacks teratogenic effects and has positive health effect in newborns. The review is focused on use of MF therapy for restoration of female and male reproductive functions and improvement of pregnancy outcomes in metabolic and endocrine disorders. The mechanisms of MF action are discussed, including normalization of metabolic and hormonal status in PCOS, GDM, T2DM and metabolic syndrome and restoration of functional activity and hormonal regulation of the gonadal axis.
Collapse
Affiliation(s)
- Alexander O Shpakov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW This review provides a model for understanding polycystic ovary syndrome (PCOS) pathophysiology and updates the evidence on which it is based. Then, it highlights complimentary molecular genetic and epigenetic advances in understanding PCOS cause. RECENT FINDINGS Important studies into PCOS cause built on the 2014 discovery of a novel regulatory protein variant that underlies the typical PCOS steroidogenic abnormalities: DENND1A.V2 (differentially expressed in normal and neoplastic development, isoform 1A, variant 2). Over 30 DENND1A gene variants have been found, the vast majority upstream of the coding sequence and potentially regulatory. These variants are individually uncommon but collectively plausibly cause 50% of PCOS. Anti-Müllerian hormone (AMH)/AMH receptor variants with decreased function possibly cause 6.7% of PCOS. DENNND1A was recently reported to belong to a signaling network that upregulates luteinizing hormone receptor expression and insulin mitogenic signaling. Prenatal androgen administration has proven to be a potent epigenetic regulator that causes transgenerational epigenomic changes in a mouse PCOS model with similarities to those in human PCOS and PCOS daughters. SUMMARY In addition to finding how gene variants contribute to PCOS pathogenesis, better understanding of androgen epigenetic mechanisms of action in diverse tissues can be expected to expand our understanding of PCOS pathogenesis.
Collapse
|
28
|
Mao Z, Li T, Zhao H, Qin Y, Wang X, Kang Y. Identification of epigenetic interactions between microRNA and DNA methylation associated with polycystic ovarian syndrome. J Hum Genet 2020; 66:123-137. [PMID: 32759991 DOI: 10.1038/s10038-020-0819-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022]
Abstract
Aberration in microRNA expression or DNA methylation is a causal factor for polycystic ovarian syndrome. However, the epigenetic interactions between miRNA and DNA methylation remain unexplored in PCOS. We conducted a novel integrated analysis of RNA-seq, miRNA-seq, and methylated DNA-binding domain sequencing on ovarian granulosa cells to reveal the epigenetic interactions involved in the pathogenesis of PCOS. We identified 830 genes and 30 miRNAs that were expressed differently in PCOS, and seven miRNAs negatively regulated target mRNA expression. 130 miRNAs' promoters were significantly differently methylated, while 13 were associated with miRNA expression. Furthermore, the hypermethylation of miR-429, miR-141-3p, and miR-126-3p' promoter was found related to miRNA expression suppression and therefore their corresponding genes upregulation, including XIAP, BRD3, MAPK14, and SLC7A5. Our findings provide a novel insight in PCOS. The consequential reversal of genes silencing may participate in PCOS pathogenesis and served as potential molecular targets for PCOS.
Collapse
Affiliation(s)
- Zhanrui Mao
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ting Li
- Department of Obstetrics and Gynecology, Yuncheng Central Hospital, Yuncheng, 044000, Shanxi Province, China
| | - Hui Zhao
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yulan Qin
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuesong Wang
- Department of Obstetrics and Gynecology, Yuncheng Central Hospital, Yuncheng, 044000, Shanxi Province, China
| | - Yani Kang
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
29
|
Gourbesville C, Kerlan V, Reznik Y. Le syndrome des ovaires polykystiques : quelles nouveautés en 2019 ? ANNALES D'ENDOCRINOLOGIE 2020; 80 Suppl 1:S29-S37. [PMID: 31606059 DOI: 10.1016/s0003-4266(19)30114-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PolyCystic Ovary Syndrome (PCOS) is the first endocrinopathy of women of child-bearing age and the leading cause of anovulatory infertility. The pathophysiology of this syndrome is complex and involves genetic traits highlighted by GWAS and epigenetic traits with DNA methylation modifications. Initially described as an ovarian disease, works carried out over recent years were turned towards neuroendocrine disorder involving GABAergic pathways, KNDy neurons and a possible role of prenatal androgen exposure determined by animal models. Clinically, PCOS leads to many complications including psychological and emotional disorders demonstrated in large populations of PCOS women. © 2019 Published by Elsevier Masson SAS. All rights reserved. Cet article fait partie du numéro supplément Les Must de l'Endocrinologie 2019 réalisé avec le soutien institutionnel de Ipsen-Pharma.
Collapse
Affiliation(s)
| | | | - Yves Reznik
- Endocrinologie et métabolismes, CHU de Caen, Caen, France
| |
Collapse
|
30
|
Chu W, Zhai J, Xu J, Li S, Li W, Chen ZJ, Du Y. Continuous Light-Induced PCOS-Like Changes in Reproduction, Metabolism, and Gut Microbiota in Sprague-Dawley Rats. Front Microbiol 2020; 10:3145. [PMID: 32038578 PMCID: PMC6990112 DOI: 10.3389/fmicb.2019.03145] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/29/2019] [Indexed: 12/12/2022] Open
Abstract
The interplay between genetic and environmental risk factors contributes to the pathogenesis of metabolic disease. Polycystic ovary syndrome (PCOS) is the most common endocrine and metabolic disorder in women of reproductive age. Circadian rhythm disruption is an important risk factor for PCOS. In this study, we evaluated the effect of circadian disorder on reproduction as well as metabolism, and determined its influence on gut microbiota in a rat model. Female Sprague Dawley (SD) rats were kept under continuous light exposure (12-h:12-h light/light cycle, L/L group) or a control cycle (12-h:12-h light/dark cycle, L/D group) for four consecutive weeks. Manifestations in endocrine hormones and metabolism were detected and gut microbiota were analyzed with the 16s rRNA gene sequencing technique. To our knowledge, this is the first study to report PCOS-like reproductive manifestation, such as anti-Müllerian hormone (AMH) elevation induced by continuous light exposure. Moreover, continuous light resulted in abnormal glucose metabolism and gut microbial community variations, including enrichment of the microbial genus of Parasutterella and reduced abundance of genus Corynebacterium, genus Odoribacter, and genus Acinetobacter. Increased Parasutterella abundance was positively correlated with serum testosterone level. A PICRUSt analysis revealed that reproductive and metabolic-related genes were enriched in rats of L/D group. In conclusion, the present study demonstrates that continuous light exposure, an important environmental factor, contributes to the occurrence and developmental progress of PCOS and changes in microbial component and structure. Continuous light exposure is one of vital causes of PCOS, which is closely related to microbial structure and functions.
Collapse
Affiliation(s)
- Weiwei Chu
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Junyu Zhai
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Jieying Xu
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Shang Li
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Weiping Li
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China.,Center for Reproductive Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,The Key Laboratory for Reproductive Endocrinology of the Ministry of Education, Center for Reproductive Medicine, Jinan, China
| | - Yanzhi Du
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
31
|
Wen L, Liu Q, Xu J, Liu X, Shi C, Yang Z, Zhang Y, Xu H, Liu J, Yang H, Huang H, Qiao J, Tang F, Chen ZJ. Recent advances in mammalian reproductive biology. SCIENCE CHINA. LIFE SCIENCES 2020; 63:18-58. [PMID: 31813094 DOI: 10.1007/s11427-019-1572-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/22/2019] [Indexed: 01/05/2023]
Abstract
Reproductive biology is a uniquely important topic since it is about germ cells, which are central for transmitting genetic information from generation to generation. In this review, we discuss recent advances in mammalian germ cell development, including preimplantation development, fetal germ cell development and postnatal development of oocytes and sperm. We also discuss the etiologies of female and male infertility and describe the emerging technologies for studying reproductive biology such as gene editing and single-cell technologies.
Collapse
Affiliation(s)
- Lu Wen
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qiang Liu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Jingjing Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Xixi Liu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Chaoyi Shi
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Zuwei Yang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Yili Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Hong Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Jiang Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Hefeng Huang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China.
| | - Jie Qiao
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Zi-Jiang Chen
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250021, China.
| |
Collapse
|
32
|
Androgen and Anti-Mullerian Hormone Concentrations at Term in Newborns and Their Mothers with and without Polycystic Ovary Syndrome. J Clin Med 2019; 8:jcm8111817. [PMID: 31683802 PMCID: PMC6912752 DOI: 10.3390/jcm8111817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 01/25/2023] Open
Abstract
Objectives: The aetiology of polycystic ovary syndrome (PCOS) is not particularly mapped; however, a complex interaction of various factors, such as genetic, environmental and intrauterine factors, can be assumed. Experimental animal studies and clinical observations support the hypothesis that developmental programming by excess intrauterine steroid is relevant. The aim of the study was to investigate whether mothers with and without PCOS exhibit different androgen and anti-Mullerian hormone (AMH) levels at the end of pregnancy and how maternal hormone levels are reflected in their offspring. Methods: Between March 2013 and December 2015, we performed a prospective cross-sectional study at the Medical University of Graz. We included 79 women with PCOS according to the ESHRE/ASRM 2003 definition and 354 women without PCOS, both with an ongoing pregnancy ≥37 + 0 weeks of gestation, who gave birth in our institution. Primary outcome parameters were the levels of maternal and neonatal androgens (testosterone, free testosterone, androstenedione) and AMH at delivery. Results: Androgen levels in female offspring of PCOS and non-PCOS women at birth did not differ, while maternal hormone levels differed significantly. Androgen levels in PCOS boys were significantly higher when compared to levels in PCOS girls. Discussion: Our findings do not support the hypothesis that maternal androgen excess contributes to elevated androgen concentrations in the female offspring. Nevertheless, the effects of the increased androgen concentrations in mothers on their offspring have to be investigated in future studies.
Collapse
|
33
|
Kelley AS, Smith YR, Padmanabhan V. A Narrative Review of Placental Contribution to Adverse Pregnancy Outcomes in Women With Polycystic Ovary Syndrome. J Clin Endocrinol Metab 2019; 104:5299-5315. [PMID: 31393571 PMCID: PMC6767873 DOI: 10.1210/jc.2019-00383] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/01/2019] [Indexed: 12/29/2022]
Abstract
CONTEXT Polycystic ovary syndrome (PCOS) is the most common endocrinopathy of reproductive-aged women. In pregnancy, women with PCOS experience increased risk of miscarriage, gestational diabetes, preeclampsia, and extremes of fetal birth weight, and their offspring are predisposed to reproductive and cardiometabolic dysfunction in adulthood. Pregnancy complications, adverse fetal outcomes, and developmental programming of long-term health risks are known to have placental origins. These findings highlight the plausibility of placental compromise in pregnancies of women with PCOS. EVIDENCE SYNTHESIS A comprehensive PubMed search was performed using terms "polycystic ovary syndrome," "placenta," "developmental programming," "hyperandrogenism," "androgen excess," "insulin resistance," "hyperinsulinemia," "pregnancy," and "pregnancy complications" in both human and animal experimental models. CONCLUSIONS There is limited human placental research specific to pregnancy of women with PCOS. Gestational androgen excess and insulin resistance are two clinical hallmarks of PCOS that may contribute to placental dysfunction and underlie the higher rates of maternal-fetal complications observed in pregnancies of women with PCOS. Additional research is needed to prevent adverse maternal and developmental outcomes in women with PCOS and their offspring.
Collapse
Affiliation(s)
- Angela S Kelley
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| | - Yolanda R Smith
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| | - Vasantha Padmanabhan
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
- Correspondence and Reprint Requests: Vasantha Padmanabhan, PhD, Department of Pediatrics, University of Michigan, 7510 MSRB 1, 1500 West Medical Center Drive, Ann Arbor, Michigan 48109. E-mail:
| |
Collapse
|
34
|
Guo X, Puttabyatappa M, Thompson RC, Padmanabhan V. Developmental Programming: Contribution of Epigenetic Enzymes to Antral Follicular Defects in the Sheep Model of PCOS. Endocrinology 2019; 160:2471-2484. [PMID: 31398247 PMCID: PMC6760338 DOI: 10.1210/en.2019-00389] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/22/2019] [Indexed: 12/27/2022]
Abstract
Prenatal testosterone (T)-treated sheep, similar to women with polycystic ovary syndrome (PCOS), manifest oligo-/anovulation, hyperandrogenism, and polyfollicular ovary. The polyfollicular ovarian morphology, a result of persistence of antral follicles, arises, in part, by transcriptional changes in key mediators of follicular development that, in turn, are driven by epigenetic mechanisms. We hypothesized that prenatal T excess induces, in a cell-specific manner, transcriptional changes in key mediators of follicular development associated with relevant changes in epigenetic machinery. Expression levels of key mediators of follicular development, DNA methyltransferases (DNMTs), and histone de-/methylases and de-/acetylases were determined in laser-capture microdissection-isolated antral follicular granulosa and theca and ovarian stromal cells from 21 months of age control and prenatal T-treated sheep (100 mg IM twice weekly from gestational day 30 to 90; term: 147 days). Changes in histone methylation were determined by immunofluorescence. Prenatal T treatment induced the following: (i) cell-specific changes in gene expression of key mediators of follicular development and steroidogenesis; (ii) granulosa, theca, and stromal cell-specific changes in DNMTs and histone de-/methylases and deacetylases, and (iii) increases in histone 3 trimethylation at lysine 9 in granulosa and histone 3 dimethylation at lysine 4 in theca cells. The pattern of histone methylation was consistent with the expression profile of histone de-/methylases in the respective cells. These findings suggest that changes in expression of key genes involved in the development of the polyfollicular phenotype in prenatal T-treated sheep are mediated, at least in part, by cell-specific changes in epigenetic-modifying enzymes.
Collapse
Affiliation(s)
- Xingzi Guo
- Department of Obstetrics and Gynecology, Xiangya Third Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | | | - Robert C Thompson
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
- Correspondence: Vasantha Padmanabhan, PhD, Department of Pediatrics, University of Michigan, 7510 MSRB 1, 1500 West Medical Center Drive, Ann Arbor, Michigan 48109. E-mail:
| |
Collapse
|
35
|
Wang Q, Shang J, Zhang Y, Zhou W. Metformin and sitagliptin combination therapy ameliorates polycystic ovary syndrome with insulin resistance through upregulation of lncRNA H19. Cell Cycle 2019; 18:2538-2549. [PMID: 31405334 DOI: 10.1080/15384101.2019.1652036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Insulin resistance (IR) is prevalent in women with polycystic ovary syndrome (PCOS). Improvement in insulin sensitivity remains one of the most effective treatment strategies for women with PCOS. This study aims to investigate the efficacy and potential mechanism of the combination therapy with metformin (DMBG) and sitagliptin (TECOS) in PCOS. To address this, insulin was used to treat rat ovarian granulosa cells to establish the cellular PCOS model. Insulin and human chorionic gonadotropin (HCG) were subcutaneously injected into SD rats to establish a rat model of hyperandrogenism with pathogenesis similar to PCOS. Our results showed that co-treatment with TECOS and DMBG attenuated the induced apoptosis and insulin resistance (IR) in PCOS model cells, and improved reproductive hormone disorders, ovarian polycystic changes, and IR of PCOS rats. Mechanistically, upregulation of H19 by H19-expressing lentiviruses enhanced efficacy of combination therapy. Furthermore, co-treatment with TECOS and DMBG induced H19 expression via suppressing the PI3K/AKT-DNMT1 pathway. Collectively, these findings demonstrate that combination treatment with TECOS and DMBG ameliorates PCOS with IR, at least partially, through upregulation of lncRNA H19.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Endocrinology, Henan Provincial People's Hospital , Zhengzhou , Henan , China
| | - Jing Shang
- Department of Endocrinology, Henan Provincial People's Hospital , Zhengzhou , Henan , China
| | - Yun Zhang
- Department of Endocrinology, Henan Provincial People's Hospital , Zhengzhou , Henan , China
| | - Wei Zhou
- Department of Neurosurgery, Henan Provincial People's Hospital , Zhengzhou , Henan , China
| |
Collapse
|
36
|
McAllister JM, Han AX, Modi BP, Teves ME, Mavodza GR, Anderson ZL, Shen T, Christenson LK, Archer KJ, Strauss JF. miRNA Profiling Reveals miRNA-130b-3p Mediates DENND1A Variant 2 Expression and Androgen Biosynthesis. Endocrinology 2019; 160:1964-1981. [PMID: 31184707 PMCID: PMC6656421 DOI: 10.1210/en.2019-00013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/05/2019] [Indexed: 02/05/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder of reproductive-age women involving overproduction of ovarian androgens and, in some cases, from the adrenal cortex. Family studies have established that PCOS is a complex heritable disorder with genetic and epigenetic components. Several small, noncoding RNAs (miRNAs) have been shown to be differentially expressed in ovarian cells and follicular fluid and in the circulation of women with PCOS. However, there are no reports of global miRNA expression and target gene analyses in ovarian theca cells isolated from normal cycling women and women with PCOS, which are key to the elucidation of the basis for the hyperandrogenemia characteristic of PCOS. With the use of small RNA deep sequencing (miR-seq), we identified 18 differentially expressed miRNAs in PCOS theca cells; of these, miR-130b-3p was predicted to target one of the PCOS genome-wide association study candidates, differentially expressed in neoplastic vs normal cells domain containing 1A (DENND1A). We previously reported that DENND1A variant 2 (DENND1A.V2), a truncated isoform of DENND1A, is upregulated in PCOS theca cells and mediates augmented androgen biosynthesis in PCOS theca cells. The comparison of miR-130b-3p in normal and PCOS theca cells demonstrated decreased miR-130b-3p expression in PCOS theca cells, which was correlated with increased DENND1A.V2, cytochrome P450 17α-hydroxylase (CYP17A1) mRNA and androgen biosynthesis. miR-130b-3p mimic studies established that increased miR130b-3p is correlated with decreased DENND1A.V2 and CYP17A1 expression. Thus, in addition to genetic factors, post-transcriptional regulatory mechanisms via miR-130b-3p underly androgen excess in PCOS. Ingenuity® Pathway Analysis Core Pathway and Network Analyses suggest a network by which miR-130b-3p, DENND1A, the luteinizing hormone/choriogonadotropin receptor, Ras-related protein 5B, and signaling pathways that they potentially target may mediate hyperandrogenism in PCOS.
Collapse
Affiliation(s)
- Jan M McAllister
- Department of Pathology, Pennsylvania State College of Medicine, Hershey, Pennsylvania
- Correspondence:Jan M. McAllister, PhD, Department of Pathology, Pennsylvania State Hershey College of Medicine, 500 University Drive, H083, Hershey, Pennsylvania 17036. E-mail:
| | - Angela X Han
- Department of Pathology, Pennsylvania State College of Medicine, Hershey, Pennsylvania
| | - Bhavi P Modi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Maria E Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Grace R Mavodza
- Department of Pathology, Pennsylvania State College of Medicine, Hershey, Pennsylvania
| | - Zachary L Anderson
- Department of Pathology, Pennsylvania State College of Medicine, Hershey, Pennsylvania
| | | | - Lane K Christenson
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Kellie J Archer
- Division of Biostatistics, Ohio State University, Columbus, Ohio
| | - Jerome F Strauss
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
37
|
Huang CC, Chen MJ, Lan CW, Wu CE, Huang MC, Kuo HC, Ho HN. Hyperactive CREB signaling pathway involved in the pathogenesis of polycystic ovarian syndrome revealed by patient-specific induced pluripotent stem cell modeling. Fertil Steril 2019; 112:594-607.e12. [PMID: 31277818 DOI: 10.1016/j.fertnstert.2019.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To study whether and how the pathogenesis of polycystic ovarian syndrome (PCOS) is related to epigenetic aberrations. DESIGN A case-control experimental study. SETTING Tertiary university hospital. PATIENT(S) Eighteen patients with PCOS and ten non-PCOS control subjects. INTERVENTIONS(S) Patient-specific induced pluripotent stem cells (iPSCs) were obtained from skin fibroblasts through the application of nonviral episomal reprogramming and were differentiated into ovarian granulosa cells (GCs) with the use of a cocktail of growth factors. Primary ovarian GCs were collected during transvaginal oocyte retrieval surgery. MAIN OUTCOME MEASURE(S) Characterization and functional validation of iPSC-derived GCs were conducted. Whole-genomic DNA methylation profiles in women with and without PCOS in both iPSC-derived GCs and primary adult GCs were analyzed with the use of the Illumina 850K MethylationEPIC Beadchip. RESULT(S) The iPSC-derived GCs successfully expressed GC-associated genes and aromatase activity after differentiation. Whole-genomic DNA methylation analysis of the iPSC-derived GCs and adult GCs both revealed a hyperactive CREB signaling pathway in the PCOS group compared with the control group. The expression of CREB-binding protein (CBP) mRNA was significantly higher in the iPSC-derived GCs in the PCOS group, and the expression of CBP protein was also significantly higher in the primary GCs from women with PCOS. CONCLUSION(S) The combination of DNA methylomic analysis in primary adult GCs and iPSC-derived GCs showed that a preserved persistent hyperactivation of the CREB signaling pathway might be involved in the pathogenesis of PCOS. These results could have implications on the early developmental origin, inheritance nature, and environmental interaction effects of this disease.
Collapse
Affiliation(s)
- Chu-Chun Huang
- Department of Obstetrics and Gynecology, National Taiwan University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| | - Mei-Jou Chen
- Department of Obstetrics and Gynecology, National Taiwan University, Taipei, Taiwan.
| | - Chen-Wei Lan
- Department of Obstetrics and Gynecology, National Taiwan University, Taipei, Taiwan
| | - Chia-Eng Wu
- Department of Obstetrics and Gynecology, National Taiwan University, Taipei, Taiwan
| | - Mei-Chi Huang
- Department of Obstetrics and Gynecology, National Taiwan University, Taipei, Taiwan
| | - Hung-Chih Kuo
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hong-Nerng Ho
- Department of Obstetrics and Gynecology, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
38
|
Eini F, Bidadkosh A, Nazarian H, Piryaei A, Ghaffari Novin M, Joharchi K. Thymoquinone reduces intracytoplasmic oxidative stress and improves epigenetic modification in polycystic ovary syndrome mice oocytes, during in-vitro maturation. Mol Reprod Dev 2019; 86:1053-1066. [PMID: 31209968 DOI: 10.1002/mrd.23222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 11/08/2022]
Abstract
Although in-vitro maturation (IVM) of oocytes has been presented as an alternative treatment to traditional stimulated in-vitro fertilization, the culture condition can be improved by natural antioxidants. Thus, we investigated the protective effect of Thymoquinone (TQ) during IVM in the polycystic ovary syndrome (PCOS) mice model. The induction of PCOS was made by dehydroepiandrosterone via subcutaneous injection, in prepubertal female B6D2F1-mice. After 21 days later, germinal vesicle (GV)-stage-oocytes were extracted and incubated in IVM media containing 0, 1.0, 10.0, and 100.0 μM of TQ. To assess fertilization and blastulation rates, after 22-24 hr, the treated oocytes were fertilized in-vitro with epididymal spermatozoa. Some other oocytes were evaluated for maturation, epigenetic, and oxidative stress markers. Similarly, the mRNA expression of epigenetic enzymes genes (Dnmt1 and Hdac1), three maternally derived genes (Mapk, CyclinB, and Cdk1) and apoptosis-related genes (Bax and Bcl2) were assessed. Our results showed that the maturation, fertilization, and blastulation rates were significantly higher in the 10.0 μM TQ-treated group compared with the untreated group and likewise with in-vivo matured oocytes. The Bax expression was reduced in 10.0 μM TQ matured oocytes, but Bcl2, Dnmt1, Hdac1, Cdk1, and Mapk were upregulated in this group compared to other groups. Furthermore, dimethylation of histone-3 at lysine-9 (H3K9m2) and DNA methylation were significantly increased whereas H4K12 acetylation (H4K12ac) was decreased in the 10.0 μM TQ-treated group in comparison with control and in-vivo matured oocytes. Therefore, our results are suggesting that 10.0 μM TQ may enhance the developmental competence of PCOS oocytes via the modulation of oxidative stress and epigenetic alterations.
Collapse
Affiliation(s)
- Fatemeh Eini
- Fertility and Infertility Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Bidadkosh
- Department of Nephrology, Royal Alexandra, Hospital for Children, University of Sydney, Sydney, New South Wales, Australia
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khojasteh Joharchi
- Department of Pharmacology, School of Medicine and Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Sagvekar P, Kumar P, Mangoli V, Desai S, Mukherjee S. DNA methylome profiling of granulosa cells reveals altered methylation in genes regulating vital ovarian functions in polycystic ovary syndrome. Clin Epigenetics 2019; 11:61. [PMID: 30975191 PMCID: PMC6458760 DOI: 10.1186/s13148-019-0657-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
Background Women with polycystic ovary syndrome (PCOS) manifest a host of ovarian defects like impaired folliculogenesis, anovulation, and poor oocyte quality, which grossly affect their reproductive health. Addressing the putative epigenetic anomalies that tightly regulate these events is of foremost importance in this disorder. We therefore aimed to carry out DNA methylome profiling of cumulus granulosa cells and assess the methylation and transcript expression profiles of a few differentially methylated genes contributing to ovarian defects in PCOS. A total of 20 controls and 20 women with PCOS were selected from a larger cohort of women undergoing IVF, after carefully screening their sera and follicular fluids for hormonal and biochemical parameters. DNA extracted from cumulus granulosa cells of three women each, from control and PCOS groups was subjected to high-throughput, next generation bisulfite sequencing, using the Illumina HiSeq 2500® platform. Remaining samples were used for the validation of methylation status of some identified genes by pyrosequencing, and the transcript expression profiles of these genes were assessed by quantitative real-time PCR. Results In all, 6486 CpG sites representing 3840 genes associated with Wnt signaling, G protein receptor, endothelin/integrin signaling, angiogenesis, chemokine/cytokine-mediated inflammation, etc., showed differential methylation in PCOS. Hypomethylation was noted in 2977 CpGs representing 2063 genes while 2509 CpGs within 1777 genes showed hypermethylation. Methylation differences were also noted in noncoding RNAs regulating several ovarian functions that are dysregulated in PCOS. Few differentially methylated genes such as aldo-keto reductase family 1 member C3, calcium-sensing receptor, resistin, mastermind-like domain 1, growth hormone-releasing hormone receptor and tumor necrosis factor, which predominantly contribute to hyperandrogenism, premature luteolysis, and oocyte development defects, were explored as novel epigenetic candidates in mediating ovarian dysfunction. Methylation profiles of these genes matched with our NGS findings, and their transcript expression patterns correlated with the gene hypo- or hypermethylation status. Conclusion Our findings suggest that the epigenetic dysregulation of genes involved in important processes associated with follicular development may contribute to ovarian defects observed in women with PCOS. Electronic supplementary material The online version of this article (10.1186/s13148-019-0657-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pooja Sagvekar
- Department of Molecular Endocrinology, ICMR-National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, Maharashtra, 400012, India
| | - Pankaj Kumar
- Colin Jamura Lab, Institute for Stem Cell Biology and Regenerative Medicine (inStem), National Centre for Biological Sciences (NCBS), GKVK, Bellary Road, Bangalore, 560065, India
| | - Vijay Mangoli
- Fertility Clinic and IVF Center, 12-Springfield, 19-Vachha Gandhi Road, Gamdevi, Mumbai, Maharashtra, 400007, India
| | - Sadhana Desai
- Fertility Clinic and IVF Center, 12-Springfield, 19-Vachha Gandhi Road, Gamdevi, Mumbai, Maharashtra, 400007, India
| | - Srabani Mukherjee
- Department of Molecular Endocrinology, ICMR-National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, Maharashtra, 400012, India.
| |
Collapse
|
40
|
Abbott DH, Dumesic DA, Levine JE. Hyperandrogenic origins of polycystic ovary syndrome - implications for pathophysiology and therapy. Expert Rev Endocrinol Metab 2019; 14:131-143. [PMID: 30767580 PMCID: PMC6992448 DOI: 10.1080/17446651.2019.1576522] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Polycystic ovary syndrome (PCOS) diagnosis comprises combinations of female hyperandrogenism, menstrual irregularity and polycystic ovaries. While it is a familial and highly prevalent endocrine disorder, progress towards a cure is hindered by absence of a definitive pathogenic mechanism and lack of an animal model of naturally occurring PCOS. AREAS COVERED These include an overview of PCOS and its potential etiology, and an examination of insights gained into its pathogenic origins. Animal models derived from experimentally-induced hyperandrogenism during gestation, or from naturally-occurring PCOS-like traits, most reliably demonstrate reproductive, neuroendocrine and metabolic pathogenesis. EXPERT OPINION Genetic studies, while identifying at least 17 PCOS risk genes, account for <10% of women with PCOS. A number of PCOS risk genes involve regulation of gonadotropin secretion or action, suggesting a reproductive neuroendocrine basis for PCOS pathogenesis. Consistent with this notion, a number of animal models employing fetal androgen excess demonstrate epigenetic induction of PCOS-like traits, including reproductive neuroendocrine and metabolic dysfunction. Monkey models are most comprehensive, while mouse models provide molecular insight, including identifying the androgen receptor, particularly in neurons, as mediating androgen-induced PCOS-like programming. Naturally-occurring female hyperandrogenism is also demonstrated in monkeys. Animal models are poised to delineate molecular gateways to PCOS pathogenesis.
Collapse
Affiliation(s)
- David H Abbott
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI, USA
- Department of Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
| | - Daniel A Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Jon E Levine
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI, USA
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
41
|
Cui P, Ma T, Tamadon A, Han S, Li B, Chen Z, An X, Shao LR, Wang Y, Feng Y. Hypothalamic DNA methylation in rats with dihydrotestosterone-induced polycystic ovary syndrome: effects of low-frequency electro-acupuncture. Exp Physiol 2018; 103:1618-1632. [DOI: 10.1113/ep087163] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Peng Cui
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology; Fudan Institutes of Integrative Medicine; Fudan University; Shanghai 200032 China
| | - Tong Ma
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology; Fudan Institutes of Integrative Medicine; Fudan University; Shanghai 200032 China
| | - Amin Tamadon
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology; Fudan Institutes of Integrative Medicine; Fudan University; Shanghai 200032 China
| | - Sha Han
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology; Fudan Institutes of Integrative Medicine; Fudan University; Shanghai 200032 China
| | - Bing Li
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology; Fudan Institutes of Integrative Medicine; Fudan University; Shanghai 200032 China
| | - Zheyi Chen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology; Fudan Institutes of Integrative Medicine; Fudan University; Shanghai 200032 China
| | - Xiaofei An
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine; Affiliated Hospital of Nanjing University of Chinese Medicine; Nanjing 210029 China
| | - Linus R. Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy; University of Gothenburg; 40530 Gothenburg Sweden
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology; Fudan Institutes of Integrative Medicine; Fudan University; Shanghai 200032 China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function
| | - Yi Feng
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology; Fudan Institutes of Integrative Medicine; Fudan University; Shanghai 200032 China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function
| |
Collapse
|
42
|
Ibáñez L, Oberfield SE, Witchel S, Auchus RJ, Chang RJ, Codner E, Dabadghao P, Darendeliler F, Elbarbary NS, Gambineri A, Garcia Rudaz C, Hoeger KM, López-Bermejo A, Ong K, Peña AS, Reinehr T, Santoro N, Tena-Sempere M, Tao R, Yildiz BO, Alkhayyat H, Deeb A, Joel D, Horikawa R, de Zegher F, Lee PA. An International Consortium Update: Pathophysiology, Diagnosis, and Treatment of Polycystic Ovarian Syndrome in Adolescence. Horm Res Paediatr 2018; 88:371-395. [PMID: 29156452 DOI: 10.1159/000479371] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022] Open
Abstract
This paper represents an international collaboration of paediatric endocrine and other societies (listed in the Appendix) under the International Consortium of Paediatric Endocrinology (ICPE) aiming to improve worldwide care of adolescent girls with polycystic ovary syndrome (PCOS)1. The manuscript examines pathophysiology and guidelines for the diagnosis and management of PCOS during adolescence. The complex pathophysiology of PCOS involves the interaction of genetic and epigenetic changes, primary ovarian abnormalities, neuroendocrine alterations, and endocrine and metabolic modifiers such as anti-Müllerian hormone, hyperinsulinemia, insulin resistance, adiposity, and adiponectin levels. Appropriate diagnosis of adolescent PCOS should include adequate and careful evaluation of symptoms, such as hirsutism, severe acne, and menstrual irregularities 2 years beyond menarche, and elevated androgen levels. Polycystic ovarian morphology on ultrasound without hyperandrogenism or menstrual irregularities should not be used to diagnose adolescent PCOS. Hyperinsulinemia, insulin resistance, and obesity may be present in adolescents with PCOS, but are not considered to be diagnostic criteria. Treatment of adolescent PCOS should include lifestyle intervention, local therapies, and medications. Insulin sensitizers like metformin and oral contraceptive pills provide short-term benefits on PCOS symptoms. There are limited data on anti-androgens and combined therapies showing additive/synergistic actions for adolescents. Reproductive aspects and transition should be taken into account when managing adolescents.
Collapse
Affiliation(s)
- Lourdes Ibáñez
- Endocrinology, Hospital Sant Joan de Deu, Esplugues, Barcelona, Spain.,CIBERDEM, ISCIII, Madrid, Spain
| | - Sharon E Oberfield
- Division of Pediatric Endocrinology, CUMC, New York-Presbyterian Morgan Stanley Children's Hospital, New York, New York, USA
| | - Selma Witchel
- Division of Pediatric Endocrinology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | | | - R Jeffrey Chang
- Department of Reproductive Medicine, UCSD School of Medicine, La Jolla, California, USA
| | - Ethel Codner
- Institute of Maternal and Child Research, University of Chile, School of Medicine, Santiago, Chile
| | - Preeti Dabadghao
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | | | | | - Alessandra Gambineri
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Cecilia Garcia Rudaz
- Division of Women, Youth and Children, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Kathleen M Hoeger
- Department of OBGYN, University of Rochester Medical Center, Rochester, New York, USA
| | - Abel López-Bermejo
- Pediatric Endocrinology, Hospital de Girona Dr. Josep Trueta, Girona, Spain
| | - Ken Ong
- MRC Epidemiology Unit, University of Cambridge, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Alexia S Peña
- The University of Adelaide and Robinson Research Institute, Adelaide, South Australia, Australia
| | - Thomas Reinehr
- University of Witten/Herdecke, Vestische Kinder- und Jugendklinik, Pediatric Endocrinology, Diabetes, and Nutrition Medicine, Datteln, Germany
| | - Nicola Santoro
- Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Rachel Tao
- Division of Pediatric Endocrinology, CUMC, New York-Presbyterian Morgan Stanley Children's Hospital, New York, New York, USA
| | - Bulent O Yildiz
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Hacettepe University School of Medicine, Ankara, Turkey
| | - Haya Alkhayyat
- Medical University of Bahrain, BDF Hospital, Riffa, Bahrein
| | - Asma Deeb
- Mafraq Hospital, Abu Dhabi, United Arab Emirates
| | - Dipesalema Joel
- Department of Paediatrics and Adolescent Health, University of Botswana Teaching Hospital, Gaborone, Botswana
| | - Reiko Horikawa
- Endocrinology and Metabolism, National Center for Child Health and Development, Tokyo, Japan
| | - Francis de Zegher
- Department Pediatrics, University Hospital Gasthuisberg, Leuven, Belgium
| | - Peter A Lee
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
43
|
Goldrat O, Delbaere A. PCOS: update and diagnostic approach. Clin Biochem 2018; 62:24-31. [PMID: 30195483 DOI: 10.1016/j.clinbiochem.2018.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/26/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Oranite Goldrat
- Fertility Clinic, Department of Obstetrics and Gynecology, CUB-Hôpital Erasme, Université Libre de Bruxelles (ULB), Route de Lennik, 808, Brussels, Belgium.
| | - Anne Delbaere
- Fertility Clinic, Department of Obstetrics and Gynecology, CUB-Hôpital Erasme, Université Libre de Bruxelles (ULB), Route de Lennik, 808, Brussels, Belgium.
| |
Collapse
|
44
|
Liu W, Wu J, Shi G, Yue X, Liu D, Zhang Q. Aberrant promoter methylation of PCDH10 as a potential diagnostic and prognostic biomarker for patients with breast cancer. Oncol Lett 2018; 16:4462-4470. [PMID: 30214581 PMCID: PMC6126325 DOI: 10.3892/ol.2018.9214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 06/07/2018] [Indexed: 12/15/2022] Open
Abstract
Protocadherin-10 (PCDH10) is a tumor suppressor gene. Its expression level is downregulated by promoter methylation in certain types of human tumors. The aim of the present study was to examine the expression level and promoter methylation status of PCDH10 in breast cancer cells and to evaluate the association of PCDH10 methylation and tumor progression and prognosis. MethyLight was used to detect the methylation status of PCDH10 in breast cancer tissues and healthy breast tissues. Reverse transcription-quantitative polymerase chain reaction was used to assess the mRNA expression level of PCDH10, as well as to evaluate the association between PCDH10 methylation and clinicopathological features, along with patients' overall survival (OS). PCDH10 5'-C-phosphate-G-3' (CpG) methylated sites were identified in tumor tissues and matched healthy tissues (n=392). Tumor tissues and matched healthy tissues exhibited identifiable PCR results, with PCDH10 gene promoter methylation identified in ductal carcinoma in situ (66%), invasive ductal carcinoma (82%), invasive ductal carcinoma with lymph node metastasis (85.32%) and hereditary breast cancer tissues (72.37%). PCDH10 mRNA expression was significantly decreased in breast cancer tissues compared with healthy breast tissues (P=0.032). PCDH10 methylation was associated with tumor size (P=0.004), but not associated with other clinical factors. Survival analysis revealed that the patients exhibiting methylated-PCDH10 had significantly poorer OS times than patients exhibiting unmethylated-PCDH10 (P<0.0001). Receiver operating characteristic analysis indicated a sensitivity of 75%, a specificity of 62.5%, and an area under the curve of 0.682 for PCDH10. Additionally, the results of the present study indicated that PCDH10 methylation status may be a useful diagnostic and prognostic evaluation biomarker for breast cancer. The results suggested that PCDH10 methylation is a common occurrence in primary breast cancer and is associated with poor survival rates among patients with breast cancer.
Collapse
Affiliation(s)
- Wentao Liu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Jin Wu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Guangyue Shi
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Xiaolong Yue
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Dan Liu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Qingyuan Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
45
|
Zhou X, Yang S, Yan F, He K, Zhao A. Genome-wide DNA methylation profiles of porcine ovaries in estrus and proestrus. Physiol Genomics 2018; 50:714-723. [PMID: 29775429 DOI: 10.1152/physiolgenomics.00052.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
DNA methylation is an important epigenetic modification involved in the estrous cycle and the regulation of reproduction. Here, we investigated the genome-wide profiles of DNA methylation in porcine ovaries in proestrus and estrus using methylated DNA immunoprecipitation sequencing. The results showed that DNA methylation was enriched in intergenic and intron regions. The methylation levels of coding regions were higher than those of the 5'- and 3'-flanking regions of genes. There were 4,813 differentially methylated regions (DMRs) of CpG islands in the estrus vs. proestrus ovarian genomes. Additionally, 3,651 differentially methylated genes (DMGs) were identified in pigs in estrus and proestrus. The DMGs were significantly enriched in biological processes and pathways related to reproduction and hormone regulation. We identified 90 DMGs associated with regulating reproduction in pigs. Our findings can serve as resources for DNA methylome research focused on porcine ovaries and further our understanding of epigenetically regulated reproduction in mammals.
Collapse
Affiliation(s)
- Xiaolong Zhou
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Lin'an, China
| | - Songbai Yang
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Lin'an, China
| | - Feifei Yan
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Lin'an, China
| | - Ke He
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Lin'an, China
| | - Ayong Zhao
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Lin'an, China
| |
Collapse
|
46
|
Histone demethylase KDM4A and KDM4B expression in granulosa cells from women undergoing in vitro fertilization. J Assist Reprod Genet 2018. [PMID: 29536385 DOI: 10.1007/s10815-018-1151-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To assess expression of the histone demethylases KDM4A and KDM4B in granulosa collected from women undergoing oocyte retrieval and to determine if expression was related to pregnancy outcome. METHODS Cumulus and mural granulosa cells were obtained from women undergoing oocyte retrieval. KDM4A and KDM4B mRNA expression was determined by qRT-PCR. KDM4A and KDM4B proteins were immunohistochemically localized in ovarian tissue sections obtained from archival specimens. RESULTS KDM4A and KDM4B protein was localized to oocytes, granulosa cells, and theca and luteal cells in ovaries from reproductive-aged women. KDM4A and KDM4B mRNA expression was overall higher in cumulus compared to mural granulosa. When comparing granulosa demethylase gene expression, KDM4A and KDM4B mRNA expression was higher in both cumulus and mural granulosa from not pregnant patients compared to patients in the pregnant-live birth group. CONCLUSIONS Histone demethylases KDM4A and KDM4B mRNA are differentially expressed in cumulus and mural granulosa. Expression of both KDM4A and KDM4B mRNA was lower in cumulus granulosa and mural granulosa from pregnant compared to not pregnant patients. These findings suggest that altered expression of histone demethylases may impact epigenetic changes in granulosa cells associated with pregnancy.
Collapse
|
47
|
Li QN, Guo L, Hou Y, Ou XH, Liu Z, Sun QY. The DNA methylation profile of oocytes in mice with hyperinsulinaemia and hyperandrogenism as detected by single-cell level whole genome bisulphite sequencing (SC-WGBS) technology. Reprod Fertil Dev 2018; 30:1713-1719. [DOI: 10.1071/rd18002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/16/2018] [Indexed: 12/28/2022] Open
Abstract
Polycystic ovary syndrome (PCOS), a familial aggregation disease that causes anovulation in women, has well-recognised characteristics, two of which are hyperinsulinaemia and hyperandrogenaemia. To determine whether the DNA methylation status is altered in oocytes by high insulin and androgen levels, we generated a mouse model with hyperinsulinaemia and hyperandrogenaemia by injection of insulin and human chorionic gonadotrophin and investigated DNA methylation changes through single-cell level whole genome bisulphite sequencing. Our results showed that hyperinsulinaemia and hyperandrogenaemia had no significant effects on the global DNA methylation profile and different functional regions of genes, but did alter methylation status of some genes, which were significantly enriched in 17 gene ontology (GO) terms (P < 0.05) by GO analysis. Among differently methylated genes, some were related to the occurrence of PCOS. Based on our results, we suggest that hyperinsulinaemia and hyperandrogenaemia may cause changes in some DNA methylation loci in oocytes.
Collapse
|
48
|
Lei L, Ding L, Su J, Liu M, Shi Q, Zhou J, Sun H, Yan G. Attenuated expression of MTR in both prenatally androgenized mice and women with the hyperandrogenic phenotype of PCOS. PLoS One 2017; 12:e0187427. [PMID: 29232372 PMCID: PMC5726624 DOI: 10.1371/journal.pone.0187427] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine, metabolic and heterogeneous disorder in women of reproductive age, the exact etiology of which remains unknown. To unravel the molecular mechanisms underlying the hyperandrogenic phenotype of PCOS, prenatally androgenized (PNA) mice were used to mimic this phenotype in women with PCOS. Using microarray analysis, 1188 differentially expressed genes, including 671 upregulated and 517 downregulated genes, were identified in ovaries from PNA mice. Five differentially expressed genes (Aldh1a7, Bhmt, Mtr, Nrcam, Ptprg) were validated, and decreased MTR expression was shown in ovaries of PNA mice. In addition, results from qRT-PCR showed decreased MTR expression in granulosa cells (GCs) from women with the hyperandrogenic phenotype of PCOS. Serum levels of S-adenosyl methionine (SAM), the downstream product of MTR, were also decreased in PNA mice and women with the hyperandrogenic phenotype of PCOS. Our study provides evidence that the hyperandrogenic phenotype of PCOS is linked to abnormal folate one-carbon metabolism.
Collapse
Affiliation(s)
- Lei Lei
- Center for Reproductive Medicine, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Obstetrics and Gynecology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lijun Ding
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jing Su
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Mengyuan Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Qingqing Shi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jianjun Zhou
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Haixiang Sun
- Center for Reproductive Medicine, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
- * E-mail: (HS); (GY)
| | - Guijun Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- * E-mail: (HS); (GY)
| |
Collapse
|
49
|
Xu J, Bao X, Peng Z, Wang L, Du L, Niu W, Sun Y. Comprehensive analysis of genome-wide DNA methylation across human polycystic ovary syndrome ovary granulosa cell. Oncotarget 2017; 7:27899-909. [PMID: 27056885 PMCID: PMC5053696 DOI: 10.18632/oncotarget.8544] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/28/2016] [Indexed: 01/11/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) affects approximately 7% of the reproductive-age women. A growing body of evidence indicated that epigenetic mechanisms contributed to the development of PCOS. The role of DNA modification in human PCOS ovary granulosa cell is still unknown in PCOS progression. Global DNA methylation and hydroxymethylation were detected between PCOS’ and controls’ granulosa cell. Genome-wide DNA methylation was profiled to investigate the putative function of DNA methylaiton. Selected genes expressions were analyzed between PCOS’ and controls’ granulosa cell. Our results showed that the granulosa cell global DNA methylation of PCOS patients was significant higher than the controls’. The global DNA hydroxymethylation showed low level and no statistical difference between PCOS and control. 6936 differentially methylated CpG sites were identified between control and PCOS-obesity. 12245 differential methylated CpG sites were detected between control and PCOS-nonobesity group. 5202 methylated CpG sites were significantly differential between PCOS-obesity and PCOS-nonobesity group. Our results showed that DNA methylation not hydroxymethylation altered genome-wide in PCOS granulosa cell. The different methylation genes were enriched in development protein, transcription factor activity, alternative splicing, sequence-specific DNA binding and embryonic morphogenesis. YWHAQ, NCF2, DHRS9 and SCNA were up-regulation in PCOS-obesity patients with no significance different between control and PCOS-nonobesity patients, which may be activated by lower DNA methylaiton. Global and genome-wide DNA methylation alteration may contribute to different genes expression and PCOS clinical pathology.
Collapse
Affiliation(s)
- Jiawei Xu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xiao Bao
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Zhaofeng Peng
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Linlin Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Linqing Du
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Wenbin Niu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| |
Collapse
|
50
|
Li S, Zhu D, Duan H, Ren A, Glintborg D, Andersen M, Skov V, Thomassen M, Kruse T, Tan Q. Differential DNA methylation patterns of polycystic ovarian syndrome in whole blood of Chinese women. Oncotarget 2017; 8:20656-20666. [PMID: 27192117 PMCID: PMC5400534 DOI: 10.18632/oncotarget.9327] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/26/2016] [Indexed: 01/01/2023] Open
Abstract
As a universally common endocrinopathy in women of reproductive age, the polycystic ovarian syndrome is characterized by composite clinical phenotypes reflecting the contributions of reproductive impact of ovarian dysfunction and metabolic abnormalities with widely varying symptoms resulting from interference of the genome with the environment through integrative biological mechanisms including epigenetics. We have performed a genome-wide DNA methylation analysis on polycystic ovarian syndrome and identified a substantial number of genomic sites differentially methylated in the whole blood of PCOS patients and healthy controls (52 sites, false discovery rate < 0.05 and corresponding p value < 5.68e–06), highly consistently replicating biological pathways extensively implicated in immunity and immunity-related inflammatory disorders (false discovery rate < 0.05) that were reportedly regulated in the DNA methylome from ovarian tissue under PCOS condition. Most importantly, our genome-wide profiling focusing on PCOS patients revealed a large number of DNA methylation sites and their enriched functional pathways significantly associated with diverse clinical features (levels of prolactin, estradiol, progesterone and menstrual cycle) that could serve as novel molecular basis of the clinical heterogeneity observed in PCOS women.
Collapse
Affiliation(s)
- Shuxia Li
- Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Dongyi Zhu
- Center of Reproductive Medicine, Linyi People's Hospital, Linyi, China.,Department of Obstetrics and Gynecology, Shandong Medical College, Linyi, China
| | - Hongmei Duan
- Department of Medicine, Kolding Hospital, Kolding, Denmark
| | - Anran Ren
- Center of Reproductive Medicine, Linyi People's Hospital, Linyi, China.,Department of Obstetrics and Gynecology, Shandong Medical College, Linyi, China
| | - Dorte Glintborg
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Marianne Andersen
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Vibe Skov
- Department of Hematology, Roskilde Hospital, Roskilde, Denmark
| | - Mads Thomassen
- Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Torben Kruse
- Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Qihua Tan
- Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Epidemiology, Biostatistics, and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|