• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4624960)   Today's Articles (2781)   Subscriber (49457)
For: Mielnichuk N, Pérez-Martín J. 14-3-3 regulates the G2/M transition in the basidiomycete Ustilago maydis. Fungal Genet Biol 2008;45:1206-15. [DOI: 10.1016/j.fgb.2008.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 05/19/2008] [Accepted: 05/20/2008] [Indexed: 01/04/2023]
Number Cited by Other Article(s)
1
de la Torre A, Castanheira S, Pérez-Martín J. Incompatibility between proliferation and plant invasion is mediated by a regulator of appressorium formation in the corn smut fungus Ustilago maydis. Proc Natl Acad Sci U S A 2020;117:30599-30609. [PMID: 33199618 PMCID: PMC7720189 DOI: 10.1073/pnas.2006909117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]  Open
2
Sridhar PS, Trofimova D, Subramaniam R, González-Peña Fundora D, Foroud NA, Allingham JS, Loewen MC. Ste2 receptor-mediated chemotropism of Fusarium graminearum contributes to its pathogenicity against wheat. Sci Rep 2020;10:10770. [PMID: 32612109 PMCID: PMC7329813 DOI: 10.1038/s41598-020-67597-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/08/2020] [Indexed: 01/14/2023]  Open
3
Bardetti P, Castanheira SM, Valerius O, Braus GH, Pérez-Martín J. Cytoplasmic retention and degradation of a mitotic inducer enable plant infection by a pathogenic fungus. eLife 2019;8:e48943. [PMID: 31621584 PMCID: PMC6887120 DOI: 10.7554/elife.48943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/16/2019] [Indexed: 11/13/2022]  Open
4
Brauer EK, Manes N, Bonner C, Subramaniam R. Two 14-3-3 proteins contribute to nitrogen sensing through the TOR and glutamine synthetase-dependent pathways in Fusarium graminearum. Fungal Genet Biol 2019;134:103277. [PMID: 31605748 DOI: 10.1016/j.fgb.2019.103277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/24/2019] [Accepted: 10/08/2019] [Indexed: 12/25/2022]
5
14-3-3 Proteins: a window for a deeper understanding of fungal metabolism and development. World J Microbiol Biotechnol 2019;35:24. [PMID: 30666471 DOI: 10.1007/s11274-019-2597-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/14/2019] [Indexed: 01/21/2023]
6
Zhang TJ, Shi L, Chen DD, Liu R, Shi DK, Wu CG, Sun ZH, Ren A, Zhao MW. 14-3-3 proteins are involved in growth, hyphal branching, ganoderic acid biosynthesis, and response to abiotic stress in Ganoderma lucidum. Appl Microbiol Biotechnol 2018;102:1769-1782. [DOI: 10.1007/s00253-017-8711-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/13/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022]
7
Kumar R. An account of fungal 14-3-3 proteins. Eur J Cell Biol 2017;96:206-217. [PMID: 28258766 DOI: 10.1016/j.ejcb.2017.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 01/09/2023]  Open
8
de Sena-Tomás C, Yu EY, Calzada A, Holloman WK, Lue NF, Pérez-Martín J. Fungal Ku prevents permanent cell cycle arrest by suppressing DNA damage signaling at telomeres. Nucleic Acids Res 2015;43:2138-51. [PMID: 25653166 PMCID: PMC4344518 DOI: 10.1093/nar/gkv082] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]  Open
9
Liu Q, Li JG, Ying SH, Wang JJ, Sun WL, Tian CG, Feng MG. Unveiling equal importance of two 14-3-3 proteins for morphogenesis, conidiation, stress tolerance and virulence of an insect pathogen. Environ Microbiol 2015;17:1444-62. [DOI: 10.1111/1462-2920.12634] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 11/29/2022]
10
Sartorel E, Pérez-Martín J. The distinct interaction between cell cycle regulation and the widely conserved morphogenesis-related (MOR) pathway in the fungus Ustilago maydis determines morphology. J Cell Sci 2012;125:4597-608. [PMID: 22767510 DOI: 10.1242/jcs.107862] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]  Open
11
Pham CD, Yu Z, Ben Lovely C, Agarwal C, Myers DA, Paul JA, Cooper M, Barati M, Perlin MH. Haplo-insufficiency for different genes differentially reduces pathogenicity and virulence in a fungal phytopathogen. Fungal Genet Biol 2012;49:21-9. [DOI: 10.1016/j.fgb.2011.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 11/16/2011] [Accepted: 11/17/2011] [Indexed: 11/26/2022]
12
Pérez-Martín J. Cell Cycle and Morphogenesis Connections During the Formation of the Infective Filament in Ustilago maydis. TOPICS IN CURRENT GENETICS 2012. [DOI: 10.1007/978-3-642-22916-9_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
13
Pham CD, Perlin MH. Possible additional roles in mating for Ustilago maydis Rho1 and 14-3-3 homologues. Commun Integr Biol 2011;3:57-9. [PMID: 20539785 DOI: 10.4161/cib.3.1.9864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 08/18/2009] [Indexed: 12/14/2022]  Open
14
de Sena-Tomás C, Fernández-Álvarez A, Holloman WK, Pérez-Martín J. The DNA damage response signaling cascade regulates proliferation of the phytopathogenic fungus Ustilago maydis in planta. THE PLANT CELL 2011;23:1654-65. [PMID: 21478441 PMCID: PMC3101559 DOI: 10.1105/tpc.110.082552] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
15
Carbó N, Pérez-Martín J. Activation of the cell wall integrity pathway promotes escape from G2 in the fungus Ustilago maydis. PLoS Genet 2010;6:e1001009. [PMID: 20617206 PMCID: PMC2895642 DOI: 10.1371/journal.pgen.1001009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 05/27/2010] [Indexed: 01/08/2023]  Open
16
El-Bebany AF, Rampitsch C, Daayf F. Proteomic analysis of the phytopathogenic soilborne fungusVerticillium dahliaereveals differential protein expression in isolates that differ in aggressiveness. Proteomics 2010;10:289-303. [DOI: 10.1002/pmic.200900426] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
17
Mielnichuk N, Sgarlata C, Pérez-Martín J. A role for the DNA-damage checkpoint kinase Chk1 in the virulence program of the fungus Ustilago maydis. J Cell Sci 2009;122:4130-40. [PMID: 19861497 DOI: 10.1242/jcs.052233] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]  Open
18
Ustilago maydis Rho1 and 14-3-3 homologues participate in pathways controlling cell separation and cell polarity. EUKARYOTIC CELL 2009;8:977-89. [PMID: 19411618 DOI: 10.1128/ec.00009-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
19
DNA-damage response in the basidiomycete fungus Ustilago maydis relies in a sole Chk1-like kinase. DNA Repair (Amst) 2009;8:720-31. [PMID: 19269260 DOI: 10.1016/j.dnarep.2009.01.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 01/31/2009] [Indexed: 11/23/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA