1
|
Singh L, Drott MT, Kim HS, Proctor RH, McCormick SP, Elmore JM. A Multiplex High-Resolution Melting (HRM) assay to differentiate Fusarium graminearum chemotypes. Sci Rep 2024; 14:31680. [PMID: 39738214 DOI: 10.1038/s41598-024-81131-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025] Open
Abstract
Fusarium graminearum is a primary cause of Fusarium head blight (FHB) on wheat and barley. The fungus produces trichothecene mycotoxins that render grain unsuitable for food, feed, or malt. Isolates of F. graminearum can differ in trichothecene production phenotypes (chemotypes), with individuals producing predominantly one of four toxins: 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol, nivalenol, or NX-2. Molecular tools to diagnose chemotypes remain inefficient. This study aimed to develop a single-tube, multiplex molecular assay that can predict the four F. graminearum chemotypes. Conserved functional regions of three trichothecene biosynthetic genes (TRI1, TRI8, and TRI13) were targeted to develop a high-resolution melting (HRM) assay. Multiplex HRM analysis produced unique melting profiles for each chemotype, and was validated on a panel of 80 isolates. We applied machine learning-based linear discriminant analysis (LDA) to automate the classification of chemotypes from the HRM data, achieving a prediction accuracy of over 99%. The assay is sensitive, with a limit of detection below 0.02 ng of fungal DNA. The HRM analysis also differentiated chemotypes from a small sample of F. gerlachii, F. asiaticum, and F. vorosii isolates. Together, our results demonstrate that this simple, rapid, and accurate assay can be applied to F. graminearum molecular diagnostics and population surveillance programs.
Collapse
Affiliation(s)
- Lovepreet Singh
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA.
| | - Milton T Drott
- Cereal Disease Laboratory, Agricultural Research Service, US Department of Agriculture, St. Paul, MN, 55108, USA
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Hye-Seon Kim
- Mycotoxin Prevention and Applied Microbiology, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, IL, 61604, USA
| | - Robert H Proctor
- Mycotoxin Prevention and Applied Microbiology, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, IL, 61604, USA
| | - Susan P McCormick
- Mycotoxin Prevention and Applied Microbiology, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, IL, 61604, USA
| | - J Mitch Elmore
- Cereal Disease Laboratory, Agricultural Research Service, US Department of Agriculture, St. Paul, MN, 55108, USA.
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
2
|
Jeong E, Lim JY, Seo JA. Mycological and Genomic Characterization of Fusarium vorosii, a Potentially Pathogenic Fungus, Isolated from Field Crops and Weeds in Korea. THE PLANT PATHOLOGY JOURNAL 2024; 40:656-670. [PMID: 39639669 PMCID: PMC11626032 DOI: 10.5423/ppj.oa.08.2024.0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/10/2024] [Accepted: 11/02/2024] [Indexed: 12/07/2024]
Abstract
Fusarium vorosii (Fv) is one of the least studied species of the Fusarium graminearum species complex, a major plant pathogen causing Fusarium head blight (FHB) in a variety of crops. In this study, we isolated 12 strains of Fv from cereal samples with FHB symptoms and gramineous weeds. Trichothecene genotyping of Fv strains showed that 10 strains were nivalenol (NIV) type and 2 strains were 15-acetyldeoxynivalenol (15ADON) type. Fv strains have similar mycological characteristics to Fusarium asiaticum, a major FHB pathogen of rice in Asia, however, asexual sporulation was at least 100 to 1,000 times higher in Fv. In comparison of pathogenicity, the Fv-15ADON type was more pathogenic than the NIV type in both rice and wheat, and had a similar level of pathogenicity as the F. asiaticum-NIV type. Among the 12 Fv strains, two representative ones, Fv-NIV type RN1 and Fv-15ADON type W15A1, were selected and their whole genomes were sequenced and analyzed. Complete genome sequences of two Fv strains, RN1 and W15A1, were assembled at the chromosome level with high quality compared to known Fv genomes. The genome data of the two Fv strains were compared with the reference strains already known. As a result of comparative genome analysis, it was found that they are phylogenetically related according to the trichothecene biosynthetic gene cluster, that is, toxin chemotype. Through this study, we provided important information about Fv species that can be potential pathogens in domestic crops about biological and genomic characteristics.
Collapse
Affiliation(s)
- Eunji Jeong
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Korea
| | - Jae Yun Lim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Korea
| | - Jeong-Ah Seo
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Korea
| |
Collapse
|
3
|
Rhoades NA, McCormick SP, Vaughan MM, Hao G. The Emerging Fusarium graminearum NA3 Population Produces High Levels of Mycotoxins in Wheat and Barley. Toxins (Basel) 2024; 16:408. [PMID: 39330866 PMCID: PMC11435622 DOI: 10.3390/toxins16090408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Fusarium graminearum (Fg) is the primary causal agent of Fusarium head blight (FHB) in wheat, barley, and other small grains in North America and worldwide. FHB results in yield reduction and contaminates grain with mycotoxins that pose threats to human and livestock health. Three genetically distinct North American (NA) populations of Fg have been characterized, which are generally associated with differences in their predominant trichothecene chemotype: NA1/15-acetyl-deoxynivalenol (15-ADON), NA2/3-acetyl-deoxynivalenol (3-ADON), and NA3/3α-acetoxy, 7,15-dihydroxy-12,13-epoxytrichothec-9-ene (NX-2). Recent studies found that the NA3 population had significantly less spread on point-inoculated wheat spikes than the NA1 and NA2 populations, and NX toxins are important for Fg spread and initial infection in wheat. In this follow-up study, to compare the effect of the three populations on initial infection and mycotoxin production on different hosts, we dip-inoculated spikes of the moderately resistant wheat cultivar Alsen and the susceptible barley cultivar Voyager using five strains from each population to evaluate disease, trichothecene mycotoxin accumulation, and trichothecene production per unit of fungal biomass. In dip-inoculated wheat spikes, the NA3 population produced significantly more trichothecene per unit of fungal biomass and accumulated higher levels of trichothecene per plant biomass than the NA1 and NA2 populations, regardless of the disease levels caused by the three populations. In contrast to its critical role during wheat infection, NX toxins had no effect on barley infection. In dip-inoculated barley, the NA1 population was more infectious and caused more severe FHB symptoms than the NA2 and NA3 populations; however, the NA3 population produced significantly higher toxin per unit of fungal biomass in infected barley tissues than the NA1 population. This study provides critical information on the emerging NA3 population, which produces high levels of NX toxin and poses a potential food safety concern.
Collapse
Affiliation(s)
- Nicholas A Rhoades
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N. University, Peoria, IL 61604, USA
- Oak Ridge Institute for Science and Education, USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL 61604, USA
| | - Susan P McCormick
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N. University, Peoria, IL 61604, USA
| | - Martha M Vaughan
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N. University, Peoria, IL 61604, USA
| | - Guixia Hao
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N. University, Peoria, IL 61604, USA
| |
Collapse
|
4
|
Kasahara E, Kitamura Y, Katada M, Mizuki M, Okumura N, Sano T, Koizumi Y, Maeda K, Takahashi-Ando N, Kimura M, Nakajima Y. Attempting to Create a Pathway to 15-Deacetylcalonectrin with Limited Accumulation in Cultures of Fusarium Tri3 Mutants: Insight into Trichothecene Biosynthesis Machinery. Int J Mol Sci 2024; 25:6414. [PMID: 38928120 PMCID: PMC11203908 DOI: 10.3390/ijms25126414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The compound 15-deacetylcalonectrin (15-deCAL) is a common pathway intermediate in the biosynthesis of Fusarium trichothecenes. This tricyclic intermediate is metabolized to calonectrin (CAL) by trichothecene 15-O-acetyltransferase encoded by Tri3. Unlike other trichothecene pathway Tri gene mutants, the Δtri3 mutant produces lower amounts of the knocked-out enzyme's substrate 15-deCAL, and instead, accumulates higher quantities of earlier bicyclic intermediate and shunt metabolites. Furthermore, evolutionary studies suggest that Tri3 may play a role in shaping the chemotypes of trichothecene-producing Fusarium strains. To better understand the functional role of Tri3p in biosynthesis and evolution, we aimed to develop a method to produce 15-deCAL by using transgenic Fusarium graminearum strains derived from a trichothecene overproducer. Unfortunately, introducing mutant Tri3, encoding a catalytically impaired but structurally intact acetylase, did not improve the low 15-deCAL production level of the ΔFgtri3 deletion strain, and the bicyclic products continued to accumulate as the major metabolites of the active-site mutant. These findings are discussed in light of the enzyme responsible for 15-deCAL production in trichothecene biosynthesis machinery. To efficiently produce 15-deCAL, we tested an alternative strategy of using a CAL-overproducing transformant. By feeding a crude CAL extract to a Fusarium commune strain that was isolated in this study and capable of specifically deacetylating C-15 acetyl, 15-deCAL was efficiently recovered. The substrate produced in this manner can be used for kinetic investigations of this enzyme and its possible role in chemotype diversification.
Collapse
Affiliation(s)
- Ena Kasahara
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan; (E.K.); (Y.K.); (M.K.); (M.M.); (N.O.); (T.S.); (K.M.)
| | - Yuna Kitamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan; (E.K.); (Y.K.); (M.K.); (M.M.); (N.O.); (T.S.); (K.M.)
| | - Miho Katada
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan; (E.K.); (Y.K.); (M.K.); (M.M.); (N.O.); (T.S.); (K.M.)
| | - Masashi Mizuki
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan; (E.K.); (Y.K.); (M.K.); (M.M.); (N.O.); (T.S.); (K.M.)
| | - Natsuki Okumura
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan; (E.K.); (Y.K.); (M.K.); (M.M.); (N.O.); (T.S.); (K.M.)
| | - Tomomi Sano
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan; (E.K.); (Y.K.); (M.K.); (M.M.); (N.O.); (T.S.); (K.M.)
| | - Yoshiaki Koizumi
- Graduate School of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe 350-8585, Saitama, Japan; (Y.K.); (N.T.-A.)
| | - Kazuyuki Maeda
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan; (E.K.); (Y.K.); (M.K.); (M.M.); (N.O.); (T.S.); (K.M.)
| | - Naoko Takahashi-Ando
- Graduate School of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe 350-8585, Saitama, Japan; (Y.K.); (N.T.-A.)
| | - Makoto Kimura
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan; (E.K.); (Y.K.); (M.K.); (M.M.); (N.O.); (T.S.); (K.M.)
| | - Yuichi Nakajima
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan; (E.K.); (Y.K.); (M.K.); (M.M.); (N.O.); (T.S.); (K.M.)
| |
Collapse
|
5
|
Ning X, Ye Y, Ji J, Hui Y, Li J, Chen P, Jin S, Liu T, Zhang Y, Cao J, Sun X. Restricted-Access Media Column Switching Online Solid-Phase Extraction UHPLC-MS/MS for the Determination of Seven Type B Trichothecenes in Whole-Grain Preprocessed Foods and Human Exposure Risk Assessment. TOXICS 2024; 12:336. [PMID: 38787115 PMCID: PMC11126074 DOI: 10.3390/toxics12050336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024]
Abstract
With increasing health awareness and the accelerating pace of life, whole-grain prepared foods have gained popularity due to their health benefits and convenience. However, the potential risk of type B trichothecene toxins has also increased, and these mycotoxins in such foods are rarely regulated. In this study, a quantitative method combining a single-valve dual-column automatic online solid-phase extraction system with ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was developed for the first time using restricted-access media columns. This method can simultaneously determine trace residues of seven type B trichothecenes within 15 min. The method is convenient, sensitive (limit of detection and quantification of 0.05-0.6 μg/kg and 0.15-2 μg/kg, respectively), accurate (recovery rates of 90.3%-106.6%, relative standard deviation < 4.3%), and robust (>1000 times). The established method was applied to 160 prepared food samples of eight categories sold in China. At least one toxin was detected in 70% of the samples. Whole-wheat dumpling wrappers had the highest contamination rate (95%) and the highest total content of type B trichothecenes in a single sample (2077.3 μg/kg). Exposure risk assessment indicated that the contamination of whole-grain prepared foods has been underestimated. The total health risk index of whole-wheat dumpling wrappers, which are susceptible to deoxynivalenol, reached 136.41%, posing a significant threat to human health. Effective measures urgently need to be taken to control this risk.
Collapse
Affiliation(s)
- Xiao Ning
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (X.N.); (Y.Y.); (J.J.); (Y.Z.)
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute of Food and Drug Control, Beijing 100050, China; (J.L.)
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (X.N.); (Y.Y.); (J.J.); (Y.Z.)
| | - Jian Ji
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (X.N.); (Y.Y.); (J.J.); (Y.Z.)
| | - Yanchun Hui
- Sanyo Fine Trading Co., Ltd., Beijing 100176, China
| | - Jingyun Li
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute of Food and Drug Control, Beijing 100050, China; (J.L.)
| | - Po Chen
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute of Food and Drug Control, Beijing 100050, China; (J.L.)
| | - Shaoming Jin
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute of Food and Drug Control, Beijing 100050, China; (J.L.)
| | - Tongtong Liu
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute of Food and Drug Control, Beijing 100050, China; (J.L.)
| | - Yinzhi Zhang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (X.N.); (Y.Y.); (J.J.); (Y.Z.)
| | - Jin Cao
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute of Food and Drug Control, Beijing 100050, China; (J.L.)
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (X.N.); (Y.Y.); (J.J.); (Y.Z.)
| |
Collapse
|
6
|
Mao X, Li L, Abubakar YS, Li Y, Luo Z, Chen M, Zheng W, Wang Z, Zheng H. Nucleoside Diphosphate Kinase FgNdpk Is Required for DON Production and Pathogenicity by Regulating the Growth and Toxisome Formation of Fusarium graminearum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9637-9646. [PMID: 38642053 DOI: 10.1021/acs.jafc.4c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
Nucleoside diphosphate kinases (NDPKs) are nucleotide metabolism enzymes that play different physiological functions in different species. However, the roles of NDPK in phytopathogen and mycotoxin production are not well understood. In this study, we showed that Fusarium graminearum FgNdpk is important for vegetative growth, conidiation, sexual development, and pathogenicity. Furthermore, FgNdpk is required for deoxynivalenol (DON) production; deletion of FgNDPK downregulates the expression of DON biosynthesis genes and disrupts the formation of FgTri4-GFP-labeled toxisomes, while overexpression of FgNDPK significantly increases DON production. Interestingly, FgNdpk colocalizes with the DON biosynthesis proteins FgTri1 and FgTri4 in the toxisome, and coimmunoprecipitation (Co-IP) assays show that FgNdpk associates with FgTri1 and FgTri4 in vivo and regulates their localizations and expressions, respectively. Taken together, these data demonstrate that FgNdpk is important for vegetative growth, conidiation, and pathogenicity and acts as a key protein that regulates toxisome formation and DON biosynthesis in F. graminearum.
Collapse
Affiliation(s)
- Xuzhao Mao
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lingping Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yakubu Saddeeq Abubakar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria 810281, Nigeria
| | - Yulong Li
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zenghong Luo
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meilian Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zonghua Wang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huawei Zheng
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| |
Collapse
|
7
|
Meneely J, Greer B, Kolawole O, Elliott C. T-2 and HT-2 Toxins: Toxicity, Occurrence and Analysis: A Review. Toxins (Basel) 2023; 15:481. [PMID: 37624238 PMCID: PMC10467144 DOI: 10.3390/toxins15080481] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/11/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
One of the major classes of mycotoxins posing serious hazards to humans and animals and potentially causing severe economic impact to the cereal industry are the trichothecenes, produced by many fungal genera. As such, indicative limits for the sum of T-2 and HT-2 were introduced in the European Union in 2013 and discussions are ongoing as to the establishment of maximum levels. This review provides a concise assessment of the existing understanding concerning the toxicological effects of T-2 and HT-2 in humans and animals, their biosynthetic pathways, occurrence, impact of climate change on their production and an evaluation of the analytical methods applied to their detection. This study highlights that the ecology of F. sporotrichioides and F. langsethiae as well as the influence of interacting environmental factors on their growth and activation of biosynthetic genes are still not fully understood. Predictive models of Fusarium growth and subsequent mycotoxin production would be beneficial in predicting the risk of contamination and thus aid early mitigation. With the likelihood of regulatory maximum limits being introduced, increased surveillance using rapid, on-site tests in addition to confirmatory methods will be required. allowing the industry to be proactive rather than reactive.
Collapse
Affiliation(s)
- Julie Meneely
- Institute for Global Food Security, National Measurement Laboratory: Centre of Excellence in Agriculture and Food Integrity, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (B.G.); (O.K.); (C.E.)
- The International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Pahonyothin Road, Khong Luang 12120, Thailand
| | - Brett Greer
- Institute for Global Food Security, National Measurement Laboratory: Centre of Excellence in Agriculture and Food Integrity, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (B.G.); (O.K.); (C.E.)
- The International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Pahonyothin Road, Khong Luang 12120, Thailand
| | - Oluwatobi Kolawole
- Institute for Global Food Security, National Measurement Laboratory: Centre of Excellence in Agriculture and Food Integrity, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (B.G.); (O.K.); (C.E.)
- The International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Pahonyothin Road, Khong Luang 12120, Thailand
| | - Christopher Elliott
- Institute for Global Food Security, National Measurement Laboratory: Centre of Excellence in Agriculture and Food Integrity, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (B.G.); (O.K.); (C.E.)
- The International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Pahonyothin Road, Khong Luang 12120, Thailand
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Pahonyothin Road, Khong Luang 12120, Thailand
| |
Collapse
|
8
|
Wang J, Zhang M, Yang J, Yang X, Zhang J, Zhao Z. Type A Trichothecene Metabolic Profile Differentiation, Mechanisms, Biosynthetic Pathways, and Evolution in Fusarium Species-A Mini Review. Toxins (Basel) 2023; 15:446. [PMID: 37505715 PMCID: PMC10467051 DOI: 10.3390/toxins15070446] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Abstract
Trichothecenes are the most common Fusarium toxins detected in grains and related products. Type A trichothecenes are among the mycotoxins of greatest concern to food and feed safety due to their high toxicity. Recently, two different trichothecene genotypes within Fusarium species were reported. The available information showed that Tri1 and Tri16 genes are the key determinants of the trichothecene profiles of T-2 and DAS genotypes. In this review, polymorphisms in the Tri1 and Tri16 genes in the two genotypes were investigated. Meanwhile, the functions of genes involved in DAS and NEO biosynthesis are discussed. The possible biosynthetic pathways of DAS and NEO are proposed in this review, which will facilitate the understanding of the synthesis process of trichothecenes in Fusarium strains and may also inspire researchers to design and conduct further research. Together, the review provides insight into trichothecene profile differentiation and Tri gene evolutionary processes responsible for the structural diversification of trichothecene produced by Fusarium.
Collapse
Affiliation(s)
- Jianhua Wang
- Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China; (M.Z.); (J.Y.); (X.Y.); (J.Z.); (Z.Z.)
| | - Mengyuan Zhang
- Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China; (M.Z.); (J.Y.); (X.Y.); (J.Z.); (Z.Z.)
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Junhua Yang
- Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China; (M.Z.); (J.Y.); (X.Y.); (J.Z.); (Z.Z.)
| | - Xianli Yang
- Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China; (M.Z.); (J.Y.); (X.Y.); (J.Z.); (Z.Z.)
| | - Jiahui Zhang
- Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China; (M.Z.); (J.Y.); (X.Y.); (J.Z.); (Z.Z.)
| | - Zhihui Zhao
- Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China; (M.Z.); (J.Y.); (X.Y.); (J.Z.); (Z.Z.)
| |
Collapse
|
9
|
Luo K, Guo J, He D, Li G, Ouellet T. Deoxynivalenol accumulation and detoxification in cereals and its potential role in wheat- Fusarium graminearum interactions. ABIOTECH 2023; 4:155-171. [PMID: 37581023 PMCID: PMC10423186 DOI: 10.1007/s42994-023-00096-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/27/2023] [Indexed: 08/16/2023]
Abstract
Deoxynivalenol (DON) is a prominent mycotoxin showing significant accumulation in cereal plants during infection by the phytopathogen Fusarium graminearum. It is a virulence factor that is important in the spread of F. graminearum within cereal heads, and it causes serious yield losses and significant contamination of cereal grains. In recent decades, genetic and genomic studies have facilitated the characterization of the molecular pathways of DON biosynthesis in F. graminearum and the environmental factors that influence DON accumulation. In addition, diverse scab resistance traits related to the repression of DON accumulation in plants have been identified, and experimental studies of wheat-pathogen interactions have contributed to understanding detoxification mechanisms in host plants. The present review illustrates and summarizes the molecular networks of DON mycotoxin production in F. graminearum and the methods of DON detoxification in plants based on the current literature, which provides molecular targets for crop improvement programs. This review also comprehensively discusses recent advances and challenges related to genetic engineering-mediated cultivar improvements to strengthen scab resistance. Furthermore, ongoing advancements in genetic engineering will enable the application of these molecular targets to develop more scab-resistant wheat cultivars with DON detoxification traits.
Collapse
Affiliation(s)
- Kun Luo
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, 716000 China
| | - Jiao Guo
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, 716000 China
| | - Dejia He
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, 716000 China
| | - Guangwei Li
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, 716000 China
| | - Thérèse Ouellet
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON K1A 0C6 Canada
| |
Collapse
|
10
|
Huang W, Zhou P, Shen G, Gao T, Liu X, Shi J, Xu J, Qiu J. Relationship Between Mycotoxin Production and Gene Expression in Fusarium graminearum Species Complex Strains Under Various Environmental Conditions. J Microbiol 2023:10.1007/s12275-023-00046-4. [PMID: 37129765 DOI: 10.1007/s12275-023-00046-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
The Fusarium graminearum species complex (FGSC) can produce various mycotoxins and is a major concern for food quantity and quality worldwide. In this study, we determined the effects of water activity (aw), temperature, incubation time and their interactions on mycotoxin accumulation and the expression levels of biosynthetic genes in FGSC strains from maize samples in China. The highest deoxynivalenol (DON), 3-acetyldeoxynivalenol(3ADON) and 15-acetyldeoxynivalenol (15ADON) levels of the F. boothii and F. graminearum strains were observed at 0.98 aw/30 °C or 0.99 aw/25 °C. F. asiaticum and F. meridionale reached maximum nivalenol (NIV) and 4-acetylnivalenol (4ANIV) contents at 0.99 aw and 30 °C. With the extension of the incubation time, the concentrations of DON and NIV gradually increased, while those of their derivatives decreased. F. boothii, F. meridionale and one F. asiaticum strain had the highest zearalenone (ZEN) values at 0.95 aw and 25 °C, while the optimum conditions for the other F. asiaticum strain and F. graminearum were 0.99 aw and 30 °C. Four genes associated with trichothecene and zearalenone synthesis were significantly induced under higher water stress in the early stage of production. The results indicated independence of mycotoxin production and gene expression, as maximum amounts of these toxic metabolites were observed at higher aw in most cases. This study provides useful information for the monitoring and prevention of such toxins entering the maize production chain.
Collapse
Affiliation(s)
- Wenwen Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Ping Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Guanghui Shen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Tao Gao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Xin Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Jianrong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Jianhong Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Jianbo Qiu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China.
| |
Collapse
|
11
|
Khairullina A, Micic N, Jørgensen HJL, Bjarnholt N, Bülow L, Collinge DB, Jensen B. Biocontrol Effect of Clonostachys rosea on Fusarium graminearum Infection and Mycotoxin Detoxification in Oat ( Avena sativa). PLANTS (BASEL, SWITZERLAND) 2023; 12:500. [PMID: 36771583 PMCID: PMC9918947 DOI: 10.3390/plants12030500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 06/01/2023]
Abstract
Oat (Avena sativa) is susceptible to Fusarium head blight (FHB). The quality of oat grain is threatened by the accumulation of mycotoxins, particularly the trichothecene deoxynivalenol (DON), which also acts as a virulence factor for the main pathogen Fusarium graminearum. The plant can defend itself, e.g., by DON detoxification by UGT-glycosyltransferases (UTGs) and accumulation of PR-proteins, even though these mechanisms do not deliver effective levels of resistance. We studied the ability of the fungal biocontrol agent (BCA) Clonostachys rosea to reduce FHB and mycotoxin accumulation. Greenhouse trials showed that C. rosea-inoculation of oat spikelets at anthesis 3 days prior to F. graminearum inoculation reduced both the amount of Fusarium DNA (79%) and DON level (80%) in mature oat kernels substantially. DON applied to C. rosea-treated spikelets resulted in higher conversion of DON to DON-3-Glc than in mock treated plants. Moreover, there was a significant enhancement of expression of two oat UGT-glycosyltransferase genes in C. rosea-treated oat. In addition, C. rosea treatment activated expression of genes encoding four PR-proteins and a WRKY23-like transcription factor, suggesting that C. rosea may induce resistance in oat. Thus, C. rosea IK726 has strong potential to be used as a BCA against FHB in oat as it inhibits F. graminearum infection effectively, whilst detoxifying DON mycotoxin rapidly.
Collapse
Affiliation(s)
- Alfia Khairullina
- Division of Pure and Applied Biochemistry, Lund University, 221 00 Lund, Sweden
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Nikola Micic
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Hans J. Lyngs Jørgensen
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Nanna Bjarnholt
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Leif Bülow
- Division of Pure and Applied Biochemistry, Lund University, 221 00 Lund, Sweden
| | - David B. Collinge
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Birgit Jensen
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| |
Collapse
|
12
|
Powell AJ, Kim SH, Cordero J, Vujanovic V. Protocooperative Effect of Sphaerodes mycoparasitica Biocontrol and Crop Genotypes on FHB Mycotoxin Reduction in Bread and Durum Wheat Grains Intended for Human and Animal Consumption. Microorganisms 2023; 11:microorganisms11010159. [PMID: 36677451 PMCID: PMC9861577 DOI: 10.3390/microorganisms11010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 01/11/2023] Open
Abstract
The occurrence of Fusarium Head Blight (FHB) mycotoxins in wheat grains is a major threat to global food safety and security. Humans and animals are continuously being exposed to Fusarium mycotoxins such as deoxynivalenol (DON) and its acetylated derivatives 3ADON and 15ADON through the ingestion of contaminated food or grain-based diet. In this study, a host-specific mycoparasite biocontrol agent (BCA), Sphaerodes mycoparasitica, significantly reduced FHB mycotoxin occurrence in harvested wheat grains from Fusarium graminearum 3ADON chemotype infected plants in greenhouse. Four genotypes of wheat, two common wheat and two durum wheat cultivars with varying FHB resistance levels were used in this study. Principal Coordinate Analysis (PCoA) using Illumina ITS sequences depicted beta diversity changes in Fusarium species indicating that both plant cultivar and BCA treatments influenced the Fusarium species structure and mycotoxin occurrence in grains. Fusarium graminearum complex (cluster A), F. avenaceum and F. acuminatum (cluster B), and F. proliferatum (cluster C) variants were associated with different FHB mycotoxins based on LC-MS/MS analyses. The predominant FHB mycotoxins measured were DON and its acetylated derivatives 3ADON and 15ADON. The BCA reduced the occurrence of DON in grains of all four cultivars (common wheat: 1000-30,000 µg·kg-1.; durum wheat: 600-1000 µg·kg-1) to levels below the Limit of Quantification (LOQ) of 16 µg·kg-1. A relatively higher concentration of DON was detected in the two common wheat genotypes when compared to the durum wheat genotype; however, the percentage reduction in the wheat genotypes was greater, reaching up to 99% with some S. mycoparasitica treatments. Similarly, a higher reduction in DON was measured in susceptible genotypes than in resistant genotypes. This study's findings underscore the potential of a Fusarium-specific S. mycoparasitica BCA as a safe and promising alternative that can be used in conjunction with other management practices to minimize FHB mycotoxins in cereal grain, food and feed intended for human and animal consumption.
Collapse
|
13
|
Proctor RH, Hao G, Kim HS, Whitaker BK, Laraba I, Vaughan MM, McCormick SP. A Novel Trichothecene Toxin Phenotype Associated with Horizontal Gene Transfer and a Change in Gene Function in Fusarium. Toxins (Basel) 2022; 15:12. [PMID: 36668832 PMCID: PMC9864338 DOI: 10.3390/toxins15010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/10/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Fusarium trichothecenes are among the mycotoxins of most concern to food and feed safety. Production of these mycotoxins and presence of the trichothecene biosynthetic gene (TRI) cluster have been confirmed in only two multispecies lineages of Fusarium: the Fusarium incarnatum-equiseti (Incarnatum) and F. sambucinum (Sambucinum) species complexes. Here, we identified and characterized a TRI cluster in a species that has not been formally described and is represented by Fusarium sp. NRRL 66739. This fungus is reported to be a member of a third Fusarium lineage: the F. buharicum species complex. Cultures of NRRL 66739 accumulated only two trichothecenes, 7-hydroxyisotrichodermin and 7-hydroxyisotrichodermol. Although these are not novel trichothecenes, the production profile of NRRL 66739 is novel, because in previous reports 7-hydroxyisotrichodermin and 7-hydroxyisotrichodermol were components of mixtures of 6-8 trichothecenes produced by several Fusarium species in Sambucinum. Heterologous expression analysis indicated that the TRI13 gene in NRRL 66739 confers trichothecene 7-hydroxylation. This contrasts the trichothecene 4-hydroxylation function of TRI13 in other Fusarium species. Phylogenetic analyses suggest that NRRL 66739 acquired the TRI cluster via horizontal gene transfer from a close relative of Incarnatum and Sambucinum. These findings provide insights into evolutionary processes that have shaped the distribution of trichothecene production among Fusarium species and the structural diversity of the toxins.
Collapse
Affiliation(s)
- Robert H. Proctor
- Mycotoxin Prevention and Applied Microbiology, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, 1815 N University St., Peoria, IL 61604, USA
| | - Guixia Hao
- Mycotoxin Prevention and Applied Microbiology, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, 1815 N University St., Peoria, IL 61604, USA
| | - Hye-Seon Kim
- Mycotoxin Prevention and Applied Microbiology, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, 1815 N University St., Peoria, IL 61604, USA
| | - Briana K. Whitaker
- Mycotoxin Prevention and Applied Microbiology, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, 1815 N University St., Peoria, IL 61604, USA
| | - Imane Laraba
- Oak Ridge Institute for Science and Education, Mycotoxin Prevention and Applied Microbiology, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, IL 61604, USA
| | - Martha M. Vaughan
- Mycotoxin Prevention and Applied Microbiology, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, 1815 N University St., Peoria, IL 61604, USA
| | - Susan P. McCormick
- Mycotoxin Prevention and Applied Microbiology, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, 1815 N University St., Peoria, IL 61604, USA
| |
Collapse
|
14
|
Bamforth J, Chin T, Ashfaq T, Gamage NW, Pleskach K, Tittlemier SA, Henriquez MA, Kurera S, Lee SJ, Patel B, Gräfenhan T, Walkowiak S. A survey of Fusarium species and ADON genotype on Canadian wheat grain. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:1062444. [PMID: 37746237 PMCID: PMC10512222 DOI: 10.3389/ffunb.2022.1062444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/17/2022] [Indexed: 09/26/2023]
Abstract
Introduction Wheat is a staple food that is important to global food security, but in epidemic years, fungal pathogens can threaten production, quality, and safety of wheat grain. Globally, one of the most important fungal diseases of wheat is Fusarium head blight (FHB). This disease can be caused by several different Fusarium species with known differences in aggressiveness and mycotoxin-production potential, with the trichothecene toxin deoxynivalenol (DON) and its derivatives being of particular concern. In North America, the most predominant species causing FHB is F. graminearum, which has two distinct sub-populations that are commonly classified into two main chemotypes/genotypes based on their propensity to form trichothecene derivatives, namely 15-acetyldeoxynivalenol (15-ADON) and 3-acetyldeoxynivalenol (3-ADON). Materials and methods We used a panel of 13 DNA markers to perform species and ADON genotype identification for 55, 444 wheat kernels from 7, 783 samples originating from across Canada from 2014 to 2020. Results and discussion Based on single-seed analyses, we demonstrate the relationships between Fusarium species and trichothecene chemotype with sample year, sample location, wheat species (hexaploid and durum wheat), severity of Fusarium damaged kernels (FDK), and accumulation of DON. Results indicate that various Fusarium species are present across wheat growing regions in Canada; however, F. graminearum is the most common species and 3-ADON the most common genotype. We observed an increase in the occurrence of the 3-ADON genotype, particularly in the western Prairie regions. Our data provides important information on special-temporal trends in Fusarium species and chemotypes that can aid with the implementation of integrated disease management strategies to control the detrimental effects of this devastating disease.
Collapse
Affiliation(s)
- Janice Bamforth
- Canadian Grain Commission, Grain Research Laboratory, Winnipeg, MB, Canada
| | - Tiffany Chin
- Canadian Grain Commission, Grain Research Laboratory, Winnipeg, MB, Canada
| | - Tehreem Ashfaq
- Canadian Grain Commission, Grain Research Laboratory, Winnipeg, MB, Canada
| | | | - Kerri Pleskach
- Canadian Grain Commission, Grain Research Laboratory, Winnipeg, MB, Canada
| | | | - Maria Antonia Henriquez
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, MB, Canada
- University of Manitoba, Plant Science, Winnipeg, MB, Canada
| | - Shimosh Kurera
- Canadian Grain Commission, Grain Research Laboratory, Winnipeg, MB, Canada
- University of Manitoba, Microbiology, Winnipeg, MB, Canada
| | - Sung-Jong Lee
- Canadian Grain Commission, Grain Research Laboratory, Winnipeg, MB, Canada
| | - Bhaktiben Patel
- Canadian Grain Commission, Grain Research Laboratory, Winnipeg, MB, Canada
| | - Tom Gräfenhan
- Canadian Grain Commission, Grain Research Laboratory, Winnipeg, MB, Canada
- Julius-Maximilian-University, Core Unit Systems Medicine, Würzburg, Bavaria, Germany
| | - Sean Walkowiak
- Canadian Grain Commission, Grain Research Laboratory, Winnipeg, MB, Canada
- University of Manitoba, Plant Science, Winnipeg, MB, Canada
| |
Collapse
|
15
|
Modified Mycotoxins, a Still Unresolved Issue. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mycotoxins are toxic secondary metabolites produced by filamentous microfungi on almost every agricultural commodity worldwide. After the infection of crop plants, mycotoxins are modified by plant enzymes or other fungi and often conjugated to more polar substances, like sugars. The formed—often less toxic—metabolites are stored in the vacuole in soluble form or bound to macromolecules. As these substances are usually not detected during routine analysis and no maximum limits are in force, they are called modified mycotoxins. While, in most cases, modified mycotoxins have lower intrinsic toxicity, they might be reactivated during mammalian metabolism. In particular, the polar group might be cleaved off (e.g., by intestinal bacteria), releasing the native mycotoxin. This review aims to provide an overview of the critical issues related to modified mycotoxins. The main conclusion is that analytical aspects, toxicological evaluation, and exposure assessment merit more investigation.
Collapse
|
16
|
Haidoulis JF, Nicholson P. Tissue-specific transcriptome responses to Fusarium head blight and Fusarium root rot. FRONTIERS IN PLANT SCIENCE 2022; 13:1025161. [PMID: 36352885 PMCID: PMC9637937 DOI: 10.3389/fpls.2022.1025161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Fusarium head blight (FHB) and Fusarium root rot (FRR) are important diseases of small-grain cereals caused by Fusarium species. While host response to FHB has been subject to extensive study, very little is known about response to FRR and the transcriptome responses of FHB and FRR have not been thoroughly compared. Brachypodium distachyon (Bd) is an effective model for investigating host responses to both FHB and FRR. In this study the transcriptome response of Bd to F. graminearum (Fg) infection of heads and roots was investigated. An RNA-seq analysis was performed on both Bd FHB and FRR during the early infection. Additionally, an RNA-seq analysis was performed on in vitro samples of Fg for comparison with Fg gene expression in planta. Differential gene expression and gene-list enrichment analyses were used to compare FHB and FRR transcriptome responses in both Bd and Fg. Differential expression of selected genes was confirmed using RT-qPCR. Most genes associated with receptor signalling, cell-wall modification, oxidative stress metabolism, and cytokinin and auxin biosynthesis and signalling genes were generally upregulated in FHB or were downregulated in FRR. In contrast, Bd genes involved in jasmonic acid and ethylene biosynthesis and signalling, and antimicrobial production were similarly differentially expressed in both tissues in response to infection. A transcriptome analysis of predicted Fg effectors with the same infected material revealed elevated expression of core tissue-independent genes including cell-wall degradation enzymes and the gene cluster for DON production but also several tissue-dependent genes including those for aurofusarin production and cutin degradation. This evidence suggests that Fg modulates its transcriptome to different tissues of the same host.
Collapse
Affiliation(s)
| | - Paul Nicholson
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, England
| |
Collapse
|
17
|
Recent advances on formation, transformation, occurrence, and analytical strategy of modified mycotoxins in cereals and their products. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Van Coller GJ, Rose LJ, Boutigny AL, Ward TJ, Lamprecht SC, Viljoen A. The distribution and type B trichothecene chemotype of Fusarium species associated with head blight of wheat in South Africa during 2008 and 2009. PLoS One 2022; 17:e0275084. [PMID: 36156602 PMCID: PMC9512189 DOI: 10.1371/journal.pone.0275084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/09/2022] [Indexed: 11/19/2022] Open
Abstract
Fusarium head blight (FHB) of wheat occurs commonly in irrigation regions of South Africa and less frequently in dryland regions. Previous surveys of Fusarium species causing FHB identified isolates using morphological characters only. This study reports on a comprehensive characterisation of FHB pathogens conducted in 2008 and 2009. Symptomatic wheat heads were collected from the Northern Cape, KwaZulu-Natal (KZN), Bushveld and eastern Free State (irrigation regions), and from one field in the Western Cape (dryland region). Fusarium isolates were identified with species-specific primers or analysis of partial EF-1α sequences. A representative subset of isolates was characterized morphologically. In total, 1047 Fusarium isolates were collected, comprising 24 species from seven broad species complexes. The F. sambucinum (FSAMSC) and F. incarnatum-equiseti species complexes (FIESC) were most common (83.5% and 13.3% of isolates, respectively). The F. chlamydosporum (FCSC), F. fujikuroi (FFSC), F. oxysporum (FOSC), F. solani (FSSC), and F. tricinctum species complexes (FTSC) were also observed. Within the FSAMSC, 90.7% of isolates belonged to the F. graminearum species complex (FGSC), accounting for 75.7% of isolates. The FGSC was the dominant Fusaria in all four irrigation regions. F. pseudograminearum dominated at the dryland field in the Western Cape. The Northern Cape had the highest species diversity (16 Fusarium species from all seven species complexes). The type B trichothecene chemotype of FGSC and related species was inferred with PCR. Chemotype diversity was limited (15-ADON = 90.1%) and highly structured in relation to species differences. These results expand the known species diversity associated with FHB in South Africa and include first reports of F. acuminatum, F. armeniacum, F. avenaceum, F. temperatum, and F. pseudograminearum from wheat heads in South Africa, and of F. brachygibbosum, F. lunulosporum and F. transvaalense from wheat globally. Potentially novel species were identified within the FCSC, FFSC, FOSC, FSAMSC, FIESC and FTSC.
Collapse
Affiliation(s)
- Gerhardus J. Van Coller
- Directorate: Plant Science, Western Cape Department of Agriculture, Elsenburg, South Africa
- Department of Plant Pathology, Stellenbosch University, Matieland, South Africa
- * E-mail:
| | - Lindy J. Rose
- Department of Plant Pathology, Stellenbosch University, Matieland, South Africa
| | - Anne-Laure Boutigny
- Department of Plant Pathology, Stellenbosch University, Matieland, South Africa
| | - Todd J. Ward
- United States Department of Agriculture–Agricultural Research Service, Peoria, Illinois, United States of America
| | | | - Altus Viljoen
- Department of Plant Pathology, Stellenbosch University, Matieland, South Africa
| |
Collapse
|
19
|
Kumar P, Mahato DK, Gupta A, Pandey S, Paul V, Saurabh V, Pandey AK, Selvakumar R, Barua S, Kapri M, Kumar M, Kaur C, Tripathi AD, Gamlath S, Kamle M, Varzakas T, Agriopoulou S. Nivalenol Mycotoxin Concerns in Foods: An Overview on Occurrence, Impact on Human and Animal Health and Its Detection and Management Strategies. Toxins (Basel) 2022; 14:toxins14080527. [PMID: 36006189 PMCID: PMC9413460 DOI: 10.3390/toxins14080527] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/27/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungi that infect a wide range of foods worldwide. Nivalenol (NIV), a type B trichothecene produced by numerous Fusarium species, has the ability to infect a variety of foods both in the field and during post-harvest handling and management. NIV is frequently found in cereal and cereal-based goods, and its strong cytotoxicity poses major concerns for both human and animal health. To address these issues, this review briefly overviews the sources, occurrence, chemistry and biosynthesis of NIV. Additionally, a brief overview of several sophisticated detection and management techniques is included, along with the implications of processing and environmental factors on the formation of NIV. This review’s main goal is to offer trustworthy and current information on NIV as a mycotoxin concern in foods, with potential mitigation measures to assure food safety and security.
Collapse
Affiliation(s)
- Pradeep Kumar
- Applied Microbiology Laboratory, Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India;
- Department of Botany, University of Lucknow, Lucknow 226007, India
- Correspondence: (P.K.); (S.A.)
| | - Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia; (D.K.M.); (S.G.)
| | - Akansha Gupta
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (A.G.); (S.P.); (V.P.); (A.D.T.)
| | - Surabhi Pandey
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (A.G.); (S.P.); (V.P.); (A.D.T.)
| | - Veena Paul
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (A.G.); (S.P.); (V.P.); (A.D.T.)
| | - Vivek Saurabh
- Division of Food Science and Postharvest Technology, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (V.S.); (C.K.)
| | - Arun Kumar Pandey
- Food Science and Technology, MMICT & BM(HM) Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India;
| | - Raman Selvakumar
- Centre for Protected Cultivation Technology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India;
| | - Sreejani Barua
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur 721302, India;
| | - Mandira Kapri
- Centre for Rural Development and Technology (CRDT), Indian Institute of Technology Delhi (IITD), New Delhi 110016, India;
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India;
| | - Charanjit Kaur
- Division of Food Science and Postharvest Technology, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (V.S.); (C.K.)
| | - Abhishek Dutt Tripathi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (A.G.); (S.P.); (V.P.); (A.D.T.)
| | - Shirani Gamlath
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia; (D.K.M.); (S.G.)
| | - Madhu Kamle
- Applied Microbiology Laboratory, Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India;
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece;
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece;
- Correspondence: (P.K.); (S.A.)
| |
Collapse
|
20
|
Schiwek S, Alhussein M, Rodemann C, Budragchaa T, Beule L, von Tiedemann A, Karlovsky P. Fusarium culmorum Produces NX-2 Toxin Simultaneously with Deoxynivalenol and 3-Acetyl-Deoxynivalenol or Nivalenol. Toxins (Basel) 2022; 14:456. [PMID: 35878194 PMCID: PMC9324393 DOI: 10.3390/toxins14070456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/14/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Fusarium culmorum is a major pathogen of grain crops. Infected plants accumulate deoxynivalenol (DON), 3-acetyl-deoxynivalenol (3-ADON), or nivalenol (NIV), which are mycotoxins of the trichothecene B group. These toxins are also produced by F. graminearum species complex. New trichothecenes structurally similar to trichothecenes B but lacking the carbonyl group on C-8, designated NX toxins, were recently discovered in atypical isolates of F. graminearum from North America. Only these isolates and a few strains of a yet to be characterized Fusarium species from South Africa are known to produce NX-2 and other NX toxins. Here, we report that among 20 F. culmorum strains isolated from maize, wheat, and oat in Europe and Asia over a period of 70 years, 18 strains produced NX-2 simultaneously with 3-ADON and DON or NIV. Rice cultures of strains producing 3-ADON accumulated NX-2 in amounts corresponding to 2−8% of 3-ADON (1.2−36 mg/kg). A strain producing NIV accumulated NX-2 and NIV at comparable amounts (13.6 and 10.3 mg/kg, respectively). In F. graminearum, producers of NX-2 possess a special variant of cytochrome P450 monooxygenase encoded by TRI1 that is unable to oxidize C-8. In F. culmorum, producers and nonproducers of NX-2 possess identical TRI1; the reason for the production of NX-2 is unknown. Our results indicate that the production of NX-2 simultaneously with trichothecenes B is a common feature of F. culmorum.
Collapse
Affiliation(s)
- Simon Schiwek
- Institute for Plant Protection in Field Crops and Grassland, Julius Kuehn-Institute, D-38104 Braunschweig, Germany
| | - Mohammad Alhussein
- Molecular Phytopathology and Mycotoxin Research, University of Goettingen, D-37077 Goettingen, Germany;
| | - Charlotte Rodemann
- Plant Phytopathology and Crop Protection, University of Goettingen, D-37077 Goettingen, Germany; (C.R.); (A.v.T.)
| | - Tuvshinjargal Budragchaa
- Department of Bioorganic Chemistry, Leibniz Institute for Plant Biochemistry, D-06120 Halle, Germany;
| | - Lukas Beule
- Plant Analysis and Stored Product Protection, Institute for Ecological Chemistry, Julius Kuehn-Institute, D-14195 Berlin, Germany;
| | - Andreas von Tiedemann
- Plant Phytopathology and Crop Protection, University of Goettingen, D-37077 Goettingen, Germany; (C.R.); (A.v.T.)
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, University of Goettingen, D-37077 Goettingen, Germany;
| |
Collapse
|
21
|
Albuquerque DR, Patriarca A, Pinto VF. Water activity influence on the simultaneous production of DON, 3-ADON and 15-ADON by a strain of fusarium graminearum ss of 15-ADON genotype. Int J Food Microbiol 2022; 373:109721. [DOI: 10.1016/j.ijfoodmicro.2022.109721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
|
22
|
Hafez M, Gourlie R, Telfer M, Schatz N, Turkington TK, Beres B, Aboukhaddour R. Diversity of Fusarium spp. Associated with Wheat Node and Grain in Representative Sites Across the Western Canadian Prairies. PHYTOPATHOLOGY 2022; 112:1003-1015. [PMID: 34818906 DOI: 10.1094/phyto-06-21-0241-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fusarium head blight (FHB) and Fusarium crown and root rot (FCRR) are major wheat diseases. Populations of FHB and FCRR pathogens are highly dynamic, and shifts in these populations in different regions is reported. Analyzing fungal populations associated with wheat node and grain tissues collected from different regions can provide useful information and predict diseases that might affect subsequent crops and effective disease management practices. In this study, wheat node and grain samples were collected from four representative sites across the western Canadian prairies in the 2018 growing season to characterize the major Fusarium spp. and other mycobiota associated with wheat in these regions. In total, 994 fungal isolates were recovered, and based on culture and molecular diagnostic methods, three genera constituted over 90% of all fungal isolates, namely Alternaria (39.6%), Fusarium (27.8%), and Parastagonospora (23.9%). A quantitative PCR (qPCR) diagnostic toolkit was developed to quantify the most frequently isolated Fusarium spp. in infected wheat tissues: Fusarium avenaceum, F. culmorum, F. graminearum, and F. poae. This qPCR specificity was validated in silico, in vitro, and in planta and proved specific to the target species. The qPCR results showed that F. graminearum was not detected frequently from wheat node and grain samples collected from four locations in this study. F. poae was the most abundant Fusarium species in grain samples in all tested locations. However, in node samples, F. culmorum (Beaverlodge and Scott) and F. avenaceum (Lacombe and Lethbridge) were the most abundant species. Trichothecene genotyping showed that the 3ADON is the most dominant trichothecene genotype (68%), followed by type-A trichothecenes (29.5%), whereas the 15ADON trichothecene genotype was least dominant (2.5%) and the NIV genotype was not detected. Moreover, a total of 129 translation elongation factor 1-alpha (TEF1α) sequences from nine Fusarium spp. were compared at the haplotype level to evaluate genetic variability and distribution. F. avenaceum and F. poae exhibited higher diversity as reflected by higher number of haplotypes present in these two species compared with the rest.
Collapse
Affiliation(s)
- Mohamed Hafez
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Center, Lethbridge, Alberta T1J 4B1, Canada
| | - Ryan Gourlie
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Center, Lethbridge, Alberta T1J 4B1, Canada
| | - Melissa Telfer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Center, Lethbridge, Alberta T1J 4B1, Canada
| | - Nicola Schatz
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Center, Lethbridge, Alberta T1J 4B1, Canada
| | - Thomas K Turkington
- Agriculture and Agri-Food Canada, Lacombe Research and Development Center, Lacombe, Alberta T4L 1V7, Canada
| | - Brian Beres
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Center, Lethbridge, Alberta T1J 4B1, Canada
| | - Reem Aboukhaddour
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Center, Lethbridge, Alberta T1J 4B1, Canada
| |
Collapse
|
23
|
Del Ponte EM, Moreira GM, Ward TJ, O'Donnell K, Nicolli CP, Machado FJ, Duffeck MR, Alves KS, Tessmann DJ, Waalwijk C, van der Lee T, Zhang H, Chulze SN, Stenglein SA, Pan D, Vero S, Vaillancourt LJ, Schmale DG, Esker PD, Moretti A, Logrieco AF, Kistler HC, Bergstrom GC, Viljoen A, Rose LJ, van Coller GJ, Lee T. Fusarium graminearum Species Complex: A Bibliographic Analysis and Web-Accessible Database for Global Mapping of Species and Trichothecene Toxin Chemotypes. PHYTOPATHOLOGY 2022; 112:741-751. [PMID: 34491796 DOI: 10.1094/phyto-06-21-0277-rvw] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fusarium graminearum is ranked among the five most destructive fungal pathogens that affect agroecosystems. It causes floral diseases in small grain cereals including wheat, barley, and oats, as well as maize and rice. We conducted a systematic review of peer-reviewed studies reporting species within the F. graminearum species complex (FGSC) and created two main data tables. The first contained summarized data from the articles including bibliographic, geographic, methodological (ID methods), host of origin and species, while the second data table contains information about the described strains such as publication, isolate code(s), host/substrate, year of isolation, geographical coordinates, species and trichothecene genotype. Analyses of the bibliographic data obtained from 123 publications from 2000 to 2021 by 498 unique authors and published in 40 journals are summarized. We describe the frequency of species and chemotypes for 16,274 strains for which geographical information was available, either provided as raw data or extracted from the publications, and sampled across six continents and 32 countries. The database and interactive interface are publicly available, allowing for searches, summarization, and mapping of strains according to several criteria including article, country, host, species and trichothecene genotype. The database will be updated as new articles are published and should be useful for guiding future surveys and exploring factors associated with species distribution such as climate and land use. Authors are encouraged to submit data at the strain level to the database, which is accessible at https://fgsc.netlify.app.
Collapse
Affiliation(s)
- Emerson M Del Ponte
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900 Brazil
| | - Gláucia M Moreira
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900 Brazil
| | - Todd J Ward
- Agricultural Research Service, National Center for Agricultural Utilization Research, U.S. Department of Agriculture, Peoria 61604, U.S.A
| | - Kerry O'Donnell
- Agricultural Research Service, National Center for Agricultural Utilization Research, U.S. Department of Agriculture, Peoria 61604, U.S.A
| | - Camila P Nicolli
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900 Brazil
| | - Franklin J Machado
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900 Brazil
| | - Maíra R Duffeck
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900 Brazil
| | - Kaique S Alves
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900 Brazil
| | - Dauri J Tessmann
- Departamento de Agronomia, Universidade Estadual de Maringá, Maringá, PR, 87020-900 Brazil
| | - Cees Waalwijk
- Biointeractions & Plant Health, Wageningen Plant Research, Wageningen, 6708PB, The Netherlands
| | - Theo van der Lee
- Biointeractions & Plant Health, Wageningen Plant Research, Wageningen, 6708PB, The Netherlands
| | - Hao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Sofia N Chulze
- Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Argentina
| | - Sebastian A Stenglein
- Laboratorio de Biología Funcional y Biotecnología, Facultad de Agronomía, Universidad Nacional del Centro, Buenos Aires, 7300, Argentina
| | - Dinorah Pan
- Universidad de la República, Facultad de Ciencias-Facultad de Ingeniería, Montevideo, 11800, Uruguay
| | - Silvana Vero
- Universidad de la República, Facultad de Ciencias-Facultad de Ingeniería, Montevideo, 11800, Uruguay
| | - Lisa J Vaillancourt
- Department of Plant Pathology, University of Kentucky, Lexington, 40546-0312, U.S.A
| | - David G Schmale
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, 24061-0390, U.S.A
| | - Paul D Esker
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, 16802, U.S.A
| | - Antonio Moretti
- National Research Council of Research, Institute of Sciences of Food Production, 70126 Bari, Italy
| | - Antonio F Logrieco
- National Research Council of Research, Institute of Sciences of Food Production, 70126 Bari, Italy
| | - H Corby Kistler
- Agricultural Research Service, Cereal Disease Laboratory, U.S. Department of Agriculture, St. Paul 55108, U.S.A
| | - Gary C Bergstrom
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca 14853-5904, U.S.A
| | - Altus Viljoen
- Department of Plant Pathology, Stellenbosch University, Stellenbosch, 7602, South Africa
| | - Lindy J Rose
- Department of Plant Pathology, Stellenbosch University, Stellenbosch, 7602, South Africa
| | - Gert J van Coller
- Plant Science, Western Cape Department of Agriculture, Elsenburg, 7607, South Africa
| | - Theresa Lee
- Microbial Safety Team, National Institute of Agricultural Sciences, Wanju, 55365, Republic of Korea
| |
Collapse
|
24
|
Noel ZA, Roze LV, Breunig M, Trail F. Endophytic Fungi as a Promising Biocontrol Agent to Protect Wheat from Fusarium graminearum Head Blight. PLANT DISEASE 2022; 106:595-602. [PMID: 34587775 DOI: 10.1094/pdis-06-21-1253-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The search for beneficial endophytes that can be part of a constructed microbial community has increased in recent years. We characterized three endophytic fungi previously isolated from wheat for their in vitro and in planta antagonism toward the Fusarium head blight pathogen, Fusarium graminearum. The endophytes were phylogenetically characterized and shown to be Alternaria destruens, Fusarium commune, and Fusarium oxysporum. Individual fungal endophytes significantly increased seed weight and lowered the accumulation of the mycotoxin deoxynivalenol compared with F. graminearum-infected wheat heads without endophyte pretreatment. Investigation into the mechanism of competition in vitro showed that endophytes competitively excluded F. graminearum by preemptive colonization and possible inhibition over a distance. Investigations on the use of these endophytes in the field are in progress. Identification of these three endophytes highlights a common quandary in searching for beneficial microbes to use in agriculture: species definitions often do not separate individual isolates' lifestyles. A greater understanding of the risks in using intraspecies variants for biocontrol is needed and should be examined in the context of the ecology of the individuals being investigated.
Collapse
Affiliation(s)
- Zachary A Noel
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48823
| | - Ludmilla V Roze
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48823
| | - Mikaela Breunig
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48823
| | - Frances Trail
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48823
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823
| |
Collapse
|
25
|
Chtioui W, Balmas V, Delogu G, Migheli Q, Oufensou S. Bioprospecting Phenols as Inhibitors of Trichothecene-Producing Fusarium: Sustainable Approaches to the Management of Wheat Pathogens. Toxins (Basel) 2022; 14:72. [PMID: 35202101 PMCID: PMC8875213 DOI: 10.3390/toxins14020072] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Fusarium spp. are ubiquitous fungi able to cause Fusarium head blight and Fusarium foot and root rot on wheat. Among relevant pathogenic species, Fusarium graminearum and Fusarium culmorum cause significant yield and quality loss and result in contamination of the grain with mycotoxins, mainly type B trichothecenes, which are a major health concern for humans and animals. Phenolic compounds of natural origin are being increasingly explored as fungicides on those pathogens. This review summarizes recent research activities related to the antifungal and anti-mycotoxigenic activity of natural phenolic compounds against Fusarium, including studies into the mechanisms of action of major exogenous phenolic inhibitors, their structure-activity interaction, and the combined effect of these compounds with other natural products or with conventional fungicides in mycotoxin modulation. The role of high-throughput analysis tools to decipher key signaling molecules able to modulate the production of mycotoxins and the development of sustainable formulations enhancing potential inhibitors' efficacy are also discussed.
Collapse
Affiliation(s)
- Wiem Chtioui
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy; (W.C.); (V.B.); (Q.M.)
| | - Virgilio Balmas
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy; (W.C.); (V.B.); (Q.M.)
| | - Giovanna Delogu
- Istituto CNR di Chimica Biomolecolare, Traversa La Crucca 3, 07100 Sassari, Italy;
| | - Quirico Migheli
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy; (W.C.); (V.B.); (Q.M.)
- Nucleo di Ricerca sulla Desertificazione, Università degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy
| | - Safa Oufensou
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy; (W.C.); (V.B.); (Q.M.)
- Nucleo di Ricerca sulla Desertificazione, Università degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy
| |
Collapse
|
26
|
Abstract
This chapter describes protocols for the development of consensus chemical phenotypes or "metabolomes" of fungal populations using ultra-high pressure liquid chromatography coupled to high resolution mass spectrometry (UPLC-HRMS). Isolates are cultured using multiple media conditions to elicit the expression of diverse secondary metabolite biosynthetic gene clusters. The mycelium and spent culture media are extracted using organic solvents and profiled by ultra-high pressure chromatography coupled with a high resolution Thermo Orbitrap XL mass spectrometer with the ability to trap and fragment ions to general MS2 spectra. MS data preprocessing is explained and illustrated using the freely available software MZMine 2. Through data processing, binary matrices of mass features can be generated and then combined into a consensus secondary metabolite phenotype of all isolates grown in all media conditions. The production of consensus chemical phenotypes is useful for screening large fungal populations (both inter and intra-species populations) for isolates potentially expressing novel secondary metabolites or analogs of known secondary metabolites.
Collapse
Affiliation(s)
- Thomas E Witte
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - David P Overy
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada.
| |
Collapse
|
27
|
Chen L, Yang J, Wang H, Yang X, Zhang C, Zhao Z, Wang J. NX toxins: New threat posed by Fusarium graminearum species complex. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
28
|
Mahato DK, Pandhi S, Kamle M, Gupta A, Sharma B, Panda BK, Srivastava S, Kumar M, Selvakumar R, Pandey AK, Suthar P, Arora S, Kumar A, Gamlath S, Bharti A, Kumar P. Trichothecenes in food and feed: Occurrence, impact on human health and their detection and management strategies. Toxicon 2022; 208:62-77. [DOI: 10.1016/j.toxicon.2022.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022]
|
29
|
Ye W, Zhu M, Li S, Cen Y, Liu T, Li H, Liu H, Zhang W. The excavation of novel toxin-resistance proteins against trichothecenes toxins in Paramyrothecium roridum. Int J Biol Macromol 2021; 192:369-378. [PMID: 34634329 DOI: 10.1016/j.ijbiomac.2021.09.185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/15/2022]
Abstract
Trichothecene toxins cause serious hazard towards human health and economical crops. However, there are no sufficient molecular strategies to reduce the hazard of trichothecene toxins. Thus it is urgent to exploit novel approaches to control the hazard of trichothecenes. In this study, four trichothecene toxin-resistance genes including mfs1, GNAT1, TRP1 and tri12 in Paramyrothecium roridum were excavated based on genome sequencing results, and then expressed in toxin-sensitive Saccharomyces cerevisiae BJ5464, the toxin resistance genes pdr5, pdr10 and pdr15 of which were firstly knocked out simultaneously by the introduction of TAA stop codon employing CRISPR/Cas9 system. Therefore, three novel hazardous toxin-resistance genes mfs1, GNAT1, TRP1 in P. roridum were firstly excavated by the co-incubation of DON toxin and toxin resistant genes-containing BJ5464 strains. The in vitro function and properties of novel toxin-resistance genes coding proteins including GNAT1, MFS1 and TRP1 were identified by heterologous expression and cellular location analysis as well as in vitro biochemical reaction. The excavation of novel trichothecene toxin-resistance genes provide novel molecular clues for controlling the harm of trichothecenes, meanwhile, this study will also pave a new way for the yield improvement of trichothecenes by heterologous expression to facilitate the development of trichothecenes as anti-tumor lead compounds.
Collapse
Affiliation(s)
- Wei Ye
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Muzi Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Saini Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Youfei Cen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Taomei Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Haohua Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hongxin Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
30
|
Hafez M, Abdelmagid A, Aboukhaddour R, Adam LR, Daayf F. Fusarium Root Rot Complex in Soybean: Molecular Characterization, Trichothecene Formation, and Cross-Pathogenicity. PHYTOPATHOLOGY 2021; 111:2287-2302. [PMID: 33938238 DOI: 10.1094/phyto-03-21-0083-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Soybean is threatened by many pathogens that negatively affect this crop's yield and quality, such as various Fusarium species that cause wilting and root rot diseases. Fusarium root rot (FRR) in soybean can be caused by F. graminearum and other Fusarium spp. that are associated with Fusarium head blight (FHB) in cereals. Therefore, it was important to inquire whether Fusarium pathogens from soybean can cause disease in wheat and vice versa. Here, we investigated the FRR complex in Manitoba (Canada) from symptomatic plants, using both culture- and molecular-based methods. We developed a molecular diagnostic toolkit to detect and differentiate between several Fusarium spp. involved in FHB and FRR, then we evaluated cross-pathogenicity of selected Fusarium isolates collected from soybean and wheat, and the results indicate that isolates recovered from one host can infect the other host. Trichothecene production by selected Fusarium spp. was also analyzed chemically via liquid chromatography mass spectrometry in both soybean (root) and wheat (spike) tissues. Trichothecenes were also analyzed in soybean seeds from plants with FRR to check the potentiality of trichothecene translocation from infected roots to the seeds. All of the tested Fusarium isolates were capable of producing trichothecenes in wheat spikes and soybean roots, but no trichothecenes were detected in soybean seeds. This study provided evidence, for the first time, that trichothecenes were produced by several Fusarium spp. (F. cerealis, F. culmorum, and F. sporotrichioides) during FRR development in soybean.
Collapse
Affiliation(s)
- Mohamed Hafez
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T2N2, Canada
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Center, Lethbridge, Alberta, Canada
- Department of Botany and Microbiology, Faculty of Science, Suez University, Suez, Egypt
| | - Ahmed Abdelmagid
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T2N2, Canada
- Department of Plant Pathology, Assiut University, Assiut, 71515, Egypt
| | - Reem Aboukhaddour
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Center, Lethbridge, Alberta, Canada
| | - Lorne R Adam
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T2N2, Canada
| | - Fouad Daayf
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T2N2, Canada
| |
Collapse
|
31
|
Hay WT, McCormick SP, Vaughan MM. Effects of Atmospheric CO2 and Temperature on Wheat and Corn Susceptibility to Fusarium graminearum and Deoxynivalenol Contamination. PLANTS 2021; 10:plants10122582. [PMID: 34961056 PMCID: PMC8709488 DOI: 10.3390/plants10122582] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022]
Abstract
This work details the impact of atmospheric CO2 and temperature conditions on two strains of Fusarium graminearum, their disease damage, pathogen growth, mycotoxin accumulation, and production per unit fungal biomass in wheat and corn. An elevated atmospheric CO2 concentration, 1000 ppm CO2, significantly increased the accumulation of deoxynivalenol in infected plants. Furthermore, growth in cool growing conditions, 20 °C/18 °C, day and night, respectively, resulted in the highest amounts of pathogen biomass and toxin accumulation in both inoculated wheat and corn. Warm temperatures, 25 °C/23 °C, day and night, respectively, suppressed pathogen growth and toxin accumulation, with reductions as great as 99% in corn. In wheat, despite reduced pathogen biomass and toxin accumulation at warm temperatures, the fungal pathogen was more aggressive with greater disease damage and toxin production per unit biomass. Disease outcomes were also pathogen strain specific, with complex interactions between host, strain, and growth conditions. However, we found that atmospheric CO2 and temperature had essentially no significant interactions, except for greatly increased deoxynivalenol accumulation in corn at cool temperatures and elevated CO2. Plants were most susceptible to disease damage at warm and cold temperatures for wheat and corn, respectively. This work helps elucidate the complex interaction between the abiotic stresses and biotic susceptibility of wheat and corn to Fusarium graminearum infection to better understand the potential impact global climate change poses to future food security.
Collapse
|
32
|
Gagkaeva T, Orina A, Gavrilova O. Fusarium head blight in the Russian Far East: 140 years after description of the 'drunken bread' problem. PeerJ 2021; 9:e12346. [PMID: 34760369 PMCID: PMC8557700 DOI: 10.7717/peerj.12346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/29/2021] [Indexed: 11/20/2022] Open
Abstract
The first appearance of Fusarium head blight (FHB)—and the beginning of scientific research of this disease—occurred the Far East region of Russia at the end of the 19th century. In the summer of 2019, in the Amur region, which comprises 60–70% of grain production in the Russian Far East, flooding caused a state of emergency. The quality of wheat and barley grains grown under natural conditions of FHB outbreaks, including grain infection, fungal species composition, DNA content of F. graminearum and chemotypes, and the presence of various mycotoxins, was studied. Fusarium infection rates reached extremely high percentages, 51–98%, the majority of which were F. graminearum infections. The amount of F. graminearum DNA in wheat grain samples was higher than in the barley grain samples and averaged 6.1 and 2.1 pg/ng, respectively. The content of deoxynivalenol (DON) in the wheat samples reached 13,343 ppb and in barley reached 7,755 ppb. A multilocus genotyping assay was conducted on the partially sequenced fragments of the translation elongation factor EF-1a, ammonium ligase gene, reductase gene, and 3-O-acetyltransferase gene in 29 Fusarium graminearum sensu lato strains from the grain harvested in the Amur region. All strains from the Far East region were characterized as F. graminearum sensu stricto; 70% were the 15-AcDON chemotype, while the other strains were the 3-AcDON chemotype. According to the results, after 140 years of study of FHB, we are still not very successful in controlling this disease if conditions are favorable for pathogen development. Even at present, some of the grain harvested must be destroyed, as high contamination of mycotoxins renders it unusable.
Collapse
Affiliation(s)
- Tatiana Gagkaeva
- Laboratory of Mycology and Phytopathology, All-Russian Institute of Plant Protection, St. Petersburg, Pushkin, Russian Federation
| | - Aleksandra Orina
- Laboratory of Mycology and Phytopathology, All-Russian Institute of Plant Protection, St. Petersburg, Pushkin, Russian Federation
| | - Olga Gavrilova
- Laboratory of Mycology and Phytopathology, All-Russian Institute of Plant Protection, St. Petersburg, Pushkin, Russian Federation
| |
Collapse
|
33
|
Arabidopsis P4 ATPase-mediated cell detoxification confers resistance to Fusarium graminearum and Verticillium dahliae. Nat Commun 2021; 12:6426. [PMID: 34741039 PMCID: PMC8571369 DOI: 10.1038/s41467-021-26727-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023] Open
Abstract
Many toxic secondary metabolites produced by phytopathogens can subvert host immunity, and some of them are recognized as pathogenicity factors. Fusarium head blight and Verticillium wilt are destructive plant diseases worldwide. Using toxins produced by the causal fungi Fusarium graminearum and Verticillium dahliae as screening agents, here we show that the Arabidopsis P4 ATPases AtALA1 and AtALA7 are responsible for cellular detoxification of mycotoxins. Through AtALA1-/AtALA7-mediated vesicle transport, toxins are sequestered in vacuoles for degradation. Overexpression of AtALA1 and AtALA7 significantly increases the resistance of transgenic plants to F. graminearum and V. dahliae, respectively. Notably, the concentration of deoxynivalenol, a mycotoxin harmful to the health of humans and animals, was decreased in transgenic Arabidopsis siliques and maize seeds. This vesicle-mediated cell detoxification process provides a strategy to increase plant resistance against different toxin-associated diseases and to reduce the mycotoxin contamination in food and feed.
Collapse
|
34
|
Islam MN, Tabassum M, Banik M, Daayf F, Fernando WGD, Harris LJ, Sura S, Wang X. Naturally Occurring Fusarium Species and Mycotoxins in Oat Grains from Manitoba, Canada. Toxins (Basel) 2021; 13:670. [PMID: 34564673 PMCID: PMC8473195 DOI: 10.3390/toxins13090670] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
Fusarium head blight (FHB) can lead to dramatic yield losses and mycotoxin contamination in small grain cereals in Canada. To assess the extent and severity of FHB in oat, samples collected from 168 commercial oat fields in the province of Manitoba, Canada, during 2016-2018 were analyzed for the occurrence of Fusarium head blight and associated mycotoxins. Through morphological and molecular analysis, F. poae was found to be the predominant Fusarium species affecting oat, followed by F. graminearum, F. sporotrichioides, F. avenaceum, and F. culmorum. Deoxynivalenol (DON) and nivalenol (NIV), type B trichothecenes, were the two most abundant Fusarium mycotoxins detected in oat. Beauvericin (BEA) was also frequently detected, though at lower concentrations. Close clustering of F. poae and NIV/BEA, F. graminearum and DON, and F. sporotrichioides and HT2/T2 (type A trichothecenes) was detected in the principal component analysis. Sampling location and crop rotation significantly impacted the concentrations of Fusarium mycotoxins in oat. A phylogenetic analysis of 95 F. poae strains from Manitoba was conducted using the concatenated nucleotide sequences of Tef-1α, Tri1, and Tri8 genes. The results indicated that all F. poae strains belong to a monophyletic lineage. Four subgroups of F. poae strains were identified; however, no correlations were observed between the grouping of F. poae strains and sample locations/crop rotations.
Collapse
Affiliation(s)
- M Nazrul Islam
- Agriculture and Agri-Food Canada (AAFC), Morden Research and Development Centre, 101 Route 100, Morden, MB R6M 1Y5, Canada
| | - Mourita Tabassum
- Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, MB R3T 2N2, Canada
| | - Mitali Banik
- Agriculture and Agri-Food Canada (AAFC), Morden Research and Development Centre, 101 Route 100, Morden, MB R6M 1Y5, Canada
| | - Fouad Daayf
- Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, MB R3T 2N2, Canada
| | - W G Dilantha Fernando
- Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, MB R3T 2N2, Canada
| | - Linda J Harris
- Agriculture and Agri-Food Canada (AAFC), Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | - Srinivas Sura
- Agriculture and Agri-Food Canada (AAFC), Morden Research and Development Centre, 101 Route 100, Morden, MB R6M 1Y5, Canada
| | - Xiben Wang
- Agriculture and Agri-Food Canada (AAFC), Morden Research and Development Centre, 101 Route 100, Morden, MB R6M 1Y5, Canada
| |
Collapse
|
35
|
Wang L, Yan Z, Zhou H, Fan Y, Wang C, Zhang J, Liao Y, Wu A. Validation of LC-MS/MS Coupled with a Chiral Column for the Determination of 3- or 15-Acetyl Deoxynivalenol Mycotoxins from Fusarium graminearum in Wheat. Toxins (Basel) 2021; 13:659. [PMID: 34564663 PMCID: PMC8473124 DOI: 10.3390/toxins13090659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022] Open
Abstract
The major causal agents Fusarium graminearum (F. graminearum) and Fusarium asiaticum could produce multiple mycotoxins in infected wheat, which threatens the health of humans and animals. Specifically, deoxynivalenol (DON) and its derivatives 3- and 15-acetyldeoxynivalenol (3-ADON and 15-ADON) are commonly detected mycotoxins in cereal grains. However, the good chromatographic separation of 3-ADON and 15-ADON remains challenging. Here, an LC-MS/MS method for the chemotype determination of Fusarium strains was developed and validated. 3- and 15-ADON could be separated chromatographically in this study with sufficiently low limits of detection (LODs; 4 μg/kg) and limits of quantification (LOQs; 8 μg/kg). The satisfying intraday and interday reproducibility (both %RSDr and %RSDR were <20%) of this method indicated good stability. The recoveries of all analytes were in the range of 80-120%. In addition, three F. graminearum complex (FGC) strains, i.e., PH-1 (chemotype 15-ADON), F-1 (chemotype 3-ADON) and 5035 (chemotype 15-ADON), were selected to verify the accuracy of the method in differentiating phenotypes. The validation results showed that this LC-MS/MS method based on sample pretreatment is effective and suitable for the chromatographic separation of 3-ADON and 15-ADON in wheat.
Collapse
Affiliation(s)
- Lan Wang
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200030, China; (L.W.); (Z.Y.); (H.Z.)
| | - Zheng Yan
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200030, China; (L.W.); (Z.Y.); (H.Z.)
| | - Haiyan Zhou
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200030, China; (L.W.); (Z.Y.); (H.Z.)
| | - Yingying Fan
- Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), Ministry of Agriculture and Rural Affiairs, Urumqi 830091, China; (Y.F.); (C.W.)
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Cheng Wang
- Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), Ministry of Agriculture and Rural Affiairs, Urumqi 830091, China; (Y.F.); (C.W.)
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Jingbo Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (Y.L.)
| | - Yucai Liao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (Y.L.)
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200030, China; (L.W.); (Z.Y.); (H.Z.)
| |
Collapse
|
36
|
A review of mycotoxin biosynthetic pathways: associated genes and their expressions under the influence of climatic factors. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
37
|
Major Facilitator Superfamily Transporter Gene FgMFS1 Is Essential for Fusarium graminearum to Deal with Salicylic Acid Stress and for Its Pathogenicity towards Wheat. Int J Mol Sci 2021; 22:ijms22168497. [PMID: 34445203 PMCID: PMC8395176 DOI: 10.3390/ijms22168497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/24/2022] Open
Abstract
Wheat is a major staple food crop worldwide, due to its total yield and unique processing quality. Its grain yield and quality are threatened by Fusarium head blight (FHB), which is mainly caused by Fusarium graminearum. Salicylic acid (SA) has a strong and toxic effect on F. graminearum and is a hopeful target for sustainable control of FHB. F. graminearum is capable of efficientdealing with SA stress. However, the underlying mechanisms remain unclear. Here, we characterized FgMFS1 (FGSG_03725), a major facilitator superfamily (MFS) transporter gene in F. graminearum. FgMFS1 was highly expressed during infection and was upregulated by SA. The predicted three-dimensional structure of the FgMFS1 protein was consistent with the schematic for the antiporter. The subcellular localization experiment indicated that FgMFS1 was usually expressed in the vacuole of hyphae, but was alternatively distributed in the cell membrane under SA treatment, indicating an element of F. graminearum in response to SA. ΔFgMFS1 (loss of function mutant of FgMFS1) showed enhanced sensitivity to SA, less pathogenicity towards wheat, and reduced DON production under SA stress. Re-introduction of a functional FgMFS1 gene into ∆FgMFS1 recovered the mutant phenotypes. Wheat spikes inoculated with ΔFgMFS1 accumulated more SA when compared to those inoculated with the wild-type strain. Ecotopic expression of FgMFS1 in yeast enhanced its tolerance to SA as expected, further demonstrating that FgMFS1 functions as an SA exporter. In conclusion, FgMFS1 encodes an SA exporter in F. graminearum, which is critical for its response to wheat endogenous SA and pathogenicity towards wheat.
Collapse
|
38
|
Witte TE, Harris LJ, Nguyen HDT, Hermans A, Johnston A, Sproule A, Dettman JR, Boddy CN, Overy DP. Apicidin biosynthesis is linked to accessory chromosomes in Fusarium poae isolates. BMC Genomics 2021; 22:591. [PMID: 34348672 PMCID: PMC8340494 DOI: 10.1186/s12864-021-07617-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/08/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Fusarium head blight is a disease of global concern that reduces crop yields and renders grains unfit for consumption due to mycotoxin contamination. Fusarium poae is frequently associated with cereal crops showing symptoms of Fusarium head blight. While previous studies have shown F. poae isolates produce a range of known mycotoxins, including type A and B trichothecenes, fusarins and beauvericin, genomic analysis suggests that this species may have lineage-specific accessory chromosomes with secondary metabolite biosynthetic gene clusters awaiting description. METHODS We examined the biosynthetic potential of 38 F. poae isolates from Eastern Canada using a combination of long-read and short-read genome sequencing and untargeted, high resolution mass spectrometry metabolome analysis of extracts from isolates cultured in multiple media conditions. RESULTS A high-quality assembly of isolate DAOMC 252244 (Fp157) contained four core chromosomes as well as seven additional contigs with traits associated with accessory chromosomes. One of the predicted accessory contigs harbours a functional biosynthetic gene cluster containing homologs of all genes associated with the production of apicidins. Metabolomic and genomic analyses confirm apicidins are produced in 4 of the 38 isolates investigated and genomic PCR screening detected the apicidin synthetase gene APS1 in approximately 7% of Eastern Canadian isolates surveyed. CONCLUSIONS Apicidin biosynthesis is linked to isolate-specific putative accessory chromosomes in F. poae. The data produced here are an important resource for furthering our understanding of accessory chromosome evolution and the biosynthetic potential of F. poae.
Collapse
Affiliation(s)
- Thomas E. Witte
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Linda J. Harris
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Canada
| | - Hai D. T. Nguyen
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Canada
| | - Anne Hermans
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Canada
| | - Anne Johnston
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Canada
| | - Amanda Sproule
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Canada
| | - Jeremy R. Dettman
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Canada
| | - Christopher N. Boddy
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - David P. Overy
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Canada
| |
Collapse
|
39
|
Laurent B, Moinard M, Spataro C, Chéreau S, Zehraoui E, Blanc R, Lasserre P, Ponts N, Foulongne-Oriol M. QTL mapping in Fusarium graminearum identified an allele of FgVe1 involved in reduced aggressiveness. Fungal Genet Biol 2021; 153:103566. [PMID: 33991664 DOI: 10.1016/j.fgb.2021.103566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
Fusarium graminearum is one of the most frequent causal agents of the Fusarium Head Blight, a cereal disease spread throughout the world, reducing grain production and quality. F. graminearum isolates are genetically and phenotypically highly diverse. Notably, remarkable variations of aggressiveness between isolates have been observed, which could reflect an adaptive potential of this pathogen. In this study, we aimed to characterize the genetic basis of aggressiveness variation observed in an F1 population (n = 94), for which genome sequences of both parental strains are available. Aggressiveness was assessed by a panel of in planta and in vitro proxies during two phenotyping trials including, among others, disease severity and mycotoxin accumulation in wheat spike. One major and single QTL was mapped for all the traits measured, on chromosome I, that explained up to 90% of the variance for disease severity. The confidence interval at the QTL spanned 1.2 Mb and contained 428 genes on the reference genome. Of these, four candidates were selected based on the postulate that a non-synonymous mutation affecting protein function may be responsible for phenotypic differences. Finally, a new mutation was identified and functionally validated in the gene FgVe1, coding for a velvet protein known to be involved in pathogenicity and secondary metabolism production in several fungi.
Collapse
Affiliation(s)
| | | | | | | | - Enric Zehraoui
- INRAE, MycSA, F-33882 Villenave d'Ornon, France; Université de Bordeaux, INRAE, EGFV, F-33882 Villenave d'Ornon, France
| | - Richard Blanc
- INRAE, UCA, UMR 1095 GDEC, F-63100 Clermont-Ferrand, France
| | | | - Nadia Ponts
- INRAE, MycSA, F-33882 Villenave d'Ornon, France
| | | |
Collapse
|
40
|
Liang J, Fu X, Hao C, Bian Z, Liu H, Xu JR, Wang G. FgBUD14 is important for ascosporogenesis and involves both stage-specific alternative splicing and RNA editing during sexual reproduction. Environ Microbiol 2021; 23:5052-5068. [PMID: 33645871 DOI: 10.1111/1462-2920.15446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/03/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022]
Abstract
In wheat head blight fungus Fusarium graminearum, A-to-I RNA editing occurs specifically during sexual reproduction. Among the genes with premature stop codons (PSCs) that require RNA editing to encode full-length proteins, FgBUD14 also had alternative splicing events in perithecia. In this study, we characterized the functions of FgBUD14 and its post-transcriptional modifications during sexual reproduction. The Fgbud14 deletion mutant was slightly reduced in growth, conidiation and virulence. Although deletion of FgBUD14 had no effect on perithecium morphology, the Fgbud14 mutant was defective in crozier formation and ascus development. The FgBud14-GFP localized to the apex of ascogenous hyphae and croziers, which may be related to its functions during early sexual development. During vegetative growth and asexual reproduction, FgBud14-GFP localized to hyphal tips and both ends of conidia. Furthermore, mutations blocking the splicing of intron 2 that has the PSC site had no effect on the function of FgBUD14 during sexual reproduction but caused a similar defect in growth with Fgbud14 mutant. Expression of the non-editable FgBUD14Intron2-TAA mutant allele also failed to complement the Fgbud14 mutant. Taken together, FgBUD14 plays important roles in ascus development, and both alternative splicing and RNA editing occur specifically to its transcripts during sexual reproduction in F. graminearum.
Collapse
Affiliation(s)
- Jie Liang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xianhui Fu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Chaofeng Hao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhuyun Bian
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Huiquan Liu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Guanghui Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
41
|
Wang W, Zhu Y, Abraham N, Li XZ, Kimber M, Zhou T. The Ribosome-Binding Mode of Trichothecene Mycotoxins Rationalizes Their Structure-Activity Relationships. Int J Mol Sci 2021; 22:1604. [PMID: 33562610 PMCID: PMC7914836 DOI: 10.3390/ijms22041604] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
Trichothecenes are the most prevalent mycotoxins contaminating cereal grains. Some of them are also considered as the virulence factors of Fusarium head blight disease. However, the mechanism behind the structure-activity relationship for trichothecenes remains unexplained. Filling this information gap is a crucial step for developing strategies to manage this large family of mycotoxins in food and feed. Here, we perform an in-depth re-examination of the existing structures of Saccharomyces cerevisiae ribosome complexed with three different trichothecenes. Multiple binding interactions between trichothecenes and 25S rRNA, including hydrogen bonds, nonpolar pi stacking interactions and metal ion coordination interactions, are identified as important binding determinants. These interactions are mainly contributed by the key structural elements to the toxicity of trichothecenes, including the oxygen in the 12,13-epoxide ring and a double bond between C9 and C10. In addition, the C3-OH group also participates in binding. The comparison of three trichothecenes binding to the ribosome, along with their binding pocket architecture, suggests that the substitutions at different positions impact trichothecenes binding in two different patterns. Moreover, the binding of trichothecenes induced conformation changes of several nucleotide bases in 25S rRNA. This then provides a structural framework for understanding the structure-activity relationships apparent in trichothecenes. This study will facilitate the development of strategies aimed at detoxifying mycotoxins in food and feed and at improving the resistance of cereal crops to Fusarium fungal diseases.
Collapse
Affiliation(s)
- Weijun Wang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (W.W.); (Y.Z.); (N.A.); (X.-Z.L.)
| | - Yan Zhu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (W.W.); (Y.Z.); (N.A.); (X.-Z.L.)
| | - Nadine Abraham
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (W.W.); (Y.Z.); (N.A.); (X.-Z.L.)
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Xiu-Zhen Li
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (W.W.); (Y.Z.); (N.A.); (X.-Z.L.)
| | - Matthew Kimber
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (W.W.); (Y.Z.); (N.A.); (X.-Z.L.)
| |
Collapse
|
42
|
Zhou Z, Duan Y, Zhang J, Lu F, Zhu Y, Shim WB, Zhou M. Microtubule-assisted mechanism for toxisome assembly in Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2021; 22:163-174. [PMID: 33201575 PMCID: PMC7814972 DOI: 10.1111/mpp.13015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/25/2020] [Accepted: 10/16/2020] [Indexed: 05/05/2023]
Abstract
In Fusarium graminearum, a trichothecene biosynthetic complex known as the toxisome forms ovoid and spherical structures in the remodelled endoplasmic reticulum (ER) under mycotoxin-inducing conditions. Previous studies also demonstrated that disruption of actin and tubulin results in a significant decrease in deoxynivalenol (DON) biosynthesis in F. graminearum. However, the functional association between the toxisome and microtubule components has not been clearly defined. In this study we tested the hypothesis that the microtubule network provides key support for toxisome assembly and thus facilitates DON biosynthesis. Through fluorescent live cell imaging, knockout mutant generation, and protein-protein interaction assays, we determined that two of the four F. graminearum tubulins, α1 and β2 tubulins, are indispensable for DON production. We also showed that these two tubulins are directly associated. When the α1 -β2 tubulin heterodimer is disrupted, the metabolic activity of the toxisome is significantly suppressed, which leads to significant DON biosynthesis impairment. Similar phenotypic outcomes were shown when F. graminearum wild type was treated with carbendazim, a fungicide that binds to microtubules and disrupts spindle formation. Based on our results, we propose a model where α1 -β2 tubulin heterodimer serves as the scaffold for functional toxisome assembly in F. graminearum.
Collapse
Affiliation(s)
- Zehua Zhou
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Yabing Duan
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Jie Zhang
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Fei Lu
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Yuanye Zhu
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Won Bo Shim
- Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationTexasUSA
| | - Mingguo Zhou
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
43
|
Laraba I, McCormick SP, Vaughan MM, Geiser DM, O’Donnell K. Phylogenetic diversity, trichothecene potential, and pathogenicity within Fusarium sambucinum species complex. PLoS One 2021; 16:e0245037. [PMID: 33434214 PMCID: PMC7802971 DOI: 10.1371/journal.pone.0245037] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/21/2020] [Indexed: 01/01/2023] Open
Abstract
The Fusarium sambucinum species complex (FSAMSC) is one of the most taxonomically challenging groups of fusaria, comprising prominent mycotoxigenic plant pathogens and other species with various lifestyles. Among toxins produced by members of the FSAMSC, trichothecenes pose the most significant threat to public health. Herein a global collection of 171 strains, originating from diverse hosts or substrates, were selected to represent FSAMSC diversity. This strain collection was used to assess their species diversity, evaluate their potential to produce trichothecenes, and cause disease on wheat. Maximum likelihood and Bayesian analyses of a combined 3-gene dataset used to infer evolutionary relationships revealed that the 171 strains originally received as 48 species represent 74 genealogically exclusive phylogenetically distinct species distributed among six strongly supported clades: Brachygibbosum, Graminearum, Longipes, Novel, Sambucinum, and Sporotrichioides. Most of the strains produced trichothecenes in vitro but varied in type, indicating that the six clades correspond to type A, type B, or both types of trichothecene-producing lineages. Furthermore, five strains representing two putative novel species within the Sambucinum Clade produced two newly discovered type A trichothecenes, 15-keto NX-2 and 15-keto NX-3. Strains of the two putatively novel species together with members of the Graminearum Clade were aggressive toward wheat when tested for pathogenicity on heads of the susceptible cultivar Apogee. In planta, the Graminearum Clade strains produced nivalenol or deoxynivalenol and the aggressive Sambucinum Clade strains synthesized NX-3 and 15-keto NX-3. Other strains within the Brachygibbosum, Longipes, Novel, Sambucinum, and Sporotrichioides Clades were nonpathogenic or could infect the inoculated floret without spreading within the head. Moreover, most of these strains did not produce any toxin in the inoculated spikelets. These data highlight aggressiveness toward wheat appears to be influenced by the type of toxin produced and that it is not limited to members of the Graminearum Clade.
Collapse
Affiliation(s)
- Imane Laraba
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit. 1815 N. University, Peoria, IL, United States of America
| | - Susan P. McCormick
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit. 1815 N. University, Peoria, IL, United States of America
| | - Martha M. Vaughan
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit. 1815 N. University, Peoria, IL, United States of America
| | - David M. Geiser
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania, PA, United States of America
| | - Kerry O’Donnell
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit. 1815 N. University, Peoria, IL, United States of America
| |
Collapse
|
44
|
Tan J, Ameye M, Landschoot S, De Zutter N, De Saeger S, De Boevre M, Abdallah MF, Van der Lee T, Waalwijk C, Audenaert K. At the scene of the crime: New insights into the role of weakly pathogenic members of the fusarium head blight disease complex. MOLECULAR PLANT PATHOLOGY 2020; 21:1559-1572. [PMID: 32977364 PMCID: PMC7694684 DOI: 10.1111/mpp.12996] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 05/13/2023]
Abstract
Plant diseases are often caused by a consortium of pathogens competing with one another to gain a foothold in the infection niche. Nevertheless, studies are often limited to a single pathogen on its host. In Europe, fusarium head blight (FHB) of wheat is caused by multiple Fusarium species, including Fusarium graminearum and F. poae. Here, we combined a time series of (co)inoculations, monitored by multispectral imaging, transcriptional, and mycotoxin analyses, to study the temporal interaction between both species and wheat. Our results showed coinoculation of F. graminearum and F. poae inhibited symptom development but did not alter mycotoxin accumulation compared to a single inoculation with F. graminearum. In contrast, preinoculation of F. poae reduced both FHB symptoms and mycotoxin levels compared to a single F. graminearum infection. Interestingly, F. poae exhibited increased growth in dual infections, demonstrating that this weak pathogen takes advantage of its co-occurrence with F. graminearum. Quantitative reverse transcription PCR revealed that F. poae induces LOX and ICS gene expression in wheat. We hypothesize that the early induction of salicylic and jasmonic acid-related defences by F. poae hampers a subsequent F. graminearum infection. This study is the first to report on the defence mechanisms of the plant involved in a tripartite interaction between two species of a disease complex and their host.
Collapse
Affiliation(s)
- Jiang Tan
- Laboratory of Applied Mycology and PhenomicsDepartment of Plants and CropsFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Maarten Ameye
- Laboratory of Applied Mycology and PhenomicsDepartment of Plants and CropsFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Sofie Landschoot
- Laboratory of Applied Mycology and PhenomicsDepartment of Plants and CropsFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Noémie De Zutter
- Laboratory of Applied Mycology and PhenomicsDepartment of Plants and CropsFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public HealthDepartment of BioanalysisFaculty of Pharmaceutical SciencesGhent UniversityGhentBelgium
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public HealthDepartment of BioanalysisFaculty of Pharmaceutical SciencesGhent UniversityGhentBelgium
| | - Mohamed F. Abdallah
- Laboratory of Applied Mycology and PhenomicsDepartment of Plants and CropsFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
- Centre of Excellence in Mycotoxicology and Public HealthDepartment of BioanalysisFaculty of Pharmaceutical SciencesGhent UniversityGhentBelgium
| | | | - Cees Waalwijk
- Wageningen University and Research CentreWageningenNetherlands
| | - Kris Audenaert
- Laboratory of Applied Mycology and PhenomicsDepartment of Plants and CropsFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| |
Collapse
|
45
|
Crippin T, Limay-Rios V, Renaud J, Schaafsma A, Sumarah M, Miller J. Fusarium graminearum populations from maize and wheat in Ontario, Canada. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2532] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ontario has suffered widespread epidemics of Fusarium Head Blight or Gibberella Ear Rot roughly every five years since the late 1970s. We undertook a study of the chemotype and genotype of Fusarium graminearum isolated from 1,800 samples of wheat and maize collected across the cereal growing areas over three years. 468 isolates obtained were genotyped and 60 were selected for chemotyping. The dominant genotype has remained the native 15-acetyldeoxynivalenol (15-ADON) population. Approximately 20% of the strains tested were of the native chemotype producing only 15-ADON and one strain producing solely 7α-hydroxy,15-deacetylcalonectrin (3ANX) was observed. The majority of the 15-ADON strains were also capable of producing 3ANX. There was consistent mismatch between chemotype and genotype. This reflects the considerable plasticity in the genes associated with trichothecene biosynthesis documented in several Fusarium species. Although there is a large gradient in climate from southern to eastern Ontario, we did not detect differences in the distribution of the chemotypes. Grain from which strains were isolated for chemotyping were analysed. Approximately half of the 53 samples had >2 mg/kg deoxynivalenol with a maximum of 400 mg/kg and median of 14 mg/kg. 7α-hydroxy,3,15-dideacetylcalonectrin (NX toxin) was detected in three of these samples at an average of 4.5 mg/kg. The stability of the F. graminearum genotype in Ontario can be explained by several factors. Since 1980, the area planted to maize has remained stable, however, the area given to wheat has about doubled. Minimum tillage was rare in 1980 but it is now the norm. Increased crop residue on the soil has greatly increased the biomass of ascocarps that overwinter. Overall, these data demonstrate the need to monitor the mycotoxins in Fusarium populations and for the need to consider the potential toxicity of NX in the feed supply.
Collapse
Affiliation(s)
- T. Crippin
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - V. Limay-Rios
- Department of Plant Agriculture, University of Guelph, Ridgetown, ON N0P 2C0, Canada
| | - J.B. Renaud
- London Research and Development Center, Agriculture Agri-Food Canada, London, ON N5V 4T3, Canada
| | - A.W. Schaafsma
- Department of Plant Agriculture, University of Guelph, Ridgetown, ON N0P 2C0, Canada
| | - M.W. Sumarah
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
- London Research and Development Center, Agriculture Agri-Food Canada, London, ON N5V 4T3, Canada
| | - J.D. Miller
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
46
|
Zhu M, Cen Y, Ye W, Li S, Zhang W. Recent Advances on Macrocyclic Trichothecenes, Their Bioactivities and Biosynthetic Pathway. Toxins (Basel) 2020; 12:E417. [PMID: 32585939 PMCID: PMC7354583 DOI: 10.3390/toxins12060417] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 01/23/2023] Open
Abstract
Macrocyclic trichothecenes are an important group of trichothecenes bearing a large ring. Despite the fact that many of trichothecenes are of concern in agriculture, food contamination, health care and building protection, the macrocyclic ones are becoming the research hotspot because of their diversity in structure and biologic activity. Several researchers have declared that macrocyclic trichothecenes have great potential to be developed as antitumor agents, due to the plenty of their compounds and bioactivities. In this review we summarize the newly discovered macrocyclic trichothecenes and their bioactivities over the last decade, as well as identifications of genes tri17 and tri18 involved in the trichothecene biosynthesis and putative biosynthetic pathway. According to the search results in database and phylogenetic trees generated in the review, the species of the genera Podostroma and Monosporascus would probably be great sources for producing macrocyclic trichothecenes. Moreover, we propose that the macrocyclic trichothecene roridin E could be formed via acylation or esterification of the long side chain linked with C-4 to the hydroxyl group at C-15, and vice versa. More assays and evidences are needed to support this hypothesis, which would promote the verification of the proposed pathway.
Collapse
Affiliation(s)
| | | | | | | | - Weimin Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.Z.); (Y.C.); (W.Y.); (S.L.)
| |
Collapse
|
47
|
Maeda K, Tanaka Y, Matsuyama M, Sato M, Sadamatsu K, Suzuki T, Matsui K, Nakajima Y, Tokai T, Kanamaru K, Ohsato S, Kobayashi T, Fujimura M, Nishiuchi T, Takahashi-Ando N, Kimura M. Substrate specificities of Fusarium biosynthetic enzymes explain the genetic basis of a mixed chemotype producing both deoxynivalenol and nivalenol-type trichothecenes. Int J Food Microbiol 2020; 320:108532. [DOI: 10.1016/j.ijfoodmicro.2020.108532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 01/02/2020] [Accepted: 01/20/2020] [Indexed: 01/31/2023]
|
48
|
Proctor RH, McCormick SP, Gutiérrez S. Genetic bases for variation in structure and biological activity of trichothecene toxins produced by diverse fungi. Appl Microbiol Biotechnol 2020; 104:5185-5199. [PMID: 32328680 DOI: 10.1007/s00253-020-10612-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/01/2020] [Accepted: 04/05/2020] [Indexed: 11/26/2022]
Abstract
Trichothecenes are sesquiterpene toxins produced by diverse but relatively few fungal species in at least three classes of Ascomycetes: Dothideomycetes, Eurotiomycetes, and Sordariomycetes. Approximately 200 structurally distinct trichothecene analogs have been described, but a given fungal species typically produces only a small subset of analogs. All trichothecenes share a core structure consisting of a four-ring nucleus known as 12,13-epoxytrichothec-9-ene. This structure can be substituted at various positions with hydroxyl, acyl, or keto groups to give rise to the diversity of trichothecene structures that has been described. Over the last 30 years, the genetic and biochemical pathways required for trichothecene biosynthesis in several species of the fungi Fusarium and Trichoderma have been elucidated. In addition, phylogenetic and functional analyses of trichothecene biosynthetic (TRI) genes from fungi in multiple genera have provided insights into how acquisition, loss, and changes in functions of TRI genes have given rise to the diversity of trichothecene structures. These analyses also suggest both divergence and convergence of TRI gene function during the evolutionary history of trichothecene biosynthesis. What has driven trichothecene structural diversification remains an unanswered question. However, insight into the role of trichothecenes in plant pathogenesis of Fusarium species and into plant glucosyltransferases that detoxify the toxins by glycosylating them point to a possible driver. Because the glucosyltransferases can have substrate specificity, changes in trichothecene structures produced by a fungus could allow it to evade detoxification by the plant enzymes. Thus, it is possible that advantages conferred by evading detoxification have contributed to trichothecene structural diversification. KEY POINTS : • TRI genes have evolved by diverse processes: loss, acquisition and changes in function. • Some TRI genes have acquired the same function by convergent evolution. • Some other TRI genes have evolved divergently to have different functions. • Some TRI genes were acquired or resulted from diversification in function of other genes. • Substrate specificity of plant glucosyltransferases could drive trichothecene diversity.
Collapse
Affiliation(s)
- R H Proctor
- United States Department of Agriculture, Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Peoria, IL, 61604-3902, USA.
| | - S P McCormick
- United States Department of Agriculture, Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Peoria, IL, 61604-3902, USA
| | - S Gutiérrez
- Area of Microbiology, University of León, Campus de Ponferrada, 24400, Ponferrada, Spain.
| |
Collapse
|
49
|
Cowger C, Ward TJ, Nilsson K, Arellano C, McCormick SP, Busman M. Regional and field-specific differences in Fusarium species and mycotoxins associated with blighted North Carolina wheat. Int J Food Microbiol 2020; 323:108594. [PMID: 32229393 DOI: 10.1016/j.ijfoodmicro.2020.108594] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 03/06/2020] [Accepted: 03/18/2020] [Indexed: 01/17/2023]
Abstract
Worldwide, while Fusarium graminearum is the main causal species of Fusarium head blight (FHB) in small-grain cereals, a diversity of FHB-causing species belonging to different species complexes has been found in most countries. In the U.S., FHB surveys have focused on the Fusarium graminearum species complex (FGSC) and the frequencies of 3-ADON, 15-ADON, and nivalenol (NIV) chemotypes. A large-scale survey was undertaken across the state of North Carolina in 2014 to explore the frequency and distribution of F. graminearum capable of producing NIV, which is not monitored at grain intake points. Symptomatic wheat spikes were sampled from 59 wheat fields in 24 counties located in three agronomic zones typical of several states east of the Appalachian Mountains: Piedmont, Coastal Plain, and Tidewater. Altogether, 2197 isolates were identified to species using DNA sequence-based methods. Surprisingly, although F. graminearum was the majority species detected, species in the Fusarium tricinctum species complex (FTSC) that produce "emerging mycotoxins" were frequent, and even dominant in some fields. The FTSC percentage was 50-100% in four fields, 30-49% in five fields, 20-29% in five fields, and < 20% in the remaining 45 fields. FTSC species were at significantly higher frequency in the Coastal Plain than in the Piedmont or Tidewater (P < .05). Moniliformin concentrations in samples ranged from 0.0 to 38.7 μg g-1. NIV producing isolates were rare statewide (2.2%), and never >12% in a single field, indicating that routine testing for NIV is probably unnecessary. The patchy distribution of FTSC species in wheat crops demonstrated the need to investigate the potential importance of their mycotoxins and the factors that allow them to sometimes outcompete trichothecene producers. An increased sampling intensity of wheat fields led to the unexpected discovery of a minority FHB-causing population.
Collapse
Affiliation(s)
- Christina Cowger
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), USA; Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
| | - Todd J Ward
- USDA-ARS, 1815 North University Street, Peoria, IL 61604, USA
| | - Kathryn Nilsson
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Consuelo Arellano
- Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Mark Busman
- USDA-ARS, 1815 North University Street, Peoria, IL 61604, USA
| |
Collapse
|
50
|
Brauer EK, Balcerzak M, Rocheleau H, Leung W, Schernthaner J, Subramaniam R, Ouellet T. Genome Editing of a Deoxynivalenol-Induced Transcription Factor Confers Resistance to Fusarium graminearum in Wheat. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:553-560. [PMID: 31790345 DOI: 10.1094/mpmi-11-19-0332-r] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Deoxynivalenol (DON) is a mycotoxin virulence factor that promotes growth of the Fusarium graminearum fungus in wheat floral tissues. To further our understanding of the effects of DON exposure on plant cell function, we characterized DON-induced transcriptional changes in wheat spikelets. Four hundred wheat genes were differentially expressed during infection with wild-type F. graminearum as compared with a Δtri5 mutant strain that is unable to produce DON. Most of these genes were more induced by the DON-producing strain and included genes involved in secondary metabolism, signaling, transport, and stress responses. DON induction was confirmed for a subset of the genes, including TaNFXL1, by treating tissues with DON directly. Previous work indicates that the NFXL1 ortholog represses trichothecene-induced defense responses and bacterial resistance in Arabidopsis, but the role of the NFXL family has not been studied in wheat. We observed greater DON-induced TaNFXL1 gene expression in a susceptible wheat genotype relative to the F. graminearum-resistant genotype Wuhan 1. Functional testing using both virus-induced gene silencing and CRISPR-mediated genome editing indicated that TaNFXL1 represses F. graminearum resistance. Together, this suggests that targeting the TaNFXL1 gene may help to develop disease resistance in cultivated wheat.
Collapse
Affiliation(s)
- Elizabeth K Brauer
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Margaret Balcerzak
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Hélène Rocheleau
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Winnie Leung
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Johann Schernthaner
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Rajagopal Subramaniam
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Thérèse Ouellet
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| |
Collapse
|