1
|
Palos-Fernández R, Aguilar-Pontes MV, Puebla-Planas G, Berger H, Studt-Reinhold L, Strauss J, Di Pietro A, López-Berges MS. Copper acquisition is essential for plant colonization and virulence in a root-infecting vascular wilt fungus. PLoS Pathog 2024; 20:e1012671. [PMID: 39495784 PMCID: PMC11563359 DOI: 10.1371/journal.ppat.1012671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/14/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
Plant pathogenic fungi provoke devastating agricultural losses and are difficult to control. How these organisms acquire micronutrients during growth in the host environment remains poorly understood. Here we show that efficient regulation of copper acquisition mechanisms is crucial for plant colonization and virulence in the soilborne ascomycete Fusarium oxysporum, the causal agent of vascular wilt disease in more than 150 different crops. Using a combination of RNA-seq and ChIP-seq, we establish a direct role of the transcriptional regulator Mac1 in activation of copper deficiency response genes, many of which are induced during plant infection. Loss of Mac1 impaired growth of F. oxysporum under low copper conditions and abolishes pathogenicity on tomato plants and on the invertebrate animal host Galleria mellonella. Importantly, overexpression of two Mac1 target genes encoding a copper reductase and a copper transporter was sufficient to restore virulence in the mac1 mutant background. Our results establish a previously unrecognized role of copper reduction and uptake in fungal infection of plants and reveal new ways to protect crops from phytopathogens.
Collapse
Affiliation(s)
- Rafael Palos-Fernández
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain
| | - María Victoria Aguilar-Pontes
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain
| | - Gema Puebla-Planas
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain
| | - Harald Berger
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, BOKU University, Vienna, Austria
| | - Lena Studt-Reinhold
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, BOKU University, Vienna, Austria
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, BOKU University, Vienna, Austria
| | - Antonio Di Pietro
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain
| | - Manuel Sánchez López-Berges
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
2
|
Niu G, Yang Q, Liao Y, Sun D, Tang Z, Wang G, Xu M, Wang C, Kang J. Advances in Understanding Fusarium graminearum: Genes Involved in the Regulation of Sexual Development, Pathogenesis, and Deoxynivalenol Biosynthesis. Genes (Basel) 2024; 15:475. [PMID: 38674409 PMCID: PMC11050156 DOI: 10.3390/genes15040475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The wheat head blight disease caused by Fusarium graminearum is a major concern for food security and the health of both humans and animals. As a pathogenic microorganism, F. graminearum produces virulence factors during infection to increase pathogenicity, including various macromolecular and small molecular compounds. Among these virulence factors, secreted proteins and deoxynivalenol (DON) are important weapons for the expansion and colonization of F. graminearum. Besides the presence of virulence factors, sexual reproduction is also crucial for the infection process of F. graminearum and is indispensable for the emergence and spread of wheat head blight. Over the last ten years, there have been notable breakthroughs in researching the virulence factors and sexual reproduction of F. graminearum. This review aims to analyze the research progress of sexual reproduction, secreted proteins, and DON of F. graminearum, emphasizing the regulation of sexual reproduction and DON synthesis. We also discuss the application of new gene engineering technologies in the prevention and control of wheat head blight.
Collapse
Affiliation(s)
- Gang Niu
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Qing Yang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Yihui Liao
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Daiyuan Sun
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Zhe Tang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Guanghui Wang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Ming Xu
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Chenfang Wang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiangang Kang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
3
|
Qin L, Gong X, Nong J, Tang X, Cui K, Zhao Y, Xia S. Histone Methyltransferase SsDim5 Regulates Fungal Virulence through H3K9 Trimethylation in Sclerotinia sclerotiorum. J Fungi (Basel) 2024; 10:271. [PMID: 38667942 PMCID: PMC11051235 DOI: 10.3390/jof10040271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Histone post-translational modification is one of the main mechanisms of epigenetic regulation, which plays a crucial role in the control of gene expression and various biological processes. However, whether or not it affects fungal virulence in Sclerotinia sclerotiorum is not clear. In this study, we identified and cloned the histone methyltransferase Defective in methylation 5 (Dim5) in S. sclerotiorum, which encodes a protein containing a typical SET domain. SsDim5 was found to be dynamically expressed during infection. Knockout experiment demonstrated that deletion of SsDim5 reduced the virulence in Ssdim5-1/Ssdim5-2 mutant strains, accompanied by a significant decrease in H3K9 trimethylation levels. Transcriptomic analysis further revealed the downregulation of genes associated with mycotoxins biosynthesis in SsDim5 deletion mutants. Additionally, the absence of SsDim5 affected the fungus's response to oxidative and osmotic, as well as cellular integrity. Together, our results indicate that the H3K9 methyltransferase SsDim5 is essential for H3K9 trimethylation, regulating fungal virulence throug mycotoxins biosynthesis, and the response to environmental stresses in S. sclerotiorum.
Collapse
Affiliation(s)
- Lei Qin
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (L.Q.); (X.G.); (J.N.); (X.T.); (Y.Z.)
| | - Xin Gong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (L.Q.); (X.G.); (J.N.); (X.T.); (Y.Z.)
| | - Jieying Nong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (L.Q.); (X.G.); (J.N.); (X.T.); (Y.Z.)
| | - Xianyu Tang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (L.Q.); (X.G.); (J.N.); (X.T.); (Y.Z.)
| | - Kan Cui
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
| | - Yan Zhao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (L.Q.); (X.G.); (J.N.); (X.T.); (Y.Z.)
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (L.Q.); (X.G.); (J.N.); (X.T.); (Y.Z.)
| |
Collapse
|
4
|
Studt-Reinhold L, Atanasoff-Kardjalieff AK, Berger H, Petersen C, Bachleitner S, Sulyok M, Fischle A, Humpf HU, Kalinina S, Søndergaard TE. H3K27me3 is vital for fungal development and secondary metabolite gene silencing, and substitutes for the loss of H3K9me3 in the plant pathogen Fusarium proliferatum. PLoS Genet 2024; 20:e1011075. [PMID: 38166117 PMCID: PMC10786395 DOI: 10.1371/journal.pgen.1011075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/12/2024] [Accepted: 11/20/2023] [Indexed: 01/04/2024] Open
Abstract
Facultative heterochromatin marked by histone H3 lysine 27 trimethylation (H3K27me3) is an important regulatory layer involved in secondary metabolite (SM) gene silencing and crucial for fungal development in the genus Fusarium. While this histone mark is essential in some (e.g., the rice pathogen Fusarium fujikuroi), it appears dispensable in other fusaria. Here, we show that deletion of FpKMT6 is detrimental but not lethal in the plant pathogen Fusarium proliferatum, a member of the Fusarium fujikuroi species complex (FFSC). Loss of FpKmt6 results in aberrant growth, and expression of a large set of previously H3K27me3-silenced genes is accompanied by increased H3K27 acetylation (H3K27ac) and an altered H3K36me3 pattern. Next, H3K9me3 patterns are affected in Δfpkmt6, indicating crosstalk between both heterochromatic marks that became even more obvious in a strain deleted for FpKMT1 encoding the H3K9-specific histone methyltransferase. In Δfpkmt1, all H3K9me3 marks present in the wild-type strain are replaced by H3K27me3, a finding that may explain the subtle phenotype of the Δfpkmt1 strain which stands in marked contrast to other filamentous fungi. A large proportion of SM-encoding genes is allocated with H3K27me3 in the wild-type strain and loss of H3K27me3 results in elevated expression of 49% of them. Interestingly, genes involved in the biosynthesis of the phytohormones gibberellins (GA) are among the most upregulated genes in Δfpkmt6. Although several FFSC members harbor GA biosynthetic genes, its production is largely restricted to F. fujikuroi, possibly outlining the distinct lifestyles of these notorious plant pathogens. We show that H3K27me3 is involved in GA gene silencing in F. proliferatum and at least one additional FFSC member, and thus, may serve as a regulatory layer for gene silencing under non-favoring conditions.
Collapse
Affiliation(s)
- Lena Studt-Reinhold
- University of Natural Resources and Life Sciences, Vienna, Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, Tulln an der Donau, Austria
| | - Anna K. Atanasoff-Kardjalieff
- University of Natural Resources and Life Sciences, Vienna, Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, Tulln an der Donau, Austria
| | - Harald Berger
- University of Natural Resources and Life Sciences, Vienna, Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, Tulln an der Donau, Austria
| | - Celine Petersen
- Aalborg University, Department of Chemistry and Bioscience, Aalborg, Denmark
| | - Simone Bachleitner
- University of Natural Resources and Life Sciences, Vienna, Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, Tulln an der Donau, Austria
| | - Michael Sulyok
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, Institute of Bioanalytics and Agro-Metabolomics, Tulln an der Donau, Austria
| | - Alica Fischle
- University of Münster, Institute of Food Chemistry, Münster, Germany
| | - Hans-Ulrich Humpf
- University of Münster, Institute of Food Chemistry, Münster, Germany
| | - Svetlana Kalinina
- University of Münster, Institute of Food Chemistry, Münster, Germany
| | | |
Collapse
|
5
|
Nishitani A, Hiramatsu K, Kadooka C, Mori K, Okutsu K, Yoshizaki Y, Takamine K, Tashiro K, Goto M, Tamaki H, Futagami T. Expression of heterochromatin protein 1 affects citric acid production in Aspergillus luchuensis mut. kawachii. J Biosci Bioeng 2023; 136:443-451. [PMID: 37775438 DOI: 10.1016/j.jbiosc.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 10/01/2023]
Abstract
A putative methyltransferase, LaeA, controls citric acid production through epigenetic regulation of the citrate exporter gene, cexA, in the white koji fungus Aspergillus luchuensis mut. kawachii. In this study, we investigated the role of another epigenetic regulator, heterochromatin protein 1, HepA, in citric acid production. The ΔhepA strain exhibited reduced citric acid production in liquid culture, although to a lesser extent compared to the ΔlaeA strain. In addition, the ΔlaeA ΔhepA strain showed citric acid production similar to the ΔlaeA strain, indicating that HepA plays a role in citric acid production, albeit with a less-significant regulatory effect than LaeA. RNA-seq analysis revealed that the transcriptomic profiles of the ΔhepA and ΔlaeA strains were similar, and the expression level of cexA was reduced in both strains. These findings suggest that the genes regulated by HepA are similar to those regulated by LaeA in A. luchuensis mut. kawachii. However, the reductions in citric acid production and cexA expression observed in the disruptants were mitigated in rice koji, a solid-state culture. Thus, the mechanism by which citric acid production is regulated differs between liquid and solid cultivation. Further investigation is thus needed to understand the regulatory mechanism in koji.
Collapse
Affiliation(s)
- Atsushi Nishitani
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Center for Advanced Science Research and Promotion, Kagoshima University, Kagoshima 890-0065, Japan
| | - Kentaro Hiramatsu
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| | - Chihiro Kadooka
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Kazuki Mori
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Kayu Okutsu
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Yumiko Yoshizaki
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Kazunori Takamine
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Kosuke Tashiro
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Masatoshi Goto
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, Saga 840-8502, Japan
| | - Hisanori Tamaki
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Taiki Futagami
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan.
| |
Collapse
|
6
|
Kwon JY, Choi YH, Lee MW, Yu JH, Shin KS. The MYST Family Histone Acetyltransferase SasC Governs Diverse Biological Processes in Aspergillus fumigatus. Cells 2023; 12:2642. [PMID: 37998377 PMCID: PMC10670148 DOI: 10.3390/cells12222642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
The conserved MYST proteins form the largest family of histone acetyltransferases (HATs) that acetylate lysines within the N-terminal tails of histone, enabling active gene transcription. Here, we have investigated the biological and regulatory functions of the MYST family HAT SasC in the opportunistic human pathogenic fungus Aspergillus fumigatus using a series of genetic, biochemical, pathogenic, and transcriptomic analyses. The deletion (Δ) of sasC results in a drastically reduced colony growth, asexual development, spore germination, response to stresses, and the fungal virulence. Genome-wide expression analyses have revealed that the ΔsasC mutant showed 2402 significant differentially expressed genes: 1147 upregulated and 1255 downregulated. The representative upregulated gene resulting from ΔsasC is hacA, predicted to encode a bZIP transcription factor, whereas the UV-endonuclease UVE-1 was significantly downregulated by ΔsasC. Furthermore, our Western blot analyses suggest that SasC likely catalyzes the acetylation of H3K9, K3K14, and H3K29 in A. fumigatus. In conclusion, SasC is associated with diverse biological processes and can be a potential target for controlling pathogenic fungi.
Collapse
Affiliation(s)
- Jae-Yoon Kwon
- Department of Microbiology, Graduate School, Daejeon University, Daejeon 34520, Republic of Korea; (J.-Y.K.); (Y.-H.C.)
| | - Young-Ho Choi
- Department of Microbiology, Graduate School, Daejeon University, Daejeon 34520, Republic of Korea; (J.-Y.K.); (Y.-H.C.)
| | - Min-Woo Lee
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Republic of Korea;
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kwang-Soo Shin
- Department of Microbiology, Graduate School, Daejeon University, Daejeon 34520, Republic of Korea; (J.-Y.K.); (Y.-H.C.)
| |
Collapse
|
7
|
Functional Characterization of the GNAT Family Histone Acetyltransferase Elp3 and GcnE in Aspergillus fumigatus. Int J Mol Sci 2023; 24:ijms24032179. [PMID: 36768506 PMCID: PMC9916960 DOI: 10.3390/ijms24032179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
Post-translational modifications of chromatin structure by histone acetyltransferase (HATs) play a pivotal role in the regulation of gene expression and diverse biological processes. However, the function of GNAT family HATs, especially Elp3, in the opportunistic human pathogenic fungus Aspergillus fumigatus is largely unknown. To investigate the roles of the GNAT family HATs Elp3 and GcnE in the A. fumigatus, we have generated and characterized individual null Δelp3 and ΔgcnE mutants. The radial growth of fungal colonies was significantly decreased by the loss of elp3 or gcnE, and the number of asexual spores (conidia) in the ΔgcnE mutant was significantly reduced. Moreover, the mRNA levels of the key asexual development regulators were also significantly low in the ΔgcnE mutant compared to wild type (WT). Whereas both the Δelp3 and ΔgcnE mutants were markedly impaired in the formation of adherent biofilms, the ΔgcnE mutant showed a complete loss of surface structure and of intercellular matrix. The ΔgcnE mutant responded differently to oxidative stressors and showed significant susceptibility to triazole antifungal agents. Furthermore, Elp3 and GcnE function oppositely in the production of secondary metabolites, and the ΔgcnE mutant showed attenuated virulence. In conclusion, Elp3 and GcnE are associated with diverse biological processes and can be potential targets for controlling the pathogenic fungus.
Collapse
|
8
|
Wang W, Liang X, Li Y, Wang P, Keller NP. Genetic Regulation of Mycotoxin Biosynthesis. J Fungi (Basel) 2022; 9:jof9010021. [PMID: 36675842 PMCID: PMC9861139 DOI: 10.3390/jof9010021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Mycotoxin contamination in food poses health hazards to humans. Current methods of controlling mycotoxins still have limitations and more effective approaches are needed. During the past decades of years, variable environmental factors have been tested for their influence on mycotoxin production leading to elucidation of a complex regulatory network involved in mycotoxin biosynthesis. These regulators are putative targets for screening molecules that could inhibit mycotoxin synthesis. Here, we summarize the regulatory mechanisms of hierarchical regulators, including pathway-specific regulators, global regulators and epigenetic regulators, on the production of the most critical mycotoxins (aflatoxins, patulin, citrinin, trichothecenes and fumonisins). Future studies on regulation of mycotoxins will provide valuable knowledge for exploring novel methods to inhibit mycotoxin biosynthesis in a more efficient way.
Collapse
Affiliation(s)
- Wenjie Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
- Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
- Correspondence: (W.W.); (N.P.K.)
| | - Xinle Liang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
- Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yudong Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
- Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Pinmei Wang
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Correspondence: (W.W.); (N.P.K.)
| |
Collapse
|
9
|
Hoh DZ, Lee HH, Wada N, Liu WA, Lu MR, Lai CK, Ke HM, Sun PF, Tang SL, Chung WH, Chen YL, Chung CL, Tsai IJ. Comparative genomic and transcriptomic analyses of trans-kingdom pathogen Fusarium solani species complex reveal degrees of compartmentalization. BMC Biol 2022; 20:236. [PMID: 36266645 PMCID: PMC9583462 DOI: 10.1186/s12915-022-01436-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The Fusarium solani species complex (FSSC) comprises fungal pathogens responsible for mortality in a diverse range of animals and plants, but their genome diversity and transcriptome responses in animal pathogenicity remain to be elucidated. We sequenced, assembled and annotated six chromosome-level FSSC clade 3 genomes of aquatic animal and plant host origins. We established a pathosystem and investigated the expression data of F. falciforme and F. keratoplasticum in Chinese softshell turtle (Pelodiscus sinensis) host. RESULTS Comparative analyses between the FSSC genomes revealed a spectrum of conservation patterns in chromosomes categorised into three compartments: core, fast-core (FC), and lineage-specific (LS). LS chromosomes contribute to variations in genomes size, with up to 42.2% of variations between F. vanettenii strains. Each chromosome compartment varied in structural architectures, with FC and LS chromosomes contain higher proportions of repetitive elements with genes enriched in functions related to pathogenicity and niche expansion. We identified differences in both selection in the coding sequences and DNA methylation levels between genome features and chromosome compartments which suggest a multi-speed evolution that can be traced back to the last common ancestor of Fusarium. We further demonstrated that F. falciforme and F. keratoplasticum are opportunistic pathogens by inoculating P. sinensis eggs and identified differentially expressed genes also associated with plant pathogenicity. These included the most upregulated genes encoding the CFEM (Common in Fungal Extracellular Membrane) domain. CONCLUSIONS The high-quality genome assemblies provided new insights into the evolution of FSSC chromosomes, which also serve as a resource for studies of fungal genome evolution and pathogenesis. This study also establishes an animal model for fungal pathogens of trans-kingdom hosts.
Collapse
Affiliation(s)
- Daphne Z Hoh
- Biodiversity Research Center, Academia Sinica, 115 Nangang, Taipei, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, 116 Wenshan, Taipei, Taiwan
| | - Hsin-Han Lee
- Biodiversity Research Center, Academia Sinica, 115 Nangang, Taipei, Taiwan
| | - Naohisa Wada
- Biodiversity Research Center, Academia Sinica, 115 Nangang, Taipei, Taiwan
| | - Wei-An Liu
- Biodiversity Research Center, Academia Sinica, 115 Nangang, Taipei, Taiwan
| | - Min R Lu
- Biodiversity Research Center, Academia Sinica, 115 Nangang, Taipei, Taiwan
| | - Cheng-Kuo Lai
- Biodiversity Research Center, Academia Sinica, 115 Nangang, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Huei-Mien Ke
- Biodiversity Research Center, Academia Sinica, 115 Nangang, Taipei, Taiwan
| | - Pei-Feng Sun
- Biodiversity Research Center, Academia Sinica, 115 Nangang, Taipei, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, 116 Wenshan, Taipei, Taiwan
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, 115 Nangang, Taipei, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
| | - Wen-Hsin Chung
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Ying-Lien Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, 10617, Taiwan
| | - Chia-Lin Chung
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, 10617, Taiwan
| | - Isheng Jason Tsai
- Biodiversity Research Center, Academia Sinica, 115 Nangang, Taipei, Taiwan.
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan.
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
10
|
Mapook A, Hyde KD, Hassan K, Kemkuignou BM, Čmoková A, Surup F, Kuhnert E, Paomephan P, Cheng T, de Hoog S, Song Y, Jayawardena RS, Al-Hatmi AMS, Mahmoudi T, Ponts N, Studt-Reinhold L, Richard-Forget F, Chethana KWT, Harishchandra DL, Mortimer PE, Li H, Lumyong S, Aiduang W, Kumla J, Suwannarach N, Bhunjun CS, Yu FM, Zhao Q, Schaefer D, Stadler M. Ten decadal advances in fungal biology leading towards human well-being. FUNGAL DIVERS 2022; 116:547-614. [PMID: 36123995 PMCID: PMC9476466 DOI: 10.1007/s13225-022-00510-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/28/2022] [Indexed: 11/04/2022]
Abstract
Fungi are an understudied resource possessing huge potential for developing products that can greatly improve human well-being. In the current paper, we highlight some important discoveries and developments in applied mycology and interdisciplinary Life Science research. These examples concern recently introduced drugs for the treatment of infections and neurological diseases; application of -OMICS techniques and genetic tools in medical mycology and the regulation of mycotoxin production; as well as some highlights of mushroom cultivaton in Asia. Examples for new diagnostic tools in medical mycology and the exploitation of new candidates for therapeutic drugs, are also given. In addition, two entries illustrating the latest developments in the use of fungi for biodegradation and fungal biomaterial production are provided. Some other areas where there have been and/or will be significant developments are also included. It is our hope that this paper will help realise the importance of fungi as a potential industrial resource and see the next two decades bring forward many new fungal and fungus-derived products.
Collapse
Affiliation(s)
- Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou, 510225 China
| | - Khadija Hassan
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
| | - Blondelle Matio Kemkuignou
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
| | - Adéla Čmoková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Frank Surup
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Brunswick, Germany
| | - Eric Kuhnert
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Pathompong Paomephan
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400 Thailand
| | - Tian Cheng
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Sybren de Hoog
- Center of Expertise in Mycology, Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Guiyang, China
- Microbiology, Parasitology and Pathology Graduate Program, Federal University of Paraná, Curitiba, Brazil
| | - Yinggai Song
- Department of Dermatology, Peking University First Hospital, Peking University, Beijing, China
| | - Ruvishika S. Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Abdullah M. S. Al-Hatmi
- Center of Expertise in Mycology, Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nadia Ponts
- INRAE, UR1264 Mycology and Food Safety (MycSA), 33882 Villenave d’Ornon, France
| | - Lena Studt-Reinhold
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| | | | - K. W. Thilini Chethana
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dulanjalee L. Harishchandra
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Peter E. Mortimer
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Huili Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Saisamorm Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, 10300 Thailand
| | - Worawoot Aiduang
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Chitrabhanu S. Bhunjun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Feng-Ming Yu
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Qi Zhao
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Doug Schaefer
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Brunswick, Germany
| |
Collapse
|
11
|
Zehetbauer F, Seidl A, Berger H, Sulyok M, Kastner F, Strauss J. RimO (SrrB) is required for carbon starvation signaling and production of secondary metabolites in Aspergillus nidulans. Fungal Genet Biol 2022; 162:103726. [PMID: 35843417 DOI: 10.1016/j.fgb.2022.103726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/17/2022] [Accepted: 07/09/2022] [Indexed: 11/20/2022]
Abstract
Depending on the prevailing environmental, developmental and nutritional conditions, fungi activate biosynthetic gene clusters (BGCs) to produce condition-specific secondary metabolites (SMs). For activation, global chromatin-based de-repression must be integrated with pathway-specific induction signals. Here we describe a new global regulator needed to activate starvation-induced SMs. In our transcriptome dataset, we found locus AN7572 strongly transcribed solely under conditions of starvation-induced SM production. The predicted AN7572 protein is most similar to the stress and nutritional regulator Rim15 of Saccharomyces cerevisiae, and to STK-12 of Neurospora crassa. Based on this similarity and on stress and nutritional response phenotypes of A. nidulans knock-out and overexpression strains, AN7572 is designated rimO. In relation to SM production, we found that RimO is required for the activation of starvation-induced BGCs, including the sterigmatocystin (ST) gene cluster. Here, RimO regulates the pathway-specific transcription factor AflR both at the transcriptional and post-translational level. At the transcriptional level, RimO mediates aflR induction following carbon starvation and at the post-translational level, RimO is required for nuclear accumulation of the AflR protein. Genome-wide transcriptional profiling showed that cells lacking rimO fail to adapt to carbon starvation that, in the wild type, leads to down-regulation of genes involved in basic metabolism, membrane biogenesis and growth. Consistently, strains overexpressing rimO are more resistant to oxidative and osmotic stress, largely insensitive to glucose repression and strongly overproduce several SMs. Our data indicate that RimO is a positive regulator within the SM and stress response network, but this requires nutrient depletion that triggers both, rimO gene transcription and activation of the RimO protein.
Collapse
Affiliation(s)
- Franz Zehetbauer
- University of Natural Resources and Life Sciences, Vienna, Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, Konrad Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| | - Angelika Seidl
- University of Natural Resources and Life Sciences, Vienna, Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, Konrad Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| | - Harald Berger
- University of Natural Resources and Life Sciences, Vienna, Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, Konrad Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| | - Michael Sulyok
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Straße 20, 3430 Tulln an der Donau, Austria.
| | - Florian Kastner
- University of Natural Resources and Life Sciences, Vienna, Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, Konrad Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| | - Joseph Strauss
- University of Natural Resources and Life Sciences, Vienna, Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, Konrad Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| |
Collapse
|
12
|
Wang L, Liu J, Li X, Lyu X, Liu Z, Zhao H, Jiao X, Zhang W, Xie J, Liu W. A histone H3K9 methyltransferase Dim5 mediates repression of sorbicillinoid biosynthesis in Trichoderma reesei. Microb Biotechnol 2022; 15:2533-2546. [PMID: 35921310 PMCID: PMC9518983 DOI: 10.1111/1751-7915.14103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/05/2022] [Indexed: 11/27/2022] Open
Abstract
Sorbicillinoids (also termed yellow pigment) are derived from either marine or terrestrial fungi, exhibit various biological activities and therefore show potential as commercial products for human or animal health. The cellulolytic filamentous fungus Trichoderma reesei is capable to biosynthesize sorbicillinoids, but the underlying regulatory mechanism is not yet completely clear. Herein, we identified a histone H3 lysine 9 (H3K9) methyltransferase, Dim5, in T. reesei. TrDIM5 deletion caused an impaired vegetative growth as well as conidiation, whereas the ∆Trdim5 strain displayed a remarkable increase in sorbicillinoid production. Post TrDIM5 deletion, the transcription of sorbicillinoid biosynthesis‐related (SOR) genes was significantly upregulated with a more open chromatin structure. Intriguingly, hardly any expression changes occurred amongst those genes located on both flanks of the SOR gene cluster. In addition, the assays provided evidence that H3K9 triple methylation (H3K9me3) modification acted as a repressive marker at the SOR gene cluster and thus directly mediated the repression of sorbicillinoid biosynthesis. Transcription factor Ypr1 activated the SOR gene cluster by antagonizing TrDim5‐mediated repression and therefore contributed to forming a relatively more open local chromatin environment, which further facilitated its binding and SOR gene expression. The results of this study will contribute to understanding the intricate regulatory network in sorbicillinoid biosynthesis and facilitate the endowment of T. reesei with preferred features for sorbicillinoid production by genetic engineering.
Collapse
Affiliation(s)
- Lei Wang
- Collaborative Innovation Center of Reverse Microbial Etiology, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jialong Liu
- Collaborative Innovation Center of Reverse Microbial Etiology, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xiaotong Li
- Collaborative Innovation Center of Reverse Microbial Etiology, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xinxing Lyu
- Institute of Basic Medicine, Shandong First Medical University&Shandong Academy of Medical Sciences, Jinan, China
| | - Zhizhen Liu
- Collaborative Innovation Center of Reverse Microbial Etiology, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Hong Zhao
- Collaborative Innovation Center of Reverse Microbial Etiology, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xiangying Jiao
- Collaborative Innovation Center of Reverse Microbial Etiology, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Weixin Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jun Xie
- Collaborative Innovation Center of Reverse Microbial Etiology, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
13
|
Etier A, Dumetz F, Chéreau S, Ponts N. Post-Translational Modifications of Histones Are Versatile Regulators of Fungal Development and Secondary Metabolism. Toxins (Basel) 2022; 14:toxins14050317. [PMID: 35622565 PMCID: PMC9145779 DOI: 10.3390/toxins14050317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Chromatin structure is a major regulator of DNA-associated processes, such as transcription, DNA repair, and replication. Histone post-translational modifications, or PTMs, play a key role on chromatin dynamics. PTMs are involved in a wide range of biological processes in eukaryotes, including fungal species. Their deposition/removal and their underlying functions have been extensively investigated in yeasts but much less in other fungi. Nonetheless, the major role of histone PTMs in regulating primary and secondary metabolisms of filamentous fungi, including human and plant pathogens, has been pinpointed. In this review, an overview of major identified PTMs and their respective functions in fungi is provided, with a focus on filamentous fungi when knowledge is available. To date, most of these studies investigated histone acetylations and methylations, but the development of new methodologies and technologies increasingly allows the wider exploration of other PTMs, such as phosphorylation, ubiquitylation, sumoylation, and acylation. Considering the increasing number of known PTMs and the full range of their possible interactions, investigations of the subsequent Histone Code, i.e., the biological consequence of the combinatorial language of all histone PTMs, from a functional point of view, are exponentially complex. Better knowledge about histone PTMs would make it possible to efficiently fight plant or human contamination, avoid the production of toxic secondary metabolites, or optimize the industrial biosynthesis of certain beneficial compounds.
Collapse
|
14
|
Atanasoff-Kardjalieff AK, Studt L. Secondary Metabolite Gene Regulation in Mycotoxigenic Fusarium Species: A Focus on Chromatin. Toxins (Basel) 2022; 14:96. [PMID: 35202124 PMCID: PMC8880415 DOI: 10.3390/toxins14020096] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/31/2022] Open
Abstract
Fusarium is a species-rich group of mycotoxigenic plant pathogens that ranks as one of the most economically important fungal genera in the world. During growth and infection, they are able to produce a vast spectrum of low-molecular-weight compounds, so-called secondary metabolites (SMs). SMs often comprise toxic compounds (i.e., mycotoxins) that contaminate precious food and feed sources and cause adverse health effects in humans and livestock. In this context, understanding the regulation of their biosynthesis is crucial for the development of cropping strategies that aim at minimizing mycotoxin contamination in the field. Nevertheless, currently, only a fraction of SMs have been identified, and even fewer are considered for regular monitoring by regulatory authorities. Limitations to exploit their full chemical potential arise from the fact that the genes involved in their biosynthesis are often silent under standard laboratory conditions and only induced upon specific stimuli mimicking natural conditions in which biosynthesis of the respective SM becomes advantageous for the producer. This implies a complex regulatory network. Several components of these gene networks have been studied in the past, thereby greatly advancing the understanding of SM gene regulation and mycotoxin biosynthesis in general. This review aims at summarizing the latest advances in SM research in these notorious plant pathogens with a focus on chromatin structure.
Collapse
Affiliation(s)
| | - Lena Studt
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), 3430 Tulln an der Donau, Austria;
| |
Collapse
|
15
|
Abstract
Anaerobic gut fungi (Neocallimastigomycetes) live in the digestive tract of large herbivores, where they are vastly outnumbered by bacteria. It has been suggested that anaerobic fungi challenge growth of bacteria owing to the wealth of biosynthetic genes in fungal genomes, although this relationship has not been experimentally tested. Here, we cocultivated the rumen bacteria Fibrobacter succinogenes strain UWB7 with the anaerobic gut fungi Anaeromyces robustus or Caecomyces churrovis on a range of carbon substrates and quantified the bacterial and fungal transcriptomic response. Synthetic cocultures were established for at least 24 h, as verified by active fungal and bacterial transcription. A. robustus upregulated components of its secondary metabolism in the presence of Fibrobacter succinogenes strain UWB7, including six nonribosomal peptide synthetases, one polyketide synthase-like enzyme, and five polyketide synthesis O-type methyltransferases. Both A. robustus and C. churrovis cocultures upregulated S-adenosyl-l-methionine (SAM)-dependent methyltransferases, histone methyltransferases, and an acetyltransferase. Fungal histone 3 lysine 27 trimethylation marks were more abundant in coculture, and heterochromatin protein-1 was downregulated. Together, these findings suggest that fungal chromatin remodeling occurs when bacteria are present. F. succinogenes strain UWB7 upregulated four genes in coculture encoding drug efflux pumps, which likely protect the cell against toxins. Furthermore, untargeted nonpolar metabolomics data revealed at least one novel fungal metabolite enriched in coculture, which may be a defense compound. Taken together, these data suggest that A. robustus and C. churrovis produce antimicrobials when exposed to rumen bacteria and, more broadly, that anaerobic gut fungi are a source of novel antibiotics.
Collapse
|
16
|
Carlier F, Li M, Maroc L, Debuchy R, Souaid C, Noordermeer D, Grognet P, Malagnac F. Loss of EZH2-like or SU(VAR)3-9-like proteins causes simultaneous perturbations in H3K27 and H3K9 tri-methylation and associated developmental defects in the fungus Podospora anserina. Epigenetics Chromatin 2021; 14:22. [PMID: 33962663 PMCID: PMC8105982 DOI: 10.1186/s13072-021-00395-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Selective gene silencing is key to development. It is generally accepted that H3K27me3-enriched heterochromatin maintains transcriptional repression established during early development and regulates cell fate. Conversely, H3K9me3-enriched heterochromatin prevents differentiation but constitutes protection against transposable elements. We exploited the fungus Podospora anserina, a valuable alternative to higher eukaryote models, to question the biological relevance and functional interplay of these two distinct heterochromatin conformations. RESULTS We established genome-wide patterns of H3K27me3 and H3K9me3 modifications, and found these marks mutually exclusive within gene-rich regions but not within repeats. We generated the corresponding histone methyltransferase null mutants and showed an interdependence of H3K9me3 and H3K27me3 marks. Indeed, removal of the PaKmt6 EZH2-like enzyme resulted not only in loss of H3K27me3 but also in significant H3K9me3 reduction. Similarly, removal of PaKmt1 SU(VAR)3-9-like enzyme caused loss of H3K9me3 and substantial decrease of H3K27me3. Removal of the H3K9me binding protein PaHP1 provided further support to the notion that each type of heterochromatin requires the presence of the other. We also established that P. anserina developmental programs require H3K27me3-mediated silencing, since loss of the PaKmt6 EZH2-like enzyme caused severe defects in most aspects of the life cycle including growth, differentiation processes and sexual reproduction, whereas loss of the PaKmt1 SU(VAR)3-9-like enzyme resulted only in marginal defects, similar to loss of PaHP1. CONCLUSIONS Our findings support a conserved function of the PRC2 complex in fungal development. However, we uncovered an intriguing evolutionary fluidity in the repressive histone deposition machinery, which challenges canonical definitions of constitutive and facultative heterochromatin.
Collapse
Affiliation(s)
- F Carlier
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
- Group Fungal Epigenomics, Department of Mycology, Institut Pasteur, Paris, France
| | - M Li
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
| | - L Maroc
- Génétique Quantitative et Évolution-Le Moulon, INRA-Université Paris-Saclay-CNRS-AgroParisTech, Batiment 400, UFR Des Sciences, 91405, Orsay CEDEX, France
| | - R Debuchy
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
| | - C Souaid
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
- Inserm, Theories and Approaches of Genomic Complexity (TAGC), UMR1090, Aix-Marseille University, 13288, Marseille, France
| | - D Noordermeer
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
| | - P Grognet
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France.
| | - F Malagnac
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France.
| |
Collapse
|
17
|
Aghdam SA, Brown AMV. Deep learning approaches for natural product discovery from plant endophytic microbiomes. ENVIRONMENTAL MICROBIOME 2021; 16:6. [PMID: 33758794 PMCID: PMC7972023 DOI: 10.1186/s40793-021-00375-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/21/2021] [Indexed: 05/10/2023]
Abstract
Plant microbiomes are not only diverse, but also appear to host a vast pool of secondary metabolites holding great promise for bioactive natural products and drug discovery. Yet, most microbes within plants appear to be uncultivable, and for those that can be cultivated, their metabolic potential lies largely hidden through regulatory silencing of biosynthetic genes. The recent explosion of powerful interdisciplinary approaches, including multi-omics methods to address multi-trophic interactions and artificial intelligence-based computational approaches to infer distribution of function, together present a paradigm shift in high-throughput approaches to natural product discovery from plant-associated microbes. Arguably, the key to characterizing and harnessing this biochemical capacity depends on a novel, systematic approach to characterize the triggers that turn on secondary metabolite biosynthesis through molecular or genetic signals from the host plant, members of the rich 'in planta' community, or from the environment. This review explores breakthrough approaches for natural product discovery from plant microbiomes, emphasizing the promise of deep learning as a tool for endophyte bioprospecting, endophyte biochemical novelty prediction, and endophyte regulatory control. It concludes with a proposed pipeline to harness global databases (genomic, metabolomic, regulomic, and chemical) to uncover and unsilence desirable natural products. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s40793-021-00375-0.
Collapse
Affiliation(s)
- Shiva Abdollahi Aghdam
- Department of Biological Sciences, Texas Tech University, 2901 Main St, Lubbock, TX 79409 USA
| | - Amanda May Vivian Brown
- Department of Biological Sciences, Texas Tech University, 2901 Main St, Lubbock, TX 79409 USA
| |
Collapse
|
18
|
Local Rather than Global H3K27me3 Dynamics Are Associated with Differential Gene Expression in Verticillium dahliae. mBio 2021; 13:e0356621. [PMID: 35130723 PMCID: PMC8822345 DOI: 10.1128/mbio.03566-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Differential growth conditions typically trigger global transcriptional responses in filamentous fungi. Such fungal responses to environmental cues involve epigenetic regulation, including chemical histone modifications. It has been proposed that conditionally expressed genes, such as those that encode secondary metabolites but also effectors in pathogenic species, are often associated with a specific histone modification, lysine27 methylation of H3 (H3K27me3). However, thus far, no analyses on the global H3K27me3 profiles have been reported under differential growth conditions in order to assess if H3K27me3 dynamics govern differential transcription. Using chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing data from the plant-pathogenic fungus Verticillium dahliae grown in three in vitro cultivation media, we now show that a substantial number of the identified H3K27me3 domains globally display stable profiles among these growth conditions. However, we observe local quantitative differences in H3K27me3 ChIP-seq signals that are associated with a subset of differentially transcribed genes between media. Comparing the in vitro results to expression during plant infection suggests that in planta-induced genes may require chromatin remodeling to achieve expression. Overall, our results demonstrate that some loci display H3K27me3 dynamics associated with concomitant transcriptional variation, but many differentially expressed genes are associated with stable H3K27me3 domains. Thus, we conclude that while H3K27me3 is required for transcriptional repression, it does not appear that transcriptional activation requires the global erasure of H3K27me3. We propose that the H3K27me3 domains that do not undergo dynamic methylation may contribute to transcription through other mechanisms or may serve additional genomic regulatory functions. IMPORTANCE In many organisms, including filamentous fungi, epigenetic mechanisms that involve chemical and physical modifications of DNA without changing the genetic sequence have been implicated in transcriptional responses upon developmental or environmental cues. In fungi, facultative heterochromatin that can decondense to allow transcription in response to developmental changes or environmental stimuli is characterized by the trimethylation of lysine 27 on histone H3 (H3K27me3), and H3K27me3 has been implicated in transcriptional regulation, although the precise mechanisms and functions remain enigmatic. Based on ChIP and RNA sequencing data, we show for the soilborne broad-host-range vascular wilt plant-pathogenic fungus Verticillium dahliae that although some loci display H3K27me3 dynamics that can contribute to transcriptional variation, other loci do not show such a dependence. Thus, although we recognize that H3K27me3 is required for transcriptional repression, we also conclude that this mark is not a conditionally responsive global regulator of differential transcription upon responses to environmental cues.
Collapse
|
19
|
Oufensou S, Casalini S, Balmas V, Carta P, Chtioui W, Dettori MA, Fabbri D, Migheli Q, Delogu G. Prenylated Trans-Cinnamic Esters and Ethers against Clinical Fusarium spp.: Repositioning of Natural Compounds in Antimicrobial Discovery. Molecules 2021; 26:molecules26030658. [PMID: 33513915 PMCID: PMC7865625 DOI: 10.3390/molecules26030658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/15/2021] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
Onychomycosis is a common nail infection mainly caused by species belonging to the F. oxysporum, F. solani, and F. fujikuroi species complexes. The aim of this study was to evaluate the in vitro susceptibility of six representative strains of clinically relevant Fusarium spp. toward a set of natural-occurring hydroxycinnamic acids and their derivatives with the purpose to develop naturally occurring products in order to cope with emerging resistance phenomena. By introducing a prenylated chain at one of the hydroxy groups of trans-cinnamic acids 1–3, ten prenylated derivatives (coded 4–13) were preliminarily investigated in solid Fusarium minimal medium (FMM). Minimal inhibitory concentration (MIC) and lethal dose 50 (LD50) values were then determined in liquid FMM for the most active selected antifungal p-coumaric acid 3,3′-dimethyl allyl ester 13, in comparison with the conventional fungicides terbinafine (TRB) and amphotericin B (AmB), through the quantification of the fungal growth. Significant growth inhibition was observed for prenylated derivatives 4–13, evidencing ester 13 as the most active. This compound presented MIC and LD50 values (62–250 µM and 7.8–125 µM, respectively) comparable to those determined for TRB and AmB in the majority of the tested pathogenic strains. The position and size of the prenylated chain and the presence of a free phenol OH group appear crucial for the antifungal activity. This work represents the first report on the activity of prenylated cinnamic esters and ethers against clinical Fusarium spp. and opens new avenues in the development of alternative antifungal compounds based on a drug repositioning strategy.
Collapse
Affiliation(s)
- Safa Oufensou
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy; (S.O.); (S.C.); (V.B.); (W.C.); (Q.M.)
| | - Stefano Casalini
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy; (S.O.); (S.C.); (V.B.); (W.C.); (Q.M.)
| | - Virgilio Balmas
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy; (S.O.); (S.C.); (V.B.); (W.C.); (Q.M.)
| | - Paola Carta
- Istituto CNR di Chimica Biomolecolare, Traversa La Crucca 3, 07100 Sassari, Italy; (P.C.); (D.F.); (G.D.)
| | - Wiem Chtioui
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy; (S.O.); (S.C.); (V.B.); (W.C.); (Q.M.)
| | - Maria A. Dettori
- Istituto CNR di Chimica Biomolecolare, Traversa La Crucca 3, 07100 Sassari, Italy; (P.C.); (D.F.); (G.D.)
- Correspondence: ; Tel.: +39-079-284-1224
| | - Davide Fabbri
- Istituto CNR di Chimica Biomolecolare, Traversa La Crucca 3, 07100 Sassari, Italy; (P.C.); (D.F.); (G.D.)
| | - Quirico Migheli
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy; (S.O.); (S.C.); (V.B.); (W.C.); (Q.M.)
- Nucleo di Ricerca sulla Desertificazione, Università degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy
| | - Giovanna Delogu
- Istituto CNR di Chimica Biomolecolare, Traversa La Crucca 3, 07100 Sassari, Italy; (P.C.); (D.F.); (G.D.)
| |
Collapse
|
20
|
Bonner C, Sproule A, Rowland O, Overy D, Subramaniam R. DNA Methylation Is Responsive to the Environment and Regulates the Expression of Biosynthetic Gene Clusters, Metabolite Production, and Virulence in Fusarium graminearum. FRONTIERS IN FUNGAL BIOLOGY 2021; 1:614633. [PMID: 37743878 PMCID: PMC10512235 DOI: 10.3389/ffunb.2020.614633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/07/2020] [Indexed: 09/26/2023]
Abstract
Histone modifications play a significant role in the regulation of biosynthetic gene clusters (BGCs) in the phytopathogen Fusarium graminearum, by contrast, epigenetic regulation by DNA methyltransferases (DNMTs) is less documented. In this study, we characterized two DNMTs (FgDIM-2 and FgRID) in F. graminearum, with homologies to "Deficient in methylation" (DIM-2) and "Repeat-induced point (RIP) deficient" (RID) from Neurospora. The loss of DNMTs resulted in not only a decrease in average methylation density in the nutrient-poor, compared to nutrient-rich conditions, but also differences in the genes expressed between the WT and the DNMT mutant strains, implicating the external environment as an important trigger in altering DNA methylation patterns. Consequently, we observed significant changes in the regulation of multiple BGCs and alterations in the pathogenicity of the fungus.
Collapse
Affiliation(s)
- Christopher Bonner
- Department of Biology, Carleton University, Ottawa, ON, Canada
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Amanda Sproule
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Owen Rowland
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - David Overy
- Department of Biology, Carleton University, Ottawa, ON, Canada
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Rajagopal Subramaniam
- Department of Biology, Carleton University, Ottawa, ON, Canada
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| |
Collapse
|
21
|
Oufensou S, Balmas V, Azara E, Fabbri D, Dettori MA, Schüller C, Zehetbauer F, Strauss J, Delogu G, Migheli Q. Naturally Occurring Phenols Modulate Vegetative Growth and Deoxynivalenol Biosynthesis in Fusarium graminearum. ACS OMEGA 2020; 5:29407-29415. [PMID: 33225172 PMCID: PMC7676359 DOI: 10.1021/acsomega.0c04260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
To assess the in vitro activity of five naturally occurring phenolic compounds (ferulic acid, apocynin, magnolol, honokiol, and thymol) on mycelial growth and type B trichothecene mycotoxin accumulation by Fusarium graminearum, three complementary approaches were adopted. First, a high-throughput photometric continuous reading array allowed a parallel quantification of F. graminearum hyphal growth and reporter TRI5 gene expression directly on solid medium. Second, RT-qPCR confirmed the regulation of TRI5 expression by the tested compounds. Third, liquid chromatography-tandem mass spectrometry analysis allowed quantification of deoxynivalenol (DON) and its acetylated forms released upon treatment with the phenolic compounds. Altogether, the results confirmed the activity of thymol and an equimolar mixture of thymol-magnolol at 0.5 mM, respectively, in inhibiting DON production without affecting vegetative growth. The medium pH buffering capacity after 72-96 h of incubation is proposed as a further element to highlight compounds displaying trichothecene inhibitory capacity with no significant fungicidal effect.
Collapse
Affiliation(s)
- Safa Oufensou
- Dipartimento di Agraria, Università
degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy
| | - Virgilio Balmas
- Dipartimento di Agraria, Università
degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy
| | - Emanuela Azara
- Istituto CNR di
Chimica Biomolecolare, Traversa La Crucca 3, I-07100 Sassari, Italy
| | - Davide Fabbri
- Istituto CNR di
Chimica Biomolecolare, Traversa La Crucca 3, I-07100 Sassari, Italy
| | | | - Christoph Schüller
- Bioactive Microbial
Metabolites (BiMM) Research Platform, University
of Natural Resources and Life Sciences Vienna, (BOKU), 3430 Tulln, Austria
| | - Franz Zehetbauer
- Institute of Microbial Genetics, Department
of Applied Genetics and Cell Biology (DAGZ), University of Natural Resources and Life Sciences Vienna, (BOKU), 3430 Tulln, Austria
| | - Joseph Strauss
- Bioactive Microbial
Metabolites (BiMM) Research Platform, University
of Natural Resources and Life Sciences Vienna, (BOKU), 3430 Tulln, Austria
- Institute of Microbial Genetics, Department
of Applied Genetics and Cell Biology (DAGZ), University of Natural Resources and Life Sciences Vienna, (BOKU), 3430 Tulln, Austria
| | - Giovanna Delogu
- Istituto CNR di
Chimica Biomolecolare, Traversa La Crucca 3, I-07100 Sassari, Italy
| | - Quirico Migheli
- Dipartimento di Agraria, Università
degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy
- Nucleo di Ricerca sulla Desertificazione, Università degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy
| |
Collapse
|
22
|
Guo Z, Zou ZM. Discovery of New Secondary Metabolites by Epigenetic Regulation and NMR Comparison from the Plant Endophytic Fungus Monosporascus eutypoides. Molecules 2020; 25:molecules25184192. [PMID: 32932749 PMCID: PMC7570479 DOI: 10.3390/molecules25184192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 01/29/2023] Open
Abstract
Overexpression of the histone acetyltransferase and the 1H NMR spectroscopic experiments of the endophytic fungus Monosporascus eutypoides resulted in the isolation of two new compounds, monosporasols A (1) and B (2), and two known compounds, pestaloficin C (3) and arthrinone (4). Their planar structures and absolute configurations were determined by spectroscopic analysis including high resolution electrospray ionization mass spectroscopy (HRESIMS), one-dimensional (1D) and two-dimensional (2D) NMR, and calculated electronic circular dichroism data. Compounds 1–2 were screened in cytotoxic bioassays against HeLa, HCT-8, A549 and MCF-7 cells. Our work highlights the enormous potential of epigenetic manipulation along with the NMR comparison as an effective strategy for unlocking the chemical diversity encoded by fungal genomes.
Collapse
|
23
|
Abstract
Chromatin is a highly dynamic structure that closely relates with gene expression in eukaryotes. ATP-dependent chromatin remodelling, histone post-translational modification and DNA methylation are the main ways that mediate such plasticity. The histone variant H2A.Z is frequently encountered in eukaryotes, and can be deposited or removed from nucleosomes by chromatin remodelling complex SWR1 or INO80, respectively, leading to altered chromatin state. H2A.Z has been found to be involved in a diverse range of biological processes, including genome stability, DNA repair and transcriptional regulation. Due to their formidable production of secondary metabolites, filamentous fungi play outstanding roles in pharmaceutical production, food safety and agriculture. During the last few years, chromatin structural changes were proven to be a key factor associated with secondary metabolism in fungi. However, studies on the function of H2A.Z are scarce. Here, we summarize current knowledge of H2A.Z functions with a focus on filamentous fungi. We propose that H2A.Z is a potential target involved in the regulation of secondary metabolite biosynthesis by fungi.
Collapse
|
24
|
Heterologous expression of intact biosynthetic gene clusters in Fusarium graminearum. Fungal Genet Biol 2019; 132:103248. [DOI: 10.1016/j.fgb.2019.103248] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 11/18/2022]
|
25
|
Chen Y, Kistler HC, Ma Z. Fusarium graminearum Trichothecene Mycotoxins: Biosynthesis, Regulation, and Management. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:15-39. [PMID: 30893009 DOI: 10.1146/annurev-phyto-082718-100318] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Fusarium head blight (FHB) of small grain cereals caused by Fusarium graminearum and other Fusarium species is an economically important plant disease worldwide. Fusarium infections not only result in severe yield losses but also contaminate grain with various mycotoxins, especially deoxynivalenol (DON). With the complete genome sequencing of F. graminearum, tremendous progress has been made during the past two decades toward understanding the basis for DON biosynthesis and its regulation. Here, we summarize the current understanding of DON biosynthesis and the effect of regulators, signal transduction pathways, and epigenetic modifications on DON production and the expression of biosynthetic TRI genes. In addition, strategies for controlling FHB and DON contamination are reviewed. Further studies on these biosynthetic and regulatory systems will provide useful knowledge for developing novel management strategies to prevent FHB incidence and mycotoxin accumulation in cereals.
Collapse
Affiliation(s)
- Yun Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - H Corby Kistler
- Cereal Disease Laboratory, Agricultural Research Service, United States Department of Agriculture, Saint Paul, Minnesota 55108, USA
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
26
|
Greco C, Pfannenstiel BT, Liu JC, Keller NP. Depsipeptide Aspergillicins Revealed by Chromatin Reader Protein Deletion. ACS Chem Biol 2019; 14:1121-1128. [PMID: 31117395 DOI: 10.1021/acschembio.9b00161] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Expression of biosynthetic gene clusters (BGCs) in filamentous fungi is highly regulated by epigenetic remodeling of chromatin structure. Two classes of histone modifying proteins, writers (which place modifications on histone tails) and erasers (which remove the modifications), have been used extensively to activate cryptic BGCs in fungi. Here, for the first time, we present activation of a cryptic BGC by a third category of histone modifying proteins, reader proteins that recognize histone tail modifications and commonly mediate writer and eraser activity. Loss of the reader SntB (Δ sntB) resulted in the synthesis of two cryptic cyclic hexa-depsipeptides, aspergillicin A and aspergillicin F, in the fungus Aspergillus flavus. Liquid chromatography, high resolution mass spectrometry, and NMR analysis coupled with bioinformatic analysis and gene deletion experiments revealed that a six adenylation (A) domain nonribosomal peptide synthetase (NRPS, called AgiA) and O-methyltransferase (AgiB) were required for metabolite formation. A proposed biosynthetic scheme illustrates the requirement for unusual NRPS domains, such as a starting condensation domain and a thiolesterase domain proposed to cyclize the depsipeptides. This latter activity has only been found in bacterial but not fungal NRPS. The agi BGC-unique to A. flavus and some closely related species (e.g., A. oryzae, A. arachidicola)-is located next to a conserved Aspergillus siderophore BGC syntenic to other fungi.
Collapse
Affiliation(s)
- Claudio Greco
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, Wisconsin, United States
| | | | - James C. Liu
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, Wisconsin, United States
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, Wisconsin, United States
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, United States
| |
Collapse
|
27
|
Dallery JF, Le Goff G, Adelin E, Iorga BI, Pigné S, O'Connell RJ, Ouazzani J. Deleting a Chromatin Remodeling Gene Increases the Diversity of Secondary Metabolites Produced by Colletotrichum higginsianum. JOURNAL OF NATURAL PRODUCTS 2019; 82:813-822. [PMID: 30776231 DOI: 10.1021/acs.jnatprod.8b00796] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Colletotrichum higginsianum is the causal agent of crucifer anthracnose disease, responsible for important economic losses in Brassica crops. A mutant lacking the CclA subunit of the COMPASS complex was expected to undergo chromatin decondensation and the activation of cryptic secondary metabolite biosynthetic gene clusters. Liquid-state fermentation of the Δ cclA mutant coupled with in situ solid-phase extraction led to the production of three families of compounds, namely, colletorin and colletochlorin derivatives with two new representatives, colletorin D (1) and colletorin D acid (2), the diterpenoid α-pyrone higginsianin family with two new analogues, higginsianin C (3) and 13- epi-higginsianin C (4), and sclerosporide (5) coupling a sclerosporin moiety with dimethoxy inositol.
Collapse
Affiliation(s)
- Jean-Félix Dallery
- Centre National de la Recherche Scientifique , Institut de Chimie des Substances Naturelles ICSN , Avenue de la Terrasse , 91198 , Gif-sur-Yvette , Cedex , France
| | - Géraldine Le Goff
- Centre National de la Recherche Scientifique , Institut de Chimie des Substances Naturelles ICSN , Avenue de la Terrasse , 91198 , Gif-sur-Yvette , Cedex , France
| | - Emilie Adelin
- Centre National de la Recherche Scientifique , Institut de Chimie des Substances Naturelles ICSN , Avenue de la Terrasse , 91198 , Gif-sur-Yvette , Cedex , France
| | - Bogdan I Iorga
- Centre National de la Recherche Scientifique , Institut de Chimie des Substances Naturelles ICSN , Avenue de la Terrasse , 91198 , Gif-sur-Yvette , Cedex , France
| | - Sandrine Pigné
- UMR BIOGER, INRA, AgroParisTech , Université Paris-Saclay , Avenue Lucien Brétignières , 78850 , Thiverval-Grignon , France
| | - Richard J O'Connell
- UMR BIOGER, INRA, AgroParisTech , Université Paris-Saclay , Avenue Lucien Brétignières , 78850 , Thiverval-Grignon , France
| | - Jamal Ouazzani
- Centre National de la Recherche Scientifique , Institut de Chimie des Substances Naturelles ICSN , Avenue de la Terrasse , 91198 , Gif-sur-Yvette , Cedex , France
| |
Collapse
|
28
|
Complex epigenetic regulation of alkaloid biosynthesis and host interaction by heterochromatin protein I in a fungal endophyte-plant symbiosis. Fungal Genet Biol 2019; 125:71-83. [DOI: 10.1016/j.fgb.2019.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/29/2019] [Accepted: 02/03/2019] [Indexed: 01/10/2023]
|
29
|
Pfannenstiel BT, Keller NP. On top of biosynthetic gene clusters: How epigenetic machinery influences secondary metabolism in fungi. Biotechnol Adv 2019; 37:107345. [PMID: 30738111 DOI: 10.1016/j.biotechadv.2019.02.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/10/2019] [Accepted: 02/05/2019] [Indexed: 02/07/2023]
Abstract
Fungi produce an abundance of bioactive secondary metabolites which can be utilized as antibiotics and pharmaceutical drugs. The genes encoding secondary metabolites are contiguously arranged in biosynthetic gene clusters (BGCs), which supports co-regulation of all genes required for any one metabolite. However, an ongoing challenge to harvest this fungal wealth is the finding that many of the BGCs are 'silent' in laboratory settings and lie in heterochromatic regions of the genome. Successful approaches allowing access to these regions - in essence converting the heterochromatin covering BGCs to euchromatin - include use of epigenetic stimulants and genetic manipulation of histone modifying proteins. This review provides a comprehensive look at the chromatin remodeling proteins which have been shown to regulate secondary metabolism, the use of chemical inhibitors used to induce BGCs, and provides future perspectives on expansion of epigenetic tools and concepts to mine the fungal metabolome.
Collapse
Affiliation(s)
- Brandon T Pfannenstiel
- Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Nancy P Keller
- Department of Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
30
|
Liu Z, Liu N, Jiang H, Yan L, Ma Z, Yin Y. The Activators of Type 2A Phosphatases (PP2A) Regulate Multiple Cellular Processes Via PP2A-Dependent and -Independent Mechanisms in Fusarium graminearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1121-1133. [PMID: 29877164 DOI: 10.1094/mpmi-03-18-0056-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The type 2A protein phosphatases (PP2As) are holoenzymes in all eukaryotes but their activators remain unknown in filamentous fungi. Fusarium graminearum contains three PP2As (FgPp2A, FgSit4, and FgPpg1), which play critical roles in fungal growth, development, and virulence. Here, we identified two PP2A activators (PTPAs), FgRrd1 and FgRrd2, and found that they control PP2A activity in a PP2A-specific manner. FgRrd1 interacts with FgPpg1, but FgRrd2 interacts with FgPp2A and very weakly with FgSit4. Furthermore, FgRrd2 activates FgPp2A via regulating FgPp2A methylation. Phenotypic assays showed that FgRrd1 and FgRrd2 regulate mycelial growth, conidiation, sexual development, and lipid droplet biogenesis. More importantly, both FgRrd1 and FgRrd2 interact with RNA polymerase II, subsequently modulating its enrichments at the promoters of mycotoxin biosynthesis genes, which is independent on PP2A. In addition, FgRrd2 modulates response to phenylpyrrole fungicide, via regulating the phosphorylation of kinase FgHog1 in the high-osmolarity glycerol pathway, and to caffeine, via modulating FgPp2A methylation. Taken together, results of this study indicate that FgRrd1 and FgRrd2 regulate multiple physiological processes via different regulatory mechanisms in F. graminearum, which provides a novel insight into understanding the biological functions of PTPAs in fungi.
Collapse
Affiliation(s)
- Zunyong Liu
- 1 Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Na Liu
- 1 Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Huixian Jiang
- 1 Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Leiyan Yan
- 2 Ningbo Academy of Agricultural Sciences, Ningbo, 315040, China; and
| | - Zhonghua Ma
- 1 Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- 3 State Key Laboratory of Rice Biology, Zhejiang University
| | - Yanni Yin
- 1 Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
31
|
A MYST Histone Acetyltransferase Modulates Conidia Development and Secondary Metabolism in Pestalotiopsis microspora, a Taxol Producer. Sci Rep 2018; 8:8199. [PMID: 29844429 PMCID: PMC5974303 DOI: 10.1038/s41598-018-25983-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/30/2018] [Indexed: 12/19/2022] Open
Abstract
Reverse genetics is a promising strategy for elucidating the regulatory mechanisms involved in secondary metabolism and development in fungi. Previous studies have demonstrated the key role of histone acetyltransferases in transcriptional regulation. Here, we identified a MYST family histone acetyltransferase encoding gene, mst2, in the filamentous fungus Pestalotiopsis microspora NK17 and revealed its role in development and secondary metabolism. The gene mst2 showed temporal expression that corresponded to the conidiation process in the wild-type strain. Deletion of mst2 resulted in serious growth retardation and impaired conidial development, e.g., a delay and reduced capacity of conidiation and aberrant conidia. Overexpression of mst2 triggered earlier conidiation and higher conidial production. Additionally, deletion of mst2 led to abnormal germination of the conidia and caused cell wall defects. Most significantly, by HPLC profiling, we found that loss of mst2 diminished the production of secondary metabolites in the fungus. Our data suggest that mst2 may function as a general mediator in growth, secondary metabolism and morphological development.
Collapse
|
32
|
Toghueo RMK, Sahal D, Zabalgogeazcoa Í, Baker B, Boyom FF. Conditioned media and organic elicitors underpin the production of potent antiplasmodial metabolites by endophytic fungi from Cameroonian medicinal plants. Parasitol Res 2018; 117:2473-2485. [PMID: 29797084 DOI: 10.1007/s00436-018-5936-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/15/2018] [Indexed: 01/19/2023]
Abstract
Plasmodial resistance to artemisinin-based combination therapies emphasizes the need for new drug development to control malaria. This paper describes the antiplasmodial activity of metabolites produced by endophytic fungi of three Cameroonian plants. Ethyl acetate extracts of fungi cultivated on three different media were tested against Plasmodium falciparum chloroquine-sensitive (Pf3D7) and chloroquine-resistant (PfINDO) strains using the SYBR green florescence assay. Selected endophytes were further grown in potato dextrose broth supplemented with small organic elicitors and their extracts tested for activity. The effect of elicitors on de novo metabolite synthesis was assessed by reverse-phase HPLC. Activity screening of 81 extracts indicated that Aspergillus niger 58 (IC50 2.25-6.69 μg/mL, Pf3D7), Fusarium sp. N240 (IC50 1.62-4.38 μg/mL, Pf3D7), Phomopsis sp. N114 (IC50 0.34-7.26 μg/mL, Pf3D7), and Xylaria sp. N120 (IC50 2.69-6.77 μg/mL, Pf3D7) produced potent extracts when grown in all three media. Further culture of these endophytes in potato dextrose broth supplemented with each of the eight small organic elicitors and subsequent extracts screening indicated the extract of Phomopsis sp. N114 grown with 1% 1-butanol to be highly selective and extremely potent (IC50 0.20-0.33 μg/mL; SI > 666). RPHPLC profiles of extracts of Phomopsis sp. N114 grown with or without 1-butanol showed some peaks of enhanced intensities in the former without any qualitative change in the chromatograms. This study showed the ability of selected endophytes to produce potent and selective antiplasmodial metabolites in varied culture conditions. It also showed how the production of desired metabolites can be enhanced by use of small molecular weight elicitors.
Collapse
Affiliation(s)
- Rufin Marie Kouipou Toghueo
- Antimicrobial and Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaounde, Cameroon
| | - Dinkar Sahal
- Malaria Research Laboratory, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Íñigo Zabalgogeazcoa
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA), Consejo Superior de Investigaciones Científicas (CSIC), Cordel de Merinas 40-52, 37008, Salamanca, Spain
| | - Bill Baker
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620-9951, USA
| | - Fabrice Fekam Boyom
- Antimicrobial and Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaounde, Cameroon.
| |
Collapse
|
33
|
Massonnet M, Morales‐Cruz A, Figueroa‐Balderas R, Lawrence DP, Baumgartner K, Cantu D. Condition-dependent co-regulation of genomic clusters of virulence factors in the grapevine trunk pathogen Neofusicoccum parvum. MOLECULAR PLANT PATHOLOGY 2018; 19:21-34. [PMID: 27608421 PMCID: PMC6637977 DOI: 10.1111/mpp.12491] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 05/24/2023]
Abstract
The ascomycete Neofusicoccum parvum, one of the causal agents of Botryosphaeria dieback, is a destructive wood-infecting fungus and a serious threat to grape production worldwide. The capability to colonize woody tissue, combined with the secretion of phytotoxic compounds, is thought to underlie its pathogenicity and virulence. Here, we describe the repertoire of virulence factors and their transcriptional dynamics as the fungus feeds on different substrates and colonizes the woody stem. We assembled and annotated a highly contiguous genome using single-molecule real-time DNA sequencing. Transcriptome profiling by RNA sequencing determined the genome-wide patterns of expression of virulence factors both in vitro (potato dextrose agar or medium amended with grape wood as substrate) and in planta. Pairwise statistical testing of differential expression, followed by co-expression network analysis, revealed that physically clustered genes coding for putative virulence functions were induced depending on the substrate or stage of plant infection. Co-expressed gene clusters were significantly enriched not only in genes associated with secondary metabolism, but also in those associated with cell wall degradation, suggesting that dynamic co-regulation of transcriptional networks contributes to multiple aspects of N. parvum virulence. In most of the co-expressed clusters, all genes shared at least a common motif in their promoter region, indicative of co-regulation by the same transcription factor. Co-expression analysis also identified chromatin regulators with correlated expression with inducible clusters of virulence factors, suggesting a complex, multi-layered regulation of the virulence repertoire of N. parvum.
Collapse
Affiliation(s)
- Mélanie Massonnet
- Department of Viticulture and EnologyUniversity of California DavisDavisCA95616USA
| | - Abraham Morales‐Cruz
- Department of Viticulture and EnologyUniversity of California DavisDavisCA95616USA
| | | | - Daniel P. Lawrence
- Department of Plant PathologyUniversity of California DavisDavisCA95616USA
| | - Kendra Baumgartner
- US Department of Agriculture ‐ Agricultural Research ServiceCrops Pathology and Genetics Research UnitDavisCA95616USA
| | - Dario Cantu
- Department of Viticulture and EnologyUniversity of California DavisDavisCA95616USA
| |
Collapse
|
34
|
Affiliation(s)
- Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
35
|
Dubey A, Jeon J. Epigenetic regulation of development and pathogenesis in fungal plant pathogens. MOLECULAR PLANT PATHOLOGY 2017; 18:887-898. [PMID: 27749982 PMCID: PMC6638268 DOI: 10.1111/mpp.12499] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 05/08/2023]
Abstract
Evidently, epigenetics is at forefront in explaining the mechanisms underlying the success of human pathogens and in the identification of pathogen-induced modifications within host plants. However, there is a lack of studies highlighting the role of epigenetics in the modulation of the growth and pathogenicity of fungal plant pathogens. In this review, we attempt to highlight and discuss the role of epigenetics in the regulation of the growth and pathogenicity of fungal phytopathogens using Magnaporthe oryzae, a devastating fungal plant pathogen, as a model system. With the perspective of wide application in the understanding of the development, pathogenesis and control of other fungal pathogens, we attempt to provide a synthesized view of the epigenetic studies conducted on M. oryzae to date. First, we discuss the mechanisms of epigenetic modifications in M. oryzae and their impact on fungal development and pathogenicity. Second, we highlight the unexplored epigenetic mechanisms and areas of research that should be considered in the near future to construct a holistic view of epigenetic functioning in M. oryzae and other fungal plant pathogens. Importantly, the development of a complete understanding of the modulation of epigenetic regulation in fungal pathogens can help in the identification of target points to combat fungal pathogenesis.
Collapse
Affiliation(s)
- Akanksha Dubey
- Department of BiotechnologyCollege of Life and Applied Sciences, Yeungnam UniversityGyeongsanGyeongbuk38541South Korea
| | - Junhyun Jeon
- Department of BiotechnologyCollege of Life and Applied Sciences, Yeungnam UniversityGyeongsanGyeongbuk38541South Korea
| |
Collapse
|
36
|
High-throughput format for the phenotyping of fungi on solid substrates. Sci Rep 2017; 7:4289. [PMID: 28655890 PMCID: PMC5487330 DOI: 10.1038/s41598-017-03598-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/02/2017] [Indexed: 01/06/2023] Open
Abstract
Filamentous fungi naturally grow on solid surfaces, yet most genetic and biochemical analyses are still performed in liquid cultures. Here, we report a multiplexing platform using high-throughput photometric continuous reading that allows parallel quantification of hyphal growth and reporter gene expression directly on solid medium, thereby mimicking natural environmental conditions. Using this system, we have quantified fungal growth and expression of secondary metabolite GFP-based reporter genes in saprophytic Aspergillus and phytopathogenic Fusarium species in response to different nutrients, stress conditions and epigenetic modifiers. With this method, we provide not only novel insights into the characteristic of fungal growth but also into the metabolic and time-dependent regulation of secondary metabolite gene expression.
Collapse
|
37
|
Studt L, Janevska S, Arndt B, Boedi S, Sulyok M, Humpf HU, Tudzynski B, Strauss J. Lack of the COMPASS Component Ccl1 Reduces H3K4 Trimethylation Levels and Affects Transcription of Secondary Metabolite Genes in Two Plant-Pathogenic Fusarium Species. Front Microbiol 2017; 7:2144. [PMID: 28119673 PMCID: PMC5220078 DOI: 10.3389/fmicb.2016.02144] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/20/2016] [Indexed: 01/07/2023] Open
Abstract
In the two fungal pathogens Fusarium fujikuroi and Fusarium graminearum, secondary metabolites (SMs) are fitness and virulence factors and there is compelling evidence that the coordination of SM gene expression is under epigenetic control. Here, we characterized Ccl1, a subunit of the COMPASS complex responsible for methylating lysine 4 of histone H3 (H3K4me). We show that Ccl1 is not essential for viability but a regulator of genome-wide trimethylation of H3K4 (H3K4me3). Although, recent work in Fusarium and Aspergillus spp. detected only sporadic H3K4 methylation at the majority of the SM gene clusters, we show here that SM profiles in CCL1 deletion mutants are strongly deviating from the wild type. Cross-complementation experiments indicate high functional conservation of Ccl1 as phenotypes of the respective △ccl1 were rescued in both fungi. Strikingly, biosynthesis of the species-specific virulence factors gibberellic acid and deoxynivalenol produced by F. fujikuroi and F. graminearum, respectively, was reduced in axenic cultures but virulence was not attenuated in these mutants, a phenotype which goes in line with restored virulence factor production levels in planta. This suggests that yet unknown plant-derived signals are able to compensate for Ccl1 function during pathogenesis.
Collapse
Affiliation(s)
- Lena Studt
- Division of Microbial Genetics and Pathogen Interactions, Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life SciencesVienna, Tulln an der Donau, Austria,Institute for Plant Biology and Biotechnology, Westfälische Wilhelms UniversityMünster, Germany,*Correspondence: Lena Studt, Joseph Strauss,
| | - Slavica Janevska
- Institute for Plant Biology and Biotechnology, Westfälische Wilhelms UniversityMünster, Germany
| | - Birgit Arndt
- Institute of Food Chemistry, Westfälische Wilhelms UniversityMünster, Germany
| | - Stefan Boedi
- Division of Microbial Genetics and Pathogen Interactions, Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life SciencesVienna, Tulln an der Donau, Austria
| | - Michael Sulyok
- Center for Analytical Chemistry, Department IFA-Tulln, BOKU-University of Natural Resources and Life SciencesVienna, Tulln an der Donau, Austria
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms UniversityMünster, Germany
| | - Bettina Tudzynski
- Institute for Plant Biology and Biotechnology, Westfälische Wilhelms UniversityMünster, Germany
| | - Joseph Strauss
- Division of Microbial Genetics and Pathogen Interactions, Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life SciencesVienna, Tulln an der Donau, Austria,*Correspondence: Lena Studt, Joseph Strauss,
| |
Collapse
|
38
|
Wang Q, Jiang C, Wang C, Chen C, Xu JR, Liu H. Characterization of the Two-Speed Subgenomes of Fusarium graminearum Reveals the Fast-Speed Subgenome Specialized for Adaption and Infection. FRONTIERS IN PLANT SCIENCE 2017; 8:140. [PMID: 28261228 PMCID: PMC5306128 DOI: 10.3389/fpls.2017.00140] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/23/2017] [Indexed: 05/05/2023]
Abstract
Fusarium head blight, caused by Fusarium graminearum, is one of the most severe diseases on wheat and barley worldwide. Although the genomic data of several strains were published, the intragenomic variation of F. graminearum was not well characterized. Here, we sequenced three Chinese strains and conducted genome-wide comparisons. Our data revealed that all the sequenced strains were distinct from each other and over 350 genes were functionally lost in each of them. Variants of each strain were unevenly distributed in a highly conserved pattern along the chromosomes, resulting in a conserved two-speed genome. The fast subgenome has a lower GC content, shorter gene length, and higher variation of exon numbers than the slow subgenome. Genes related to interaction and pathogenicity, under positive selection, and up-regulated in planta were all significantly enriched in the fast subgenome. Furthermore, we found that the fast subgenome coincided with facultative heterochromatin regions that were repressed in vegetative stage but activated during infection as measured by RNA-seq and ChIP-seq data, suggesting that the fast subgenome is epigenetically regulated. Taken together, our data demonstrated that F. graminearum has a highly conserved two-speed genome and the fast subgenome responsible for adaption and infection is under the control of heterochromatin.
Collapse
Affiliation(s)
- Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Changjun Chen
- College of Plant Protection, Nanjing Agricultural UniversityNanjing, China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F UniversityYangling, China
- Department of Botany and Plant Pathology, Purdue University, West LafayetteIN, USA
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F UniversityYangling, China
- *Correspondence: Huiquan Liu,
| |
Collapse
|
39
|
Macheleidt J, Mattern DJ, Fischer J, Netzker T, Weber J, Schroeckh V, Valiante V, Brakhage AA. Regulation and Role of Fungal Secondary Metabolites. Annu Rev Genet 2016; 50:371-392. [DOI: 10.1146/annurev-genet-120215-035203] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Juliane Macheleidt
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
| | - Derek J. Mattern
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
- Institute for Microbiology, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Juliane Fischer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
- Institute for Microbiology, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Tina Netzker
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
- Institute for Microbiology, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Jakob Weber
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
- Institute for Microbiology, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Volker Schroeckh
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
| | - Vito Valiante
- Research Group Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745 Jena, Germany;
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
- Institute for Microbiology, Friedrich Schiller University Jena, 07737 Jena, Germany
| |
Collapse
|
40
|
Studt L, Rösler SM, Burkhardt I, Arndt B, Freitag M, Humpf HU, Dickschat JS, Tudzynski B. Knock-down of the methyltransferase Kmt6 relieves H3K27me3 and results in induction of cryptic and otherwise silent secondary metabolite gene clusters in Fusarium fujikuroi. Environ Microbiol 2016; 18:4037-4054. [PMID: 27348741 PMCID: PMC5118082 DOI: 10.1111/1462-2920.13427] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/19/2016] [Indexed: 01/07/2023]
Abstract
Filamentous fungi produce a vast array of secondary metabolites (SMs) and some play a role in agriculture or pharmacology. Sequencing of the rice pathogen Fusarium fujikuroi revealed the presence of far more SM-encoding genes than known products. SM production is energy-consuming and thus tightly regulated, leaving the majority of SM gene clusters silent under laboratory conditions. One important regulatory layer in SM biosynthesis involves histone modifications that render the underlying genes either silent or poised for transcription. Here, we show that the majority of the putative SM gene clusters in F. fujikuroi are located within facultative heterochromatin marked by trimethylated lysine 27 on histone 3 (H3K27me3). Kmt6, the methyltransferase responsible for establishing this histone mark, appears to be essential in this fungus, and knock-down of Kmt6 in the KMT6kd strain shows a drastic phenotype affecting fungal growth and development. Transcription of four so far cryptic and otherwise silent putative SM gene clusters was induced in the KMT6kd strain, in which decreased expression of KMT6 is accompanied by reduced H3K27me3 levels at the respective gene loci and accumulation of novel metabolites. One of the four putative SM gene clusters, named STC5, was analysed in more detail thereby revealing a novel sesquiterpene.
Collapse
Affiliation(s)
- Lena Studt
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-University Münster, 48143 Münster, Germany,Corresponding author: L. Studt, Division of Microbial Genetics and Pathogen Interaction, Department of Applied Genetics and Cell Biology, Campus-Tulln, BOKU-University of Natural Resources and Life Science, Vienna, Austria, , phone: (+43) 1 / 47654-6722
| | - Sarah M. Rösler
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-University Münster, 48143 Münster, Germany,Institute of Food Chemistry, Westfälische Wilhelms-University Münster, 48149 Münster, Germany
| | - Immo Burkhardt
- Kekulé Institute for Organic Chemistry and Biochemistry, Rheinische Friedrich-Wilhelms-University Bonn, 53121 Bonn, Germany
| | - Birgit Arndt
- Institute of Food Chemistry, Westfälische Wilhelms-University Münster, 48149 Münster, Germany
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, 97331 Oregon, United States of America
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-University Münster, 48149 Münster, Germany
| | - Jeroen S. Dickschat
- Kekulé Institute for Organic Chemistry and Biochemistry, Rheinische Friedrich-Wilhelms-University Bonn, 53121 Bonn, Germany
| | - Bettina Tudzynski
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-University Münster, 48143 Münster, Germany
| |
Collapse
|
41
|
KdmB, a Jumonji Histone H3 Demethylase, Regulates Genome-Wide H3K4 Trimethylation and Is Required for Normal Induction of Secondary Metabolism in Aspergillus nidulans. PLoS Genet 2016; 12:e1006222. [PMID: 27548260 PMCID: PMC4993369 DOI: 10.1371/journal.pgen.1006222] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 07/06/2016] [Indexed: 12/12/2022] Open
Abstract
Histone posttranslational modifications (HPTMs) are involved in chromatin-based regulation of fungal secondary metabolite biosynthesis (SMB) in which the corresponding genes—usually physically linked in co-regulated clusters—are silenced under optimal physiological conditions (nutrient-rich) but are activated when nutrients are limiting. The exact molecular mechanisms by which HPTMs influence silencing and activation, however, are still to be better understood. Here we show by a combined approach of quantitative mass spectrometry (LC-MS/MS), genome-wide chromatin immunoprecipitation (ChIP-seq) and transcriptional network analysis (RNA-seq) that the core regions of silent A. nidulans SM clusters generally carry low levels of all tested chromatin modifications and that heterochromatic marks flank most of these SM clusters. During secondary metabolism, histone marks typically associated with transcriptional activity such as H3 trimethylated at lysine-4 (H3K4me3) are established in some, but not all gene clusters even upon full activation. KdmB, a Jarid1-family histone H3 lysine demethylase predicted to comprise a BRIGHT domain, a zinc-finger and two PHD domains in addition to the catalytic Jumonji domain, targets and demethylates H3K4me3 in vivo and mediates transcriptional downregulation. Deletion of kdmB leads to increased transcription of about ~1750 genes across nutrient-rich (primary metabolism) and nutrient-limiting (secondary metabolism) conditions. Unexpectedly, an equally high number of genes exhibited reduced expression in the kdmB deletion strain and notably, this group was significantly enriched for genes with known or predicted functions in secondary metabolite biosynthesis. Taken together, this study extends our general knowledge about multi-domain KDM5 histone demethylases and provides new details on the chromatin-level regulation of fungal secondary metabolite production. In this work we monitored by proteomic analysis and ChIP-seq the genome-wide distribution of several key modifications on histone H3 in the model fungus Aspergillus nidulans cultivated either under optimal physiological conditions (active growth) or less favourable conditions which are known to promote the production of secondary metabolites (SM). When we correlated the chromatin status to transcriptional activities in actively growing cells we found that the silenced SM gene clusters are flanked by heterochromatic domains presumably contributing to silencing but that the bodies of the clusters only carry background levels of any of the investigated marks. In nutrient-depleted conditions, activating marks were invading some, but by far not all transcribed clusters, leaving open the question how activation of these regions occurs at the chromatin level. Surprisingly, a large number of these gene clusters actually depend on KdmB for normal activation and it will be interesting to see in future how this protein thought to mainly act as repressor by removing positive H3K4m3 marks switches gears to activate transcription directly or indirectly.
Collapse
|
42
|
Boedi S, Berger H, Sieber C, Münsterkötter M, Maloku I, Warth B, Sulyok M, Lemmens M, Schuhmacher R, Güldener U, Strauss J. Comparison of Fusarium graminearum Transcriptomes on Living or Dead Wheat Differentiates Substrate-Responsive and Defense-Responsive Genes. Front Microbiol 2016; 7:1113. [PMID: 27507961 PMCID: PMC4960244 DOI: 10.3389/fmicb.2016.01113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/04/2016] [Indexed: 11/28/2022] Open
Abstract
Fusarium graminearum is an opportunistic pathogen of cereals where it causes severe yield losses and concomitant mycotoxin contamination of the grains. The pathogen has mixed biotrophic and necrotrophic (saprophytic) growth phases during infection and the regulatory networks associated with these phases have so far always been analyzed together. In this study we compared the transcriptomes of fungal cells infecting a living, actively defending plant representing the mixed live style (pathogenic growth on living flowering wheat heads) to the response of the fungus infecting identical, but dead plant tissues (cold-killed flowering wheat heads) representing strictly saprophytic conditions. We found that the living plant actively suppressed fungal growth and promoted much higher toxin production in comparison to the identical plant tissue without metabolism suggesting that molecules signaling secondary metabolite induction are not pre-existing or not stable in the plant in sufficient amounts before infection. Differential gene expression analysis was used to define gene sets responding to the active or the passive plant as main impact factor and driver for gene expression. We correlated our results to the published F. graminearum transcriptomes, proteomes, and secretomes and found that only a limited number of in planta- expressed genes require the living plant for induction but the majority uses simply the plant tissue as signal. Many secondary metabolite (SM) gene clusters show a heterogeneous expression pattern within the cluster indicating that different genetic or epigenetic signals govern the expression of individual genes within a physically linked cluster. Our bioinformatic approach also identified fungal genes which were actively repressed by signals derived from the active plant and may thus represent direct targets of the plant defense against the invading pathogen.
Collapse
Affiliation(s)
- Stefan Boedi
- Fungal Genetics and Genomics Unit, Division of Microbial Genetics and Pathogen Interactions, Department of Applied Genetics and Cell Biology, BOKU University, University and Research Centre TullnTulln, Austria
| | - Harald Berger
- Fungal Genetics and Genomics Unit, Division of Microbial Genetics and Pathogen Interactions, Department of Applied Genetics and Cell Biology, BOKU University, University and Research Centre TullnTulln, Austria
- Bioresources, Austrian Institute of Technology GmbHTulln, Austria
| | - Christian Sieber
- Department of Earth and Planetary Sciences, University of California, BerkeleyBerkeley, CA, USA
| | - Martin Münsterkötter
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und UmweltNeuherberg, Germany
| | - Imer Maloku
- Department for Agrobiotechnology (IFA-Tulln), BOKU UniversityTulln, Austria
| | - Benedikt Warth
- Department for Agrobiotechnology (IFA-Tulln), BOKU UniversityTulln, Austria
| | - Michael Sulyok
- Department for Agrobiotechnology (IFA-Tulln), BOKU UniversityTulln, Austria
| | - Marc Lemmens
- Department for Agrobiotechnology (IFA-Tulln), BOKU UniversityTulln, Austria
| | - Rainer Schuhmacher
- Department for Agrobiotechnology (IFA-Tulln), BOKU UniversityTulln, Austria
| | - Ulrich Güldener
- Department of Genome-oriented Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität MünchenMünchen, Germany
| | - Joseph Strauss
- Fungal Genetics and Genomics Unit, Division of Microbial Genetics and Pathogen Interactions, Department of Applied Genetics and Cell Biology, BOKU University, University and Research Centre TullnTulln, Austria
- Bioresources, Austrian Institute of Technology GmbHTulln, Austria
| |
Collapse
|
43
|
Soyer JL, Rouxel T, Fudal I. Chromatin-based control of effector gene expression in plant-associated fungi. CURRENT OPINION IN PLANT BIOLOGY 2015; 26:51-6. [PMID: 26116976 DOI: 10.1016/j.pbi.2015.05.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 05/08/2023]
Abstract
Plant-associated fungi often present in their genome areas enriched in repeat sequences and effector genes, the latter being specifically induced in planta. The location of effector genes in regions enriched in repeats has been shown to have an impact on adaptability of fungi but could also provide for tight control of effector gene expression through chromatin-based regulation. The distribution of two repressive histone marks was shown to be an important regulatory layer in two fungal species with different lifestyles. Chromatin-based control of effector gene expression is likely to provide an evolutionary advantage by preventing the expression of genes not needed during vegetative growth and allow for a massive concerted expression at particular time-points of plant infection.
Collapse
Affiliation(s)
- Jessica L Soyer
- INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, F-78850 Thiverval-Grignon, France; Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany; Christian-Albrechts University of Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Thierry Rouxel
- INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, F-78850 Thiverval-Grignon, France
| | - Isabelle Fudal
- INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, F-78850 Thiverval-Grignon, France.
| |
Collapse
|
44
|
Fungi treated with small chemicals exhibit increased antimicrobial activity against facultative bacterial and yeast pathogens. BIOMED RESEARCH INTERNATIONAL 2014; 2014:540292. [PMID: 25121102 PMCID: PMC4119895 DOI: 10.1155/2014/540292] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 11/21/2022]
Abstract
For decades, fungi have been the main source for the discovery of novel antimicrobial drugs. Recent sequencing efforts revealed a still high number of so far unknown “cryptic” secondary metabolites. The production of these metabolites is presumably epigenetically silenced under standard laboratory conditions. In this study, we investigated the effect of six small mass chemicals, of which some are known to act as epigenetic modulators, on the production of antimicrobial compounds in 54 spore forming fungi. The antimicrobial effect of fungal samples was tested against clinically facultative pathogens and multiresistant clinical isolates. In total, 30 samples of treated fungi belonging to six different genera reduced significantly growth of different test organisms compared to the untreated fungal sample (growth log reduction 0.3–4.3). For instance, the pellet of Penicillium restrictum grown in the presence of butyrate revealed significant higher antimicrobial activity against Staphylococcus (S.) aureus and multiresistant S. aureus strains and displayed no cytotoxicity against human cells, thus making it an ideal candidate for antimicrobial compound discovery. Our study shows that every presumable fungus, even well described fungi, has the potential to produce novel antimicrobial compounds and that our approach is capable of rapidly filling the pipeline for yet undiscovered antimicrobial substances.
Collapse
|
45
|
The histone acetyltransferase GcnE (GCN5) plays a central role in the regulation of Aspergillus asexual development. Genetics 2014; 197:1175-89. [PMID: 24907261 DOI: 10.1534/genetics.114.165688] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Acetylation of histones is a key regulatory mechanism of gene expression in eukaryotes. GcnE is an acetyltransferase of Aspergillus nidulans involved in the acetylation of histone H3 at lysine 9 and lysine 14. Previous works have demonstrated that deletion of gcnE results in defects in primary and secondary metabolism. Here we unveil the role of GcnE in development and show that a ∆gcnE mutant strain has minor growth defects but is impaired in normal conidiophore development. No signs of conidiation were found after 3 days of incubation, and immature and aberrant conidiophores were found after 1 week of incubation. Centroid linkage clustering and principal component (PC) analysis of transcriptomic data suggest that GcnE occupies a central position in Aspergillus developmental regulation and that it is essential for inducing conidiation genes. GcnE function was found to be required for the acetylation of histone H3K9/K14 at the promoter of the master regulator of conidiation, brlA, as well as at the promoters of the upstream developmental regulators of conidiation flbA, flbB, flbC, and flbD (fluffy genes). However, analysis of the gene expression of brlA and the fluffy genes revealed that the lack of conidiation originated in a complete absence of brlA expression in the ∆gcnE strain. Ectopic induction of brlA from a heterologous alcA promoter did not remediate the conidiation defects in the ∆gcnE strain, suggesting that additional GcnE-mediated mechanisms must operate. Therefore, we conclude that GcnE is the only nonessential histone modifier with a strong role in fungal development found so far.
Collapse
|
46
|
Chujo T, Scott B. Histone H3K9 and H3K27 methylation regulates fungal alkaloid biosynthesis in a fungal endophyte-plant symbiosis. Mol Microbiol 2014; 92:413-34. [PMID: 24571357 DOI: 10.1111/mmi.12567] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2014] [Indexed: 12/17/2022]
Abstract
Epichloё festucae is a filamentous fungus that forms a mutually beneficial symbiotic association with Lolium perenne. This endophyte synthesizes bioprotective lolitrems (ltm) and ergot alkaloids (eas) in planta but the mechanisms regulating expression of the corresponding subtelomeric gene clusters are not known. We show here that the status of histone H3 lysine 9 and lysine 27 trimethylation (H3K9me3/H3K27me3) at these alkaloid gene loci are critical determinants of transcriptional activity. Using ChIP-qPCR we found that levels of H3K9me3 and H3K27me3 were reduced at these loci in plant infected tissue compared to axenic culture. Deletion of E. festucae genes encoding the H3K9- (ClrD) or H3K27- (EzhB) methyltransferases led to derepression of ltm and eas gene expression under non-symbiotic culture conditions and a further enhancement of expression in the double deletion mutant. These changes in gene expression were matched by corresponding reductions in H3K9me3 and H3K27me3 marks. Both methyltransferases are also important for the symbiotic interaction between E. festucae and L. perenne. Our results show that the state of H3K9 and H3K27 trimethylation of E. festucae chromatin is an important regulatory layer controlling symbiosis-specific expression of alkaloid bioprotective metabolites and the ability of this symbiont to form a mutualistic interaction with its host.
Collapse
Affiliation(s)
- Tetsuya Chujo
- Institute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | | |
Collapse
|
47
|
Epigenetic control of effector gene expression in the plant pathogenic fungus Leptosphaeria maculans. PLoS Genet 2014; 10:e1004227. [PMID: 24603691 PMCID: PMC3945186 DOI: 10.1371/journal.pgen.1004227] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/22/2014] [Indexed: 01/07/2023] Open
Abstract
Plant pathogens secrete an arsenal of small secreted proteins (SSPs) acting as effectors that modulate host immunity to facilitate infection. SSP-encoding genes are often located in particular genomic environments and show waves of concerted expression at diverse stages of plant infection. To date, little is known about the regulation of their expression. The genome of the Ascomycete Leptosphaeria maculans comprises alternating gene-rich GC-isochores and gene-poor AT-isochores. The AT-isochores harbor mosaics of transposable elements, encompassing one-third of the genome, and are enriched in putative effector genes that present similar expression patterns, namely no expression or low-level expression during axenic cultures compared to strong induction of expression during primary infection of oilseed rape (Brassica napus). Here, we investigated the involvement of one specific histone modification, histone H3 lysine 9 methylation (H3K9me3), in epigenetic regulation of concerted effector gene expression in L. maculans. For this purpose, we silenced the expression of two key players in heterochromatin assembly and maintenance, HP1 and DIM-5 by RNAi. By using HP1-GFP as a heterochromatin marker, we observed that almost no chromatin condensation is visible in strains in which LmDIM5 was silenced by RNAi. By whole genome oligoarrays we observed overexpression of 369 or 390 genes, respectively, in the silenced-LmHP1 and -LmDIM5 transformants during growth in axenic culture, clearly favouring expression of SSP-encoding genes within AT-isochores. The ectopic integration of four effector genes in GC-isochores led to their overexpression during growth in axenic culture. These data strongly suggest that epigenetic control, mediated by HP1 and DIM-5, represses the expression of at least part of the effector genes located in AT-isochores during growth in axenic culture. Our hypothesis is that changes of lifestyle and a switch toward pathogenesis lift chromatin-mediated repression, allowing a rapid response to new environmental conditions.
Collapse
|
48
|
Efficiency of indoleacetic acid, gibberellic acid and ethylene synthesized in vitro by Fusarium culmorum strains with different effects on cereal growth. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-013-0328-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Geng Z, Zhu W, Su H, Zhao Y, Zhang KQ, Yang J. Recent advances in genes involved in secondary metabolite synthesis, hyphal development, energy metabolism and pathogenicity in Fusarium graminearum (teleomorph Gibberella zeae). Biotechnol Adv 2014; 32:390-402. [DOI: 10.1016/j.biotechadv.2013.12.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 11/11/2013] [Accepted: 12/16/2013] [Indexed: 01/01/2023]
|
50
|
Two histone deacetylases, FfHda1 and FfHda2, are important for Fusarium fujikuroi secondary metabolism and virulence. Appl Environ Microbiol 2013; 79:7719-34. [PMID: 24096420 PMCID: PMC3837819 DOI: 10.1128/aem.01557-13] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Histone modifications are crucial for the regulation of secondary metabolism in various filamentous fungi. Here we studied the involvement of histone deacetylases (HDACs) in secondary metabolism in the phytopathogenic fungus Fusarium fujikuroi, a known producer of several secondary metabolites, including phytohormones, pigments, and mycotoxins. Deletion of three Zn(2+)-dependent HDAC-encoding genes, ffhda1, ffhda2, and ffhda4, indicated that FfHda1 and FfHda2 regulate secondary metabolism, whereas FfHda4 is involved in developmental processes but is dispensable for secondary-metabolite production in F. fujikuroi. Single deletions of ffhda1 and ffhda2 resulted not only in an increase or decrease but also in derepression of metabolite biosynthesis under normally repressing conditions. Moreover, double deletion of both the ffhda1 and ffhda2 genes showed additive but also distinct phenotypes with regard to secondary-metabolite biosynthesis, and both genes are required for gibberellic acid (GA)-induced bakanae disease on the preferred host plant rice, as Δffhda1 Δffhda2 mutants resemble the uninfected control plant. Microarray analysis with a Δffhda1 mutant that has lost the major HDAC revealed differential expression of secondary-metabolite gene clusters, which was subsequently verified by a combination of chemical and biological approaches. These results indicate that HDACs are involved not only in gene silencing but also in the activation of some genes. Chromatin immunoprecipitation with the Δffhda1 mutant revealed significant alterations in the acetylation state of secondary-metabolite gene clusters compared to the wild type, thereby providing insights into the regulatory mechanism at the chromatin level. Altogether, manipulation of HDAC-encoding genes constitutes a powerful tool to control secondary metabolism in filamentous fungi.
Collapse
|