1
|
Zhao J, Zhao Y, Wu L, Yan N, Yang S, Xu L, He D, Li H, Bao X. Development of a Robust Saccharomyces cerevisiae Strain for Efficient Co-Fermentation of Mixed Sugars and Enhanced Inhibitor Tolerance through Protoplast Fusion. Microorganisms 2024; 12:1526. [PMID: 39203368 PMCID: PMC11356107 DOI: 10.3390/microorganisms12081526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
The economical and efficient commercial production of second-generation bioethanol requires fermentation microorganisms capable of entirely and rapidly utilizing all sugars in lignocellulosic hydrolysates. In this study, we developed a recombinant Saccharomyces cerevisiae strain, BLH510, through protoplast fusion and metabolic engineering to enhance its ability to co-ferment glucose, xylose, cellobiose, and xylooligosaccharides while tolerating various inhibitors commonly found in lignocellulosic hydrolysates. The parental strains, LF1 and BLN26, were selected for their superior glucose/xylose co-fermentation capabilities and inhibitor tolerance, respectively. The fusion strain BLH510 demonstrated efficient utilization of mixed sugars and high ethanol yield under oxygen-limited conditions. Under low inoculum conditions, strain BLH510 could completely consume all four kinds of sugars in the medium within 84 h. The fermentation produced 33.96 g/L ethanol, achieving 84.3% of the theoretical ethanol yield. Despite the challenging presence of mixed inhibitors, BLH510 successfully metabolized all four sugars above after 120 h of fermentation, producing approximately 30 g/L ethanol and reaching 83% of the theoretical yield. Also, strain BLH510 exhibited increased intracellular trehalose content, particularly under conditions with mixed inhibitors, where the intracellular trehalose reached 239.3 mg/g yeast biomass. This elevated trehalose content contributes to the enhanced stress tolerance of BLH510. The study also optimized conditions for protoplast preparation and fusion, balancing high preparation efficiency and satisfactory regeneration efficiency. The results indicate that BLH510 is a promising candidate for industrial second-generation bioethanol production from lignocellulosic biomass, offering improved performance under challenging fermentation conditions. Our work demonstrates the potential of combining protoplast fusion and metabolic engineering to develop superior S. cerevisiae strains for lignocellulosic bioethanol production. This approach can also be extended to develop robust microbial platforms for producing a wide array of lignocellulosic biomass-based biochemicals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hongxing Li
- Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China; (J.Z.); (Y.Z.); (L.W.); (N.Y.); (S.Y.); (L.X.); (D.H.); (X.B.)
| | | |
Collapse
|
2
|
Grosfeld EV, Bidiuk VA, Mitkevich OV, Ghazy ESMO, Kushnirov VV, Alexandrov AI. A Systematic Survey of Characteristic Features of Yeast Cell Death Triggered by External Factors. J Fungi (Basel) 2021; 7:886. [PMID: 34829175 PMCID: PMC8626022 DOI: 10.3390/jof7110886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 12/20/2022] Open
Abstract
Cell death in response to distinct stimuli can manifest different morphological traits. It also depends on various cell death signaling pathways, extensively characterized in higher eukaryotes but less so in microorganisms. The study of cell death in yeast, and specifically Saccharomyces cerevisiae, can potentially be productive for understanding cell death, since numerous killing stimuli have been characterized for this organism. Here, we systematized the literature on external treatments that kill yeast, and which contains at least minimal data on cell death mechanisms. Data from 707 papers from the 7000 obtained using keyword searches were used to create a reference table for filtering types of cell death according to commonly assayed parameters. This table provides a resource for orientation within the literature; however, it also highlights that the common view of similarity between non-necrotic death in yeast and apoptosis in mammals has not provided sufficient progress to create a clear classification of cell death types. Differences in experimental setups also prevent direct comparison between different stimuli. Thus, side-by-side comparisons of various cell death-inducing stimuli under comparable conditions using existing and novel markers that can differentiate between types of cell death seem like a promising direction for future studies.
Collapse
Affiliation(s)
- Erika V. Grosfeld
- Moscow Institute of Physics and Technology, 9 Institutskiy per, Dolgoprudny, 141700 Moscow, Russia;
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Victoria A. Bidiuk
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Olga V. Mitkevich
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Eslam S. M. O. Ghazy
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Department of Microbiology, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Vitaliy V. Kushnirov
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Alexander I. Alexandrov
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| |
Collapse
|
3
|
Comitini F, Agarbati A, Canonico L, Ciani M. Yeast Interactions and Molecular Mechanisms in Wine Fermentation: A Comprehensive Review. Int J Mol Sci 2021; 22:ijms22147754. [PMID: 34299371 PMCID: PMC8307806 DOI: 10.3390/ijms22147754] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/16/2023] Open
Abstract
Wine can be defined as a complex microbial ecosystem, where different microorganisms interact in the function of different biotic and abiotic factors. During natural fermentation, the effect of unpredictable interactions between microorganisms and environmental factors leads to the establishment of a complex and stable microbiota that will define the kinetics of the process and the final product. Controlled multistarter fermentation represents a microbial approach to achieve the dual purpose of having a less risky process and a distinctive final product. Indeed, the interactions evolved between microbial consortium members strongly modulate the final sensorial properties of the wine. Therefore, in well-managed mixed fermentations, the knowledge of molecular mechanisms on the basis of yeast interactions, in a well-defined ecological niche, becomes fundamental to control the winemaking process, representing a tool to achieve such objectives. In the present work, the recent development on the molecular and metabolic interactions between non-Saccharomyces and Saccharomyces yeasts in wine fermentation was reviewed. A particular focus will be reserved on molecular studies regarding the role of nutrients, the production of the main byproducts and volatile compounds, ethanol reduction, and antagonistic actions for biological control in mixed fermentations.
Collapse
|
4
|
Fernández de Ullivarri M, Bulacios GA, Navarro SA, Lanza L, Mendoza LM, Chalón MC. The killer yeast Wickerhamomyces anomalus Cf20 exerts a broad anti-Candida activity through the production of killer toxins and volatile compounds. Med Mycol 2021; 58:1102-1113. [PMID: 32196549 DOI: 10.1093/mmy/myaa011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/07/2020] [Accepted: 03/04/2020] [Indexed: 01/02/2023] Open
Abstract
Candidiasis is a group of opportunistic infections caused by yeast of the genus Candida. The appearance of drug resistance and the adverse effects of current antifungal therapies require the search for new, more efficient therapeutic alternatives. Killer yeasts have aroused as suitable candidates for mining new antifungal compounds. Killer strains secrete antimicrobial proteins named killer toxins, with promissory antifungal activity. Here we found that the killer yeast Wickerhamomyces anomalus Cf20 and its cell-free supernatant (CFS) inhibited six pathogenic strains and one collection strain of Candida spp. The inhibition is mainly mediated by secreted killer toxins and, to a lesser extent, by volatile compounds such as acetic acid and ethyl acetate. A new large killer toxin (>180 kDa) was purified, which exerted 70-74% of the total CFS anti-Candida activity, and the previously described glucanase KTCf20 was inhibitory in a lesser extent as well. In addition, we demonstrated that Cf20 possesses the genes encoding for the β-1,3-glucanases WaExg1 and WaExg2, proteins with extensively studied antifungal activity, particularly WaExg2. Finally, the 10-fold concentrated CFS exerted a high candidacidal effect at 37°C, completely inhibiting the fungal growth, although the nonconcentrated CFS (RCF 1) had very limited fungistatic activity at this temperature. In conclusion, W. anomalus Cf20 produces different low and high molecular weight compounds with anti-Candida activity that could be used to design new therapies for candidiasis and as a source for novel antimicrobial compounds as well.
Collapse
Affiliation(s)
- Miguel Fernández de Ullivarri
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán. Argentina
| | - Gabriela A Bulacios
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán. Argentina
| | - Silvia A Navarro
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán. Argentina
| | - Lucía Lanza
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán. Argentina
| | - Lucia M Mendoza
- Centro de referencia para lactobacilos (CERELA, CONICET), Chacabuco 145, 4000, Tucumán, Argentina
| | - Miriam C Chalón
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán. Argentina
| |
Collapse
|
5
|
Gil-Rodríguez AM, Garcia-Gutierrez E. Antimicrobial mechanisms and applications of yeasts. ADVANCES IN APPLIED MICROBIOLOGY 2020; 114:37-72. [PMID: 33934852 DOI: 10.1016/bs.aambs.2020.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Yeasts and humans have had a close relationship for millenia. Yeast have been used for food production since the first human societies. Since then, alternative uses have been discovered. Nowadays, antibiotic resistance constitutes a pressing need worldwide. In order to overcome this threat, one of the most important strategies is the search for new antimicrobials in natural sources. Moreover, biopreservation based on natural sources has emerged as an alternative to more common chemical preservatives. Yeasts constitute an underexploited source of antagonistic activity against other microorganisms. Here, we compile a summary of the antagonistic activity of yeast origin against other yeast and other microorganisms, such as bacteria or parasites. We present the mechanisms of action used by yeasts to display these activities. We also provide applications of these antagonistic activities in food industry and agriculture, medicine and veterinary, where yeast promise to play a pivotal role in the near future.
Collapse
|
6
|
Sheppard S, Dikicioglu D. Dynamic modelling of the killing mechanism of action by virus-infected yeasts. J R Soc Interface 2020; 16:20190064. [PMID: 30890050 DOI: 10.1098/rsif.2019.0064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Killer yeasts are microorganisms, which can produce and secrete proteinaceous toxins, a characteristic gained via infection by a virus. These toxins are able to kill sensitive cells of the same or a related species. From a biotechnological perspective, killer yeasts are beneficial due to their antifungal/antimicrobial activity, but also regarded as problematic for large-scale fermentation processes, whereby those yeasts would kill starter cultures species and lead to stuck fermentations. Here, we propose a mechanistic model of the toxin-binding kinetics pertaining to the killer population coupled with the toxin-induced death kinetics of the sensitive population to study toxic action. The dynamic model captured the transient toxic activity starting from the introduction of killer cells into the culture at the time of inoculation through to induced cell death. The kinetics of K1/K2 activity via its primary pathway of toxicity was 5.5 times faster than its activity at low concentration inducing the apoptotic pathway in sensitive cells. Conversely, we showed that the primary pathway for K28 was approximately three times slower than its equivalent apoptotic pathway, indicating the particular relevance of K28 in biotechnological applications where the toxin concentration is rarely above those limits to trigger the primary pathway of killer activity.
Collapse
Affiliation(s)
- Sean Sheppard
- 1 St John's College , St John's Street, Cambridge , UK
| | - Duygu Dikicioglu
- 2 Department of Chemical Engineering and Biotechnology, University of Cambridge , Cambridge , UK
| |
Collapse
|
7
|
Wang L, Niu Z, Wang X, Li Z, Liu Y, Luo F, Yan X. PHD2 exerts anti-cancer and anti-inflammatory effects in colon cancer xenografts mice via attenuating NF-κB activity. Life Sci 2019; 242:117167. [PMID: 31838134 DOI: 10.1016/j.lfs.2019.117167] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 02/05/2023]
Abstract
Recent studies suggested that prolyl hydroxylase 2 (PHD2) functions as an important regulator in vascular inflammation and Streptococcus pneumonia infection. However, whether PHD2 contributed to tumor progression prompted by intratumoral inflammation remains elusive. In this study, the effects of PHD2 in colon cancer were evaluated, and the underlying molecular mechanisms were investigated. The results showed that overexpressing PHD2 exerted proliferative and migratory inhibition in colon cancer cells. The expression of cell cycle and epithelial-mesenchymal transition (EMT)-associated proteins were changed: CyclinD1, CDK4, N-cadherin, and Vimentin were down-regulated, while E-cadherin was up-regulated in PHD2-overexpressing colon cancer cells. Moreover, in colon cancer xenograft mice, PHD2 overexpression suppressed tumor growth accompanied by decreased Ki67 expression. Importantly, we further demonstrated that overexpressing PHD2 attenuated inflammation in colon cancer xenograft mice through weakening accumulation of myeloid-derived suppressor cells (MDSCs) and M2-like tumor-associated macrophages (TAMs), as well as secretions of pro-inflammatory cytokines including G-CSF, TNF-α, IL-6, IL-8, IL-1β, and IL-4. Mechanistically, PHD2 overexpression obviously suppressed NF-κB activity through decreasing phosphorylated IκB-α while increasing cytoplasmic NF-κB p65 levels in colon cancer. Our findings support the anti-cancer and anti-inflammatory roles of PHD2 and offer a preclinical proof of tumor progression regulated by cancer cells and inflammation.
Collapse
Affiliation(s)
- Li Wang
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zhendong Niu
- Department of Emergency Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xia Wang
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Department of Medical Oncology, Ganzhou City People's Hospital, Ganzhou, Jiangxi, China
| | - Zhixi Li
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yanyang Liu
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Feng Luo
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Xi Yan
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Boynton PJ. The ecology of killer yeasts: Interference competition in natural habitats. Yeast 2019; 36:473-485. [PMID: 31050852 DOI: 10.1002/yea.3398] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/31/2022] Open
Abstract
Killer yeasts are ubiquitous in the environment: They have been found in diverse habitats ranging from ocean sediment to decaying cacti to insect bodies and on all continents including Antarctica. However, environmental killer yeasts are poorly studied compared with laboratory and domesticated killer yeasts. Killer yeasts secrete so-called killer toxins that inhibit nearby sensitive yeasts, and the toxins are frequently assumed to be tools for interference competition in diverse yeast communities. The diversity and ubiquity of killer yeasts imply that interference competition is crucial for shaping yeast communities. Additionally, these toxins may have ecological functions beyond use in interference competition. This review introduces readers to killer yeasts in environmental systems, with a focus on what is and is not known about their ecology and evolution. It also explores how results from experimental killer systems in laboratories can be extended to understand how competitive strategies shape yeast communities in nature. Overall, killer yeasts are likely to occur everywhere yeasts are found, and the killer phenotype has the potential to radically shape yeast diversity in nature.
Collapse
Affiliation(s)
- Primrose J Boynton
- Max-Planck Institute for Evolutionary Biology, Environmental Genomics Group, Plön, Germany
| |
Collapse
|
9
|
Abstract
Non-Saccharomyces yeasts are becoming important because most of them are considered as spoilage species in winemaking processes, among them the species Saccharomycodes ludwigii. This species is frequently isolated at the end of the fermentation process and/or during storage of the wine, i.e., it can to grow in the presence of high levels of ethanol. Besides, this species is adaptable to unfavorable conditions such as high concentrations of SO2 and is characterized by its capacity to produce high amounts of undesirable metabolites as acetoin, ethyl acetate or acetic acid. To the present, physical (gamma irradiation and continuous pulsed electric fields), chemical (inhibitory compounds such as chitosan and dimethyl dicarbonate) and biological (antagonistic biocontrol by killer yeasts) treatments have been developed in order to control the growth of this spoilage yeast in wines and other fruit derivatives. Therefore, this review is focused on the most relevant studies conducted to control contamination by S. ludwigii. Moreover, potential applications of S. ludwigii in alternative winemaking techniques, for example for ageing-on-lees and stabilization of red wines, and improvement of aromatic profile are also examined.
Collapse
|
10
|
Morales-Menchén A, Navarro-García F, Guirao-Abad JP, Román E, Prieto D, Coman IV, Pla J, Alonso-Monge R. Non-canonical Activities of Hog1 Control Sensitivity of Candida albicans to Killer Toxins From Debaryomyces hansenii. Front Cell Infect Microbiol 2018; 8:135. [PMID: 29774204 PMCID: PMC5943613 DOI: 10.3389/fcimb.2018.00135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/18/2018] [Indexed: 11/13/2022] Open
Abstract
Certain yeasts secrete peptides known as killer toxins or mycocins with a deleterious effect on sensitive yeasts or filamentous fungi, a common phenomenon in environmental species. In a recent work, different Debaryomyces hansenii (Dh) strains isolated from a wide variety of cheeses were identified as producing killer toxins active against Candida albicans and Candida tropicalis. We have analyzed the killer activity of these toxins in C. albicans mutants defective in MAPK signaling pathways and found that the lack of the MAPK Hog1 (but not Cek1 or Mkc1) renders cells hypersensitive to Dh mycocins while mutants lacking other upstream elements of the pathway behave as the wild type strain. Point mutations in the phosphorylation site (T174A-176F) or in the kinase domain (K52R) of HOG1 gene showed that both activities were relevant for the survival of C. albicans to Dh killer toxins. Moreover, Hog1 phosphorylation was also required to sense and adapt to osmotic and oxidative stress while the kinase activity was somehow dispensable. Although the addition of supernatant from the killer toxin- producing D. hansenii 242 strain (Dh-242) induced a slight intracellular increase in Reactive Oxygen Species (ROS), overexpression of cytosolic catalase did not protect C. albicans against this mycocin. This supernatant induced an increase in intracellular glycerol concentration suggesting that this toxin triggers an osmotic stress. We also provide evidence of a correlation between sensitivity to Dh-242 killer toxin and resistance to Congo red, suggesting cell wall specific alterations in sensitive strains.
Collapse
Affiliation(s)
- Ana Morales-Menchén
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Federico Navarro-García
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - José P Guirao-Abad
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Elvira Román
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Daniel Prieto
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Ioana V Coman
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Jesús Pla
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Rebeca Alonso-Monge
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
11
|
Mehlomakulu NN, Prior KJ, Setati ME, Divol B. Candida pyralidae killer toxin disrupts the cell wall of Brettanomyces bruxellensis in red grape juice. J Appl Microbiol 2017; 122:747-758. [PMID: 27992098 DOI: 10.1111/jam.13383] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 11/27/2022]
Abstract
AIMS The control of the wine spoilage yeast Brettanomyces bruxellensis using biological methods such as killer toxins (instead of the traditional chemical methods, e.g. SO2 ) has been the focus of several studies within the last decade. Our previous research demonstrated that the killer toxins CpKT1 and CpKT2 isolated from the wine yeast Candida pyralidae were active and stable under winemaking conditions. In this study, we report the possible mode of action of CpKT1 on B. bruxellensis cells in red grape juice. METHODS AND RESULTS Brettanomyces bruxellensis cells were exposed to CpKT1 either directly or through co-inoculation with C. pyralidae. This exposure yielded a temporary or permanent decline of the spoilage yeast population depending on the initial cell concentration. Scanning electron microscopy revealed cell surface abrasion while propidium iodide viability staining showed that CpKT1 caused plasma membrane damage on B. bruxellensis cells. Our data show that the exposure to CpKT1 resulted in increased levels of β-glucan, suggesting a compensatory response of the sensitive cells. CONCLUSIONS The toxin CpKT1 causes cell membrane and cell wall damage in B. bruxellensis. SIGNIFICANCE AND IMPACT OF THE STUDY Candida pyralidae shows potential to be used as a biocontrol agent against B. bruxellensis in grape juice/wine.
Collapse
Affiliation(s)
- N N Mehlomakulu
- Institute for Wine Biotechnology, Department of Oenology and Viticulture, Stellenbosch University, Matieland, South Africa
| | - K J Prior
- Institute for Wine Biotechnology, Department of Oenology and Viticulture, Stellenbosch University, Matieland, South Africa
| | - M E Setati
- Institute for Wine Biotechnology, Department of Oenology and Viticulture, Stellenbosch University, Matieland, South Africa
| | - B Divol
- Institute for Wine Biotechnology, Department of Oenology and Viticulture, Stellenbosch University, Matieland, South Africa
| |
Collapse
|
12
|
Belda I, Ruiz J, Alonso A, Marquina D, Santos A. The Biology of Pichia membranifaciens Killer Toxins. Toxins (Basel) 2017; 9:toxins9040112. [PMID: 28333108 PMCID: PMC5408186 DOI: 10.3390/toxins9040112] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/07/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023] Open
Abstract
The killer phenomenon is defined as the ability of some yeast to secrete toxins that are lethal to other sensitive yeasts and filamentous fungi. Since the discovery of strains of Saccharomyces cerevisiae capable of secreting killer toxins, much information has been gained regarding killer toxins and this fact has substantially contributed knowledge on fundamental aspects of cell biology and yeast genetics. The killer phenomenon has been studied in Pichia membranifaciens for several years, during which two toxins have been described. PMKT and PMKT2 are proteins of low molecular mass that bind to primary receptors located in the cell wall structure of sensitive yeast cells, linear (1→6)-β-d-glucans and mannoproteins for PMKT and PMKT2, respectively. Cwp2p also acts as a secondary receptor for PMKT. Killing of sensitive cells by PMKT is characterized by ionic movements across plasma membrane and an acidification of the intracellular pH triggering an activation of the High Osmolarity Glycerol (HOG) pathway. On the contrary, our investigations showed a mechanism of killing in which cells are arrested at an early S-phase by high concentrations of PMKT2. However, we concluded that induced mortality at low PMKT2 doses and also PMKT is indeed of an apoptotic nature. Killer yeasts and their toxins have found potential applications in several fields: in food and beverage production, as biocontrol agents, in yeast bio-typing, and as novel antimycotic agents. Accordingly, several applications have been found for P. membranifaciens killer toxins, ranging from pre- and post-harvest biocontrol of plant pathogens to applications during wine fermentation and ageing (inhibition of Botrytis cinerea, Brettanomyces bruxellensis, etc.).
Collapse
Affiliation(s)
- Ignacio Belda
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Javier Ruiz
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Alejandro Alonso
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Domingo Marquina
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Antonio Santos
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
13
|
TdKT, a new killer toxin produced by Torulaspora delbrueckii effective against wine spoilage yeasts. Int J Food Microbiol 2015; 217:94-100. [PMID: 26513248 DOI: 10.1016/j.ijfoodmicro.2015.10.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/08/2015] [Accepted: 10/06/2015] [Indexed: 11/23/2022]
Abstract
Microbiological spoilage is a major concern throughout the wine industry, and control tools are limited. This paper addresses the identification and partial characterization of a new killer toxin from Torulaspora delbrueckii with potential biocontrol activity of Brettanomyces bruxellensis, Pichia guilliermondii, Pichia manshurica and Pichia membranifaciens wine spoilage. A panel of 18 different wine strains of T. delbrueckii killer yeasts was analysed, and the strain T. delbrueckii NPCC 1033 (TdKT producer) showed a significant inhibitory effect on the growth of all different spoilage yeasts evaluated. The TdKT toxin was then subjected to a partial biochemical characterization. Its estimated molecular weight was N30 kDa and it showed glucanase and chitinase enzymatic activities. The killer activity was stable between pH 4.2 and 4.8 and inactivated at temperature above 40 °C. Pustulan and chitin — but not other cell wall polysaccharides — prevented sensitive yeast cells from being killed by TdKT, suggesting that those may be the first toxin targets in the cell wall. TdKT provoked an increase in necrosis cell death after 3 h treatment and apoptotic cell death after 24 h showing time dependence in its mechanisms of action. Killer toxin extracts were active at oenological conditions, confirming their potential use as a biocontrol tool in winemaking.
Collapse
|
14
|
Alonso A, Belda I, Santos A, Navascués E, Marquina D. Advances in the control of the spoilage caused by Zygosaccharomyces species on sweet wines and concentrated grape musts. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.11.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Li H, Wu M, Xu L, Hou J, Guo T, Bao X, Shen Y. Evaluation of industrial Saccharomyces cerevisiae strains as the chassis cell for second-generation bioethanol production. Microb Biotechnol 2015; 8:266-74. [PMID: 25616171 PMCID: PMC4353340 DOI: 10.1111/1751-7915.12245] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 10/13/2014] [Accepted: 10/22/2014] [Indexed: 11/26/2022] Open
Abstract
To develop a suitable Saccharomyces cerevisiae industrial strain as a chassis cell for ethanol production using lignocellulosic materials, 32 wild-type strains were evaluated for their glucose fermenting ability, their tolerance to the stresses they might encounter in lignocellulosic hydrolysate fermentation and their genetic background for pentose metabolism. The strain BSIF, isolated from tropical fruit in Thailand, was selected out of the distinctly different strains studied for its promising characteristics. The maximal specific growth rate of BSIF was as high as 0.65 h(-1) in yeast extract peptone dextrose medium, and the ethanol yield was 0.45 g g(-1) consumed glucose. Furthermore, compared with other strains, this strain exhibited superior tolerance to high temperature, hyperosmotic stress and oxidative stress; better growth performance in lignocellulosic hydrolysate; and better xylose utilization capacity when an initial xylose metabolic pathway was introduced. All of these results indicate that this strain is an excellent chassis strain for lignocellulosic ethanol production.
Collapse
Affiliation(s)
- Hongxing Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Characterization of novel killer toxins secreted by wine-related non-Saccharomyces yeasts and their action on Brettanomyces spp. Int J Food Microbiol 2014; 188:83-91. [PMID: 25087208 DOI: 10.1016/j.ijfoodmicro.2014.07.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/08/2014] [Accepted: 07/16/2014] [Indexed: 11/24/2022]
Abstract
Wine spoilage associated with Brettanomyces bruxellensis is a major concern for winemakers. An effective and reliable method to control the proliferation of this yeast is therefore of utmost importance. To achieve this purpose, sulphur dioxide (SO2) is commonly employed but the efficiency of this chemical compound is subject to wine composition and it can elicit allergic reactions in some consumers. Biological alternatives are therefore actively sought. The current study focused on identifying and characterizing killer toxins which are antimicrobial compounds that show potential in inhibiting B. bruxellensis in wine. Two killer toxins, CpKT1 and CpKT2, from the wine isolated yeast Candida pyralidae were identified and partially characterized. The two proteins had a molecular mass above 50kDa and exhibited killer activity against several B. bruxellensis strains especially in grape juice. They were active and stable at pH3.5-4.5, and temperatures between 15 and 25°C which are compatible with winemaking conditions. Furthermore, the activity of these killer toxins was not affected by the ethanol and sugar concentrations typically found in grape juice and wine. In addition, these killer toxins inhibited neither the Saccharomyces cerevisiae nor the lactic acid bacteria strains tested. These preliminary results indicated that the application of these toxins will have no effect on the main microbial agents that drive alcoholic and malolactic fermentations and further highlight the potential of using these toxins as agents to control the development of B. bruxellensis in grape juice or wine.
Collapse
|