1
|
Chen X, Moran Torres JP, Jan Vonk P, Damen JMA, Reiding KR, Dijksterhuis J, Lugones LG, Wösten HAB. The pleiotropic phenotype of FlbA of Aspergillus niger is explained in part by the activity of seven of its downstream-regulated transcription factors. Fungal Genet Biol 2024; 172:103894. [PMID: 38657897 DOI: 10.1016/j.fgb.2024.103894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Inactivation of flbA in Aspergillus niger results in thinner cell walls, increased cell lysis, abolished sporulation, and an increased secretome complexity. A total of 36 transcription factor (TF) genes are differentially expressed in ΔflbA. Here, seven of these genes (abaA, aslA, aslB, azf1, htfA, nosA, and srbA) were inactivated. Inactivation of each of these genes affected sporulation and, with the exception of abaA, cell wall integrity and protein secretion. The impact on secretion was strongest in the case of ΔaslA and ΔaslB that showed increased pepsin, cellulase, and amylase activity. Biomass was reduced of agar cultures of ΔabaA, ΔaslA, ΔnosA, and ΔsrbA, while biomass was higher in liquid shaken cultures of ΔaslA and ΔaslB. The ΔaslA and ΔhtfA strains showed increased resistance to H2O2, while ΔaslB was more sensitive to this reactive oxygen species. Together, inactivation of the seven TF genes impacted biomass formation, sporulation, protein secretion, and stress resistance, and thereby these genes explain at least part of the pleiotropic phenotype of ΔflbA of A. niger.
Collapse
Affiliation(s)
- Xiaoyi Chen
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Juan P Moran Torres
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Peter Jan Vonk
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - J Mirjam A Damen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Karli R Reiding
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Jan Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
| | - Luis G Lugones
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Han A B Wösten
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
2
|
Wang L, Zhao Y, Chen S, Wen X, Anjago WM, Tian T, Chen Y, Zhang J, Deng S, Jiu M, Fu P, Zhou D, Druzhinina IS, Wei L, Daly P. Growth, Enzymatic, and Transcriptomic Analysis of xyr1 Deletion Reveals a Major Regulator of Plant Biomass-Degrading Enzymes in Trichoderma harzianum. Biomolecules 2024; 14:148. [PMID: 38397385 PMCID: PMC10887015 DOI: 10.3390/biom14020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 02/25/2024] Open
Abstract
The regulation of plant biomass degradation by fungi is critical to the carbon cycle, and applications in bioproducts and biocontrol. Trichoderma harzianum is an important plant biomass degrader, enzyme producer, and biocontrol agent, but few putative major transcriptional regulators have been deleted in this species. The T. harzianum ortholog of the transcriptional activator XYR1/XlnR/XLR-1 was deleted, and the mutant strains were analyzed through growth profiling, enzymatic activities, and transcriptomics on cellulose. From plate cultures, the Δxyr1 mutant had reduced growth on D-xylose, xylan, and cellulose, and from shake-flask cultures with cellulose, the Δxyr1 mutant had ~90% lower β-glucosidase activity, and no detectable β-xylosidase or cellulase activity. The comparison of the transcriptomes from 18 h shake-flask cultures on D-fructose, without a carbon source, and cellulose, showed major effects of XYR1 deletion whereby the Δxyr1 mutant on cellulose was transcriptionally most similar to the cultures without a carbon source. The cellulose induced 43 plant biomass-degrading CAZymes including xylanases as well as cellulases, and most of these had massively lower expression in the Δxyr1 mutant. The expression of a subset of carbon catabolic enzymes, other transcription factors, and sugar transporters was also lower in the Δxyr1 mutant on cellulose. In summary, T. harzianum XYR1 is the master regulator of cellulases and xylanases, as well as regulating carbon catabolic enzymes.
Collapse
Affiliation(s)
- Lunji Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (L.W.); (Y.Z.); (X.W.); (M.J.)
| | - Yishen Zhao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (L.W.); (Y.Z.); (X.W.); (M.J.)
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.C.); (W.M.A.); (T.T.); (Y.C.); (J.Z.); (S.D.); (D.Z.)
| | - Siqiao Chen
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.C.); (W.M.A.); (T.T.); (Y.C.); (J.Z.); (S.D.); (D.Z.)
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing 210095, China
| | - Xian Wen
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (L.W.); (Y.Z.); (X.W.); (M.J.)
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.C.); (W.M.A.); (T.T.); (Y.C.); (J.Z.); (S.D.); (D.Z.)
| | - Wilfred Mabeche Anjago
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.C.); (W.M.A.); (T.T.); (Y.C.); (J.Z.); (S.D.); (D.Z.)
| | - Tianchi Tian
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.C.); (W.M.A.); (T.T.); (Y.C.); (J.Z.); (S.D.); (D.Z.)
| | - Yajuan Chen
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.C.); (W.M.A.); (T.T.); (Y.C.); (J.Z.); (S.D.); (D.Z.)
- Key Laboratory of Coal Processing and Efficient Utilization, China University of Mining and Technology, Xuzhou 221116, China
| | - Jinfeng Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.C.); (W.M.A.); (T.T.); (Y.C.); (J.Z.); (S.D.); (D.Z.)
| | - Sheng Deng
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.C.); (W.M.A.); (T.T.); (Y.C.); (J.Z.); (S.D.); (D.Z.)
| | - Min Jiu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (L.W.); (Y.Z.); (X.W.); (M.J.)
| | - Pengxiao Fu
- Jiangsu Coastal Ecological Science and Technology Development Co., Ltd., Nanjing 210036, China;
| | - Dongmei Zhou
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.C.); (W.M.A.); (T.T.); (Y.C.); (J.Z.); (S.D.); (D.Z.)
| | - Irina S. Druzhinina
- Department of Accelerated Taxonomy, The Royal Botanic Gardens Kew, London TW9 3AE, UK;
| | - Lihui Wei
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.C.); (W.M.A.); (T.T.); (Y.C.); (J.Z.); (S.D.); (D.Z.)
| | - Paul Daly
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.C.); (W.M.A.); (T.T.); (Y.C.); (J.Z.); (S.D.); (D.Z.)
| |
Collapse
|
3
|
Heterogeneity in Spore Aggregation and Germination Results in Different Sized, Cooperative Microcolonies in an Aspergillus niger Culture. mBio 2023; 14:e0087022. [PMID: 36629410 PMCID: PMC9973262 DOI: 10.1128/mbio.00870-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The fungus Aspergillus niger is among the most abundant fungi in the world and is widely used as a cell factory for protein and metabolite production. This fungus forms asexual spores called conidia that are used for dispersal. Notably, part of the spores and germlings aggregate in an aqueous environment. The aggregated conidia/germlings give rise to large microcolonies, while the nonaggregated spores/germlings result in small microcolonies. Here, it is shown that small microcolonies release a larger variety and quantity of secreted proteins compared to large microcolonies. Yet, the secretome of large microcolonies has complementary cellulase activity with that of the small microcolonies. Also, large microcolonies are more resistant to heat and oxidative stress compared to small microcolonies, which is partly explained by the presence of nongerminated spores in the core of the large microcolonies. Together, it is proposed that heterogeneity in germination and aggregation has evolved to form a population of different sized A. niger microcolonies, thereby increasing stress survival and producing a meta-secretome more optimally suited to degrade complex substrates. IMPORTANCE Aspergillus niger can form microcolonies of different size due to partial aggregation of spores and germlings. So far, this heterogeneity was considered a negative trait by the industry. We here, however, show that heterogeneity in size within a population of microcolonies is beneficial for food degradation and stress survival. This functional heterogeneity is not only of interest for the industry to make blends of enzymes (e.g., for biofuel or bioplastic production) but could also play a role in nature for effective nutrient cycling and survival of the fungus.
Collapse
|
4
|
Yap A, Glarcher I, Misslinger M, Haas H. Characterization and engineering of the xylose-inducible xylP promoter for use in mold fungal species. Metab Eng Commun 2022; 15:e00214. [DOI: 10.1016/j.mec.2022.e00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022] Open
|
5
|
He F, Kange AM, Yang J, Xiao J, Wang R, Yang L, Jia Y, Fu ZQ, Zhao Y, Liu F. The Transcription Factor VpxlnR Is Required for the Growth, Development, and Virulence of the Fungal Pathogen Valsa pyri. Front Microbiol 2022; 13:784686. [PMID: 35308334 PMCID: PMC8928461 DOI: 10.3389/fmicb.2022.784686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
Pears (Pyrus sp.) are widely cultivated in China, and their yield accounts for more than 60% of global pear production. The fungal pathogen Valsa pyri is a major causal agent of pear canker disease, which results in enormous losses of pear production in northern China. In this study, we characterized a Zn2Cys6 transcription factor that contains one GAL4 domain and a fungal-trans domain, which are present in VpxlnR. The vpxlnR gene expression was upregulated in the invasion stage of V. pyri. To investigate its functions, we constructed gene deletion mutants and complementary strains. We observed that the growth of the vpxlnR mutants was reduced on potato dextrose agar (PDA), Czapek plus glucose or sucrose compared with that of the wild-type strain. Additionally, vpxlnR mutants exhibited loss of function in fruiting body formation. Moreover, vpxlnR mutants were more susceptible to hydrogen peroxide (H2O2) and salicylic acid (SA) and were reduced in their virulence at the early infection stage. According to a previous study, VpxlnR-interacting motifs containing NRHKGNCCGM were searched in the V. pyri genome, and we obtained 354 target genes, of which 148 genes had Clusters of Orthologous Groups (COG) terms. PHI-BLAST was used to identify virulence-related genes, and we found 28 hits. Furthermore, eight genes from the 28 PHI-BLAST hits were further assessed by yeast one-hybrid (Y1H) assays, and five target genes, salicylate hydroxylase (VP1G_09520), serine/threonine-protein kinase (VP1G_03128), alpha-xylosidase (VP1G_06369), G-protein beta subunit (VP1G_02856), and acid phosphatase (VP1G_03782), could interact with VpxlnR in vivo. Their transcript levels were reduced in one or two vpxlnR mutants. Taken together, these findings imply that VpxlnR is a key regulator of growth, development, stress, and virulence through controlling genes involved in signaling pathways and extracellular enzyme activities in V. pyri. The motifs interacting with VpxlnR also provide new insights into the molecular mechanism of xlnR proteins.
Collapse
Affiliation(s)
- Feng He
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Alex-Machio Kange
- Department of Agriculture and Natural Resource, Bomet University College, Bomet, Kenya
| | - Jie Yang
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Jiaxin Xiao
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Rongbo Wang
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, China
| | - Lu Yang
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yifan Jia
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - Yancun Zhao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- *Correspondence: Yancun Zhao,
| | - Fengquan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Fengquan Liu,
| |
Collapse
|
6
|
Unraveling the regulation of sugar beet pulp utilization in the industrially relevant fungus Aspergillus niger. iScience 2022; 25:104065. [PMID: 35359804 PMCID: PMC8961234 DOI: 10.1016/j.isci.2022.104065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/07/2022] [Accepted: 03/09/2022] [Indexed: 11/21/2022] Open
Abstract
Efficient utilization of agro-industrial waste, such as sugar beet pulp, is crucial for the bio-based economy. The fungus Aspergillus niger possesses a wide array of enzymes that degrade complex plant biomass substrates, and several regulators have been reported to play a role in their production. The role of the regulators GaaR, AraR, and RhaR in sugar beet pectin degradation has previously been reported. However, genetic regulation of the degradation of sugar beet pulp has not been assessed in detail. In this study, we generated a set of single and combinatorial deletion mutants targeting the pectinolytic regulators GaaR, AraR, RhaR, and GalX as well as the (hemi-)cellulolytic regulators XlnR and ClrB to address their relative contribution to the utilization of sugar beet pulp. We show that A. niger has a flexible regulatory network, adapting to the utilization of (hemi-)cellulose at early timepoints when pectin degradation is impaired. Major sugar beet pulp components are sequentially utilized by A. niger Contribution of major regulators toward sugar beet pulp utilization was compared Deletion of araR and clrB showed high impact on growth after 8 and 24 h, respectively
Collapse
|
7
|
Havukainen S, Pujol-Giménez J, Valkonen M, Hediger MA, Landowski CP. Functional characterization of a highly specific L-arabinose transporter from Trichoderma reesei. Microb Cell Fact 2021; 20:177. [PMID: 34496831 PMCID: PMC8425032 DOI: 10.1186/s12934-021-01666-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 08/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lignocellulose biomass has been investigated as a feedstock for second generation biofuels and other value-added products. Some of the processes for biofuel production utilize cellulases and hemicellulases to convert the lignocellulosic biomass into a range of soluble sugars before fermentation with microorganisms such as yeast Saccharomyces cerevisiae. One of these sugars is L-arabinose, which cannot be utilized naturally by yeast. The first step in L-arabinose catabolism is its transport into the cells, and yeast lacks a specific transporter, which could perform this task. RESULTS We identified Trire2_104072 of Trichoderma reesei as a potential L-arabinose transporter based on its expression profile. This transporter was described already in 2007 as D-xylose transporter XLT1. Electrophysiology experiments with Xenopus laevis oocytes and heterologous expression in yeast revealed that Trire2_104072 is a high-affinity L-arabinose symporter with a Km value in the range of [Formula: see text] 0.1-0.2 mM. It can also transport D-xylose but with low affinity (Km [Formula: see text] 9 mM). In yeast, L-arabinose transport was inhibited slightly by D-xylose but not by D-glucose in an assay with fivefold excess of the inhibiting sugar. Comparison with known L-arabinose transporters revealed that the expression of Trire2_104072 enabled yeast to uptake L-arabinose at the highest rate in conditions with low extracellular L-arabinose concentration. Despite the high specificity of Trire2_104072 for L-arabinose, the growth of its T. reesei deletion mutant was only affected at low L-arabinose concentrations. CONCLUSIONS Due to its high affinity for L-arabinose and low inhibition by D-glucose or D-xylose, Trire2_104072 could serve as a good candidate for improving the existing pentose-utilizing yeast strains. The discovery of a highly specific L-arabinose transporter also adds to our knowledge of the primary metabolism of T. reesei. The phenotype of the deletion strain suggests the involvement of other transporters in L-arabinose transport in this species.
Collapse
Affiliation(s)
- Sami Havukainen
- VTT Technical Research Center of Finland Ltd, Tietotie 2, 02150, Espoo, Finland
| | - Jonai Pujol-Giménez
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
- Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
| | - Mari Valkonen
- VTT Technical Research Center of Finland Ltd, Tietotie 2, 02150, Espoo, Finland
| | - Matthias A Hediger
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
- Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
| | | |
Collapse
|
8
|
Kun RS, Garrigues S, Di Falco M, Tsang A, de Vries RP. Blocking utilization of major plant biomass polysaccharides leads Aspergillus niger towards utilization of minor components. Microb Biotechnol 2021; 14:1683-1698. [PMID: 34114741 PMCID: PMC8313289 DOI: 10.1111/1751-7915.13835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 11/28/2022] Open
Abstract
Fungi produce a wide range of enzymes that allow them to grow on diverse plant biomass. Wheat bran is a low-cost substrate with high potential for biotechnological applications. It mainly contains cellulose and (arabino)xylan, as well as starch, proteins, lipids and lignin to a lesser extent. In this study, we dissected the regulatory network governing wheat bran degradation in Aspergillus niger to assess the relative contribution of the regulators to the utilization of this plant biomass substrate. Deletion of genes encoding transcription factors involved in (hemi-)cellulose utilization (XlnR, AraR, ClrA and ClrB) individually and in combination significantly reduced production of polysaccharide-degrading enzymes, but retained substantial growth on wheat bran. Proteomic analysis suggested the ability of A. niger to grow on other carbon components, such as starch, which was confirmed by the additional deletion of the amylolytic regulator AmyR. Growth was further reduced but not impaired, indicating that other minor components provide sufficient energy for residual growth, displaying the flexibility of A. niger, and likely other fungi, in carbon utilization. Better understanding of the complexity and flexibility of fungal regulatory networks will facilitate the generation of more efficient fungal cell factories that use plant biomass as a substrate.
Collapse
Affiliation(s)
- Roland S. Kun
- Fungal PhysiologyWesterdijk Fungal Biodiversity Institute & Fungal Molecular PhysiologyUtrecht UniversityUppsalalaan 8Utrecht3584 CTThe Netherlands
| | - Sandra Garrigues
- Fungal PhysiologyWesterdijk Fungal Biodiversity Institute & Fungal Molecular PhysiologyUtrecht UniversityUppsalalaan 8Utrecht3584 CTThe Netherlands
| | - Marcos Di Falco
- Centre for Structural and Functional GenomicsConcordia University7141 Sherbrooke Street WestMontrealQCH4B 1R6Canada
| | - Adrian Tsang
- Centre for Structural and Functional GenomicsConcordia University7141 Sherbrooke Street WestMontrealQCH4B 1R6Canada
| | - Ronald P. de Vries
- Fungal PhysiologyWesterdijk Fungal Biodiversity Institute & Fungal Molecular PhysiologyUtrecht UniversityUppsalalaan 8Utrecht3584 CTThe Netherlands
| |
Collapse
|
9
|
Sun W, Liu L, Yu Y, Yu B, Liang C, Ying H, Liu D, Chen Y. Biofilm-Related, Time-Series Transcriptome and Genome Sequencing in Xylanase-Producing Aspergillus niger SJ1. ACS OMEGA 2020; 5:19737-19746. [PMID: 32803069 PMCID: PMC7424707 DOI: 10.1021/acsomega.0c02501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/20/2020] [Indexed: 05/15/2023]
Abstract
In this study, we found that biofilm formation is a critical factor affecting the activity of Aspergillus niger SJ1 xylanase. Xylanase activity increased 8.8% from 1046.88 to 1147.74 U/mL during A. niger SJ1 immobilized fermentation with biofilm formation. Therefore, we carried out the work of genomic analysis and biofilm-related time-series transcriptome analysis of A. niger SJ1 for better understanding of the ability of A. niger SJ to produce xylanase and biofilm formation. Genome annotation results revealed a complete biofilm polysaccharide component synthesis pathway in A. niger SJ1 and five proteins regarding xylanase synthesis. In addition, results of transcriptome analysis revealed that the genes involved in the synthesis of cell wall polysaccharides and amino acid anabolism were highly expressed in the biofilm. Furthermore, the expression levels of major genes in the gluconeogenesis pathway and mitogen-activated protein kinase pathway were examined.
Collapse
Affiliation(s)
- Wenjun Sun
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 210000, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210000, China
| | - Li Liu
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 210000, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210000, China
| | - Ying Yu
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 210000, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210000, China
| | - Bin Yu
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 210000, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210000, China
| | - Caice Liang
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 210000, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210000, China
| | - Hanjie Ying
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 210000, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210000, China
- School
of Chemical Engineering and Energy, Zhengzhou
University, Zhengzhou 450001, China
| | - Dong Liu
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 210000, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210000, China
- School
of Chemical Engineering and Energy, Zhengzhou
University, Zhengzhou 450001, China
| | - Yong Chen
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 210000, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210000, China
- . Phone: +86 25 86990001. Fax: +86 25 58139389
| |
Collapse
|
10
|
Deng X, Du B, Zhu F, Gao Y, Li J. Proteomic analysis of Aspergillus niger 3.316 under heat stress. Microbiologyopen 2020; 9:e1012. [PMID: 32107876 PMCID: PMC7221434 DOI: 10.1002/mbo3.1012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/25/2020] [Accepted: 02/01/2020] [Indexed: 01/04/2023] Open
Abstract
β-Glucosidase production by Aspergillus niger is accompanied by an inevitable temperature increase in the industrial fermentation environment. Hence, the synthetic process of β-glucosidase is negatively affected. However, our understanding of the heat stress response (HSR) mechanism in A. niger is still incomplete. The current study explored the intracellular proteome profile of A. niger 3.316 in group T (50°C stress) and group C (30°C control) using two proteomic approaches (isobaric tags for relative and absolute quantitation [iTRAQ] and label-free) and examined the expression of four proteins using a parallel reaction monitoring (PRM) approach. Based on the result of the iTRAQ proteomic analysis, 1,025 proteins were differentially expressed in group T compared to group C. Using the label-free approach, we only focused on 77 proteins with significant changes in their protein expression levels. In addition, we performed bioinformatics analysis on all these proteins and obtained detailed gene ontology (GO) enrichment and Kyoto encyclopedia of genes and genomes (KEGG) pathway results. Under heat stress conditions, the relative expression levels of proteins with protection and repair functions were upregulated in A. niger 3.316. These proteins were involved in metabolic pathways, oxidative phosphorylation, porphyrin and chlorophyll metabolism, pyruvate metabolism, and the citrate cycle (TCA cycle). The insights obtained from the presented proteomics and bioinformatics analyses can be used to further explore the HSR mechanism of A. niger.
Collapse
Affiliation(s)
- Xiangyu Deng
- Hebei Normal University of Science and TechnologyCollege of Food Science and TechnologyQinhuangdaoChina
| | - Bin Du
- Hebei Normal University of Science and TechnologyCollege of Food Science and TechnologyQinhuangdaoChina
| | - Fengmei Zhu
- Hebei Normal University of Science and TechnologyCollege of Food Science and TechnologyQinhuangdaoChina
| | - Yanan Gao
- Hebei Normal University of Science and TechnologyCollege of Food Science and TechnologyQinhuangdaoChina
| | - Jun Li
- Hebei Normal University of Science and TechnologyCollege of Food Science and TechnologyQinhuangdaoChina
| |
Collapse
|
11
|
Gabriel R, Prinz J, Jecmenica M, Romero-Vazquez C, Chou P, Harth S, Floerl L, Curran L, Oostlander A, Matz L, Fritsche S, Gorman J, Schuerg T, Fleißner A, Singer SW. Development of genetic tools for the thermophilic filamentous fungus Thermoascus aurantiacus. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:167. [PMID: 33062053 PMCID: PMC7547499 DOI: 10.1186/s13068-020-01804-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/20/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Fungal enzymes are vital for industrial biotechnology, including the conversion of plant biomass to biofuels and bio-based chemicals. In recent years, there is increasing interest in using enzymes from thermophilic fungi, which often have higher reaction rates and thermal tolerance compared to currently used fungal enzymes. The thermophilic filamentous fungus Thermoascus aurantiacus produces large amounts of highly thermostable plant cell wall-degrading enzymes. However, no genetic tools have yet been developed for this fungus, which prevents strain engineering efforts. The goal of this study was to develop strain engineering tools such as a transformation system, a CRISPR/Cas9 gene editing system and a sexual crossing protocol to improve the enzyme production. RESULTS Here, we report Agrobacterium tumefaciens-mediated transformation (ATMT) of T. aurantiacus using the hph marker gene, conferring resistance to hygromycin B. The newly developed transformation protocol was optimized and used to integrate an expression cassette of the transcriptional xylanase regulator xlnR, which led to up to 500% increased xylanase activity. Furthermore, a CRISPR/Cas9 gene editing system was established in this fungus, and two different gRNAs were tested to delete the pyrG orthologue with 10% and 35% deletion efficiency, respectively. Lastly, a sexual crossing protocol was established using a hygromycin B- and a 5-fluoroorotic acid-resistant parent strain. Crossing and isolation of progeny on selective media were completed in a week. CONCLUSION The genetic tools developed for T. aurantiacus can now be used individually or in combination to further improve thermostable enzyme production by this fungus.
Collapse
Affiliation(s)
- Raphael Gabriel
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
- Institut für Genetik, Technische Universität Braunschweig, Brunswick, Germany
| | - Julia Prinz
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Marina Jecmenica
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Carlos Romero-Vazquez
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
- College of Natural Sciences, University of Puerto-Rico, Rio Pedras, 17 Ave. Universidad STE 1701, San Juan, 00925 Puerto Rico USA
| | - Pallas Chou
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
- American High School, 36300 Fremont Blvd, Fremont, CA 94536 USA
| | - Simon Harth
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
- Frankfurt Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt Am Main, Germany
| | - Lena Floerl
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Laure Curran
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
- École Polytechnique Fédérale de Lausanne, Lausanne, Vaud 1015 Switzerland
| | - Anne Oostlander
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
- Institut für Genetik, Technische Universität Braunschweig, Brunswick, Germany
| | - Linda Matz
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
- Institut für Genetik, Technische Universität Braunschweig, Brunswick, Germany
| | - Susanne Fritsche
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
- Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Jennifer Gorman
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
| | - Timo Schuerg
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
| | - André Fleißner
- Institut für Genetik, Technische Universität Braunschweig, Brunswick, Germany
| | - Steven W. Singer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
| |
Collapse
|
12
|
Khosravi C, Kowalczyk JE, Chroumpi T, Battaglia E, Aguilar Pontes MV, Peng M, Wiebenga A, Ng V, Lipzen A, He G, Bauer D, Grigoriev IV, de Vries RP. Transcriptome analysis of Aspergillus niger xlnR and xkiA mutants grown on corn Stover and soybean hulls reveals a highly complex regulatory network. BMC Genomics 2019; 20:853. [PMID: 31726994 PMCID: PMC6854810 DOI: 10.1186/s12864-019-6235-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/28/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Enzymatic plant biomass degradation by fungi is a highly complex process and one of the leading challenges in developing a biobased economy. Some industrial fungi (e.g. Aspergillus niger) have a long history of use with respect to plant biomass degradation and for that reason have become 'model' species for this topic. A. niger is a major industrial enzyme producer that has a broad ability to degrade plant based polysaccharides. A. niger wild-type, the (hemi-)cellulolytic regulator (xlnR) and xylulokinase (xkiA1) mutant strains were grown on a monocot (corn stover, CS) and dicot (soybean hulls, SBH) substrate. The xkiA1 mutant is unable to utilize the pentoses D-xylose and L-arabinose and the polysaccharide xylan, and was previously shown to accumulate inducers for the (hemi-)cellulolytic transcriptional activator XlnR and the arabinanolytic transcriptional activator AraR in the presence of pentoses, resulting in overexpression of their target genes. The xlnR mutant has reduced growth on xylan and down-regulation of its target genes. The mutants therefore have a similar phenotype on xylan, but an opposite transcriptional effect. D-xylose and L-arabinose are the most abundant monosaccharides after D-glucose in nearly all plant-derived biomass materials. In this study we evaluated the effect of the xlnR and xkiA1 mutation during growth on two pentose-rich substrates by transcriptome analysis. RESULTS Particular attention was given to CAZymes, metabolic pathways and transcription factors related to the plant biomass degradation. Genes coding for the main enzymes involved in plant biomass degradation were down-regulated at the beginning of the growth on CS and SBH. However, at a later time point, significant differences were found in the expression profiles of both mutants on CS compared to SBH. CONCLUSION This study demonstrates the high complexity of the plant biomass degradation process by fungi, by showing that mutant strains with fairly straightforward phenotypes on pure mono- and polysaccharides, have much less clear-cut phenotypes and transcriptomes on crude plant biomass.
Collapse
Affiliation(s)
- Claire Khosravi
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Joanna E. Kowalczyk
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Tania Chroumpi
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Evy Battaglia
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Maria-Victoria Aguilar Pontes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Mao Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Ad Wiebenga
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Vivian Ng
- US Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Guifen He
- US Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Diane Bauer
- US Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, CA USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA USA
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
13
|
Mild hydrothermal pretreatment of sugarcane bagasse enhances the production of holocellulases by Aspergillus niger. J Ind Microbiol Biotechnol 2019; 46:1517-1529. [PMID: 31236777 DOI: 10.1007/s10295-019-02207-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 06/18/2019] [Indexed: 10/26/2022]
Abstract
Holocellulase production by Aspergillus niger using raw sugarcane bagasse (rSCB) as the enzyme-inducing substrate is hampered by the intrinsic recalcitrance of this material. Here we report that mild hydrothermal pretreatment of rSCB increases holocellulase secretion by A. niger. Quantitative proteomic analysis revealed that pretreated solids (PS) induced a pronounced up-regulation of endoglucanases and cellobiohydrolases compared to rSCB, which resulted in a 10.1-fold increase in glucose release during SCB saccharification. The combined use of PS and pretreatment liquor (PL), referred to as whole pretreated slurry (WPS), as carbon source induced a more balanced up-regulation of cellulases, hemicellulases and pectinases and resulted in the highest increase (4.8-fold) in the release of total reducing sugars from SCB. The use of PL as the sole carbon source induced the modulation of A. niger's secretome towards hemicellulose degradation. Mild pretreatment allowed the use of PL in downstream biological operations without the need for undesirable detoxification steps.
Collapse
|
14
|
Gao L, Li S, Xu Y, Xia C, Xu J, Liu J, Qin Y, Song X, Liu G, Qu Y. Mutation of a Conserved Alanine Residue in Transcription Factor AraR Leads to Hyperproduction of α‐l‐Arabinofuranosidases inPenicillium oxalicum. Biotechnol J 2019; 14:e1800643. [DOI: 10.1002/biot.201800643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/20/2018] [Accepted: 01/02/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Liwei Gao
- State Key Laboratory of Microbial TechnologyShandong University27 Binhai Road 266237 Qingdao China
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghai China
| | - Shiying Li
- State Key Laboratory of Microbial TechnologyShandong University27 Binhai Road 266237 Qingdao China
| | - Yanning Xu
- State Key Laboratory of Microbial TechnologyShandong University27 Binhai Road 266237 Qingdao China
| | - Chengqiang Xia
- State Key Laboratory of Microbial TechnologyShandong University27 Binhai Road 266237 Qingdao China
| | - Jiadi Xu
- State Key Laboratory of Microbial TechnologyShandong University27 Binhai Road 266237 Qingdao China
- National Glycoengineering Research CenterShandong UniversityQingdao China
| | - Jun Liu
- State Key Laboratory of Microbial TechnologyShandong University27 Binhai Road 266237 Qingdao China
| | - Yuqi Qin
- State Key Laboratory of Microbial TechnologyShandong University27 Binhai Road 266237 Qingdao China
- National Glycoengineering Research CenterShandong UniversityQingdao China
| | - Xin Song
- State Key Laboratory of Microbial TechnologyShandong University27 Binhai Road 266237 Qingdao China
| | - Guodong Liu
- State Key Laboratory of Microbial TechnologyShandong University27 Binhai Road 266237 Qingdao China
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghai China
| | - Yinbo Qu
- State Key Laboratory of Microbial TechnologyShandong University27 Binhai Road 266237 Qingdao China
- National Glycoengineering Research CenterShandong UniversityQingdao China
| |
Collapse
|
15
|
CreA-independent carbon catabolite repression of cellulase genes by trimeric G-protein and protein kinase A in Aspergillus nidulans. Curr Genet 2019; 65:941-952. [PMID: 30796472 DOI: 10.1007/s00294-019-00944-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 10/27/2022]
Abstract
Cellulase production in filamentous fungi is repressed by various carbon sources. In our preliminary survey in Aspergillus nidulans, degree of de-repression differed depending on carbon sources in a mutant of creA, encoding the transcriptional repressor for carbon catabolite repression (CCR). To further understand mechanisms of CCR of cellulase production, we compared the effects of creA deletion with deletion of protein kinase A (pkaA) and G (ganB) genes, which constitute a nutrient sensing and signaling pathway. In plate culture with carboxymethyl cellulose and D-glucose, deletion of pkaA and ganB, but not creA, led to significant de-repression of cellulase production. In submerged culture with cellobiose and D-glucose or 2-deoxyglucose, both creA or pkaA single deletion led to partial de-repression of cellulase genes with the highest level by their double deletion, while ganB deletion caused de-repression comparable to that of the creA/pkaA double deletion. With ball-milled cellulose and D-glucose, partial de-repression was detected by deletion of creA but not of pkaA or ganB. The creA/pkaA or creA/ganB double deletion led to earlier expression than the creA deletion. Furthermore, the effect of each deletion with D-xylose or L-arabinose as the repressing carbon source was significantly different from that with D-glucose, D-fructose, and D-mannose. Consequently, this study revealed that PkaA and GanB participate in CreA-independent CCR and that contribution of CreA, PkaA, and GanB in CCR differs depending on the inducers, repressing carbon sources, and culture conditions (plate or submerged). Further study of CreA-independent mechanisms is needed to fully understand CCR in filamentous fungi.
Collapse
|
16
|
Midorikawa GEO, Correa CL, Noronha EF, Filho EXF, Togawa RC, Costa MMDC, Silva-Junior OB, Grynberg P, Miller RNG. Analysis of the Transcriptome in Aspergillus tamarii During Enzymatic Degradation of Sugarcane Bagasse. Front Bioeng Biotechnol 2018; 6:123. [PMID: 30280097 PMCID: PMC6153317 DOI: 10.3389/fbioe.2018.00123] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/20/2018] [Indexed: 11/13/2022] Open
Abstract
The production of bioethanol from non-food agricultural residues represents an alternative energy source to fossil fuels for incorporation into the world's economy. Within the context of bioconversion of plant biomass into renewable energy using improved enzymatic cocktails, Illumina RNA-seq transcriptome profiling was conducted on a strain of Aspergillus tamarii, efficient in biomass polysaccharide degradation, in order to identify genes encoding proteins involved in plant biomass saccharification. Enzyme production and gene expression was compared following growth in liquid and semi-solid culture with steam-exploded sugarcane bagasse (SB) (1% w/v) and glucose (1% w/v) employed as contrasting sole carbon sources. Enzyme production following growth in liquid minimum medium supplemented with SB resulted in 0.626 and 0.711 UI.mL-1 xylanases after 24 and 48 h incubation, respectively. Transcriptome profiling revealed expression of over 7120 genes, with groups of genes modulated according to solid or semi-solid culture, as well as according to carbon source. Gene ontology analysis of genes expressed following SB hydrolysis revealed enrichment in xyloglucan metabolic process and xylan, pectin and glucan catabolic process, indicating up-regulation of genes involved in xylanase secretion. According to carbohydrate-active enzyme (CAZy) classification, 209 CAZyme-encoding genes were identified with significant differential expression on liquid or semi-solid SB, in comparison to equivalent growth on glucose as carbon source. Up-regulated CAZyme-encoding genes related to cellulases (CelA, CelB, CelC, CelD) and hemicellulases (XynG1, XynG2, XynF1, XylA, AxeA, arabinofuranosidase) showed up to a 10-fold log2FoldChange in expression levels. Five genes from the AA9 (GH61) family, related to lytic polysaccharide monooxygenase (LPMO), were also identified with significant expression up-regulation. The transcription factor gene XlnR, involved in induction of hemicellulases, showed up-regulation on liquid and semi-solid SB culture. Similarly, the gene ClrA, responsible for regulation of cellulases, showed increased expression on liquid SB culture. Over 150 potential transporter genes were also identified with increased expression on liquid and semi-solid SB culture. This first comprehensive analysis of the transcriptome of A. tamarii contributes to our understanding of genes and regulatory systems involved in cellulose and hemicellulose degradation in this fungus, offering potential for application in improved enzymatic cocktail development for plant biomass degradation in biorefinery applications.
Collapse
Affiliation(s)
| | - Camila Louly Correa
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | | | | | - Roberto Coiti Togawa
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Brasília, Brazil
| | | | | | - Priscila Grynberg
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Brasília, Brazil
| | | |
Collapse
|
17
|
Peng M, Aguilar-Pontes MV, de Vries RP, Mäkelä MR. In Silico Analysis of Putative Sugar Transporter Genes in Aspergillus niger Using Phylogeny and Comparative Transcriptomics. Front Microbiol 2018; 9:1045. [PMID: 29867914 PMCID: PMC5968117 DOI: 10.3389/fmicb.2018.01045] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/02/2018] [Indexed: 12/11/2022] Open
Abstract
Aspergillus niger is one of the most widely used fungi to study the conversion of the lignocellulosic feedstocks into fermentable sugars. Understanding the sugar uptake system of A. niger is essential to improve the efficiency of the process of fungal plant biomass degradation. In this study, we report a comprehensive characterization of the sugar transportome of A. niger by combining phylogenetic and comparative transcriptomic analyses. We identified 86 putative sugar transporter (ST) genes based on a conserved protein domain search. All these candidates were then classified into nine subfamilies and their functional motifs and possible sugar-specificity were annotated according to phylogenetic analysis and literature mining. Furthermore, we comparatively analyzed the ST gene expression on a large set of fungal growth conditions including mono-, di- and polysaccharides, and mutants of transcriptional regulators. This revealed that transporter genes from the same phylogenetic clade displayed very diverse expression patterns and were regulated by different transcriptional factors. The genome-wide study of STs of A. niger provides new insights into the mechanisms underlying an extremely flexible metabolism and high nutritional versatility of A. niger and will facilitate further biochemical characterization and industrial applications of these candidate STs.
Collapse
Affiliation(s)
- Mao Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| | - Maria V Aguilar-Pontes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands.,Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Miia R Mäkelä
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
Comparison of the paralogous transcription factors AraR and XlnR in Aspergillus oryzae. Curr Genet 2018; 64:1245-1260. [PMID: 29654355 DOI: 10.1007/s00294-018-0837-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/08/2018] [Accepted: 04/11/2018] [Indexed: 10/17/2022]
Abstract
The paralogous transcription factors AraR and XlnR in Aspergillus regulate genes that are involved in degradation of cellulose and hemicellulose and catabolism of pentose. AraR and XlnR target the same genes for pentose catabolism but target different genes encoding enzymes for polysaccharide degradation. To uncover the relationship between these paralogous transcription factors, we examined their contribution to regulation of the PCP genes and compared their preferred recognition sequences. Both AraR and XlnR are involved in induction of all the pentose catabolic genes in A. oryzae except larA encoding L-arabinose reductase, which was regulated by AraR but not by XlnR. DNA-binding studies revealed that the recognition sequences of AraR and XlnR also differ only slightly; AraR prefers CGGDTAAW, while XlnR prefers CGGNTAAW. All the pentose catabolic genes possess at least one recognition site to which both AraR and XlnR can bind. Cooperative binding by the factors was not observed. Instead, they competed to bind to the shared sites. XlnR bound to the recognition sites mentioned above as a monomer, but bound to the sequence TTAGSCTAA on the xylanase promoters as a dimer. Consequently, AraR and XlnR have significantly similar, but not the same, DNA-binding properties. Such a slight difference in these paralogous transcription factors may lead to complex outputs in enzyme production depending on the concentrations of coexisting inducer molecules in the natural environment.
Collapse
|
19
|
Benocci T, Aguilar-Pontes MV, Kun RS, Seiboth B, de Vries RP, Daly P. ARA1 regulates not only l-arabinose but also d-galactose catabolism in Trichoderma reesei. FEBS Lett 2017; 592:60-70. [PMID: 29215697 DOI: 10.1002/1873-3468.12932] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/18/2017] [Accepted: 11/29/2017] [Indexed: 11/11/2022]
Abstract
Trichoderma reesei is used to produce saccharifying enzyme cocktails for biofuels. There is limited understanding of the transcription factors (TFs) that regulate genes involved in release and catabolism of l-arabinose and d-galactose, as the main TF XYR1 is only partially involved. Here, the T. reesei ortholog of ARA1 from Pyricularia oryzae that regulates l-arabinose releasing and catabolic genes was deleted and characterized by growth profiling and transcriptomics along with a xyr1 mutant and xyr1/ara1 double mutant. Our results show that in addition to the l-arabinose-related role, T. reesei ARA1 is essential for expression of d-galactose releasing and catabolic genes, while XYR1 is not involved in this process.
Collapse
Affiliation(s)
- Tiziano Benocci
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, The Netherlands
| | - Maria Victoria Aguilar-Pontes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, The Netherlands
| | - Roland Sándor Kun
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, The Netherlands
| | - Bernhard Seiboth
- Research Area Biochemical Technology, Institute of Chemical, Environmental and Biological Engineering, TU Wien, Vienna, Austria
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, The Netherlands
| | - Paul Daly
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, The Netherlands
| |
Collapse
|
20
|
Kowalczyk JE, Khosravi C, Purvine S, Dohnalkova A, Chrisler WB, Orr G, Robinson E, Zink E, Wiebenga A, Peng M, Battaglia E, Baker S, de Vries RP. High resolution visualization and exo-proteomics reveal the physiological role of XlnR and AraR in plant biomass colonization and degradation by Aspergillus niger. Environ Microbiol 2017; 19:4587-4598. [PMID: 29027734 DOI: 10.1111/1462-2920.13923] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/18/2017] [Accepted: 08/30/2017] [Indexed: 11/28/2022]
Abstract
In A. niger, two transcription factors, AraR and XlnR, regulate the production of enzymes involved in degradation of arabinoxylan and catabolism of the released l-arabinose and d-xylose. Deletion of both araR and xlnR in leads to reduced production of (hemi)cellulolytic enzymes and reduced growth on arabinan, arabinogalactan and xylan. In this study, we investigated the colonization and degradation of wheat bran by the A. niger reference strain CBS 137562 and araR/xlnR regulatory mutants using high-resolution microscopy and exo-proteomics. We discovered that wheat bran flakes have a 'rough' and 'smooth' surface with substantially different affinity towards fungal hyphae. While colonization of the rough side was possible for all strains, the xlnR mutants struggled to survive on the smooth side of the wheat bran particles after 20 and 40 h post inoculation. Impaired colonization ability of the smooth surface of wheat bran was linked to reduced potential of ΔxlnR to secrete arabinoxylan and cellulose-degrading enzymes and indicates that XlnR is the major regulator that drives colonization of wheat bran in A. niger.
Collapse
Affiliation(s)
- Joanna E Kowalczyk
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Claire Khosravi
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Samuel Purvine
- Department of Energy, Environmental Molecular Sciences Laboratory, Richland, WA, USA
| | - Alice Dohnalkova
- Department of Energy, Environmental Molecular Sciences Laboratory, Richland, WA, USA
| | - William B Chrisler
- Department of Energy, Environmental Molecular Sciences Laboratory, Richland, WA, USA
| | - Galya Orr
- Department of Energy, Environmental Molecular Sciences Laboratory, Richland, WA, USA
| | - Errol Robinson
- Department of Energy, Environmental Molecular Sciences Laboratory, Richland, WA, USA
| | - Erika Zink
- Department of Energy, Environmental Molecular Sciences Laboratory, Richland, WA, USA
| | - Ad Wiebenga
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Mao Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Evy Battaglia
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Scott Baker
- Department of Energy, Environmental Molecular Sciences Laboratory, Richland, WA, USA
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
21
|
Kowalczyk JE, Lubbers RJM, Peng M, Battaglia E, Visser J, de Vries RP. Combinatorial control of gene expression in Aspergillus niger grown on sugar beet pectin. Sci Rep 2017; 7:12356. [PMID: 28955038 PMCID: PMC5617896 DOI: 10.1038/s41598-017-12362-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/07/2017] [Indexed: 01/06/2023] Open
Abstract
Aspergillus niger produces an arsenal of extracellular enzymes that allow synergistic degradation of plant biomass found in its environment. Pectin is a heteropolymer abundantly present in the primary cell wall of plants. The complex structure of pectin requires multiple enzymes to act together. Production of pectinolytic enzymes in A. niger is highly regulated, which allows flexible and efficient capture of nutrients. So far, three transcriptional activators have been linked to regulation of pectin degradation in A. niger. The L-rhamnose-responsive regulator RhaR controls the production of enzymes that degrade rhamnogalacturonan-I. The L-arabinose-responsive regulator AraR controls the production of enzymes that decompose the arabinan and arabinogalactan side chains of rhamnogalacturonan-II. The D-galacturonic acid-responsive regulator GaaR controls the production of enzymes that act on the polygalacturonic acid backbone of pectin. This project aims to better understand how RhaR, AraR and GaaR co-regulate pectin degradation. For that reason, we constructed single, double and triple disruptant strains of these regulators and analyzed their growth phenotype and pectinolytic gene expression in A. niger grown on sugar beet pectin.
Collapse
Affiliation(s)
- Joanna E Kowalczyk
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Ronnie J M Lubbers
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Mao Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Evy Battaglia
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Jaap Visser
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
22
|
Borin GP, Sanchez CC, de Santana ES, Zanini GK, Dos Santos RAC, de Oliveira Pontes A, de Souza AT, Dal'Mas RMMTS, Riaño-Pachón DM, Goldman GH, Oliveira JVDC. Comparative transcriptome analysis reveals different strategies for degradation of steam-exploded sugarcane bagasse by Aspergillus niger and Trichoderma reesei. BMC Genomics 2017; 18:501. [PMID: 28666414 PMCID: PMC5493111 DOI: 10.1186/s12864-017-3857-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/09/2017] [Indexed: 12/12/2022] Open
Abstract
Background Second generation (2G) ethanol is produced by breaking down lignocellulosic biomass into fermentable sugars. In Brazil, sugarcane bagasse has been proposed as the lignocellulosic residue for this biofuel production. The enzymatic cocktails for the degradation of biomass-derived polysaccharides are mostly produced by fungi, such as Aspergillus niger and Trichoderma reesei. However, it is not yet fully understood how these microorganisms degrade plant biomass. In order to identify transcriptomic changes during steam-exploded bagasse (SEB) breakdown, we conducted a RNA-seq comparative transcriptome profiling of both fungi growing on SEB as carbon source. Results Particular attention was focused on CAZymes, sugar transporters, transcription factors (TFs) and other proteins related to lignocellulose degradation. Although genes coding for the main enzymes involved in biomass deconstruction were expressed by both fungal strains since the beginning of the growth in SEB, significant differences were found in their expression profiles. The expression of these enzymes is mainly regulated at the transcription level, and A. niger and T. reesei also showed differences in TFs content and in their expression. Several sugar transporters that were induced in both fungal strains could be new players on biomass degradation besides their role in sugar uptake. Interestingly, our findings revealed that in both strains several genes that code for proteins of unknown function and pro-oxidant, antioxidant, and detoxification enzymes were induced during growth in SEB as carbon source, but their specific roles on lignocellulose degradation remain to be elucidated. Conclusions This is the first report of a time-course experiment monitoring the degradation of pretreated bagasse by two important fungi using the RNA-seq technology. It was possible to identify a set of genes that might be applied in several biotechnology fields. The data suggest that these two microorganisms employ different strategies for biomass breakdown. This knowledge can be exploited for the rational design of enzymatic cocktails and 2G ethanol production improvement. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3857-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gustavo Pagotto Borin
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Camila Cristina Sanchez
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Eliane Silva de Santana
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Guilherme Keppe Zanini
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Renato Augusto Corrêa Dos Santos
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Angélica de Oliveira Pontes
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Aline Tieppo de Souza
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Roberta Maria Menegaldo Tavares Soares Dal'Mas
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Diego Mauricio Riaño-Pachón
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil.,Current address: Laboratório de Biologia de Sistemas Regulatórios, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748 - Butantã - São Paulo - SP, São Paulo, CEP 05508-000, Brazil
| | - Gustavo Henrique Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café S/N, Ribeirão Preto, CEP, São Paulo, 14040-903, Brazil
| | - Juliana Velasco de Castro Oliveira
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil.
| |
Collapse
|
23
|
Daly P, van Munster JM, Blythe MJ, Ibbett R, Kokolski M, Gaddipati S, Lindquist E, Singan VR, Barry KW, Lipzen A, Ngan CY, Petzold CJ, Chan LJG, Pullan ST, Delmas S, Waldron PR, Grigoriev IV, Tucker GA, Simmons BA, Archer DB. Expression of Aspergillus niger CAZymes is determined by compositional changes in wheat straw generated by hydrothermal or ionic liquid pretreatments. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:35. [PMID: 28184248 PMCID: PMC5294722 DOI: 10.1186/s13068-017-0700-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/05/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND The capacity of fungi, such as Aspergillus niger, to degrade lignocellulose is harnessed in biotechnology to generate biofuels and high-value compounds from renewable feedstocks. Most feedstocks are currently pretreated to increase enzymatic digestibility: improving our understanding of the transcriptomic responses of fungi to pretreated lignocellulosic substrates could help to improve the mix of activities and reduce the production costs of commercial lignocellulose saccharifying cocktails. RESULTS We investigated the responses of A. niger to untreated, ionic liquid and hydrothermally pretreated wheat straw over a 5-day time course using RNA-seq and targeted proteomics. The ionic liquid pretreatment altered the cellulose crystallinity while retaining more of the hemicellulosic sugars than the hydrothermal pretreatment. Ionic liquid pretreatment of straw led to a dynamic induction and repression of genes, which was correlated with the higher levels of pentose sugars saccharified from the ionic liquid-pretreated straw. Hydrothermal pretreatment of straw led to reduced levels of transcripts of genes encoding carbohydrate-active enzymes as well as the derived proteins and enzyme activities. Both pretreatments abolished the expression of a large set of genes encoding pectinolytic enzymes. These reduced levels could be explained by the removal of parts of the lignocellulose by the hydrothermal pretreatment. The time course also facilitated identification of temporally limited gene induction patterns. CONCLUSIONS The presented transcriptomic and biochemical datasets demonstrate that pretreatments caused modifications of the lignocellulose, to both specific structural features as well as the organisation of the overall lignocellulosic structure, that determined A. niger transcript levels. The experimental setup allowed reliable detection of substrate-specific gene expression patterns as well as hitherto non-expressed genes. Our data suggest beneficial effects of using untreated and IL-pretreated straw, but not HT-pretreated straw, as feedstock for CAZyme production.
Collapse
Affiliation(s)
- Paul Daly
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Jolanda M. van Munster
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
- Chemical Biology, Manchester Institute for Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
| | - Martin J. Blythe
- Deep Seq, Faculty of Medicine and Health Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, NG7 2UH UK
| | - Roger Ibbett
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Matt Kokolski
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Sanyasi Gaddipati
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Erika Lindquist
- US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Vasanth R. Singan
- US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Kerrie W. Barry
- US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Chew Yee Ngan
- US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
| | | | | | - Steven T. Pullan
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
- TB Programme, Microbiology Services, Public Health England, Salisbury, UK
| | - Stéphane Delmas
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
- UPMC, Univ. Paris 06, CNRS UMR7238, Sorbonne Universités, 15 rue de l’Ecole de Médecine, 75270 Paris, France
| | - Paul R. Waldron
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Gregory A. Tucker
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | | | - David B. Archer
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| |
Collapse
|
24
|
Benocci T, Aguilar-Pontes MV, Zhou M, Seiboth B, de Vries RP. Regulators of plant biomass degradation in ascomycetous fungi. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:152. [PMID: 28616076 PMCID: PMC5468973 DOI: 10.1186/s13068-017-0841-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/06/2017] [Indexed: 05/05/2023]
Abstract
Fungi play a major role in the global carbon cycle because of their ability to utilize plant biomass (polysaccharides, proteins, and lignin) as carbon source. Due to the complexity and heterogenic composition of plant biomass, fungi need to produce a broad range of degrading enzymes, matching the composition of (part of) the prevalent substrate. This process is dependent on a network of regulators that not only control the extracellular enzymes that degrade the biomass, but also the metabolic pathways needed to metabolize the resulting monomers. This review will summarize the current knowledge on regulation of plant biomass utilization in fungi and compare the differences between fungal species, focusing in particular on the presence or absence of the regulators involved in this process.
Collapse
Affiliation(s)
- Tiziano Benocci
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Maria Victoria Aguilar-Pontes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Miaomiao Zhou
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Bernhard Seiboth
- Research Area Biochemical Technology, Institute of Chemical and Biological Engineering, TU Wien, 1060 Vienna, Austria
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
25
|
Identification of a Novel L-rhamnose Uptake Transporter in the Filamentous Fungus Aspergillus niger. PLoS Genet 2016; 12:e1006468. [PMID: 27984587 PMCID: PMC5161314 DOI: 10.1371/journal.pgen.1006468] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/07/2016] [Indexed: 11/19/2022] Open
Abstract
The study of plant biomass utilization by fungi is a research field of great interest due to its many implications in ecology, agriculture and biotechnology. Most of the efforts done to increase the understanding of the use of plant cell walls by fungi have been focused on the degradation of cellulose and hemicellulose, and transport and metabolism of their constituent monosaccharides. Pectin is another important constituent of plant cell walls, but has received less attention. In relation to the uptake of pectic building blocks, fungal transporters for the uptake of galacturonic acid recently have been reported in Aspergillus niger and Neurospora crassa. However, not a single L-rhamnose (6-deoxy-L-mannose) transporter has been identified yet in fungi or in other eukaryotic organisms. L-rhamnose is a deoxy-sugar present in plant cell wall pectic polysaccharides (mainly rhamnogalacturonan I and rhamnogalacturonan II), but is also found in diverse plant secondary metabolites (e.g. anthocyanins, flavonoids and triterpenoids), in the green seaweed sulfated polysaccharide ulvan, and in glycan structures from viruses and bacteria. Here, a comparative plasmalemma proteomic analysis was used to identify candidate L-rhamnose transporters in A. niger. Further analysis was focused on protein ID 1119135 (RhtA) (JGI A. niger ATCC 1015 genome database). RhtA was classified as a Family 7 Fucose: H+ Symporter (FHS) within the Major Facilitator Superfamily. Family 7 currently includes exclusively bacterial transporters able to use different sugars. Strong indications for its role in L-rhamnose transport were obtained by functional complementation of the Saccharomyces cerevisiae EBY.VW.4000 strain in growth studies with a range of potential substrates. Biochemical analysis using L-[3H(G)]-rhamnose confirmed that RhtA is a L-rhamnose transporter. The RhtA gene is located in tandem with a hypothetical alpha-L-rhamnosidase gene (rhaB). Transcriptional analysis of rhtA and rhaB confirmed that both genes have a coordinated expression, being strongly and specifically induced by L-rhamnose, and controlled by RhaR, a transcriptional regulator involved in the release and catabolism of the methyl-pentose. RhtA is the first eukaryotic L-rhamnose transporter identified and functionally validated to date. The growth of filamentous fungi on plant biomass, which occurs through the utilization of its components (e.g. D-glucose, D-xylose, L-arabinose, L-rhamnose) as carbon sources, is a highly regulated event. L-rhamnose (6-deoxy-L-mannose) is a deoxy-sugar present in plant cell wall pectic polysaccharides (mainly rhamnogalacturonan I and rhamnogalacturonan II), but also in diverse plant secondary metabolites, ulvan from green seaweeds and glycan structures from virus and bacteria. The utilization, transformation or detoxification of this monosaccharide by fungi involves a first step of chemical hydrolysis, performed by alpha-L-rhamnosidases, and a second step of transport into the cell, prior to its metabolization. While many rhamnosidases have been identified, not a single eukaryotic plasma membrane L-rhamnose transporter is known to date. In this study we identified and characterized, for the first time, a fungal L-rhamnose transporter (RhtA), from the industrial workhorse Aspergillus niger. We also found that RhtA putative orthologs are conserved throughout different fungal orders, opening the possibility of identifying new transporters of its kind.
Collapse
|
26
|
Cui S, Wang T, Hu H, Liu L, Song A, Chen H. Investigating the expression of F10 and G11 xylanases in Aspergillus niger A09 with qPCR. Can J Microbiol 2016; 62:744-52. [DOI: 10.1139/cjm-2015-0394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There exist significant differences between the 2 main types of xylanases, family F10 and G11. A clear understanding of the expression pattern of microbial F10 and G11 under different culture conditions would facilitate better production and industrial application of xylanase. In this study, the fungal xylanase producer Aspergillus niger A09 was systematically investigated in terms of induced expression of xylanase F10 and G11. Results showed that carbon and nitrogen sources could influence xylanase F10 and G11 transcript abundance, with G11 more susceptible to changes in culture media composition. The most favorable carbon and nitrogen sources for high G11 and low F10 production by A. niger A09 were xylan (2%) and (NH4)2C2O4 (0.3%), respectively. Following cultivation at 33 °C for 60 h, the highest xylanase activity (1132 IU per gram of wet mycelia) was observed. On the basis of differential gene expression of F10 and G11, as well as their different properties, we deduced that the F10 protein initially targeted xylan and hydrolyzed it into fragments including xylose, after which xylose acted as the inducer of F10 and G11 gene expression. These speculations also accounted for our failure to identify conditions favoring the high production of F10 but a low production of G11.
Collapse
Affiliation(s)
- Shixiu Cui
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, People’s Republic of China
| | - Tianwen Wang
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Hong Hu
- Institute of Biology Co., Ltd., Henan Academy of Sciences, Zhengzhou 450008, People’s Republic of China
| | - Liangwei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, People’s Republic of China
| | - Andong Song
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, People’s Republic of China
| | - Hongge Chen
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, People’s Republic of China
| |
Collapse
|
27
|
Brown NA, Ries LNA, Reis TF, Rajendran R, Corrêa dos Santos RA, Ramage G, Riaño-Pachón DM, Goldman GH. RNAseq reveals hydrophobins that are involved in the adaptation of Aspergillus nidulans to lignocellulose. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:145. [PMID: 27437031 PMCID: PMC4950808 DOI: 10.1186/s13068-016-0558-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/24/2016] [Indexed: 05/28/2023]
Abstract
BACKGROUND Sugarcane is one of the world's most profitable crops. Waste steam-exploded sugarcane bagasse (SEB) is a cheap, abundant, and renewable lignocellulosic feedstock for the next-generation biofuels. In nature, fungi seldom exist as planktonic cells, similar to those found in the nutrient-rich environment created within an industrial fermenter. Instead, fungi predominantly form biofilms that allow them to thrive in hostile environments. RESULTS In turn, we adopted an RNA-sequencing approach to interrogate how the model fungus, Aspergillus nidulans, adapts to SEB, revealing the induction of carbon starvation responses and the lignocellulolytic machinery, in addition to morphological adaptations. Genetic analyses showed the importance of hydrophobins for growth on SEB. The major hydrophobin, RodA, was retained within the fungal biofilm on SEB fibres. The StuA transcription factor that regulates fungal morphology was up-regulated during growth on SEB and controlled hydrophobin gene induction. The absence of the RodA or DewC hydrophobins reduced biofilm formation. The loss of a RodA or a functional StuA reduced the retention of the hydrolytic enzymes within the vicinity of the fungus. Hence, hydrophobins promote biofilm formation on SEB, and may enhance lignocellulose utilisation via promoting a compact substrate-enzyme-fungus structure. CONCLUSION This novel study highlights the importance of hydrophobins to the formation of biofilms and the efficient deconstruction of lignocellulose.
Collapse
Affiliation(s)
- Neil Andrew Brown
- />Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire UK
| | - Laure N. A. Ries
- />Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Thaila F. Reis
- />Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Ranjith Rajendran
- />Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, The University of Glasgow, Glasgow, UK
| | - Renato Augusto Corrêa dos Santos
- />Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, Campinas, SP CEP 13083-970 Brazil
| | - Gordon Ramage
- />Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, The University of Glasgow, Glasgow, UK
| | - Diego Mauricio Riaño-Pachón
- />Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, Campinas, SP CEP 13083-970 Brazil
| | - Gustavo H. Goldman
- />Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
28
|
Zhang H, Wang S, Zhang XX, Ji W, Song F, Zhao Y, Li J. The amyR-deletion strain of Aspergillus niger CICC2462 is a suitable host strain to express secreted protein with a low background. Microb Cell Fact 2016; 15:68. [PMID: 27125644 PMCID: PMC4850703 DOI: 10.1186/s12934-016-0463-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/13/2016] [Indexed: 11/10/2022] Open
Abstract
Background The filamentous fungus Aspergillus niger is widely
exploited as an important expression host for industrial production. The glucoamylase high-producing strain A. niger CICC2462 has been used as a host strain for the establishment of a secretion expression system. It expresses recombinant xylanase, mannase and asparaginase at a high level, but some high secretory background proteins in these recombinant strains still remain, such as alpha-amylase and alpha-glucosidase; lead to a low-purity of fermentation products. The aim was to construct an A. niger host strain with a low background of protein secretion. Results The transcription factor amyR was deleted in A. niger CICC2462, and the results from enzyme activity assays and SDS-PAGE analysis showed that the glucoamylase and amylase activities of the ∆amyR strains were significantly lower than those of the wild-type strain. High-throughput RNA-sequencing and shotgun LC–MS/MS proteomic technology analysis demonstrated that the expression of amylolytic enzymes was decreased at both the transcriptional and translational levels in the ∆amyR strain. Interestingly, the ∆amyR strain growth rate better than the wild-type strain. Conclusions Our findings clearly indicated that the ∆amyR strain of A. niger CICC2462 can be used as a host strain with a low background of protein secretion.
Collapse
Affiliation(s)
- Hui Zhang
- Northeast Agricultural University College of Life Science, Harbin, 150030, China
| | - Shuang Wang
- Northeast Agricultural University College of Life Science, Harbin, 150030, China
| | - Xiang Xiang Zhang
- Northeast Agricultural University College of Life Science, Harbin, 150030, China
| | - Wei Ji
- Northeast Agricultural University College of Life Science, Harbin, 150030, China
| | - Fuping Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yue Zhao
- Northeast Agricultural University College of Life Science, Harbin, 150030, China.
| | - Jie Li
- Northeast Agricultural University College of Life Science, Harbin, 150030, China.
| |
Collapse
|
29
|
Raulo R, Kokolski M, Archer DB. The roles of the zinc finger transcription factors XlnR, ClrA and ClrB in the breakdown of lignocellulose by Aspergillus niger. AMB Express 2016; 6:5. [PMID: 26780227 PMCID: PMC4715039 DOI: 10.1186/s13568-016-0177-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 01/08/2016] [Indexed: 11/23/2022] Open
Abstract
Genes encoding the key transcription factors (TF) XlnR, ClrA and ClrB were deleted from Aspergillus niger and the resulting strains were assessed for growth on glucose and wheat straw, transcription of genes encoding glycosyl hydrolases and saccharification activity. Growth of all mutant strains, based in straw on measurement of pH and assay of glucosamine, was impaired in relation to the wild-type (WT) strain although deletion of clrA had less effect than deletion of xlnR or clrB. Release of sugars from wheat straw was also lowered when culture filtrates from TF deletion strains were compared with WT culture filtrates. Transcript levels of cbhA, eglC and xynA were measured in all strains in glucose and wheat straw media in batch culture with and without pH control. Transcript levels from cbhA and eglC were lowered in all mutant strains compared to WT although the impact of deleting clrA was not pronounced with expression of eglC and had no effect on xynA. The impact on transcription was not related to changes in pH. In addition to impaired growth on wheat straw, the ΔxlnR strain was sensitive to oxidative stress and displayed cell wall defects in the glucose condition suggesting additional roles for XlnR. The characterisation of TFs, such as ClrB, provides new areas of improvement for industrial processes for production of second generation biofuels.
Collapse
Affiliation(s)
- Roxane Raulo
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Matthew Kokolski
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - David B. Archer
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| |
Collapse
|
30
|
Dos Santos Castro L, de Paula RG, Antoniêto ACC, Persinoti GF, Silva-Rocha R, Silva RN. Understanding the Role of the Master Regulator XYR1 in Trichoderma reesei by Global Transcriptional Analysis. Front Microbiol 2016; 7:175. [PMID: 26909077 PMCID: PMC4754417 DOI: 10.3389/fmicb.2016.00175] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/01/2016] [Indexed: 11/13/2022] Open
Abstract
We defined the role of the transcriptional factor—XYR1—in the filamentous fungus Trichoderma reesei during cellulosic material degradation. In this regard, we performed a global transcriptome analysis using RNA-Seq of the Δxyr1 mutant strain of T. reesei compared with the parental strain QM9414 grown in the presence of cellulose, sophorose, and glucose as sole carbon sources. We found that 5885 genes were expressed differentially under the three tested carbon sources. Of these, 322 genes were upregulated in the presence of cellulose, while 367 and 188 were upregulated in sophorose and glucose, respectively. With respect to genes under the direct regulation of XYR1, 30 and 33 are exclusive to cellulose and sophorose, respectively. The most modulated genes in the Δxyr1 belong to Carbohydrate-Active Enzymes (CAZymes), transcription factors, and transporters families. Moreover, we highlight the downregulation of transporters belonging to the MFS and ABC transporter families. Of these, MFS members were mostly downregulated in the presence of cellulose. In sophorose and glucose, the expression of these transporters was mainly upregulated. Our results revealed that MFS and ABC transporters could be new players in cellulose degradation and their role was shown to be carbon source-dependent. Our findings contribute to a better understanding of the regulatory mechanisms of XYR1 to control cellulase gene expression in T. reesei in the presence of cellulosic material, thereby potentially enhancing its application in several biotechnology fields.
Collapse
Affiliation(s)
- Lilian Dos Santos Castro
- Molecular Biotechnology Laboratory, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| | - Renato G de Paula
- Molecular Biotechnology Laboratory, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| | - Amanda C C Antoniêto
- Molecular Biotechnology Laboratory, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| | - Gabriela F Persinoti
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais Campinas, Brazil
| | - Rafael Silva-Rocha
- Systems and Synthetic Biology Laboratory, Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| | - Roberto N Silva
- Molecular Biotechnology Laboratory, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| |
Collapse
|
31
|
The Renaissance of Neurospora crassa: How a Classical Model System is Used for Applied Research. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Sloothaak J, Tamayo-Ramos JA, Odoni DI, Laothanachareon T, Derntl C, Mach-Aigner AR, Martins dos Santos VAP, Schaap PJ. Identification and functional characterization of novel xylose transporters from the cell factories Aspergillus niger and Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:148. [PMID: 27446237 PMCID: PMC4955148 DOI: 10.1186/s13068-016-0564-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/12/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND Global climate change and fossil fuels limitations have boosted the demand for robust and efficient microbial factories for the manufacturing of bio-based products from renewable feedstocks. In this regard, efforts have been done to enhance the enzyme-secreting ability of lignocellulose-degrading fungi, aiming to improve protein yields while taking advantage of their ability to use lignocellulosic feedstocks. Access to sugars in complex polysaccharides depends not only on their release by specific hydrolytic enzymes, but also on the presence of transporters capable of effectively transporting the constituent sugars into the cell. This study aims to identify and characterize xylose transporters from Aspergillus niger and Trichoderma reesei, two fungi that have been industrially exploited for decades for the production of lignocellulose-degrading hydrolytic enzymes. RESULTS A hidden Markov model for the identification of xylose transporters was developed and used to analyze the A. niger and T. reesei in silico proteomes, yielding a list of candidate xylose transporters. From this list, three A. niger (XltA, XltB and XltC) and three T. reesei (Str1, Str2 and Str3) transporters were selected, functionally validated and biochemically characterized through their expression in a Saccharomyces cerevisiae hexose transport null mutant, engineered to be able to metabolize xylose but unable to transport this sugar. All six transporters were able to support growth of the engineered yeast on xylose but varied in affinities and efficiencies in the uptake of the pentose. Amino acid sequence analysis of the selected transporters showed the presence of specific residues and motifs recently associated to xylose transporters. Transcriptional analysis of A. niger and T. reesei showed that XltA and Str1 were specifically induced by xylose and dependent on the XlnR/Xyr1 regulators, signifying a biological role for these transporters in xylose utilization. CONCLUSIONS This study revealed the existence of a variety of xylose transporters in the cell factories A. niger and T. reesei. The particular substrate specificity and biochemical properties displayed by A. niger XltA and XltB suggested a possible biological role for these transporters in xylose uptake. New insights were also gained into the molecular mechanisms regulating the pentose utilization, at inducer uptake level, in these fungi. Analysis of the A. niger and T. reesei predicted transportome with the newly developed hidden Markov model showed to be an efficient approach for the identification of new xylose transporting proteins.
Collapse
Affiliation(s)
- Jasper Sloothaak
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Juan Antonio Tamayo-Ramos
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Dorett I. Odoni
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Thanaporn Laothanachareon
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Stippeneng 4, 6708WE Wageningen, The Netherlands
- Enzyme Technology Laboratory and Integrative Biorefinery Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Thailand Science Park, 113 Pahonyothin Road, Pathumthani, 12120 Thailand
| | - Christian Derntl
- Research Area Biochemical Technology, Institute of Chemical Engineering, TU Wien, Gumpendorfer Str. 1a, Vienna, Austria
| | - Astrid R. Mach-Aigner
- Research Area Biochemical Technology, Institute of Chemical Engineering, TU Wien, Gumpendorfer Str. 1a, Vienna, Austria
| | - Vitor A. P. Martins dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Peter J. Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Stippeneng 4, 6708WE Wageningen, The Netherlands
| |
Collapse
|
33
|
Manzanares-Miralles L, Sarikaya-Bayram Ö, Smith EB, Dolan SK, Bayram Ö, Jones GW, Doyle S. Quantitative proteomics reveals the mechanism and consequence of gliotoxin-mediated dysregulation of the methionine cycle in Aspergillus niger. J Proteomics 2016; 131:149-162. [DOI: 10.1016/j.jprot.2015.10.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/14/2015] [Accepted: 10/18/2015] [Indexed: 12/25/2022]
|
34
|
Udatha DBRKG, Topakas E, Salazar M, Olsson L, Andersen MR, Panagiotou G. Deciphering the signaling mechanisms of the plant cell wall degradation machinery in Aspergillus oryzae. BMC SYSTEMS BIOLOGY 2015; 9:77. [PMID: 26573537 PMCID: PMC4647334 DOI: 10.1186/s12918-015-0224-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/28/2015] [Indexed: 12/30/2022]
Abstract
Background The gene expression and secretion of fungal lignocellulolytic enzymes are tightly controlled at the transcription level using independent mechanisms to respond to distinct inducers from plant biomass. An advanced systems-level understanding of transcriptional regulatory networks is required to rationally engineer filamentous fungi for more efficient bioconversion of different types of biomass. Results In this study we focused on ten chemically defined inducers to drive expression of cellulases, hemicellulases and accessory enzymes in the model filamentous fungus Aspergillus oryzae and shed light on the complex network of transcriptional activators required. The chemical diversity analysis of the inducers, based on 186 chemical descriptors calculated from the structure, resulted into three clusters, however, the global, metabolic and extracellular protein transcription of the A. oryzae genome were only partially explained by the chemical similarity of the enzyme inducers. Genes encoding enzymes that have attracted considerable interest such as cellobiose dehydrogenases and copper-dependent polysaccharide mono-oxygenases presented a substrate-specific induction. Several homology-model structures were derived using ab-initio multiple threading alignment in our effort to elucidate the interplay of transcription factors involved in regulating plant-deconstructing enzymes and metabolites. Systematic investigation of metabolite-protein interactions, using the 814 unique reactants involved in 2360 reactions in the genome scale metabolic network of A. oryzae, was performed through a two-step molecular docking against the binding pockets of the transcription factors AoXlnR and AoAmyR. A total of six metabolites viz., sulfite (H2SO3), sulfate (SLF), uroporphyrinogen III (UPGIII), ethanolamine phosphate (PETHM), D-glyceraldehyde 3-phosphate (T3P1) and taurine (TAUR) were found as strong binders, whereas the genes involved in the metabolic reactions that these metabolites appear were found to be significantly differentially expressed when comparing the inducers with glucose. Conclusions Based on our observations, we believe that specific binding of sulfite to the regulator of the cellulase gene expression, AoXlnR, may be the molecular basis for the connection of sulfur metabolism and cellulase gene expression in filamentous fungi. Further characterization and manipulation of the regulatory network components identified in this study, will enable rational engineering of industrial strains for improved production of the sophisticated set of enzymes necessary to break-down chemically divergent plant biomass. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0224-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- D B R K Gupta Udatha
- The Norwegian Structural Biology Centre, Department of Chemistry, Faculty of Science and Technology, University of Tromsø, N-9037, Tromsø, Norway. .,Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Evangelos Topakas
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, Athens, 15780, Greece.
| | - Margarita Salazar
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden. .,Wallenberg Wood Science Center, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
| | - Lisbeth Olsson
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden. .,Wallenberg Wood Science Center, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
| | - Mikael R Andersen
- Department of Systems Biology, Technical University of Denmark, Søltofts plads 223, DK-2800, Lyngby, Denmark.
| | - Gianni Panagiotou
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Hong Kong, China.
| |
Collapse
|
35
|
Robl D, da Silva Delabona P, dos Santos Costa P, da Silva Lima DJ, Rabelo SC, Pimentel IC, Büchli F, Squina FM, Padilla G, da Cruz Pradella JG. Xylanase production by endophyticAspergillus nigerusing pentose-rich hydrothermal liquor from sugarcane bagasse. BIOCATAL BIOTRANSFOR 2015. [DOI: 10.3109/10242422.2015.1084296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
36
|
Ghassemi S, Lichius A, Bidard F, Lemoine S, Rossignol MN, Herold S, Seidl-Seiboth V, Seiboth B, Espeso EA, Margeot A, Kubicek CP. The ß-importin KAP8 (Pse1/Kap121) is required for nuclear import of the cellulase transcriptional regulator XYR1, asexual sporulation and stress resistance in Trichoderma reesei. Mol Microbiol 2015; 96:405-18. [PMID: 25626518 PMCID: PMC4390390 DOI: 10.1111/mmi.12944] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2015] [Indexed: 11/26/2022]
Abstract
The ascomycete Trichoderma reesei is an industrial producer of cellulolytic and hemicellulolytic enzymes, and serves as a prime model for their genetic regulation. Most of its (hemi-)cellulolytic enzymes are obligatorily dependent on the transcriptional activator XYR1. Here, we investigated the nucleo-cytoplasmic shuttling mechanism that transports XYR1 across the nuclear pore complex. We identified 14 karyopherins in T. reesei, of which eight were predicted to be involved in nuclear import, and produced single gene-deletion mutants of all. We found KAP8, an ortholog of Aspergillus nidulans KapI, and Saccharomyces cerevisiae Kap121/Pse1, to be essential for nuclear recruitment of GFP-XYR1 and cellulase gene expression. Transformation with the native gene rescued this effect. Transcriptomic analyses of Δkap8 revealed that under cellulase-inducing conditions 42 CAZymes, including all cellulases and hemicellulases known to be under XYR1 control, were significantly down-regulated. Δkap8 strains were capable of forming fertile fruiting bodies but exhibited strongly reduced conidiation both in light and darkness, and showed enhanced sensitivity towards abiotic stress, including high osmotic pressure, low pH and high temperature. Together, these data underscore the significance of nuclear import of XYR1 in cellulase and hemicellulase gene regulation in T. reesei, and identify KAP8 as the major karyopherin required for this process.
Collapse
Affiliation(s)
- Sara Ghassemi
- Research Division Biotechnology and Microbiology, Institute of Chemical EngineeringTU Wien, Vienna, 1060, Austria
| | - Alexander Lichius
- Research Division Biotechnology and Microbiology, Institute of Chemical EngineeringTU Wien, Vienna, 1060, Austria
| | - Fréderique Bidard
- IFP Energies nouvelles1-4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Sophie Lemoine
- Ecole Normale Supérieure, Institut de Biologie de l'ENSIBENS, Plateforme Génomique, Paris, F-75005, France
| | - Marie-Noëlle Rossignol
- Ecole Normale Supérieure, Institut de Biologie de l'ENSIBENS, Plateforme Génomique, Paris, F-75005, France
| | - Silvia Herold
- Research Division Biotechnology and Microbiology, Institute of Chemical EngineeringTU Wien, Vienna, 1060, Austria
| | - Verena Seidl-Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical EngineeringTU Wien, Vienna, 1060, Austria
| | - Bernhard Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical EngineeringTU Wien, Vienna, 1060, Austria
- ACIB GmbH, c/o Institute of Chemical EngineeringTU Wien, Vienna, 1060, Austria
| | - Eduardo A Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Antoine Margeot
- IFP Energies nouvelles1-4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Christian P Kubicek
- Research Division Biotechnology and Microbiology, Institute of Chemical EngineeringTU Wien, Vienna, 1060, Austria
- *For correspondence. E-mail ; Tel. (+ 1) 43 1 58801 166085; Fax (+ 1) 43 1 58801 17299
| |
Collapse
|
37
|
Sloothaak J, Odoni DI, de Graaff LH, Martins dos Santos VAP, Schaap PJ, Tamayo-Ramos JA. Aspergillus niger membrane-associated proteome analysis for the identification of glucose transporters. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:150. [PMID: 26388937 PMCID: PMC4574540 DOI: 10.1186/s13068-015-0317-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/18/2015] [Indexed: 05/07/2023]
Abstract
BACKGROUND The development of biological processes that replace the existing petrochemical-based industry is one of the biggest challenges in biotechnology. Aspergillus niger is one of the main industrial producers of lignocellulolytic enzymes, which are used in the conversion of lignocellulosic feedstocks into fermentable sugars. Both the hydrolytic enzymes responsible for lignocellulose depolymerisation and the molecular mechanisms controlling their expression have been well described, but little is known about the transport systems for sugar uptake in A. niger. Understanding the transportome of A. niger is essential to achieve further improvements at strain and process design level. Therefore, this study aims to identify and classify A. niger sugar transporters, using newly developed tools for in silico and in vivo analysis of its membrane-associated proteome. RESULTS In the present research work, a hidden Markov model (HMM), that shows a good performance in the identification and segmentation of functionally validated glucose transporters, was constructed. The model (HMMgluT) was used to analyse the A. niger membrane-associated proteome response to high and low glucose concentrations at a low pH. By combining the abundance patterns of the proteins found in the A. niger plasmalemma proteome with their HMMgluT scores, two new putative high-affinity glucose transporters, denoted MstG and MstH, were identified. MstG and MstH were functionally validated and biochemically characterised by heterologous expression in a S. cerevisiae glucose transport null mutant. They were shown to be a high-affinity glucose transporter (K m = 0.5 ± 0.04 mM) and a very high-affinity glucose transporter (K m = 0.06 ± 0.005 mM), respectively. CONCLUSIONS This study, focusing for the first time on the membrane-associated proteome of the industrially relevant organism A. niger, shows the global response of the transportome to the availability of different glucose concentrations. Analysis of the A. niger transportome with the newly developed HMMgluT showed to be an efficient approach for the identification and classification of new glucose transporters.
Collapse
Affiliation(s)
- J. Sloothaak
- Laboratory of Systems and Synthetic Biology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - D. I. Odoni
- Laboratory of Systems and Synthetic Biology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - L. H. de Graaff
- Laboratory of Systems and Synthetic Biology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - V. A. P. Martins dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - P. J. Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - J. A. Tamayo-Ramos
- Laboratory of Systems and Synthetic Biology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
38
|
|
39
|
Liaud N, Giniés C, Navarro D, Fabre N, Crapart S, Gimbert IH, Levasseur A, Raouche S, Sigoillot JC. RNA-sequencing reveals the complexities of the transcriptional response to lignocellulosic biofuel substrates in Aspergillus niger. Fungal Biol Biotechnol 2014; 1:1-14. [PMID: 26457194 PMCID: PMC4599204 DOI: 10.1186/s40694-014-0003-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/23/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Saprobic fungi are the predominant industrial sources of Carbohydrate Active enZymes (CAZymes) used for the saccharification of lignocellulose during the production of second generation biofuels. The production of more effective enzyme cocktails is a key objective for efficient biofuel production. To achieve this objective, it is crucial to understand the response of fungi to lignocellulose substrates. Our previous study used RNA-seq to identify the genes induced in Aspergillus niger in response to wheat straw, a biofuel feedstock, and showed that the range of genes induced was greater than previously seen with simple inducers. RESULTS In this work we used RNA-seq to identify the genes induced in A. niger in response to short rotation coppice willow and compared this with the response to wheat straw from our previous study, at the same time-point. The response to willow showed a large increase in expression of genes encoding CAZymes. Genes encoding the major activities required to saccharify lignocellulose were induced on willow such as endoglucanases, cellobiohydrolases and xylanases. The transcriptome response to willow had many similarities with the response to straw with some significant differences in the expression levels of individual genes which are discussed in relation to differences in substrate composition or other factors. Differences in transcript levels include higher levels on wheat straw from genes encoding enzymes classified as members of GH62 (an arabinofuranosidase) and CE1 (a feruloyl esterase) CAZy families whereas two genes encoding endoglucanases classified as members of the GH5 family had higher transcript levels when exposed to willow. There were changes in the cocktail of enzymes secreted by A. niger when cultured with willow or straw. Assays for particular enzymes as well as saccharification assays were used to compare the enzyme activities of the cocktails. Wheat straw induced an enzyme cocktail that saccharified wheat straw to a greater extent than willow. Genes not encoding CAZymes were also induced on willow such as hydrophobins as well as genes of unknown function. Several genes were identified as promising targets for future study. CONCLUSIONS By comparing this first study of the global transcriptional response of a fungus to willow with the response to straw, we have shown that the inducing lignocellulosic substrate has a marked effect upon the range of transcripts and enzymes expressed by A. niger. The use by industry of complex substrates such as wheat straw or willow could benefit efficient biofuel production.
Collapse
Affiliation(s)
- Nadège Liaud
- INRA, UMR1163 Biotechnology of Filamentous Fungi, Marseille, F-13288 France
- Aix Marseille Université, UMR1163 Biotechnology of Filamentous Fungi, Marseille, F-13288 France
- ARD, Agro-Industry Research and Development, Pômacle, F-51100 France
| | - Christian Giniés
- INRA, UMR 1260, « Nutrition, Obésité et Risque Thrombotique », Marseille, F-13385 France
- INSERM, UMR 1062, « Nutrition, Obésité et Risque Thrombotique », Marseille, F-13385 France
- Université d’Aix-Marseille, UMR 1260, « Nutrition, Obésité et Risque Thrombotique », Faculté de Médecine, Marseille, F-13385 France
| | - David Navarro
- INRA, UMR1163 Biotechnology of Filamentous Fungi, Marseille, F-13288 France
- Aix Marseille Université, UMR1163 Biotechnology of Filamentous Fungi, Marseille, F-13288 France
- INRA, International Center for Microbial Resources collection-Filamentous fungi CIRM-CF, Marseille, F-13288 France
| | - Nicolas Fabre
- ARD, Agro-Industry Research and Development, Pômacle, F-51100 France
| | - Sylvaine Crapart
- ARD, Agro-Industry Research and Development, Pômacle, F-51100 France
| | - Isabelle Herpoël- Gimbert
- INRA, UMR1163 Biotechnology of Filamentous Fungi, Marseille, F-13288 France
- Aix Marseille Université, UMR1163 Biotechnology of Filamentous Fungi, Marseille, F-13288 France
| | - Anthony Levasseur
- INRA, UMR1163 Biotechnology of Filamentous Fungi, Marseille, F-13288 France
- Aix Marseille Université, UMR1163 Biotechnology of Filamentous Fungi, Marseille, F-13288 France
| | - Sana Raouche
- INRA, UMR1163 Biotechnology of Filamentous Fungi, Marseille, F-13288 France
- Aix Marseille Université, UMR1163 Biotechnology of Filamentous Fungi, Marseille, F-13288 France
- Polytech’ Marseille (ex ESIL), UMR 1163 BCF - INRA / AMU, 163 Avenue de Luminy CP 925, Marseille, F-13288 France
| | - Jean-Claude Sigoillot
- INRA, UMR1163 Biotechnology of Filamentous Fungi, Marseille, F-13288 France
- Aix Marseille Université, UMR1163 Biotechnology of Filamentous Fungi, Marseille, F-13288 France
| |
Collapse
|
40
|
van Munster JM, Daly P, Delmas S, Pullan ST, Blythe MJ, Malla S, Kokolski M, Noltorp ECM, Wennberg K, Fetherston R, Beniston R, Yu X, Dupree P, Archer DB. The role of carbon starvation in the induction of enzymes that degrade plant-derived carbohydrates in Aspergillus niger. Fungal Genet Biol 2014; 72:34-47. [PMID: 24792495 PMCID: PMC4217149 DOI: 10.1016/j.fgb.2014.04.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/21/2014] [Accepted: 04/18/2014] [Indexed: 11/06/2022]
Abstract
Fungi are an important source of enzymes for saccharification of plant polysaccharides and production of biofuels. Understanding of the regulation and induction of expression of genes encoding these enzymes is still incomplete. To explore the induction mechanism, we analysed the response of the industrially important fungus Aspergillus niger to wheat straw, with a focus on events occurring shortly after exposure to the substrate. RNA sequencing showed that the transcriptional response after 6h of exposure to wheat straw was very different from the response at 24h of exposure to the same substrate. For example, less than half of the genes encoding carbohydrate active enzymes that were induced after 24h of exposure to wheat straw, were also induced after 6h exposure. Importantly, over a third of the genes induced after 6h of exposure to wheat straw were also induced during 6h of carbon starvation, indicating that carbon starvation is probably an important factor in the early response to wheat straw. The up-regulation of the expression of a high number of genes encoding CAZymes that are active on plant-derived carbohydrates during early carbon starvation suggests that these enzymes could be involved in a scouting role during starvation, releasing inducing sugars from complex plant polysaccharides. We show, using proteomics, that carbon-starved cultures indeed release CAZymes with predicted activity on plant polysaccharides. Analysis of the enzymatic activity and the reaction products, indicates that these proteins are enzymes that can degrade various plant polysaccharides to generate both known, as well as potentially new, inducers of CAZymes.
Collapse
Affiliation(s)
- Jolanda M van Munster
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Paul Daly
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Stéphane Delmas
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Steven T Pullan
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Martin J Blythe
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Sunir Malla
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Matthew Kokolski
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Emelie C M Noltorp
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Kristin Wennberg
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Richard Fetherston
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Richard Beniston
- Biological Mass Spectrometry Facility biOMICS, University of Sheffield, Brook Hill Road, Sheffield S3 7HF, UK.
| | - Xiaolan Yu
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK.
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK.
| | - David B Archer
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| |
Collapse
|
41
|
Li J, Lin L, Li H, Tian C, Ma Y. Transcriptional comparison of the filamentous fungus Neurospora crassa growing on three major monosaccharides D-glucose, D-xylose and L-arabinose. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:31. [PMID: 24581151 PMCID: PMC4015282 DOI: 10.1186/1754-6834-7-31] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/14/2014] [Indexed: 05/09/2023]
Abstract
BACKGROUND D-glucose, D-xylose and L-arabinose are the three major monosaccharides in plant cell walls. Complete utilization of all three sugars is still a bottleneck for second-generation cellulolytic bioethanol production, especially for L-arabinose. However, little is known about gene expression profiles during L-arabinose utilization in fungi and a comparison of the genome-wide fungal response to these three major monosaccharides has not yet been reported. RESULTS Using next-generation sequencing technology, we have analyzed the transcriptome of N. crassa grown on L-arabinose versus D-xylose, with D-glucose as the reference. We found that the gene expression profiles on L-arabinose were dramatically different from those on D-xylose. It appears that L-arabinose can rewire the fungal cell metabolic pathway widely and provoke the expression of many kinds of sugar transporters, hemicellulase genes and transcription factors. In contrast, many fewer genes, mainly related to the pentose metabolic pathway, were upregulated on D-xylose. The rewired metabolic response to L-arabinose was significantly different and wider than that under no carbon conditions, although the carbon starvation response was initiated on L-arabinose. Three novel sugar transporters were identified and characterized for their substrates here, including one glucose transporter GLT-1 (NCU01633) and two novel pentose transporters, XAT-1 (NCU01132), XYT-1 (NCU05627). One transcription factor associated with the regulation of hemicellulase genes, HCR-1 (NCU05064) was also characterized in the present study. CONCLUSIONS We conducted the first transcriptome analysis of Neurospora crassa grown on L-arabinose and performed a comparative analysis with cells grown on D-xylose and D-glucose, which deepens the understanding of the utilization of L-arabinose and D-xylose in filamentous fungi. The dataset generated by this research will be useful for mining target genes for D-xylose and L-arabinose utilization engineering and the novel sugar transportes identified are good targets for pentose untilization and biofuels production. Moreover, hemicellulase production by fungi could be improved by modifying the hemicellulase regulator discovered here.
Collapse
Affiliation(s)
- Jingen Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangcai Lin
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Huiyan Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Chaoguang Tian
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yanhe Ma
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
42
|
Liao H, Li S, Wei Z, Shen Q, Xu Y. Insights into high-efficiency lignocellulolytic enzyme production by Penicillium oxalicum GZ-2 induced by a complex substrate. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:162. [PMID: 25419234 PMCID: PMC4239378 DOI: 10.1186/s13068-014-0162-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/21/2014] [Indexed: 05/15/2023]
Abstract
BACKGROUND Agricultural residue is more efficient than purified cellulose at inducing lignocellulolytic enzyme production in Penicillium oxalicum GZ-2, but in Trichoderma reesei RUT-C30, cellulose induces a more efficient response. To understand the reasons, we designed an artificially simulated plant biomass (cellulose plus xylan) to study the roles and relationships of each component in the production of lignocellulolytic enzymes by P. oxalicum GZ-2. RESULTS The changes in lignocellulolytic enzyme activity, gene expression involving (hemi)cellulolytic enzymes, and the secretome of cultures grown on Avicel (A), xylan (X), or a mixture of both (AX) were studied. The addition of xylan to the cellulose culture did not affect fungal growth but significantly increased the activity of cellulase and hemicellulase. In the AX treatment, the transcripts of cellulase genes (egl1, egl2, egl3, sow, and cbh2) and hemicellulase genes (xyl3 and xyl4) were significantly upregulated (P <0.05). The proportion of biomass-degrading proteins in the secretome was altered; in particular, the percentage of cellulases and hemicellulases was increased. The percentage of cellulases and hemicellulases in the AX secretome increased from 4.5% and 7.6% to 10.3% and 21.8%, respectively, compared to the secretome of the A treatment. Cellobiohydrolase II (encoded by cbh2) and xylanase II (encoded by xyl2) were the main proteins in the secretome, and their corresponding genes (cbh2 and xyl2) were transcripted at the highest levels among the cellulolytic and xylanolytic genes. Several important proteins such as swollenin, cellobiohydrolase, and endo-beta-1,4-xylanase were only induced by AX. Bray-Curtis similarity indices, a dendrogram analysis, and a diversity index all demonstrated that the secretome produced by P. oxalicum GZ-2 depended on the substrate and that strain GZ-2 directionally adjusted the compositions of lignocellulolytic enzymes in its secretome to preferably degrade a complex substrate. CONCLUSION The addition of xylan to the cellulose medium not only induces more hemicellulases but also strongly activates cellulase production. The proportion of the biomass-degrading proteins in the secretome was altered significantly, with the proportion of cellulases and hemicellulases especially increased. Xylan and cellulose have positively synergistic effects, and they play a key role in the induction of highly efficient lignocellulolytic enzymes.
Collapse
Affiliation(s)
- Hanpeng Liao
- National Enginnering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shuixian Li
- National Enginnering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhong Wei
- National Enginnering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Qirong Shen
- National Enginnering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yangchun Xu
- National Enginnering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|