1
|
Jothi R, Hong ST, Enkhtsatsral M, Pandian SK, Gowrishankar S. ROS mediated anticandidal efficacy of 3-Bromopyruvate prevents vulvovaginal candidiasis in mice model. PLoS One 2023; 18:e0295922. [PMID: 38153954 PMCID: PMC10754460 DOI: 10.1371/journal.pone.0295922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/03/2023] [Indexed: 12/30/2023] Open
Abstract
Candidal infections, particularly vulvovaginal candidiasis (VVC), necessitate effective therapeutic interventions in clinical settings owing to their intricate clinical nature and elusive understanding of their etiological mechanisms. Given the challenges in developing effective antifungal therapies, the strategy of repurposing existing pharmaceuticals has emerged as a promising approach to combat drug-resistant fungi. In this regard, the current study investigates molecular insights on the anti-candidal efficacy of a well-proven anticancer small molecule -3-bromopyruvate (3BP) against three clinically significant VVC causing Candida species viz., C. albicans, C. tropicalis and C. glabrata. Furthermore, the study validates 3BP's therapeutic application by developing it as a vaginal cream for the treatment of VVC. 3BP exhibited phenomenal antifungal efficacy (killing >99%) with minimum inhibitory concentrations (MIC) and minimum fungicidal concentrations (MFC) of 256 μg/mL against all tested Candida spp. Time killing kinetics experiment revealed 20 min as the minimum time required for 3BP at 2XMIC to achieve complete-killing (99.9%) in all Candida strains. Moreover, the ergosterol or sorbitol experiment explicated that the antifungal activity of 3BP does not stem from targeting the cell wall or the membrane component ergosterol. Instead, 3BP was observed to instigate a sequence of pre-apoptotic cascade events, such as phosphatidylserine (PS) externalization, nuclear condensation and ROS accumulations, as evidenced by PI, DAPI and DCFH-DA staining methods. Furthermore, 3BP demonstrated a remarkable efficacy in eradicating mature biofilms of Candida spp., achieving a maximum eradication level of 90%. Toxicity/safety profiling in both in vitro erythrocyte lysis and in vivo Galleria mellonella survival assay authenticated the non-toxic nature of 3BP up to 512 μg/mL. Finally, a vaginal cream formulated with 3BP was found to be effective in VVC-induced female mice model, as it significantly decreasing fungal load and protecting vaginal mucosa. Concomitantly, the present study serves as a clear demonstration of antifungal mechanistic action of anticancer drug -3BP, against Candida species. This finding holds significant potential for mitigating candidal infections, particularly VVC, within healthcare environments.
Collapse
Affiliation(s)
- Ravi Jothi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, South Korea
| | - Munkhtur Enkhtsatsral
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, South Korea
| | | | | |
Collapse
|
2
|
Wang T, Liu J, Luo Y, Yu B, Kong X, Zheng P, Huang Z, Mao X, Yu J, Luo J, Yan H, He J. Combined effects of host genetics and diet on porcine intestinal fungi and their pathogenic genes. Front Microbiol 2023; 14:1192288. [PMID: 37822749 PMCID: PMC10563851 DOI: 10.3389/fmicb.2023.1192288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
As research on gut microbes progresses, it becomes increasingly clear that a small family of microbiota--fungi, plays a crucial role in animal health. However, little is known about the fungal composition in the pig intestine, especially after a dietary fiber diet and hybrid genetics, and the changes in host pathogenicity-associated genes they carry. The purpose of this study is to investigate the effects of diet and genetics on the diversity and structure of porcine intestinal fungi and to describe, for the first time, the host pathogenicity-related genes carried by porcine intestinal fungi. Samples of colonic contents were collected for metagenomic analysis using a 3 × 2 parsing design, where three pig breeds (Taoyuan, Duroc, and crossbred Xiangcun) were fed high or low fiber diets (n = 10). In all samples, we identified a total of 281 identifiable fungal genera, with Ascomycota and Microsporidia being the most abundant fungi. Compared to Duroc pigs, Taoyuan and Xiangcun pigs had higher fungal richness. Interestingly, the fiber diet significantly reduced the abundance of the pathogenic fungus Mucor and significantly increased the abundance of the fiber digestion-associated fungus Neocallimastix. Pathogenic fungi exert their pathogenicity through the genes they carry that are associated with host pathogenicity. Therefore, we obtained 839 pathogenicity genes carried by the spectrum of fungi in the pig intestine by comparing the PHI-base database. Our results showed that fungi in the colon of Taoyuan pigs carried the highest abundance of different classes of host pathogenicity-related genes, and the lowest in Duroc pigs. Specifically, Taoyuan pigs carried high abundance of animal pathogenicity-related genes (CaTUP1, CPAR2_106400, CaCDC35, Tfp1, CaMNT2), and CaTUP1 was the key gene for Candida pathogenicity. The intestinal fungal composition of crossbred Xiangcun pigs and the abundance of host pathogenicity-associated genes they carried exhibited a mixture of characteristics of Taoyuan and Duroc pigs. In conclusion, our results provide the first comprehensive report on the effects of dietary fiber and genetics on the composition of intestinal fungi and the host-associated pathogenicity genes they carry in pigs. These findings provide a reference for subsequent pig breeding and development of anti-pathogenic fungal drugs.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Jiahao Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Xiangfeng Kong
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| |
Collapse
|
3
|
Hossain S, Robbins N, Cowen LE. The GARP complex is required for filamentation in Candida albicans. Genetics 2022; 222:iyac152. [PMID: 36226807 PMCID: PMC9713427 DOI: 10.1093/genetics/iyac152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/29/2022] [Indexed: 12/13/2022] Open
Abstract
Candida albicans is an opportunistic fungal pathogen that causes superficial infections in immunocompetent individuals, as well as life-threatening systemic disease in immunocompromised patients. A key virulence trait of this pathogen is its ability to transition between yeast and filamentous morphologies. A functional genomic screen to identify novel regulators of filamentation previously revealed VPS53 as being important for morphogenesis. Vps53 belongs to the Golgi-associated retrograde protein (GARP) complex, which mediates retrograde trafficking from the endosome to the trans-Golgi network. Here, we explored the role of the entire GARP complex in regulating morphogenesis. Deletion of any of the four genes encoding GARP complex subunits severely impaired filamentation in response to diverse filament-inducing cues, including upon internalization by macrophages. Genetic pathway analysis revealed that while hyperactivation of protein kinase A (PKA) signaling is insufficient to drive filamentation in GARP complex mutants, these strains are capable of filamentation upon overexpression of transcriptional activators or upon deletion of transcriptional repressors of hyphal morphogenesis. Finally, compromise of the GARP complex induced lipotoxicity, and pharmacological inhibition of sphingolipid biosynthesis phenocopied genetic compromise of the GARP complex by impairing filamentation. Together, this work identifies the GARP complex as an important mediator of filamentation in response to multiple inducing cues, maps genetic circuitry important for filamentation upon compromise of GARP function, and supports a model whereby GARP deficiency impairs lipid homeostasis, which is important for supporting filamentous growth in C. albicans.
Collapse
Affiliation(s)
- Saif Hossain
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Liu NN, Zhou J, Jiang T, Tarsio M, Yu F, Zheng X, Qi W, Liu L, Tan JC, Wei L, Ding J, Li J, Zeng L, Ren B, Huang X, Peng Y, Cao YB, Zhao Y, Zhang XY, Kane PM, Chen C, Wang H. A dual action small molecule enhances azoles and overcomes resistance through co-targeting Pdr5 and Vma1. Transl Res 2022; 247:39-57. [PMID: 35452875 DOI: 10.1016/j.trsl.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/26/2022] [Accepted: 04/12/2022] [Indexed: 11/19/2022]
Abstract
Fungal infection threatens human health worldwide due to the limited arsenal of antifungals and the rapid emergence of resistance. Epidermal growth factor receptor (EGFR) is demonstrated to mediate epithelial cell endocytosis of the leading human fungal pathogen, Candida albicans. However, whether EGFR inhibitors act on fungal cells remains unknown. Here, we discovered that the specific EGFR inhibitor osimertinib mesylate (OSI) potentiates azole efficacy against diverse fungal pathogens and overcomes azole resistance. Mechanistic investigation revealed a conserved activity of OSI by promoting intracellular fluconazole accumulation via inhibiting Pdr5 and disrupting V-ATPase function via targeting Vma1 at serine 274, eventually leading to inactivation of the global regulator TOR. Evaluation of the in vivo efficacy and toxicity of OSI demonstrated its potential clinical application in impeding fluconazole resistance. Thus, the identification of OSI as a dual action antifungal with co-targeting activity proposes a potentially effective therapeutic strategy to treat life-threatening fungal infection and overcome antifungal resistance.
Collapse
Affiliation(s)
- Ning-Ning Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jia Zhou
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tong Jiang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Maureen Tarsio
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Feifei Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Xuehan Zheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wanjun Qi
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA
| | - Lin Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-Cong Tan
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luqi Wei
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Ding
- Computational biology department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jingquan Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingbing Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, Sichuan, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Yibing Peng
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Faculty of Medical Laboratory Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong-Bing Cao
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai TCM-Integrated Institute of Vascular Disease, Shanghai, China
| | - Yanbin Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Xin-Yu Zhang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Changbin Chen
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Lv Q, Yan L, Jiang Y. The Importance of Vacuolar Ion Homeostasis and Trafficking in Hyphal Development and Virulence in Candida albicans. Front Microbiol 2021; 12:779176. [PMID: 34956142 PMCID: PMC8696117 DOI: 10.3389/fmicb.2021.779176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
The vacuole of Candida albicans plays a significant role in many processes including homeostasis control, cellular trafficking, dimorphic switching, and stress tolerance. Thus, understanding the factors affecting vacuole function is important for the identification of new drug targets needed in response to the world’s increasing levels of invasive infections and the growing issue of fungal drug resistance. Past studies have shown that vacuolar proton-translocating ATPases (V-ATPases) play a central role in pH homeostasis and filamentation. Vacuolar protein sorting components (VPS) regulate V-ATPases assembly and at the same time affect hyphal development. As well, vacuolar calcium exchange systems like Yvc1 and Pmc1 maintain cytosolic calcium levels while being affected by V-ATPases function. All these proteins play a role in the virulence and pathogenesis of C. albicans. This review highlights the relationships among V-ATPases, VPS, and vacuolar calcium exchange proteins while summarizing their importance in C. albicans infections.
Collapse
Affiliation(s)
- Quanzhen Lv
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Lan Yan
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yuanying Jiang
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Peng L, Yu Q, Zhu H, Zhu N, Zhang B, Wei H, Xu J, Li M. The V-ATPase regulates localization of the TRP Ca 2+ channel Yvc1 in response to oxidative stress in Candida albicans. Int J Med Microbiol 2020; 310:151466. [PMID: 33291030 DOI: 10.1016/j.ijmm.2020.151466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 11/08/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022] Open
Abstract
The vacuolar-type H+-ATPase (V-ATPase) is a highly conserved protein complex among the eukaryotic cells. We previously revealed that both the V-ATPase and the transient receptor potential (TRP) channel Yvc1 are involved in oxidative stress response (OSR). However, the relationship between V-ATPase and Yvc1 during OSR remains unknown. In this study, disruption of the V-ATPase-encoding genes VPH2 and TFP1, similar with disruption of YVC1, caused H2O2 hypersensitivity and enhancement of vacuolar membrane permeability (VMP) under oxidative stress. Further investigations showed that unlike the wild type strain with vacuole membrane-localized Yvc1, both vph2Δ/Δ and tfp1Δ/Δ had Yvc1 localization in the vacuole cavity, indicating that disruption of VPH2 or TFP1 impaired normal vacuolar membrane-localization of Yvc1. Interestingly, addition of CaCl2 alleviated the growth defect of vph2Δ/Δ and tfp1Δ/Δ under oxidative stress, leading to prevention of VMP, decrease in ROS levels and activation of OSR. In contrast, addition of the Ca2+ chelating agent glycol-bis-(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) aggravated H2O2 hypersensitivity of the mutants. These results showed that the V-ATPase plays an important role in maintenance of normal Yvc1 localization, which contributes to Ca2+ transport from the vacuoles to the cytosol for activation of OSR. This work sheds a novel light on the interaction between V-ATPase and Ca2+ transport for regulation of OSR in C. albicans.
Collapse
Affiliation(s)
- Liping Peng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Hangqi Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Nali Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Bing Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Henan Wei
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Jiachun Xu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
7
|
Ma T, Yu Q, Ma C, Mao X, Liu Y, Peng X, Li M. Role of the inositol polyphosphate kinase Vip1 in autophagy and pathogenesis in Candida albicans. Future Microbiol 2020; 15:1363-1377. [PMID: 33085539 DOI: 10.2217/fmb-2019-0298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Aim: Inositol polyphosphate kinases are involved in regulation of many cellular processes in eukaryotic cells. In this study, we investigated the functions of the inositol polyphosphate kinase Vip1 in autophagy and pathogenicity of Candida albicans. Results: Loss of Vip1 caused significantly increased sensitivity to nitrogen source starvation, abnormal localization and degradation of autophagy protein, higher vacuolar pH and higher (rather than lower) intracellular ATP levels compared with control strains. Besides, the mutant showed attenuated hyphal development and virulence during systemic infection to mice. Conclusion: The results reveal that Vip1 is important to autophagy of C. albicans. The maintenance of vacuolar acidic pH contributed to the role of Vip1 in autophagy. Vip1 is also required for pathogenicity of C. albicans.
Collapse
Affiliation(s)
- Tianyu Ma
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, PR China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, PR China
| | - Congcong Ma
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, PR China
| | - Xiaolong Mao
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, PR China
| | - Yingzheng Liu
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, PR China
| | - Xueling Peng
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, PR China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
8
|
Kim SW, Park YK, Joo YJ, Chun YJ, Hwang JY, Baek JH, Kim J. Subunits of the vacuolar H+-ATPase complex, Vma4 and Vma10, are essential for virulence and represent potential drug targets in Candida albicans. Fungal Biol 2019; 123:709-722. [DOI: 10.1016/j.funbio.2019.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/20/2019] [Accepted: 06/03/2019] [Indexed: 01/26/2023]
|
9
|
Yang Y, Wang C, Zhuge Y, Zhang J, Xu K, Zhang Q, Zhang H, Chen H, Chu M, Jia C. Photodynamic Antifungal Activity of Hypocrellin A Against Candida albicans. Front Microbiol 2019; 10:1810. [PMID: 31447816 PMCID: PMC6691099 DOI: 10.3389/fmicb.2019.01810] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/23/2019] [Indexed: 12/22/2022] Open
Abstract
Many studies have reported that hypocrellin A (HA) exhibits effective antimicrobial activities with proper irradiation. However, its antifungal activity and the involved mechanism have not been fully defined. In this study, HA-mediated cytotoxicity in Candida albicans cells was evaluated after antimicrobial photodynamic therapy (aPDT). The results showed that 1.0 μg/ml HA significantly decreased the survival rate of C. albicans cells with light illumination. Moreover, the ROS levels were also remarkably elevated by HA. Further study found that HA combined with illumination led to cell membrane potential depolarization and cell membrane integrity damage. To investigate the form of cell death, a series of apoptosis-related parameters, including mitochondrial transmembrane potential, metacaspase activity, DNA fragmentation, nuclear condensation, and cytosolic and mitochondrial calcium, were analyzed. Data showed that all the above mentioned apoptosis hallmarks were affected after treatment with HA, indicating that HA induced C. albicans cell apoptosis. Finally, HA-mediated aPDT was demonstrated to be low-toxic and effective in treating cutaneous C. albicans infections. This study highlights the antifungal effect and mechanism of HA-mediated aPDT against C. albicans and provides a promising photodynamic antifungal candidate for C. albicans skin infections.
Collapse
Affiliation(s)
- Yijia Yang
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Chenglu Wang
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Yingzhi Zhuge
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jian Zhang
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ke Xu
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Qilu Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Haijuan Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Haiyan Chen
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Maoping Chu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Chang Jia
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Jia C, Zhang J, Zhuge Y, Xu K, Liu J, Wang J, Li L, Chu M. Synergistic effects of geldanamycin with fluconazole are associated with reactive oxygen species in Candida tropicalis resistant to azoles and amphotericin B. Free Radic Res 2019; 53:618-628. [PMID: 31185751 DOI: 10.1080/10715762.2019.1610563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Chang Jia
- Pediatric Research Institute, the Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, PR China
| | - Jian Zhang
- Children’s Heart Center, Institute of Cardiovascular Development and Translational Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, PR China
| | - Yingzhi Zhuge
- Children’s Heart Center, Institute of Cardiovascular Development and Translational Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, PR China
| | - Ke Xu
- Institute of Life Sciences, Wenzhou University, Wenzhou, PR China
| | - Jiahui Liu
- Department of Clinical Laboratory, the Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, PR China
| | - Jinle Wang
- Department of Clinical Laboratory, the Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, PR China
| | - Lei Li
- School of Medicine, Wenzhou Key Laboratory of Cardiovascular Development and Translational Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, PR China
| | - Maoping Chu
- Pediatric Research Institute, the Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, PR China
- Children’s Heart Center, Institute of Cardiovascular Development and Translational Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, PR China
| |
Collapse
|
11
|
Jia C, Zhang J, Yu L, Wang C, Yang Y, Rong X, Xu K, Chu M. Antifungal Activity of Coumarin Against Candida albicans Is Related to Apoptosis. Front Cell Infect Microbiol 2019; 8:445. [PMID: 30662877 PMCID: PMC6328497 DOI: 10.3389/fcimb.2018.00445] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 12/13/2018] [Indexed: 12/18/2022] Open
Abstract
Coumarin (1,2-benzopyrone), an aromatic oxygen-containing heterocyclic compound, has various biological functions. Previous studies have demonstrated that coumarin and its derivatives exhibit antifungal activity against Candida albicans. In this study, we investigated the exact mechanism by which coumarin works against this fungus using Annexin V-FITC/PI double staining, TUNEL assay, and DAPI staining, and found that it induced a series of apoptotic features, including phosphatidylserine (PS) externalization, DNA fragmentation, and nuclear condensation. Moreover, it also induced cytochrome c release from the mitochondria to the cytoplasm and metacaspase activation. Further study revealed that intracellular reactive oxygen species (ROS) levels were increased and mitochondrial functions, such as mitochondrial membrane potential and mitochondrial morphology, were altered after treatment with coumarin. Cytosolic and mitochondrial Ca2+ levels were also found to be elevated. However, pretreatment with ruthenium red (RR), a known mitochondrial Ca2+ channel inhibitor, attenuated coumarin-mediated DNA fragmentation and metacaspase activity, indicating that the coumarin-induced C. albicans apoptosis is associated with mitochondrial Ca2+ influx. Finally, coumarin was found to be low-toxic and effective in prolonging the survival of C. albicans-infected mice. This study highlights the antifungal activity and mechanism of coumarin against C. albicans and provides a potential treatment strategy for C. albicans infection.
Collapse
Affiliation(s)
- Chang Jia
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Zhang
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lili Yu
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenglu Wang
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Yijia Yang
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Xing Rong
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ke Xu
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Maoping Chu
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
12
|
Roles of VPH2 and VMA6 in localization of V-ATPase subunits, cell wall functions and filamentous development in Candida albicans. Fungal Genet Biol 2018. [PMID: 29522815 DOI: 10.1016/j.fgb.2018.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vacuolar-type H+-ATPase (V-ATPase) is known to be associated with various cellular processes. Several V-ATPase subunits have been identified in C. albicans. However, there are still a few V-ATPase subunits and assembly factors that remain uncharacterized. In this study, we identified one of putative V-ATPase assembly factors, Vph2, and V0 subunit, Vma6, and explored their potential functions in C. albicans. Our results revealed that Vph2 and Vma6 were required for the correct distribution of V0 subunit Vph1 and V1 subunit Tfp1. Furthermore, Vph2 and Vma6 played an important role in endocytosis and vacuolar acidification. Disruption of VPH2 or VMA6 affected cell wall stress resistance and composition, accompanying induction of cell wall integrity (CWI) pathway. Besides, deletion of VPH2 or VMA6 led to weakened hyphal development in Spider medium that was not dependent on Hog1 activation. Moreover, the vph2Δ/Δ and vma6Δ/Δ mutants displayed attenuated virulence in a mouse model of systemic candidiasis. Taken together, our data indicated that Vph2 and Vma6 were essential for the proper localization of V-ATPase subunits, cell wall functions, filamentous growth and C. albicans pathogenesis, and provided the potential to better exploit V-ATPase-related proteins as antifungal targets.
Collapse
|
13
|
Effects of Disruption of PMC1 in the tfp1∆/∆ Mutant on Calcium Homeostasis, Oxidative and Osmotic Stress Resistance in Candida albicans. Mycopathologia 2017; 183:315-327. [PMID: 29086141 DOI: 10.1007/s11046-017-0216-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/17/2017] [Indexed: 10/18/2022]
Abstract
The vacuolar-type H+-ATPase (V-ATPase) is essential for many cell processes. Our previous study has demonstrated that Tfp1 is a putative subunit of V-ATPase, loss of which causes disorders in calcium homeostasis and decreased resistance to oxidative stress. In this study, we found that further deletion of PMC1, a vacuolar calcium pump, in tfp1∆/∆ mutant led to more severe dysregulation of calcium homeostasis. Besides, the tfp1∆/∆pmc1∆/∆ mutant was more sensitive to H2O2 and had a higher ROS level. As is known, V-ATPase mutants are sensitive to NaCl, and PMC1 mutant is resistant against NaCl. However, the tfp1∆/∆pmc1∆/∆ mutant exhibited sensitivity to NaCl. Mechanism study demonstrated that their sensitivity was associated with reduced osmotic resistance caused by relatively low expression of GPD1. In addition, we first found that NaCl addition significantly declined ROS levels in tfp1∆/∆ and tfp1∆/∆pmc1∆/∆ mutants. In tfp1∆/∆ mutant, decreased ROS levels were relevant to enhanced antioxidant activities. However, in tfp1∆/∆pmc1∆/∆ mutant, reduced ROS resulted from decreased total calcium content, revealing that NaCl affected ROS levels in the two mutants through different mechanisms. Taken together, our data indicated that loss of both TFP1 and PMC1 further affected calcium homeostasis and other cellular processes in Candida albicans and provides a potential antifungal target.
Collapse
|
14
|
Zhang K, Jia C, Yu Q, Xiao C, Dong Y, Zhang M, Zhang D, Zhao Q, Zhang B, Li M. Contribution of VMA5 to vacuolar function, stress response, ion homeostasis and autophagy in Candida albicans. Future Microbiol 2017; 12:1147-1166. [PMID: 28879785 DOI: 10.2217/fmb-2017-0029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
AIM V-ATPase is a conservative multi-subunit enzyme in eukaryotes and modulates several cellular responses. This study aimed to illustrate the roles of Vma5 in vacuolar function, oxidative stress response, calcium homeostasis, autophagy and virulence. MATERIALS & METHODS The vma5Δ/Δ mutant was obtained using PCR-mediated homologous recombination. The functions of Vma5 were investigated by a series of biochemical and systemic infection methods. RESULTS Disruption of VMA5 led to growth inhibition, vacuolar dysfunction, disturbance of calcium homeostasis and inhibition of calcium-related oxidative stress response. Furthermore, its deletion caused defects in autophagy completion and hyphal development, and resulted in attenuated Candida albicans virulence. CONCLUSION Our findings provide new insights into V-ATPase functions in C. albicans, and reveal a potential candidate for development of antifungal drugs.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Microbiology, Key Laboratory of Molecular Microbiology & Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China
| | - Chang Jia
- Department of Microbiology, Key Laboratory of Molecular Microbiology & Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China
| | - Qilin Yu
- Department of Microbiology, Key Laboratory of Molecular Microbiology & Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China
| | - Chenpeng Xiao
- Department of Microbiology, Key Laboratory of Molecular Microbiology & Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China
| | - Yijie Dong
- Department of Microbiology, Key Laboratory of Molecular Microbiology & Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China.,The State Key Laboratory for Biology of Plant Disease & Insect Pests, Institute of Plant protection, Chinese Academy of Agricultural Sciences, Beijing 100871, China
| | - Meng Zhang
- Department of Microbiology, Key Laboratory of Molecular Microbiology & Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China
| | - Dan Zhang
- Department of Microbiology, Key Laboratory of Molecular Microbiology & Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China
| | - Qiang Zhao
- Department of Zoology & Developmental Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Biao Zhang
- College of Language & Culture, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Mingchun Li
- Department of Microbiology, Key Laboratory of Molecular Microbiology & Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China
| |
Collapse
|
15
|
Bar-Yosef H, Vivanco Gonzalez N, Ben-Aroya S, Kron SJ, Kornitzer D. Chemical inhibitors of Candida albicans hyphal morphogenesis target endocytosis. Sci Rep 2017; 7:5692. [PMID: 28720834 PMCID: PMC5515890 DOI: 10.1038/s41598-017-05741-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/01/2017] [Indexed: 01/12/2023] Open
Abstract
Candida albicans is an opportunistic pathogen, typically found as a benign commensal yeast living on skin and mucosa, but poised to invade injured tissue to cause local infections. In debilitated and immunocompromised individuals, C. albicans may spread to cause life-threatening systemic infections. Upon contact with serum and at body temperature, C. albicans performs a regulated switch to filamentous morphology, characterized by emergence of a germ tube from the yeast cell followed by mold-like growth of branching hyphae. The ability to switch between growth morphologies is an important virulence factor of C. albicans. To identify compounds able to inhibit hyphal morphogenesis, we screened libraries of existing drugs for inhibition of the hyphal switch under stringent conditions. Several compounds that specifically inhibited hyphal morphogenesis were identified. Chemogenomic analysis suggested an interaction with the endocytic pathway, which was confirmed by direct measurement of fluid-phase endocytosis in the presence of these compounds. These results suggest that the activity of the endocytic pathway, which is known to be particularly important for hyphal growth, represents an effective target for hyphae-inhibiting drugs.
Collapse
Affiliation(s)
- Hagit Bar-Yosef
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion - I.I.T. and the Rappaport Institute for Research in the Medical Sciences, Haifa, 31096, Israel
| | - Nora Vivanco Gonzalez
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Shay Ben-Aroya
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, 60637, USA.
| | - Daniel Kornitzer
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion - I.I.T. and the Rappaport Institute for Research in the Medical Sciences, Haifa, 31096, Israel.
| |
Collapse
|
16
|
Chen Y, Yu Q, Wang H, Dong Y, Jia C, Zhang B, Xiao C, Zhang B, Xing L, Li M. The malfunction of peroxisome has an impact on the oxidative stress sensitivity in Candida albicans. Fungal Genet Biol 2016; 95:1-12. [PMID: 27473887 DOI: 10.1016/j.fgb.2016.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 07/24/2016] [Accepted: 07/26/2016] [Indexed: 11/28/2022]
Abstract
The peroxisome plays an essential role in eukaryotic cellular metabolism, including β-oxidation of fatty acids and detoxification of hydrogen peroxide. However, its functions in the important fungal pathogen, C. albicans, remain to be investigated. In this study, we identified a homologue of Saccharomyces cerevisiae peroxisomal protein Pex1 in this pathogen, and explored its functions in stress tolerance. Fluorescence observation revealed that C. albicans Pex1 was localized in the peroxisomes, and its loss led to the defect in peroxisome formation. Interestingly, the pex1Δ/Δ mutant had increased tolerance to oxidative stress, which was neither associated with the Cap1 pathway, nor related to the altered distribution of catalase. However, under oxidative stress, the pex1Δ/Δ mutant showed increased expression of autophagy-related genes, with enhanced cytoplasm-to-vacuole transport and degradation of the autophagy markers Atg8 and Lap41. Moreover, the double mutants pex1Δ/Δatg8Δ/Δ and pex1Δ/Δatg1Δ/Δ, both of which were defective in autophagy and peroxisome formation, showed remarkable attenuated tolerance to oxidative stress. These results indicated that autophagy is involved in resistance to oxidative stress in pex1Δ/Δ mutant. Taken together, this study provides evidence that the peroxisomal protein Pex1 regulates oxidative stress tolerance in an autophagy-dependent manner in C. albicans.
Collapse
Affiliation(s)
- Yulu Chen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Honggang Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Yijie Dong
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Chang Jia
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Bing Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Chenpeng Xiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Biao Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Laijun Xing
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China.
| |
Collapse
|
17
|
Ponts N. Mycotoxins are a component of Fusarium graminearum stress-response system. Front Microbiol 2015; 6:1234. [PMID: 26583017 PMCID: PMC4631952 DOI: 10.3389/fmicb.2015.01234] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 10/23/2015] [Indexed: 01/13/2023] Open
Affiliation(s)
- Nadia Ponts
- UR1264 - MycSA, Institut National de la Recherche Agronomique, Centre de Bordeaux-Aquitaine Villenave d'Ornon, France
| |
Collapse
|
18
|
Dong Y, Yu Q, Chen Y, Xu N, Zhao Q, Jia C, Zhang B, Zhang K, Zhang B, Xing L, Li M. The Ccz1 mediates the autophagic clearance of damaged mitochondria in response to oxidative stress in Candida albicans. Int J Biochem Cell Biol 2015; 69:41-51. [PMID: 26471407 DOI: 10.1016/j.biocel.2015.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/28/2015] [Accepted: 10/07/2015] [Indexed: 10/25/2022]
Abstract
Autophagy plays a critical role in response to numerous cellular stresses, such as nutrient deprivation, hypoxia, starvation and organelle damage. The disruption of autophagy pathway affects multiple aspects of cellular stress response. Here we for the first time identified Ccz1 as an essential component for autophagy in Candida albicans. Our experiments demonstrated that loss of CCZ1 gene led to vacuolar fragmentation and disruption of the autophagy pathway. Our results also suggested that Ccz1 functioned in oxidative stress. In the ccz1Δ/Δ mutant, the levels of reactive oxidative species (ROS) sharply increased under H2O2 treatment. Further studies demonstrated that breakdown of the autophagic clearance pathway led to the accumulation of oxidative stress-damaged mitochondria, and consequently elevated cellular ROS levels in the ccz1Δ/Δ mutant. Furthermore, deletion of CCZ1 led to a significant defect in filamentous development at both 30°C and 37°C. The disruption of CCZ1 gene led to decreased capacity of macrophage killing and increased sensitivity to the macrophages. In addition, the ccz1Δ/Δ mutant exhibited attenuated virulence and decreased fungal burdens in the mouse systemic infection model, indicating that CCZ1 might provide a promising target for antifungal drugs development. In summary, our findings provide new insights into the understanding of autophagy-related gene in C. albicans.
Collapse
Affiliation(s)
- Yijie Dong
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China.
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China.
| | - Yulu Chen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China.
| | - Ning Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China.
| | - Qiang Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China.
| | - Chang Jia
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China.
| | - Bing Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China.
| | - Kai Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China.
| | - Biao Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Laijun Xing
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China.
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China.
| |
Collapse
|
19
|
Tfp1 is required for ion homeostasis, fluconazole resistance and N-Acetylglucosamine utilization in Candida albicans. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2731-44. [PMID: 26255859 DOI: 10.1016/j.bbamcr.2015.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/31/2015] [Accepted: 08/05/2015] [Indexed: 11/23/2022]
Abstract
The vacuolar-type H+-ATPase (V-ATPase) is crucial for the maintenance of ion homeostasis. Dysregulation of ion homeostasis affects various aspects of cellular processes. However, the importance of V-ATPase in Candida albicans is not totally clear. In this study, we demonstrated the essential roles of V-ATPase through Tfp1, a putative V-ATPase subunit. Deletion of TFP1 led to generation of an iron starvation signal and reduced total iron content, which was associated with mislocalization of Fet34p that was finally due to disorders in copper homeostasis. Furthermore, the tfp1∆/∆ mutant exhibited weaker growth and lower aconitase activity on nonfermentable carbon sources, and iron or copper addition partially rescued the growth defect. In addition, the tfp1∆/∆ mutant also showed elevated cytosolic calcium levels in normal or low calcium medium that were relevant to calcium release from vacuole. Kinetics of cytosolic calcium response to an alkaline pulse and VCX1 (VCX1 encodes a putative vacuolar Ca2+/H+ exchanger) overexpression assays indicated that the cytosolic calcium status was in relation to Vcx1 activity. Spot assay and concentration-kill curve demonstrated that the tfp1∆/∆ mutant was hypersensitive to fluconazole, which was attributed to reduced ergosterol biosynthesis and CDR1 efflux pump activity, and iron/calcium dysregulation. Interestingly, carbon source utilization tests found the tfp1∆/∆ mutant was defective for growth on N-Acetylglucosamine (GlcNAc) plate, which was associated with ATP depletion due to the decreased ability to catabolize GlcNAc. Taken together, our study gives new insights into functions of Tfp1, and provides the potential to better exploit V-ATPase as an antifungal target.
Collapse
|