1
|
Li J, Wyatt NA, Skiba RM, Kariyawasam GK, Richards JK, Effertz K, Rehman S, Liu Z, Brueggeman RS, Friesen TL. Variability in Chromosome 1 of Select Moroccan Pyrenophora teres f. teres Isolates Overcomes a Highly Effective Barley Chromosome 6H Source of Resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:676-687. [PMID: 38888557 DOI: 10.1094/mpmi-10-23-0159-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Barley net form net blotch (NFNB) is a destructive foliar disease caused by Pyrenophora teres f. teres. Barley line CIho5791, which harbors the broadly effective chromosome 6H resistance gene Rpt5, displays dominant resistance to P. teres f. teres. To genetically characterize P. teres f. teres avirulence/virulence on the barley line CIho5791, we generated a P. teres f. teres mapping population using a cross between the Moroccan CIho5791-virulent isolate MorSM40-3 and the avirulent reference isolate 0-1. Full genome sequences were generated for 103 progenies. Saturated chromosome-level genetic maps were generated, and quantitative trait locus (QTL) mapping identified two major QTL associated with P. teres f. teres avirulence/virulence on CIho5791. The most significant QTL mapped to chromosome (Ch) 1, where the virulent allele was contributed by MorSM40-3. A second QTL mapped to Ch8; however, this virulent allele was contributed by the avirulent parent 0-1. The Ch1 and Ch8 loci accounted for 27 and 15% of the disease variation, respectively, and the avirulent allele at the Ch1 locus was epistatic over the virulent allele at the Ch8 locus. As a validation, we used a natural P. teres f. teres population in a genome-wide association study that identified the same Ch1 and Ch8 loci. We then generated a new reference quality genome assembly of parental isolate MorSM40-3 with annotation supported by deep transcriptome sequencing of infection time points. The annotation identified candidate genes predicted to encode small, secreted proteins, one or more of which are likely responsible for overcoming the CIho5791 resistance. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2024.
Collapse
Affiliation(s)
- Jinling Li
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A
| | - Nathan A Wyatt
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A
- Sugarbeet and Potato Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND 58102, U.S.A
| | - Ryan M Skiba
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND 58102, U.S.A
| | - Gayan K Kariyawasam
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A
| | - Jonathan K Richards
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, U.S.A
| | - Karl Effertz
- Department of Crop and Soil Science, Washington State University, Pullman, WA 99164, U.S.A
| | - Sajid Rehman
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat 10100, Morocco
- Field Crop Development Center of the Olds College, Lacombe, Alberta T4L1W8, Canada
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A
| | - Robert S Brueggeman
- Department of Crop and Soil Science, Washington State University, Pullman, WA 99164, U.S.A
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND 58102, U.S.A
| |
Collapse
|
2
|
Shestakova A, Fatkulin A, Surkova D, Osmolovskiy A, Popova E. First Insight into the Degradome of Aspergillus ochraceus: Novel Secreted Peptidases and Their Inhibitors. Int J Mol Sci 2024; 25:7121. [PMID: 39000228 PMCID: PMC11241649 DOI: 10.3390/ijms25137121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Aspergillus fungi constitute a pivotal element within ecosystems, serving as both contributors of biologically active compounds and harboring the potential to cause various diseases across living organisms. The organism's proteolytic enzyme complex, termed the degradome, acts as an intermediary in its dynamic interaction with the surrounding environment. Using techniques such as genome and transcriptome sequencing, alongside protein prediction methodologies, we identified putative extracellular peptidases within Aspergillus ochraceus VKM-F4104D. Following manual annotation procedures, a total of 11 aspartic, 2 cysteine, 2 glutamic, 21 serine, 1 threonine, and 21 metallopeptidases were attributed to the extracellular degradome of A. ochraceus VKM-F4104D. Among them are enzymes with promising applications in biotechnology, potential targets and agents for antifungal therapy, and microbial antagonism factors. Thus, additional functionalities of the extracellular degradome, extending beyond mere protein substrate digestion for nutritional purposes, were demonstrated.
Collapse
Affiliation(s)
- Anna Shestakova
- Department of Microbiology, Lomonosov MSU, Moscow 119234, Russia; (A.S.); (A.O.)
| | - Artem Fatkulin
- Laboratory of Molecular Physiology, HSE University, Moscow 101000, Russia
| | - Daria Surkova
- Department of Microbiology, Lomonosov MSU, Moscow 119234, Russia; (A.S.); (A.O.)
| | | | - Elizaveta Popova
- Department of Microbiology, Lomonosov MSU, Moscow 119234, Russia; (A.S.); (A.O.)
| |
Collapse
|
3
|
Mjokane N, Akintemi EO, Sabiu S, Gcilitshana OMN, Albertyn J, Pohl CH, Sebolai OM. Aspergillus fumigatus secretes a protease(s) that displays in silico binding affinity towards the SARS-CoV-2 spike protein and mediates SARS-CoV-2 pseudovirion entry into HEK-293T cells. Virol J 2024; 21:58. [PMID: 38448991 PMCID: PMC10919004 DOI: 10.1186/s12985-024-02331-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/27/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND The novel coronavirus disease of 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Data from the COVID-19 clinical control case studies showed that this disease could also manifest in patients with underlying microbial infections such as aspergillosis. The current study aimed to determine if the Aspergillus (A.) fumigatus culture media (i.e., supernatant) possessed protease activity that was sufficient to activate the SARS-CoV-2 spike protein. METHODS The supernatant was first analysed for protease activity. Thereafter, it was assessed to determine if it possessed proteolytic activity to cleave a fluorogenic mimetic peptide of the SARS-CoV-2 spike protein that contained the S1/S2 site and a full-length spike protein contained in a SARS-CoV-2 pseudovirion. To complement this, a computer-based tool, HADDOCK, was used to predict if A. fumigatus alkaline protease 1 could bind to the SARS-CoV-2 spike protein. RESULTS We show that the supernatant possessed proteolytic activity, and analyses of the molecular docking parameters revealed that A. fumigatus alkaline protease 1 could bind to the spike protein. To confirm the in silico data, it was imperative to provide experimental evidence for enzymatic activity. Here, it was noted that the A. fumigatus supernatant cleaved the mimetic peptide as well as transduced the HEK-293T cells with SARS-CoV-2 pseudovirions. CONCLUSION These results suggest that A. fumigatus secretes a protease(s) that activates the SARS-CoV-2 spike protein. Importantly, should these two infectious agents co-occur, there is the potential for A. fumigatus to activate the SARS-CoV-2 spike protein, thus aggravating COVID-19 development.
Collapse
Affiliation(s)
- Nozethu Mjokane
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Park West, 9301, Bloemfontein, South Africa
| | - Eric O Akintemi
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Park West, 9301, Bloemfontein, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Science, Durban University of Technology, 4000, Durban, P.O. Box 1334, South Africa
| | - Onele M N Gcilitshana
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Park West, 9301, Bloemfontein, South Africa
| | - Jacobus Albertyn
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Park West, 9301, Bloemfontein, South Africa
| | - Carolina H Pohl
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Park West, 9301, Bloemfontein, South Africa
| | - Olihile M Sebolai
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Park West, 9301, Bloemfontein, South Africa.
| |
Collapse
|
4
|
Wu L, Bian W, Abubakar YS, Lin J, Yan H, Zhang H, Wang Z, Wu C, Shim W, Lu GD. FvKex2 is required for development, virulence, and mycotoxin production in Fusarium verticillioides. Appl Microbiol Biotechnol 2024; 108:228. [PMID: 38386129 PMCID: PMC10884074 DOI: 10.1007/s00253-024-13022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/03/2024] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
Fusarium verticillioides is one of the most important fungal pathogens causing maize ear and stalk rots, thereby undermining global food security. Infected seeds are usually unhealthy for consumption due to contamination with fumonisin B1 (FB1) mycotoxin produced by the fungus as a virulence factor. Unveiling the molecular factors that determine fungal development and pathogenesis will help in the control and management of the diseases. Kex2 is a kexin-like Golgi-resident proprotein convertase that is involved in the activation of some important proproteins. Herein, we identified and functionally characterized FvKex2 in relation to F. verticillioides development and virulence by bioinformatics and functional genomics approaches. We found that FvKex2 is required for the fungal normal vegetative growth, because the growth of the ∆Fvkex2 mutant was significantly reduced on culture media compared to the wild-type and complemented strains. The mutant also produced very few conidia with morphologically abnormal shapes when compared with those from the wild type. However, the kexin-like protein was dispensable for the male role in sexual reproduction in F. verticillioides. In contrast, pathogenicity was nearly abolished on wounded maize stalks and sugarcane leaves in the absence of FvKEX2 gene, suggesting an essential role of Fvkex2 in the virulence of F. verticillioides. Furthermore, high-performance liquid chromatography analysis revealed that the ∆Fvkex2 mutant produced a significantly lower level of FB1 mycotoxin compared to the wild-type and complemented strains, consistent with the loss of virulence observed in the mutant. Taken together, our results indicate that FvKex2 is critical for vegetative growth, FB1 biosynthesis, and virulence, but dispensable for sexual reproduction in F. verticillioides. The study presents the kexin-like protein as a potential drug target for the management of the devastating maize ear and stalk rot diseases. Further studies should aim at uncovering the link between FvKex2 activity and FB1 biosynthesis genes. KEY POINTS: •The kexin-like protein FvKex2 contributes significantly to the vegetative growth of Fusarium verticillioides. •The conserved protein is required for fungal conidiation and conidial morphology, but dispensable for sexual reproduction. •Deletion of FvKEX2 greatly attenuates the virulence and mycotoxin production potential of F. verticillioides.
Collapse
Affiliation(s)
- Limin Wu
- Fujian Vocational College of Bioengineering, Fuzhou, 350002, China
| | - Wenyin Bian
- Key Laboratory of Bio-Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fujian, Fuzhou, 350002, China
| | - Yakubu Saddeeq Abubakar
- Key Laboratory of Bio-Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fujian, Fuzhou, 350002, China
- Department of Biochemistry, Ahmadu Bello University, Zaria, 810281, Nigeria
| | - Jiayi Lin
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Huijuan Yan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843-2132, USA
| | - Huan Zhang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843-2132, USA
| | - Zonghua Wang
- Key Laboratory of Bio-Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fujian, Fuzhou, 350002, China
| | - Changbiao Wu
- Fujian Vocational College of Bioengineering, Fuzhou, 350002, China
| | - WonBo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843-2132, USA.
| | - Guo-Dong Lu
- Key Laboratory of Bio-Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fujian, Fuzhou, 350002, China.
| |
Collapse
|
5
|
Zhang W, Forester NT, Chettri P, Heilijgers M, Mace WJ, Maes E, Morozova Y, Applegate ER, Johnson RD, Johnson LJ. Characterization of the Biosynthetic Gene Cluster for the Ribosomally Synthesized Cyclic Peptide Epichloëcyclins in Epichloë festucae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13965-13978. [PMID: 37704203 PMCID: PMC10540207 DOI: 10.1021/acs.jafc.3c03073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023]
Abstract
The various grass-induced epichloëcyclins of the Epichloë spp. are ribosomally synthesized and post-translationally modified peptides (RiPPs), produced as small, secreted cyclopeptides from a single gene, gigA. Here, four clustered and coregulated genes (gigA, gigB, gigC, and kexB) with predicted roles in epichloëcyclin production in Epichloë festucae were evaluated through gene disruption. Subsequent chemical analysis indicates that GigB is a DUF3328 domain-containing protein associated with cyclization of epichloëcyclins; GigC is a methyltransferase enzyme responsible for N-methylation of desmethylepichloëcyclins; and KexB is a subtilisin-like enzyme, partly responsible for the propeptide cleavage of epichloëcyclin intermediates. Symbiotic effects on the host phenotype were not observed for gigA, gigC, or kexB mutants, although ΔgigB infection correlated with increased host tiller height and biomass, while only ΔkexB exhibited an effect on endophyte morphology. Disrupting epichloëcyclin biosynthesis showed negligible influence on the biosynthesis of E. festucae-associated alkaloids. Epichloëcyclins may perform other secondary metabolism functions in Epichloë and other fungi.
Collapse
Affiliation(s)
- Wei Zhang
- Grasslands
Research Centre, AgResearch Limited, Palmerston North 4442, New Zealand
| | - Natasha T. Forester
- Grasslands
Research Centre, AgResearch Limited, Palmerston North 4442, New Zealand
| | - Pranav Chettri
- Grasslands
Research Centre, AgResearch Limited, Palmerston North 4442, New Zealand
| | - Maurice Heilijgers
- Grasslands
Research Centre, AgResearch Limited, Palmerston North 4442, New Zealand
| | - Wade J. Mace
- Grasslands
Research Centre, AgResearch Limited, Palmerston North 4442, New Zealand
| | - Evelyne Maes
- Lincoln
Research Centre, AgResearch Limited, Lincoln 7608, New Zealand
| | - Yulia Morozova
- Grasslands
Research Centre, AgResearch Limited, Palmerston North 4442, New Zealand
| | - Emma R. Applegate
- Grasslands
Research Centre, AgResearch Limited, Palmerston North 4442, New Zealand
| | - Richard D. Johnson
- Grasslands
Research Centre, AgResearch Limited, Palmerston North 4442, New Zealand
| | - Linda J. Johnson
- Grasslands
Research Centre, AgResearch Limited, Palmerston North 4442, New Zealand
| |
Collapse
|
6
|
Rayens E, Rabacal W, Willems HME, Kirton GM, Barber JP, Mousa JJ, Celia-Sanchez BN, Momany M, Norris KA. Immunogenicity and protective efficacy of a pan-fungal vaccine in preclinical models of aspergillosis, candidiasis, and pneumocystosis. PNAS NEXUS 2022; 1:pgac248. [PMID: 36712332 PMCID: PMC9802316 DOI: 10.1093/pnasnexus/pgac248] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Invasive fungal infections cause over 1.5 million deaths worldwide. Despite increases in fungal infections as well as the numbers of individuals at risk, there are no clinically approved fungal vaccines. We produced a "pan-fungal" peptide, NXT-2, based on a previously identified vaccine candidate and homologous sequences from Pneumocystis, Aspergillus,Candida, and Cryptococcus. We evaluated the immunogenicity and protective capacity of NXT-2 in murine and nonhuman primate models of invasive aspergillosis, systemic candidiasis, and pneumocystosis. NXT-2 was highly immunogenic and immunized animals had decreased mortality and morbidity compared to nonvaccinated animals following induction of immunosuppression and challenge with Aspergillus, Candida, or Pneumocystis. Data in multiple animal models support the concept that immunization with a pan-fungal vaccine prior to immunosuppression induces broad, cross-protective antifungal immunity in at-risk individuals.
Collapse
Affiliation(s)
- Emily Rayens
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Whitney Rabacal
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | | | - Gabrielle M Kirton
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - James P Barber
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Jarrod J Mousa
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Brandi N Celia-Sanchez
- Fungal Biology Group, Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Michelle Momany
- Fungal Biology Group, Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
7
|
Gao L, Ouyang H, Pei C, Zhou H, Yang J, Jin C. Emp47 and Vip36 are required for polarized growth and protein trafficking between ER and Golgi apparatus in opportunistic fungal pathogen Aspergillus fumigatus. Fungal Genet Biol 2021; 158:103638. [PMID: 34798270 DOI: 10.1016/j.fgb.2021.103638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/18/2022]
Abstract
In Aspergillus fumigatus, an opportunistic fungal pathogen causing fatal invasive aspergillosis, N-glycosylation is vital for polarized growth. To investigate its mechanism, two putative L-type lectin genes emp47 (AFUB_032470) and vip36 (AFUB_027870) were identified in A. fumigatus. Deletion of the emp47 or vip36 gene resulted in delayed germination and abnormal polarity. Also, the Δemp47 displayed an increased resistance to azoles whereas the Δvip36 showed an increased susceptibility to amphotericin B. Secretome analysis revealed that 205 proteins were differentially secreted in the Δemp47 and 145 of them were reduced, while 153 proteins displayed a differential secretion and 134 of them were increased in the Δvip36 as compared with that of the wild-type strain. Also, potential cargo glycoproteins of Emp47 and Vip36 were identified by comparative secretome analysis. Our results suggest that Emp47 is responsible for the transport of proteins from endoplasmic reticulum (ER) to Golgi, while Vip36 acts in protein retrieval from Golgi to ER.
Collapse
Affiliation(s)
- Linlu Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Haomiao Ouyang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Caixia Pei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinghua Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China.
| | - Cheng Jin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
8
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
9
|
Zan XY, Zhu HA, Jiang LH, Liang YY, Sun WJ, Tao TL, Cui FJ. The role of Rho1 gene in the cell wall integrity and polysaccharides biosynthesis of the edible mushroom Grifola frondosa. Int J Biol Macromol 2020; 165:1593-1603. [PMID: 33031851 DOI: 10.1016/j.ijbiomac.2020.09.239] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 01/02/2023]
Abstract
Grifola frondosa polysaccharides, especially β-glucans, showed the significant antitumor, hypoglycemic, and immune-stimulating activities. In the present study, a predominant regulatory subunit gfRho1p of β-1,3-glucan synthase in G. frondosa was identified with a molecular weight of 20.79 kDa and coded by a putative 648-bp small GTPase gene gfRho1. By constructing mutants of RNA interference and over-expression gfRho1, the roles of gfRho1 in the growth, cell wall integrity and polysaccharide biosynthesis were well investigated. The results revealed that defects of gfRho1 slowed mycelial growth rate by 22% to 33%, reduced mycelial polysaccharide and exo-polysaccharide yields by 4% to 7%, increased sensitivity to cell wall stress, and down-regulated gene transcriptions related to PKC-MAPK signaling pathway in cell wall integrity. Over-expression of gfRho1 improved mycelial growth rate and polysaccharide production of G. frondosa. Our study supports that gfRho1 is an essential regulator for polysaccharide biosynthesis, cell growth, cell wall integrity and stress response in G. frondosa.
Collapse
Affiliation(s)
- Xin-Yi Zan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Hong-An Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Li-Hua Jiang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Ying-Ying Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wen-Jing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-production, Dexing 334221, PR China
| | - Ting-Lei Tao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Feng-Jie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-production, Dexing 334221, PR China.
| |
Collapse
|
10
|
van Leeuwe TM, Arentshorst M, Forn-Cuní G, Geoffrion N, Tsang A, Delvigne F, Meijer AH, Ram AFJ, Punt PJ. Deletion of the Aspergillus niger Pro-Protein Processing Protease Gene kexB Results in a pH-Dependent Morphological Transition during Submerged Cultivations and Increases Cell Wall Chitin Content. Microorganisms 2020; 8:E1918. [PMID: 33276589 PMCID: PMC7761569 DOI: 10.3390/microorganisms8121918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 11/23/2022] Open
Abstract
There is a growing interest in the use of post-fermentation mycelial waste to obtain cell wall chitin as an added-value product. In the pursuit to identify suitable production strains that can be used for post-fermentation cell wall harvesting, we turned to an Aspergillus niger strain in which the kexB gene was deleted. Previous work has shown that the deletion of kexB causes hyper-branching and thicker cell walls, traits that may be beneficial for the reduction in fermentation viscosity and lysis. Hyper-branching of ∆kexB was previously found to be pH-dependent on solid medium at pH 6.0, but was absent at pH 5.0. This phenotype was reported to be less pronounced during submerged growth. Here, we show a series of controlled batch cultivations at a pH range of 5, 5.5, and 6 to examine the pellet phenotype of ΔkexB in liquid medium. Morphological analysis showed that ΔkexB formed wild type-like pellets at pH 5.0, whereas the hyper-branching ΔkexB phenotype was found at pH 6.0. The transition of phenotypic plasticity was found in cultivations at pH 5.5, seen as an intermediate phenotype. Analyzing the cell walls of ΔkexB from these controlled pH-conditions showed an increase in chitin content compared to the wild type across all three pH values. Surprisingly, the increase in chitin content was found to be irrespective of the hyper-branching morphology. Evidence for alterations in cell wall make-up are corroborated by transcriptional analysis that showed a significant cell wall stress response in addition to the upregulation of genes encoding other unrelated cell wall biosynthetic genes.
Collapse
Affiliation(s)
- Tim M. van Leeuwe
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; (T.M.v.L.); (M.A.); (P.J.P.)
| | - Mark Arentshorst
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; (T.M.v.L.); (M.A.); (P.J.P.)
| | - Gabriel Forn-Cuní
- Institute of Biology Leiden, Animal Sciences, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands; (G.F.-C.); (A.H.M.)
| | - Nicholas Geoffrion
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC H4B1R6, Canada; (N.G.); (A.T.)
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC H4B1R6, Canada; (N.G.); (A.T.)
| | - Frank Delvigne
- TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Avenue de la Faculté, 2B, 5030 Gembloux, Belgium;
| | - Annemarie H. Meijer
- Institute of Biology Leiden, Animal Sciences, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands; (G.F.-C.); (A.H.M.)
| | - Arthur F. J. Ram
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; (T.M.v.L.); (M.A.); (P.J.P.)
| | - Peter J. Punt
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; (T.M.v.L.); (M.A.); (P.J.P.)
- Dutch DNA Biotech, Hugo R Kruytgebouw 4-Noord, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
11
|
Ouyang H, Du T, Zhou H, Wilson IBH, Yang J, Latgé JP, Jin C. Aspergillus fumigatus phosphoethanolamine transferase gene gpi7 is required for proper transportation of the cell wall GPI-anchored proteins and polarized growth. Sci Rep 2019; 9:5857. [PMID: 30971734 PMCID: PMC6458175 DOI: 10.1038/s41598-019-42344-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/21/2019] [Indexed: 01/10/2023] Open
Abstract
In fungi many proteins, which play important roles in maintaining the function of the cell wall and participating in pathogenic processes, are anchored to the cell surface by a glycosylphosphatidylinositol (GPI) anchor. It has been known that modification and removal of phosphoethanolamine (EtN-P) on the second mannose residue in GPI anchors is important for maturation and sorting of GPI anchored proteins in yeast and mammalian cells, but is a step absent from some protist parasites. In Aspergillus fumigatus, an opportunistic fungal pathogen causing invasive aspergillosis in humans, GPI-anchored proteins are known to be involved in cell wall synthesis and virulence. In this report the gene encoding A. fumigatus EtN-P transferase GPI7 was investigated. By deletion of the gpi7 gene, we evaluated the effects of EtN-P modification on the morphogenesis of A. fumigatus and localization of GPI proteins. Our results showed that deletion of the gpi7 gene led to reduced cell membrane GPI anchored proteins, the mis-localization of the cell wall GPI anchored protein Mp1, abnormal polarity, and autophagy in A. fumigatus. Our results suggest that addition of EtN-P of the second mannose on the GPI anchor is essential for transportation and localization of the cell wall GPI-anchored proteins.
Collapse
Affiliation(s)
- Haomiao Ouyang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ting Du
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hui Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Iain B H Wilson
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, A-1190, Austria
| | - Jinghua Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jean-Paul Latgé
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cheng Jin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,Guangxi Academy of Sciences, Nanning, 530007, Guangxi, China.
| |
Collapse
|
12
|
Du T, Ouyang H, Voglmeir J, Wilson IBH, Jin C. Aspergillus fumigatus Mnn9 is responsible for mannan synthesis and required for covalent linkage of mannoprotein to the cell wall. Fungal Genet Biol 2019; 128:20-28. [PMID: 30904668 DOI: 10.1016/j.fgb.2019.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/17/2019] [Accepted: 03/19/2019] [Indexed: 12/25/2022]
Abstract
Owing to the essential role in protection of the Aspergillus fumigatus cell against human defense reactions, its cell wall has long been taken as a promising antifungal target. The cell wall of A. fumigatus composed of chitin, glucan and galactomannan and mannoproteins. Although galactomannan has been used as a diagnostic target for a long time, its biosynthesis remains unknown in A. fumigatus. In this study, a putative α1,6-mannosyltransferase gene mnn9 was identified in A. fumigatus. Deletion of the mnn9 gene resulted in an increased sensitivity to calcofluor white, Congo red, or hygromycin B as well as in reduced cell wall components and abnormal polarity. Although there was no major effect on N-glycan synthesis, covalently-linked cell wall mannoprotein Mp1 was significantly reduced in the mutant. Based on our results, we propose that Mnn9p is a mannosyltransferase responsible for the formation of the α-mannan in cell wall mannoproteins, potentially via elongation of O-linked mannose chains.
Collapse
Affiliation(s)
- Ting Du
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Haomiao Ouyang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Josef Voglmeir
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna A-1190, Austria
| | - Iain B H Wilson
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna A-1190, Austria
| | - Cheng Jin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Guangxi Academy of Sciences, Nanning 530007, Guangxi, China.
| |
Collapse
|
13
|
Jia X, Zhang X, Hu Y, Hu M, Han X, Sun Y, Han L. Role of Downregulation and Phosphorylation of Cofilin in Polarized Growth, MpkA Activation and Stress Response of Aspergillus fumigatus. Front Microbiol 2018; 9:2667. [PMID: 30455681 PMCID: PMC6230985 DOI: 10.3389/fmicb.2018.02667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/18/2018] [Indexed: 12/27/2022] Open
Abstract
Aspergillus fumigatus causes most of aspergillosis in clinic and comprehensive function analysis of its key protein would promote anti-aspergillosis. In a previous study, we speculated actin depolymerizing factor cofilin might be essential for A. fumigatus viability and found its overexpression upregulated oxidative response and cell wall polysaccharide synthesis of this pathogen. Here, we constructed a conditional cofilin mutant to determine the essential role of cofilin. And the role of cofilin downregulation and phosphorylation in A. fumigatus was further analyzed. Cofilin was required for the polarized growth and heat sensitivity of A. fumigatus. Downregulation of cofilin caused hyphal cytoplasmic leakage, increased the sensitivity of A. fumigatus to sodium dodecyl sulfonate but not to calcofluor white and Congo Red and farnesol, and enhanced the basal phosphorylation level of MpkA, suggesting that cofilin affected the cell wall integrity (CWI) signaling. Downregulation of cofilin also increased the sensitivity of A. fumigatus to alkaline pH and H2O2. Repressing cofilin expression in A. fumigatus lead to attenuated virulence, which manifested as lower adherence and internalization rates, weaker host inflammatory response and shorter survival rate in a Galleria mellonella model. Expression of non-phosphorylated cofilin with a mutation of S5A had little impacts on A. fumigatus, whereas expression of a mimic-phosphorylated cofilin with a mutation of S5E resulted in inhibited growth, increased phospho-MpkA level, and decreased pathogenicity. In conclusion, cofilin is crucial to modulating the polarized growth, stress response, CWI and virulence of A. fumigatus.
Collapse
Affiliation(s)
- Xiaodong Jia
- Institute for Disease Control and Prevention of PLA, Beijing, China.,Comprehensive Liver Cancer Center, Beijing 302 Hospital of PLA, Beijing, China
| | - Xi Zhang
- Institute for Disease Control and Prevention of PLA, Beijing, China
| | - Yingsong Hu
- Institute for Disease Control and Prevention of PLA, Beijing, China
| | - Mandong Hu
- Institute for Disease Control and Prevention of PLA, Beijing, China
| | - Xuelin Han
- Institute for Disease Control and Prevention of PLA, Beijing, China
| | - Yansong Sun
- Institute for Disease Control and Prevention of PLA, Beijing, China
| | - Li Han
- Institute for Disease Control and Prevention of PLA, Beijing, China
| |
Collapse
|
14
|
Role of the small GTPase Rho1 in cell wall integrity, stress response, and pathogenesis of Aspergillus fumigatus. Fungal Genet Biol 2018; 120:30-41. [PMID: 30205199 DOI: 10.1016/j.fgb.2018.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/04/2018] [Accepted: 09/08/2018] [Indexed: 11/24/2022]
Abstract
Aspergillus fumigatus is a major pathogen of invasive pulmonary aspergillosis. The small GTPase, Rho1, of A. fumigatus is reported to comprise a potential regulatory subunit of β-1,3-glucan synthase and is indispensable for fungal viability; however, the role of AfRho1 on the growth, cell wall integrity, and pathogenesis of A. fumigatus is still poorly understood. We constructed A. fumigatus mutants with conditional- and overexpression of Rho1 and found that defects of AfRho1 expression led to the reduction of β-1,3-glucan and glucosamine moieties on the cell wall, with down-regulated transcription of genes in the cell wall integrity signaling pathway and a decrease of calcofluor white (CFW)-stimulated mitogen-activated protein kinase (MpkA) phosphorylation and cytoplasmic leakage compared to those of the wild-type strain (WT). In addition, down-regulation of AfRho1 expression caused much higher sensitivity of A. fumigatus to H2O2 and alkaline pH compared to that of WT. Decrease of AfRho1 expression also attenuated the A. fumigatus pathogenicity in Galleria mellonella and inhibited conidial internalization into lung epithelial cells and inflammatory factor release. In contrast, overexpression of Rho1 did not alter A. fumigatus morphology, susceptibility to cell wall stresses, or pathogenicity relative to its parental strain. Taken together, our findings support AfRho1 as an essential regulator of the cell wall integrity, stress response, and pathogenesis of A. fumigatus.
Collapse
|
15
|
Growth and protease secretion of Scedosporium aurantiacum under conditions of hypoxia. Microbiol Res 2018; 216:23-29. [PMID: 30269853 DOI: 10.1016/j.micres.2018.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/19/2022]
Abstract
One of the micro-environmental stresses that fungal pathogens, such as Scedosporium aurantiacum, colonising human lungs encounter in vivo is hypoxia, or deficiency of oxygen. In this work, we studied the impacts of a hypoxic micro-environment (oxygen levels ≤1%) on the growth of a clinical S. aurantiacum isolate (WM 06.482; CBS 136046) and an environmental strain (S. aurantiacum WM 10.136; CBS 136049) on mucin-containing synthetic cystic fibrosis sputum medium. Additionally, profiles of secreted proteases were compared between the two isolates and protease activity was assessed using class-specific substrates and inhibitors. Overall, both isolates grew slower and produced less biomass under hypoxia compared to normoxic conditions. The pH of the medium decreased to 4.0 over the cultivation time, indicating that S. aurantiacum released acidic compounds into the medium. Accordingly, secreted proteases of the two isolates were dominated by acidic proteases, including aspartic and cysteine proteases, with optimal protease activity at pH 4.0 and 6.0 respectively. The clinical isolate produced higher aspartic and cysteine protease activities. Conversely, all serine proteases, including elastase-like, trypsin-like, chymotrypsin-like and subtilisin-like proteases had higher activities in the environmental isolate. Sequence similarities to 13 secreted proteases were identified by mass spectrometry (MS) by searching against other fungal proteases in the NCBI database. Results from MS analysis were consistent with those from activity assays. The clinical highly-virulent, and environmental low-virulence S. aurantiacum isolates responded differently to hypoxia in terms of the type of proteases secreted, which may reflect their different virulence properties.
Collapse
|
16
|
Han J, Liu C, Li L, Zhou H, Liu L, Bao L, Chen Q, Song F, Zhang L, Li E, Liu L, Pei Y, Jin C, Xue Y, Yin W, Ma Y, Liu H. Decalin-Containing Tetramic Acids and 4-Hydroxy-2-pyridones with Antimicrobial and Cytotoxic Activity from the Fungus Coniochaeta cephalothecoides Collected in Tibetan Plateau (Medog). J Org Chem 2017; 82:11474-11486. [DOI: 10.1021/acs.joc.7b02010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Junjie Han
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid
Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Congcong Liu
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College
of Life Sciences, Hebei University, Baoding 071002, China
| | - Li Li
- Institute of Materia Medica, CAMS & PUMC, Beijing 100050, China
| | - Hui Zhou
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Liu
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid
Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Bao
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Chen
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuhang Song
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lixin Zhang
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Erwei Li
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ling Liu
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunfei Pei
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Cheng Jin
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanfen Xue
- State
Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenbing Yin
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhe Ma
- State
Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongwei Liu
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid
Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Liu F, Ma Q, Dang X, Wang Y, Song Y, Meng X, Bao J, Chen J, Pan G, Zhou Z. Identification of a new subtilisin-like protease NbSLP2 interacting with cytoskeletal protein septin in Microsporidia Nosema bombycis. J Invertebr Pathol 2017. [DOI: 10.1016/j.jip.2017.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Sharma Ghimire P, Ouyang H, Wang Q, Luo Y, Shi B, Yang J, Lü Y, Jin C. Insight into Enzymatic Degradation of Corn, Wheat, and Soybean Cell Wall Cellulose Using Quantitative Secretome Analysis of Aspergillus fumigatus. J Proteome Res 2016; 15:4387-4402. [PMID: 27618962 DOI: 10.1021/acs.jproteome.6b00465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lignocelluloses contained in animal forage cannot be digested by pigs or poultry with 100% efficiency. On contrary, Aspergillus fumigatus, a saprophytic filamentous fungus, is known to harbor 263 glycoside hydrolase encoding genes, suggesting that A. fumigatus is an efficient lignocellulose degrader. Hence the present study uses corn, wheat, or soybean as a sole carbon source to culture A. fumigatus under animal physiological condition to understand how cellulolytic enzymes work together to achieve an efficient degradation of lignocellulose. Our results showed that A. fumigatus produced different sets of enzymes to degrade lignocelluloses derived from corn, wheat, or soybean cell wall. In addition, the cellulolytic enzymes produced by A. fumigatus were stable under acidic condition or at higher temperatures. Using isobaric tags for a relative and absolute quantification (iTRAQ) approach, a total of ∼600 extracellular proteins were identified and quantified, in which ∼50 proteins were involved in lignocellulolysis, including cellulases, hemicellulases, lignin-degrading enzymes, and some hypothetical proteins. Data are available via ProteomeXchange with identifier PXD004670. On the basis of quantitative iTRAQ results, 14 genes were selected for further confirmation by RT-PCR. Taken together, our results indicated that the expression and regulation of lignocellulolytic proteins in the secretome of A. fumigatus were dependent on both nature and complexity of cellulose, thus suggesting that a different enzyme system is required for degradation of different lignocelluloses derived from plant cells. Although A. fumigatus is a pathogenic fungus and cannot be directly used as an enzyme source, as an efficient lignocellulose degrader its strategy to synergistically degrade various lignocelluloses with different enzymes can be used to design enzyme combination for optimal digestion and absorption of corn, wheat, or soybean that are used as forage of pig and poultry.
Collapse
Affiliation(s)
- Prakriti Sharma Ghimire
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101, China
- University of Chinese Academy of Sciences , Beijing 100101, China
- Himalayan Environment Research Institute (HERI) , Bouddha-6, Kathmandu, Nepal
| | - Haomiao Ouyang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101, China
| | - Qian Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101, China
| | - Yuanming Luo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101, China
| | - Bo Shi
- Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081, China
| | - Jinghua Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101, China
| | - Yang Lü
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101, China
| | - Cheng Jin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101, China
- University of Chinese Academy of Sciences , Beijing 100101, China
| |
Collapse
|