1
|
Miltenburg MG, Bonner C, Hepworth S, Huang M, Rampitsch C, Subramaniam R. Proximity-dependent biotinylation identifies a suite of candidate effector proteins from Fusarium graminearum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:369-382. [PMID: 35986640 DOI: 10.1111/tpj.15949] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Fusarium graminearum is a fungal pathogen that causes Fusarium head blight in cereal crops. The identification of proteins secreted from pathogens to overcome plant defenses and cause disease, collectively known as effectors, can reveal the etiology of a disease process. Proximity-dependent biotin identification (BioID) was used to identify potential effector proteins secreted in planta by F. graminearum during the infection of Arabidopsis. Mass spectrometry analysis of streptavidin affinity-purified proteins revealed over 300 proteins from F. graminearum, of which 62 were candidate effector proteins (CEPs). An independent analysis of secreted proteins from axenic cultures of F. graminearum showed a 42% overlap with CEPs, thereby assuring confidence in the BioID methodology. The analysis also revealed that 19 out of 62 CEPs (approx. 30%) had been previously characterized with virulence function in fungi. The functional characterization of additional CEPs was undertaken through deletion analysis by the CRISPR/Cas9 method, and by overexpression into Triticum aestivum (wheat) leaves by the Ustilago hordei delivery system. Deletion studies of 12 CEPs confirmed the effector function of three previously characterized CEPs and validated the function of another four CEPs on wheat inflorescence or vegetative tissues. Lastly, overexpression in wheat showed that all seven CEPs enhanced resistance against the bacterial pathogen Pseudomonas syringae DC3000.
Collapse
Affiliation(s)
- Mary G Miltenburg
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
- Ottawa Research and Development Centre, Agriculture Canada, 960 Carling Avenue, Ottawa, ON, K1S 5B6, Canada
| | - Christopher Bonner
- Ottawa Research and Development Centre, Agriculture Canada, 960 Carling Avenue, Ottawa, ON, K1S 5B6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Shelley Hepworth
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Mei Huang
- Morden Research and Development Centre, Agriculture Canada, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| | - Christof Rampitsch
- Morden Research and Development Centre, Agriculture Canada, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| | - Rajagopal Subramaniam
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
- Ottawa Research and Development Centre, Agriculture Canada, 960 Carling Avenue, Ottawa, ON, K1S 5B6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| |
Collapse
|
2
|
Pardo-Medina J, Gutiérrez G, Limón MC, Avalos J. The carP lncRNA Is a carS-Related Regulatory Element with Broad Effects on the Fusarium fujikuroi Transcriptome. Noncoding RNA 2021; 7:ncrna7030046. [PMID: 34449676 PMCID: PMC8395912 DOI: 10.3390/ncrna7030046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022] Open
Abstract
Carotenoid biosynthesis in the fungus Fusarium fujikuroi is regulated by environmental factors, with light being the main stimulating signal. The CarS RING-finger protein plays an important role in the downregulation of structural genes of the carotenoid pathway. A recent transcriptomic analysis on the effect of carS mutation identified a gene for a long non-coding RNA (lncRNA) upstream of carS, called carP, the deletion of which results in increased carS mRNA levels and lack of carotenoid production. We have investigated the function of carP by studying the transcriptomic effect of its deletion and the phenotypes resulting from the reintroduction of carP to a deletion strain. The RNA-seq data showed that the loss of carP affected the mRNA levels of hundreds of genes, especially after illumination. Many of these changes appeared to be cascade effects as a result of changes in carS expression, as suggested by the comparison with differentially expressed genes in a carS mutant. Carotenoid production only recovered when carP was integrated upstream of carS, but not at other genomic locations, indicating a cis-acting mechanism on carS. However, some genes hardly affected by CarS were strongly upregulated in the carP mutant, indicating that carP may have other regulatory functions as an independent regulatory element.
Collapse
|
3
|
Pardo-Medina J, Gutiérrez G, Limón MC, Avalos J. Impact of the White Collar Photoreceptor WcoA on the Fusarium fujikuroi Transcriptome. Front Microbiol 2021; 11:619474. [PMID: 33574802 PMCID: PMC7871910 DOI: 10.3389/fmicb.2020.619474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/18/2020] [Indexed: 01/25/2023] Open
Abstract
The proteins of the White Collar 1 family (WC) constitute a major class of flavin photoreceptors, widely distributed in fungi, that work in cooperation with a WC 2 protein forming a regulatory complex. The WC complex was investigated in great detail in Neurospora crassa, a model fungus in photobiology studies, where it controls all its major photoresponses. The fungus Fusarium fujikuroi, a model system in the production of secondary metabolites, contains a single WC-1 gene called wcoA. The best-known light response in this fungus is the photoinduction of the synthesis of carotenoids, terpenoid pigments with antioxidant properties. Loss of WcoA in F. fujikuroi results in a drastic reduction in the mRNA levels of the carotenoid genes, and a diversity of morphological and metabolic changes, including alterations in the synthesis of several secondary metabolites, suggesting a complex regulatory role. To investigate the function of WcoA, the transcriptome of F. fujikuroi was analyzed in the dark and after 15-, 60- or 240-min illumination in a wild strain and in a formerly investigated wcoA insertional mutant. Using a threshold of four-fold change in transcript levels, 298 genes were activated and 160 were repressed in the wild strain under at least one of the light exposures. Different response patterns were observed among them, with genes exhibiting either fast, intermediate, and slow photoinduction, or intermediate or slow repression. All the fast and intermediate photoresponses, and most of the slow ones, were lost in the wcoA mutant. However, the wcoA mutation altered the expression of a much larger number of genes irrespective of illumination, reaching at least 16% of the annotated genes in this fungus. Such genes include many related to secondary metabolism, as well as others related to photobiology and other cellular functions, including the production of hydrophobins. As judged by the massive transcriptomic changes exhibited by the wcoA mutant in the dark, the results point to WcoA as a master regulatory protein in F. fujikuroi, in addition to a central function as the photoreceptor responsible for most of the transcriptional responses to light in this fungus.
Collapse
Affiliation(s)
- Javier Pardo-Medina
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain
| | - Gabriel Gutiérrez
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain
| | - M Carmen Limón
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain
| | - Javier Avalos
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain
| |
Collapse
|
4
|
Wiemann P, Soukup AA, Folz JS, Wang PM, Noack A, Keller NP. CoIN: co-inducible nitrate expression system for secondary metabolites in Aspergillus nidulans. Fungal Biol Biotechnol 2018; 5:6. [PMID: 29564145 PMCID: PMC5851313 DOI: 10.1186/s40694-018-0049-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/05/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sequencing of fungal species has demonstrated the existence of thousands of putative secondary metabolite gene clusters, the majority of them harboring a unique set of genes thought to participate in production of distinct small molecules. Despite the ready identification of key enzymes and potential cluster genes by bioinformatics techniques in sequenced genomes, the expression and identification of fungal secondary metabolites in the native host is often hampered as the genes might not be expressed under laboratory conditions and the species might not be amenable to genetic manipulation. To overcome these restrictions, we developed an inducible expression system in the genetic model Aspergillus nidulans. RESULTS We genetically engineered a strain of A. nidulans devoid of producing eight of the most abundant endogenous secondary metabolites to express the sterigmatocystin Zn(II)2Cys6 transcription factor-encoding gene aflR and its cofactor aflS under control of the nitrate inducible niiA/niaD promoter. Furthermore, we identified a subset of promoters from the sterigmatocystin gene cluster that are under nitrate-inducible AflR/S control in our production strain in order to yield coordinated expression without the risks from reusing a single inducible promoter. As proof of concept, we used this system to produce β-carotene from the carotenoid gene cluster of Fusarium fujikuroi. CONCLUSION Utilizing one-step yeast recombinational cloning, we developed an inducible expression system in the genetic model A. nidulans and show that it can be successfully used to produce commercially valuable metabolites.
Collapse
Affiliation(s)
- Philipp Wiemann
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706 USA
- Present Address: Hexagon Bio, Menlo Park, CA 94025 USA
| | - Alexandra A. Soukup
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706 USA
- Present Address: Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705 USA
| | - Jacob S. Folz
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706 USA
- Present Address: Davis Genome Center – Metabolomics, University of California, 451 Health Science Drive, Davis, CA 95616 USA
| | - Pin-Mei Wang
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706 USA
- Present Address: Ocean College, Zhejiang University, Hangzhou, 310058 Zhejiang Province People’s Republic of China
| | - Andreas Noack
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706 USA
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706 USA
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706 USA
| |
Collapse
|
5
|
Avalos J, Pardo-Medina J, Parra-Rivero O, Ruger-Herreros M, Rodríguez-Ortiz R, Hornero-Méndez D, Limón MC. Carotenoid Biosynthesis in Fusarium. J Fungi (Basel) 2017; 3:E39. [PMID: 29371556 PMCID: PMC5715946 DOI: 10.3390/jof3030039] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 01/06/2023] Open
Abstract
Many fungi of the genus Fusarium stand out for the complexity of their secondary metabolism. Individual species may differ in their metabolic capacities, but they usually share the ability to synthesize carotenoids, a family of hydrophobic terpenoid pigments widely distributed in nature. Early studies on carotenoid biosynthesis in Fusariumaquaeductuum have been recently extended in Fusarium fujikuroi and Fusarium oxysporum, well-known biotechnological and phytopathogenic models, respectively. The major Fusarium carotenoid is neurosporaxanthin, a carboxylic xanthophyll synthesized from geranylgeranyl pyrophosphate through the activity of four enzymes, encoded by the genes carRA, carB, carT and carD. These fungi produce also minor amounts of β-carotene, which may be cleaved by the CarX oxygenase to produce retinal, the rhodopsin's chromophore. The genes needed to produce retinal are organized in a gene cluster with a rhodopsin gene, while other carotenoid genes are not linked. In the investigated Fusarium species, the synthesis of carotenoids is induced by light through the transcriptional induction of the structural genes. In some species, deep-pigmented mutants with up-regulated expression of these genes are affected in the regulatory gene carS. The molecular mechanisms underlying the control by light and by the CarS protein are currently under investigation.
Collapse
Affiliation(s)
- Javier Avalos
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Javier Pardo-Medina
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Obdulia Parra-Rivero
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Macarena Ruger-Herreros
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Roberto Rodríguez-Ortiz
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
- Present Address: CONACYT-Instituto de Neurobiología-UNAM, Juriquilla, Querétaro 076230, Mexico.
| | - Dámaso Hornero-Méndez
- Departamento de Fitoquímica de los Alimentos, Instituto de la Grasa, CSIC, Campus Universidad Pablo de Olavide, 41013 Sevilla, Spain.
| | - María Carmen Limón
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| |
Collapse
|
6
|
Gómez-Gómez L, Parra-Vega V, Rivas-Sendra A, Seguí-Simarro JM, Molina RV, Pallotti C, Rubio-Moraga Á, Diretto G, Prieto A, Ahrazem O. Unraveling Massive Crocins Transport and Accumulation through Proteome and Microscopy Tools during the Development of Saffron Stigma. Int J Mol Sci 2017; 18:E76. [PMID: 28045431 PMCID: PMC5297711 DOI: 10.3390/ijms18010076] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/23/2016] [Accepted: 12/24/2016] [Indexed: 11/18/2022] Open
Abstract
Crocins, the glucosides of crocetin, are present at high concentrations in saffron stigmas and accumulate in the vacuole. However, the biogenesis of the saffron chromoplast, the changes during the development of the stigma and the transport of crocins to the vacuole, are processes that remain poorly understood. We studied the process of chromoplast differentiation in saffron throughout stigma development by means of transmission electron microscopy. Our results provided an overview of a massive transport of crocins to the vacuole in the later developmental stages, when electron dense drops of a much greater size than plastoglobules (here defined "crocinoplast") were observed in the chromoplast, connected to the vacuole with a subsequent transfer of these large globules inside the vacuole. A proteome analysis of chromoplasts from saffron stigma allowed the identification of several well-known plastid proteins and new candidates involved in crocetin metabolism. Furthermore, expressions throughout five developmental stages of candidate genes responsible for carotenoid and apocarotenoid biogenesis, crocins transport to the vacuole and starch metabolism were analyzed. Correlation matrices and networks were exploited to identify a series of transcripts highly associated to crocetin (such as 1-Deoxy-d-xylulose 5-phosphate synthase (DXS), 1-Deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), carotenoid isomerase (CRTISO), Crocetin glucosyltransferase 2 (UGT2), etc.) and crocin (e.g., ζ-carotene desaturase (ZDS) and plastid-lipid-associated proteins (PLAP2)) accumulation; in addition, candidate aldehyde dehydrogenase (ADH) genes were highlighted.
Collapse
Affiliation(s)
- Lourdes Gómez-Gómez
- Botanical Institute, Department of Science Technology, Agroforestry and Genetics, Faculty of Pharmacy, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Verónica Parra-Vega
- Cell Biology Group, COMAV Institute, Polytechnic University of Valencia, 46071 Valencia, Spain.
| | - Alba Rivas-Sendra
- Cell Biology Group, COMAV Institute, Polytechnic University of Valencia, 46071 Valencia, Spain.
| | - Jose M Seguí-Simarro
- Cell Biology Group, COMAV Institute, Polytechnic University of Valencia, 46071 Valencia, Spain.
| | - Rosa Victoria Molina
- Department of Vegetal Biology, Polytechnic University of Valencia, 46071 Valencia, Spain.
| | - Claudia Pallotti
- Department of Vegetal Biology, Polytechnic University of Valencia, 46071 Valencia, Spain.
| | - Ángela Rubio-Moraga
- Botanical Institute, Department of Science Technology, Agroforestry and Genetics, Faculty of Pharmacy, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Centre, 00123 Rome, Italy.
| | - Alicia Prieto
- The Biological Research Center (CIB) Spanish National Research Council (CSIC), C/Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Oussama Ahrazem
- Botanical Institute, Department of Science Technology, Agroforestry and Genetics, Faculty of Pharmacy, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
- Faculty of Environmental Sciences and Biochemistry Toledo, University of Castilla-La Mancha, Campus Tecnológico de la Fábrica de Armas, Avda, Carlos III, s/n, 45071 Toledo, Spain.
| |
Collapse
|