1
|
Shi H, Yan Z, Du H, Song K, Gun S. Structural characteristics of polysaccharide isolated from Potentilla anserina L. and its mitigating effect on Zearalenone-induced oxidative stress in Sertoli cells. Int J Biol Macromol 2025; 297:139752. [PMID: 39809396 DOI: 10.1016/j.ijbiomac.2025.139752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/18/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
The present study aims to characterize the structural features of a natural polysaccharide called PAP-1b extracted from the roots of Potentilla anserina L. and to evaluate its antioxidant activity. Structural characterization indicated that PAP-1b with a molecular weight of 1.22 × 104 Da was primarily composed of glucose and galactose. Methylation and NMR analyses showed that PAP-1b mainly consisted of →4)-α-D-Glcp-(1→, →4,6)-β-D-Glcp-(1→, →3,4)-α-Glcp-(1→ and α-D-Glcp-(1→). Subsequently, we evaluated the antioxidant activity of PAP-1b using zearalenone (ZEA)-induced oxidative stress in porcine Sertoli cells (SCs) as a model. Cellular experiments revealed that PAP-1b significantly attenuated ZEA-induced oxidative stress in SCs via the mitochondrial pathway, as evidenced by the increase in cell viability, the enhancement of antioxidant enzyme activities, and the reduction of reactive oxygen species (ROS), lactate dehydrogenase (LDH) and malondialdehyde (MDA) levels, as well as stabilization of the mitochondrial membrane potential and the reduction of apoptosis rate. These results suggest that Potentilla anserina L. polysaccharides can serve as a promising natural antioxidant for applications in the field of functional foods.
Collapse
Affiliation(s)
- Haixia Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China
| | - Hong Du
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China
| | - Kelin Song
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China; Gansu Innovation Research Center for Swine Production Engineering and Technology, Lanzhou 730070, China.
| |
Collapse
|
2
|
Li X, Wang J, Li S, Yu S, Liu H, Liu Y. A systematic review on botany, ethnopharmacology, phytochemistry and pharmacology of Potentilla anserina L. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118481. [PMID: 38909825 DOI: 10.1016/j.jep.2024.118481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/14/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Potentilla Anserina Linnaeus, a traditional Chinese herb with ethnic characteristics, is considered a superior material by the people of Qinghai and Tibet. Traditionally, it has been used to invigorate the spleen, quench thirst, tonify the blood, astringing to stop bleeding, and relieve diarrhea. This is the reason for its frequent usage in treating spleen deficiency, diarrhea, and various bleeding disorders. At the same time, P. anserina is often consumed as food by the Tibetan people to obtain nourishment and health benefits. AIM OF THE REVIEW The present review provides a systematic description of P. anserina, covering its botany, ethnopharmacology, phytochemical constituents, and various pharmacological activities of extracts. This overview aims to provide insights into research directions and potential applications of P. anserina. MATERIALS AND METHODS Information on P. anserina was gathered through various sources, including Google Scholar, PubMed, Elsevier, CNKI, and Web of Science. In addition, information was available from native texts and prominent ethnopharmacologists. RESULTS So far, 154 different chemical substances have been isolated and identified from P. anserina, with tannins, flavonoids, and triterpenes accounting for the majority. Polysaccharides and triterpenes are the main material components responsible for the pharmacological activity of P. anserina. Research shows that P. anserina exhibits rich pharmacological activities, including antioxidant, antiviral, blood tonic, immune regulation, cardiovascular system treatment, diabetes treatment, and liver protection. CONCLUSIONS Some traditional applications of P. anserina have been confirmed. However, due to incomplete evaluation indicators and other reasons, further in vitro and in vivo studies are needed to clarify its pharmacological evaluation, which remains a focus of future research. Additionally, we recommend that future studies concentrate on the quality control and safety evaluation of P. anserina to address research gaps and offer theoretical support for the plant's potential functions and clinical applications.
Collapse
Affiliation(s)
- Xiaojing Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Jiahui Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Shuqi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Shaojun Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Hao Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Yonggang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China.
| |
Collapse
|
3
|
Mahmoudi F, Jalayeri MHT, Montaseri A, MohamedKhosroshahi L, Baradaran B. Microbial natural compounds and secondary metabolites as Immunomodulators: A review. Int J Biol Macromol 2024; 278:134778. [PMID: 39153680 DOI: 10.1016/j.ijbiomac.2024.134778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Immunomodulatory therapies are beneficial strategies for the improvement of immune system function. Today, due to the increasing prevalence of immune disorders, cancer, and new viral diseases, there is a greater need to introduce immunomodulatory compounds with more efficiency and fewer side effects. Microbial derivatives are fertile and attractive grounds for discovering lots of novel compounds with various medical properties. The discovery of many natural compounds derived from bacterial sources, such as secondary metabolites with promising immunomodulating activities, represents the importance of this topic in drug discovery and emphasizes the necessity for a coherent source of study in this area. Considering this need, in this review, we aim to focus on the current information about the immunomodulatory effects of bacterial secondary metabolites and natural immunomodulators derived from microorganisms.
Collapse
Affiliation(s)
- Fariba Mahmoudi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Hadi Tajik Jalayeri
- Clinical Research Development Unit (CRDU), Sayad Shirazi Hospital Golestan University of Medical Sciences, Gorgan, Iran
| | - Azadeh Montaseri
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy.
| | - Leila MohamedKhosroshahi
- Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Li W, Liu H, Zhang Z, Liu Y, Zhang X, Qu Y, Shi W. Effect of Potentilla anserina L. powder on gel properties and volatile flavor characteristics of silver carp surimi. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6035-6044. [PMID: 38437166 DOI: 10.1002/jsfa.13428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Potentilla anserina L. is rich in various nutrients, active ingredients and unique flavor, comprising a natural nutrition and health food. However, its application in aquatic food has been rarely reported. Therefore, the effects of Potentilla anserina L. powder (PAP) on gel properties and volatile flavor profile of silver carp surimi were investigated. RESULTS The gel strength and water-holding capacity of the surimi gels were significantly improved (P < 0.05), and the whiteness and cooking loss of all the samples decreased slightly with the increase in PAP content. The addition of PAP shortened the relaxation time (T2) of the surimi gels and converted some of the free water into immobile or bound water, which resulted in a better immobilization of water in the surimi. Scanning electron microscopy images demonstrated that the network of surimi gels with PAP added was denser and had a smoother surface compared to the control. Volatile components (VCs) analysis showed that 33 VCs were identified in the surimi gel samples with different additions of PAP, among which aldehydes, alcohols and esters were the major VCs, accounting for more than 50% of the VCs in the surimi gels. PAP addition reduced the fishy and rancid flavor compounds in surimi gels, such as 1-propanol, 1-octen-3-ol, etc., and promoted the production of aldehydes, alcohols, esters and other flavor substances. CONCLUSION These results of the present study provide theoretical support for the investigation and development of new nutrient-health-flavored surimi products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenting Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | | | - Zhen Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yiyi Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xuehua Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yinghong Qu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
5
|
Sudeep HV, Gouthamchandra K, Ramanaiah I, Raj A, Naveen P, Shyamprasad K. A standardized extract of Echinacea purpurea containing higher chicoric acid content enhances immune function in murine macrophages and cyclophosphamide-induced immunosuppression mice. PHARMACEUTICAL BIOLOGY 2023; 61:1211-1221. [PMID: 37585723 PMCID: PMC10416741 DOI: 10.1080/13880209.2023.2244000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/08/2023] [Accepted: 07/29/2023] [Indexed: 08/18/2023]
Abstract
CONTEXT Preparations of Echinacea have been used by herbalists to boost the immune system. OBJECTIVE In this study, Echinacea purpurea (L.) Moench (Asteraceae) extract with enriched chicoric acid content was investigated for immunomodulation. MATERIALS AND METHODS The standardized hydroalcoholic extract (4% chicoric acid) was prepared from the aerial parts of E. purpurea (SEP). The extract was screened for in vitro antioxidant activities, and immunomodulation in RAW 264.7 cells, at 200 and 400 µg/mL. Further, the male BALB/c mice (20-25 g) were divided into 4 groups (n = 6 per group). All the groups except control, were intraperitoneally injected with 70 mg/kg/day of cyclophosphamide (CTX) for 4 consecutive days. The treatment groups received SEP extract (100 and 200 mg/kg body weight) p.o. from day 5 to 14. RESULTS The SEP extract inhibited DPPH (IC50 = 106.7 µg/mL), ABTS+ (IC50 = 19.88 µg/mL) and nitric oxide (IC50 = 120.1 µg/mL). The SEP extract's ORAC (oxygen radical absorbance capacity) value was 1931.63 µM TE/g. In RAW 264.7 cells, SEP extract increased the nitric oxide production by 30.76- and 39.07-fold at 200 and 400 µg/mL, respectively, compared to the untreated cells. SEP extract significantly increased phagocytosis and cytokine release (TNF-α, IL-6, and IL-1β) in the cells. Further, the extract improved immune organ indices, lymphocyte proliferation and serum cytokine levels in CTX-induced mice. The extract at 200 mg/kg significantly increased the natural killer cell activity (24.6%) and phagocytic index (28.03%) of CTX mice. CONCLUSION Our results strongly support SEP extract with 4% chicoric acid as a functional ingredient for immunomodulation.
Collapse
Affiliation(s)
| | | | - Illuri Ramanaiah
- R&D Center for Excellence, Vidya Herbs Pvt Ltd, Bangalore, India
| | - Amritha Raj
- R&D Center for Excellence, Vidya Herbs Pvt Ltd, Bangalore, India
| | | | | |
Collapse
|
6
|
Liu J, Chen L, Li G, Tian Y, Zeng T, Xu W, Xu Q, Lu L, Gu T. Immunopromoter improves liver apoptosis and immune response in Shaoxing ducklings. Anim Biotechnol 2023; 34:4667-4674. [PMID: 36861935 DOI: 10.1080/10495398.2023.2183215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Antibiotics as feed additives, play a vital role in animal husbandry. However, overused antibiotics could cause endogenous infections in animals, and even endanger human health through the food chain. And immunopotentiators can make the low immune function improve and accelerate the induction of immune response. The aim of this study was to investigate the effects of five different immunopotentiators on the expression of liver apoptosis and immune factor related genes in Shaoxing ducklings (Anas Platyrhynchos). A total of 150 one-day-old Shaoxing ducklings were randomly divided into six groups including saline, chlorogenic acid, β-D-glucan, astragalus flavone, CpG DNA and chicken IgG, which were injected subcutaneously into the neck, respectively. At 18 days old, the liver tissues were collected to detecte the mRNA and protein expression levels of inflammatory and apoptosis-related genes. The results showed that compared with the control group, the mRNA and protein levels of liver Bcl2 with chlorogenic acid, β-D-glucan, astragalus flavone, CpG-DNA and chicken IgG were significantly decreased (p < 0.05), while the expression level of Caspase3 was up-regulated in some different degrees. In addition,The expression levels of liver iNOS and COX2 were significantly increased after the injection of five immunopotentiators (p < 0.05), and the mRNA levels of IFN-α, IFN-β, IL-1β, RIG-I, TLR3 and TLR7 genes were also significantly up-regulated compared with the control group (p < 0.05). In conclusion, chlorogenic acid, β-D-glucan, astragalus flavone, CpG-DNA and chicken IgG can be used as immunopotentiators to regulate duck innate immunity. This study provides a new way to prevent important infectious diseases of ducks, and also provides a certain reference for the application of antibiotic substitutes in animal production.
Collapse
Affiliation(s)
- Jinyu Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guoqin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qi Xu
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
7
|
Dai ZQ, Shang LJ, Wei YS, Li ZQ, Zeng XF, Chen MX, Wang XY, Li SY, Qiao S, Yu H. Immunomodulatory Effects of Microcin C7 in Cyclophosphamide-Induced Immunosuppressed Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12700-12714. [PMID: 37602796 DOI: 10.1021/acs.jafc.3c01033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Microcin C7 (McC) as a viable immunomodulator peptide can be a potential solution for pathogenic microbial infection in the post-antibiotic era and has gained substantial attention. This study was designed to evaluate the immunomodulatory activity of Microcin C7 in a cyclophosphamide (CTX)-induced immunodeficient mouse model. We show that Microcin C7 treatment significantly alleviated the CTX-caused body weight loss, improved the feed and water consumption to improve the state of the mice, and elevated the absolute number and proportion of peripheral blood lymphocytes as well as the level of hemoglobulin. We further aim to characterize the phenotypes of the immune function and intestinal health profiles. The results demonstrate that Microcin C7 treatment increased serum levels of immunoglobulin A (IgA), IgG, interleukin 6, and hemolysin, promoted splenic lymphocyte proliferation induced by concanavalin A and LPS, and enhanced the phagocytosis of peritoneal macrophages immunized by sheep red blood cells. Additionally, Microcin C7 treatment decreased levels of diamine oxidase and d-lactate, ameliorated CTX-induced intestinal morphological damage, and increased the levels of zonula occluden 1, occludin, claudin-1, mucin 2, and secretary IgA in the jejunum and colon. Moreover, Microcin C7 administration is sufficient to reverse CTX-induced intestinal microbiota dysbiosis by increasing the number of Lactobacillus and Bifidobacterium, decreasing the number of Escherichia coli in colonic contents. Collectively, our results demonstrate that Microcin C7 may have protective and immunomodulatory functions and could be a potential candidate used in animal feed, functional foods, and immunological regimens..
Collapse
Affiliation(s)
- Zi-Qi Dai
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry Center, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| | - Li-Jun Shang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry Center, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| | - Yu-Shu Wei
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, P. R. China
| | - Ze-Qiang Li
- Luzhou Modern Agriculture Development Promotion Center, Luzhou, Sichuan 646000, P. R. China
| | - Xiang-Fang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry Center, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| | - Mei-Xia Chen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xin-Yu Wang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry Center, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| | - Si-Yu Li
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry Center, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry Center, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| | - Haitao Yu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry Center, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| |
Collapse
|
8
|
Ablimit A, Yu Y, Jin X, Li JS. Effect of Momordica charantia polysaccharide on immunomodulatory activity in mice. Exp Ther Med 2023; 26:307. [PMID: 37273762 PMCID: PMC10236142 DOI: 10.3892/etm.2023.12006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/26/2022] [Indexed: 06/06/2023] Open
Abstract
Momordica charantia polysaccharides (MCPs) have been reported to exert beneficial roles, such as disease healing, in medicine and pharmacy. However, little is known about their effects on immunomodulation. The present study aimed to explore the possible effects of Momordica charantia polysaccharide (MCP) on the immunomodulatory activity of mice lymphocytes. To this aim, male BALB/c mice aged 6-8 weeks were assigned to the following six experimental groups: i) Normal (NG); ii) model (MG); iii) positive (PG); iv) MCP low-dose (MLG); v) MCP medium-dose (MMG); and vi) MCP high-dose (MHG). An immunosuppressive model was established by the intraperitoneal injection of cyclophosphamide in all groups apart from NG. The NG and MG mice were fed with distilled water, whereas the PG mice were administered with levamisole and the MLG, MMG and MHG mice were fed on low, medium and high (100, 200 and 300 mg/kg, respectively) doses of MCP for 21 consecutive days. Subsequently, the mice underwent surgical procedure and were analysed using a range of procedures, including measurement of the thymus index (TI) and spleen index (SI), assessment of the lymphocyte proliferation rate and cell phagocytosis of peritoneal macrophages, lymphocyte proliferation, secretion and mRNA expression of cytokines IFN-γ, IL-6 and IL-12. The mice divided into six groups as mentioned above and treated for 7 days, in the first 6 days, except NG group, mice in each group were desiccated in the abdominal cavity and sensitized by 1% dinitrofluorobenzene (DNFB). On day 6, mice were sensitized with 20 µl DNFB/acetone/olive oil solution behind the right ear and in front of the right ear. Compared with those in the NG mice (not injected with 80 mg/kg cyclophosphamide), the TIs and SIs of the PG, MLG, MMG and MHG mice were increased. In addition, the inhibitory rate of ear swelling and the phagocytic activity of peritoneal macrophages in the PG, MLG, MMG and MHG mice were increased compared with those of MG. Furthermore, the lymphocyte proliferation rate, the secretion and relative mRNA expression levels of cytokines IFN-γ, IL-6 and IL-12 were significantly increased in the PG, MMG and MHG mice compared with those in the NG mice. The results from the present study suggest that treatment with MCP led to an upregulation of the organ indices of immunosuppressed mice, reduced their delayed allergic reaction indicated by the differential cytokine levels, improved the phagocytic activity of peritoneal macrophages, enhanced the proliferation rate of lymphocytes, increased the secretion and expression of IFN-γ, IL-6 and IL-12. Therefore, MCP may improve the immune function of the immunosuppressed mice.
Collapse
Affiliation(s)
- Arzugul Ablimit
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yang Yu
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Xin Jin
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Jing-Shuang Li
- Department of Animal Husbandry Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
9
|
Zhao L, Cheng J, Liu D, Gong H, Bai D, Sun W. Potentilla anserina polysaccharide alleviates cadmium-induced oxidative stress and apoptosis of H9c2 cells by regulating the MG53-mediated RISK pathway. Chin J Nat Med 2023; 21:279-291. [PMID: 37120246 DOI: 10.1016/s1875-5364(23)60436-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 05/01/2023]
Abstract
Oxidative stress plays a crucial role in cadmium (Cd)-induced myocardial injury. Mitsugumin 53 (MG53) and its mediated reperfusion injury salvage kinase (RISK) pathway have been demonstrated to be closely related to myocardial oxidative damage. Potentilla anserina L. polysaccharide (PAP) is a polysaccharide with antioxidant capacity, which exerts protective effect on Cd-induced damage. However, it remains unknown whether PAP can prevent and treat Cd-induced cardiomyocyte damages. The present study was desgined to explore the effect of PAP on Cd-induced damage in H9c2 cells based on MG53 and the mediated RISK pathway. For in vitro evaluation, cell viability and apoptosis rate were analyzed by CCK-8 assay and flow cytometry, respectively. Furthermore, oxidative stress was assessed by 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) staining and using superoxide dismutase (SOD), catalase (CAT), and glutathione/oxidized glutathione (GSH/GSSG) kits. The mitochondrial function was measured by JC-10 staining and ATP detection assay. Western blot was performed to detect the expression of proteins related to MG53, the RISK pathway, and apoptosis. The results indicated that Cd increased the levels of reactive oxygen species (ROS) in H9c2 cells. Cd decreased the activities of SOD and CAT and the ratio of GSH/GSSG, resulting in decreases in cell viability and increases in apoptosis. Interestingly, PAP reversed Cd-induced oxidative stress and cell apoptosis. Meanwhile, Cd reduced the expression of MG53 in H9c2 cells and inhibited the RISK pathway, which was mediated by decreasing the ratio of p-AktSer473/Akt, p-GSK3βSer9/GSK3β and p-ERK1/2/ERK1/2. In addition, Cd impaired mitochondrial function, which involved a reduction in ATP content and mitochondrial membrane potential (MMP), and an increase in the ratio of Bax/Bcl-2, cytoplasmic cytochrome c/mitochondrial cytochrome c, and Cleaved-Caspase 3/Pro-Caspase 3. Importantly, PAP alleviated Cd-induced MG53 reduction, activated the RISK pathway, and reduced mitochondrial damage. Interestingly, knockdown of MG53 or inhibition of the RISK pathway attenuated the protective effect of PAP in Cd-induced H9c2 cells. In sum, PAP reduces Cd-induced damage in H9c2 cells, which is mediated by increasing MG53 expression and activating the RISK pathway.
Collapse
Affiliation(s)
- Lixia Zhao
- Institute of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; School of Nursing, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Ju Cheng
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Di Liu
- Key laboratory of Evidence Science Techniques Research and Application of Gansu Province, Gansu University of Political Science and Law, Lanzhou 730000, China
| | - Hongxia Gong
- School of Basic Medical Sciences, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Decheng Bai
- Institute of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wei Sun
- Department of Cardiac Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
10
|
Jiao Y, Li X, Huang X, Liu F, Zhang Z, Cao L. The Identification of SQS/ SQE/ OSC Gene Families in Regulating the Biosynthesis of Triterpenes in Potentilla anserina. Molecules 2023; 28:2782. [PMID: 36985754 PMCID: PMC10051230 DOI: 10.3390/molecules28062782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
The tuberous roots of Potentilla anserina (Pan) are an edible and medicinal resource in Qinghai-Tibetan Plateau, China. The triterpenoids from tuberous roots have shown promising anti-cancer, hepatoprotective, and anti-inflammatory properties. In this study, we carried out phylogenetic analysis of squalene synthases (SQSs), squalene epoxidases (SQEs), and oxidosqualene cyclases (OSCs) in the pathway of triterpenes. In total, 6, 26, and 20 genes of SQSs, SQEs, and OSCs were retrieved from the genome of Pan, respectively. Moreover, 6 SQSs and 25 SQEs genes expressed in two sub-genomes (A and B) of Pan. SQSs were not expanded after whole-genome duplication (WGD), and the duplicated genes were detected in SQEs. Twenty OSCs were divided into two clades of cycloartenol synthases (CASs) and β-amyrin synthases (β-ASs) by a phylogenetic tree, characterized with gene duplication and evolutionary divergence. We speculated that β-ASs and CASs may participate in triterpenes synthesis. The data presented act as valuable references for future studies on the triterpene synthetic pathway of Pan.
Collapse
Affiliation(s)
- Yangmiao Jiao
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, China; (Y.J.); (X.L.); (X.H.); (F.L.)
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmacy, Hunan University of Medicine, Huaihua 418000, China
| | - Xu Li
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, China; (Y.J.); (X.L.); (X.H.); (F.L.)
| | - Xueshuang Huang
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, China; (Y.J.); (X.L.); (X.H.); (F.L.)
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmacy, Hunan University of Medicine, Huaihua 418000, China
| | - Fan Liu
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, China; (Y.J.); (X.L.); (X.H.); (F.L.)
| | - Zaiqi Zhang
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, China; (Y.J.); (X.L.); (X.H.); (F.L.)
| | - Liang Cao
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, China; (Y.J.); (X.L.); (X.H.); (F.L.)
| |
Collapse
|
11
|
Luan G, Li L, Yue H, Li Y, Lü H, Wang Y. Phenols from Potentilla anserina L. Improve Insulin Sensitivity and Inhibit Differentiation in 3T3-L1 Adipocytes in Vitro. Chem Biodivers 2023; 20:e202200784. [PMID: 36717756 DOI: 10.1002/cbdv.202200784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Potentilla anserina L., a well-known perennial herb, is widely used in traditional Tibetan medicine and used as a delicious food in humans. The present investigation reports on the activity of P. anserina phenols (PAP) in regulating glycolipid metabolism in 3T3-L1 adipocytes. Insulin sensitivity tests showed that PAP improved insulin-stimulated glucose uptake by promoting the phosphorylation of serine/threonine kinase Akt. Moreover, an assay involving the differentiation of 3T3-L1 preadipocytes demonstrated that PAP also decreased the accumulation of lipid droplets by suppressing the expression of adipokines during the differentiation process. In addition, the underlying mechanism from the aspects of energy metabolism and oxidative stress is also discussed. The improvement in energy metabolism was supported by an increase in mitochondrial membrane potential (MMP) and intracellular ATP. Amelioration of oxidative stress was supported by decreased levels of intracellular reactive oxygen species (ROS). In summary, our findings suggest that PAP can ameliorate the disorder of glycolipid metabolism in insulin resistant 3T3-L1 adipocytes by improving energy metabolism and oxidative stress and might be an attractive candidate for the treatment of diabetes.
Collapse
Affiliation(s)
- Guangxiang Luan
- Department of Pharmacy, Medical Institute of Qinghai University, Xining, 810016, Qinghai, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, Qinghai, China
| | - Linlin Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, Qinghai, China
| | - Hongxia Yue
- Department of Pharmacy, Medical Institute of Qinghai University, Xining, 810016, Qinghai, China
| | - Yongfang Li
- Department of Pharmacy, Medical Institute of Qinghai University, Xining, 810016, Qinghai, China
| | - Huiling Lü
- Department of Pharmacy, Medical Institute of Qinghai University, Xining, 810016, Qinghai, China
| | - Yuwei Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, Qinghai, China
| |
Collapse
|
12
|
Shi J, Guo J, Chen L, Ding L, Zhou H, Ding X, Zhang J. Characteristics and anti-radiation activity of different molecular weight polysaccharides from Potentilla anserina L. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
13
|
Al Kury LT, Taha Z, Mahmod AI, Talib WH. Xanthium spinosum L. Extracts Inhibit Breast Cancer in Mice by Apoptosis Induction and Immune System Modulation. Pharmaceuticals (Basel) 2022; 15:ph15121504. [PMID: 36558955 PMCID: PMC9784301 DOI: 10.3390/ph15121504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Plants have been considered for many years as an important source of medicine to treat different diseases. Xanthium spinosum L. (Asteraceae, Compositae) is known for its diuretic, anti-inflammatory, and sedative effects. It is also used in the treatment of several ailments, such as cancer. In order to evaluate the anticancer and immunomodulatory activities, crude ethanol extract was prepared from the aerial part of X. spinosum and then fractionated using solvents with different polarities. As well, the chemical composition of X. spinosum extract and fractions were identified using LC-MS analysis. The antitumor effect of X. spinosum was assessed in both in vitro and in vivo models. Apoptosis induction was measured in vitro using a caspase-3 activity kit. Lymphocyte proliferation and phagocytosis and pinocytosis induction were used to quantify the effect of the plant extract and fractions on acquired and innate immunity, respectively. The effect of X. spinosum extract, and fractions on the levels of cytokines (IFN-γ, IL-2, IL-4, and IL-10) in murine lymphocytes was determined using a mouse-uncoated TH1/TH2 ELISA kit. Results showed that ethanol extract had the highest antiproliferative activity (IC₅₀ = 2.5 mg mL-1) against EMT6/P cell lines, while the aqueous and chloroform fractions had the highest apoptotic activity with 2.2 and 1.7 folds, respectively. On the other hand, the n-hexane fraction was the most effective in stimulating lymphocyte proliferation, whereas ethanol extract, aq. Methanol and aqueous fractions exhibited the highest phagocytic activity. As well, X. spinosum extract and fractions were able to modulate the expression of IL-2, IL-4, and IFN-γ. A remarkable decrease in tumor size was accomplished following the treatment of tumor-bearing mice with X. spinosum extract and fractions. Both aq. Methanol and chloroform fractions showed the highest percentage change in tumor size with -58 and -55%, respectively. As well, tumor-bearing mice treated with chloroform fraction demonstrated a high curable percentage with a value of 57.1%. Anyway, X. spinosum extract and fractions exhibited no toxic impact on the liver or kidney functions of the mice-treated groups. These findings may confirm that X. spinosum has favorable anticancer and immunomodulatory effects. However, additional studies are required to fully understand the mechanisms of action of this plant and the signaling pathways involved in its effects. Moreover, more testing is needed to have better insight into the apoptotic pathway and to know the exact concentration of active compounds.
Collapse
Affiliation(s)
- Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates
- Correspondence: (L.T.A.K.); (W.H.T.)
| | - Zainab Taha
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931-166, Jordan
| | - Wamidh H. Talib
- Faculty of Allied Medical Sciences, Applied Science Private University, Amman 11931-166, Jordan
- Correspondence: (L.T.A.K.); (W.H.T.)
| |
Collapse
|
14
|
Bushmeleva K, Vyshtakalyuk A, Terenzhev D, Belov T, Nikitin E, Zobov V. Antioxidative and Immunomodulating Properties of Aronia melanocarpa Extract Rich in Anthocyanins. PLANTS (BASEL, SWITZERLAND) 2022; 11:3333. [PMID: 36501372 PMCID: PMC9737032 DOI: 10.3390/plants11233333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The fruits of Aronia melanocarpa are well known due to their high anthocyanin content that may be effective in preventing certain health disorders arising from oxidative stress. Various polyphenolic compounds such as anthocyanins and flavonoids are responsible for the multiple effects of chokeberry. The aim of this study was to determine in vitro how active the black chokeberry anthocyanins are in scavenging radicals and to evaluate in vivo their immunomodulating capacity. Using the method of column chromatography, we extracted the anthocyanins of black chokeberries, i.e., cyanidin-3-O-galactoside with a purity of over 93.7%. Using HPLC and spectrophotometric analysis, the flavonoid content was determined. Following the analysis of the tests with AAPH and DPPH, the chokeberry cyanidin-3-O-galactoside was found much better than individual anthocyanins in regard to antioxidant capacity. The range of concentrations was revealed, showing the protective effect of anthocyanins on the RPMI-1788 cell culture against cyclophosphamide, as well as against osmotic and peroxide hemolysis. An immunomodulating effect on the functional activity of phagocytes was revealed in vivo as a result of oral administration of chokeberry cyanidin-3-O-galactoside and a mixture composed of cyanidin-3-O-glucoside and cyanidin-3-O-galactoside standards. Consequently, anthocyanins, in particular cyanidin-3-O-galactoside, play an important role, demonstrating immunomodulating effects when chokeberries are consumed.
Collapse
|
15
|
Zhang T, Liu H, Ma P, Huang J, Bai X, Liu P, Zhu L, Min X. Immunomodulatory effect of polysaccharides isolated from Lonicera japonica Thunb. in cyclophosphamide-treated BALB/c mice. Heliyon 2022; 8:e11876. [DOI: 10.1016/j.heliyon.2022.e11876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/14/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
|
16
|
Tang C, Li X, Chen J, Liang J, Wang T, Li Y. Characterization and phylogenetic relationship of the complete chloroplast genome of a Chinese traditional medicinal plant Potentilla anserina L. Mitochondrial DNA B Resour 2022; 7:1653-1655. [PMID: 36147363 PMCID: PMC9487938 DOI: 10.1080/23802359.2022.2119817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Potentilla anserina L. is an important traditional Chinese medicinal herb and edible plant with a long usage history. As an indispensable sustainable resource, it has various pharmacological functions and active ingredients. Here, we report its complete chloroplast (cp) genome for the first time. The complete chloroplast genome of Potentilla anserina L. (OL678458) was 155,659 bp in length and contained a pair of inverted repeat regions (IRa and IRb, 25,947 bp), a large single-copy region (LSC, 85,052 bp), and a small single-copy region (SSC, 18,713 bp). A total of 118 functional genes were observed in this cp genome, including 80 protein-coding genes, 30 transfer RNA genes, and eight ribosomal RNA genes. Phylogenetic analysis indicated that P. anserina has the closest relationship with Potentilla lineata.
Collapse
Affiliation(s)
- Chuyu Tang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining, China
| | - Xiuzhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining, China
| | - Jianbo Chen
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining, China
| | - Jing Liang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining, China
| | - Tao Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining, China
| | - Yuling Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining, China
| |
Collapse
|
17
|
Luan G, Yang M, Nan X, Lv H, Liu Q, Wang Y, Li Y. Optimization and Comparative Study of Different Extraction Methods of Sixteen Fatty Acids of Potentilla anserina L. from Twelve Different Producing Areas of the Qinghai-Tibetan Plateau. Molecules 2022; 27:5443. [PMID: 36080209 PMCID: PMC9457940 DOI: 10.3390/molecules27175443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022] Open
Abstract
In this study, supercritical fluid extraction (SFE), ultrasonic-assisted extraction (UAE), and microwave-assisted extraction (MAE) were applied to explore the most suitable extraction method for fatty acids of Potentilla anseris L. from 12 different producing areas of the Qinghai-Tibetan Plateau. Meanwhile, the important experimental parameters that influence the extraction process were investigated and optimized via a Box-Behnken design (BBD) for response surface methodology (RSM). Under optimal extraction conditions, 16 fatty acids of Potentilla anserina L. were analyzed via high-performance liquid chromatography (HPLC) with fluorescence detection, using 2-(4-amino)-phenyl-1-hydrogen-phenanthrene [9,10-d] imidazole as the fluorescence reagent. The results showed that the amounts of total fatty acids in sample 6 by applying SFE, UAE, and MAE were, respectively, 16.58 ± 0.14 mg/g, 18.11 ± 0.13 mg/g, and 15.09 ± 0.11 mg/g. As an environmental protection technology, SFE removed higher amounts of fatty acids than did MAE, but lower amounts of fatty acids than did UAE. In addition, the contents of the 16 fatty acids of Potentilla anserina L. from the 12 different producing areas Qinghai-Tibetan Plateau were significantly different. The differences were closely related to local altitudes and to climatic factors that corresponded to different altitudes (e.g., annual mean temperature, annual mean precipitation, annual evaporation, annual sunshine duration, annual solar radiation.). The temperature indices, photosynthetic radiation, ultraviolet radiation, soil factors, and other factors were different due to the different altitudes in the growing areas of Potentilla anserina L., which resulted in different nutrient contents.
Collapse
Affiliation(s)
- Guangxiang Luan
- Department of Pharmacy, Medical College, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Mei Yang
- Department of Pharmacy, Medical College, Qinghai University, Xining 810016, China
| | - Xingmei Nan
- Department of Pharmacy, Medical College, Qinghai University, Xining 810016, China
| | - Huiling Lv
- Department of Pharmacy, Medical College, Qinghai University, Xining 810016, China
| | - Qi Liu
- Department of Pharmacy, Medical College, Qinghai University, Xining 810016, China
| | - Yuwei Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Yongfang Li
- Department of Pharmacy, Medical College, Qinghai University, Xining 810016, China
| |
Collapse
|
18
|
Han Y, Zhang Y, Ouyang K, Chen L, Zhao M, Wang W. Sulfated Cyclocarya paliurus polysaccharides improve immune function of immunosuppressed mice by modulating intestinal microbiota. Int J Biol Macromol 2022; 212:31-42. [PMID: 35597376 DOI: 10.1016/j.ijbiomac.2022.05.110] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/07/2022] [Accepted: 05/14/2022] [Indexed: 01/03/2023]
Abstract
The study was aimed to investigate the effect of Cyclocarya paliurus polysaccharides (CPP) and the sulfation derivative (S-CPP) on modulate intestinal mucosal immunity and intestinal microbiota in cyclophosphamide-induced mice. The results showed that CPP and S-CPP effectively alleviated intestinal villi injury, enhanced the contents of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in small intestinal tissue and serum, and upregulated IL-1β at gene levels, zonula occludens-1 (ZO-1), Occludin and Claudin-1 at gene and protein levels, thereby promoting the repair of intestinal mechanical barrier and enhancing intestinal mucosal immunity. Moreover, the beneficial modulation of CPP and S-CPP on the overall structure of intestinal microbiota was revealed by performing 16S ribosomal RNA (16S rRNA) sequencing. Sulfated modification could improve the protection of CPP on the intestinal barrier and the regulation of systemic immunity. S-CPP had a stronger potential to reduce the damage of cyclophosphamide (Cy) on immunity and intestinal microbiota.
Collapse
Affiliation(s)
- Yi Han
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China; School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yang Zhang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Kehui Ouyang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lingli Chen
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Meng Zhao
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenjun Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
19
|
AL-ataby IA, Talib WH. Daily Consumption of Lemon and Ginger Herbal Infusion Caused Tumor Regression and Activation of the Immune System in a Mouse Model of Breast Cancer. Front Nutr 2022; 9:829101. [PMID: 35495945 PMCID: PMC9043650 DOI: 10.3389/fnut.2022.829101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/21/2022] [Indexed: 12/24/2022] Open
Abstract
The Mediterranean diet includes the consumption of various fruits and vegetables. Lemon and ginger are highly popular in Mediterranean cuisine. The current study aims to evaluate both anticancer and immunomodulatory activities of lemon and ginger combination. The antiproliferative activities of the combination were tested against different cancer cell lines using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay. The degree of apoptosis induction and vascular endothelial growth factor expression were detected using ELISA. Balb/C mice were inoculated with the EMT6/P breast cancer cells and received combination water extract orally for 14 days. The effect of the water extract on splenocytes proliferation was measured using the mitogen proliferation assay. Macrophage function was evaluated using the nitro blue tetrazolium assay and pinocytosis was assessed using the neutral red method. Gas chromatography coupled to the tandem mass spectrometry was used to determine the composition of the combination. The lemon and ginger combination showed significant apoptosis induction and angiogenesis suppression effects. Fifty percent of the mice taking this combination did not develop tumors with a percentage of tumor reduction of 32.8%. This combination showed a potent effect in stimulating pinocytosis. Alpha-pinene and α-terpineol were detected in high percentages in the combination water extract. The lemon and ginger combination represents promising options to develop anticancer infusions for augmenting conventional anticancer therapies. Further testing is required to understand the exact molecular mechanisms of this combination.
Collapse
|
20
|
Kurskaya O, Prokopyeva E, Bi H, Sobolev I, Murashkina T, Shestopalov A, Wei L, Sharshov K. Anti-Influenza Activity of Medicinal Material Extracts from Qinghai–Tibet Plateau. Viruses 2022; 14:v14020360. [PMID: 35215953 PMCID: PMC8878895 DOI: 10.3390/v14020360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
To discover sources for novel anti-influenza drugs, we evaluated the antiviral potential of nine extracts from eight medicinal plants and one mushroom (Avena sativa L., Hordeum vulgare Linn. var. nudum Hook. f., Hippophae rhamnoides Linn., Lycium ruthenicum Murr., Nitraria tangutorum Bobr., Nitraria tangutorum Bobr. by-products, Potentilla anserina L., Cladina rangiferina (L.) Nyl., and Armillaria luteo-virens) from the Qinghai–Tibetan plateau against the influenza A/H3N2 virus. Concentrations lower than 125 μg/mL of all extracts demonstrated no significant toxicity in MDCK cells. During screening, seven extracts (A. sativa, H. vulgare, H. rhamnoides, L. ruthenicum, N. tangutorum, C. rangiferina, and A. luteo-virens) exhibited antiviral activity, especially the water-soluble polysaccharide from the fruit body of the mushroom A. luteo-virens. These extracts significantly reduced the infectivity of the human influenza A/H3N2 virus in vitro when used at concentrations of 15.6–125 μg/mL. Two extracts (N. tangutorum by-products and P. anserina) had no A/H3N2 virus inhibitory activity. Notably, the extract obtained from the fruits of N. tangutorum and N. tangutorum by-products exhibited different anti-influenza effects. The results suggest that extracts of A. sativa, H. vulgare, H. rhamnoides, L. ruthenicum, N. tangutorum, C. rangiferina, and A. luteo-virens contain substances with antiviral activity, and may be promising sources of new antiviral drugs.
Collapse
Affiliation(s)
- Olga Kurskaya
- Laboratory of Molecular Epidemiology and Biodiversity of Viruses, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (I.S.); (T.M.); (A.S.); (K.S.)
- Correspondence: (O.K.); (E.P.)
| | - Elena Prokopyeva
- Laboratory of Molecular Epidemiology and Biodiversity of Viruses, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (I.S.); (T.M.); (A.S.); (K.S.)
- Medical Department, Novosibirsk State University, Novosibirsk 630090, Russia
- Correspondence: (O.K.); (E.P.)
| | - Hongtao Bi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China;
| | - Ivan Sobolev
- Laboratory of Molecular Epidemiology and Biodiversity of Viruses, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (I.S.); (T.M.); (A.S.); (K.S.)
| | - Tatyana Murashkina
- Laboratory of Molecular Epidemiology and Biodiversity of Viruses, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (I.S.); (T.M.); (A.S.); (K.S.)
| | - Alexander Shestopalov
- Laboratory of Molecular Epidemiology and Biodiversity of Viruses, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (I.S.); (T.M.); (A.S.); (K.S.)
| | - Lixin Wei
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China;
| | - Kirill Sharshov
- Laboratory of Molecular Epidemiology and Biodiversity of Viruses, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (I.S.); (T.M.); (A.S.); (K.S.)
| |
Collapse
|
21
|
Chromosome-Level Genome Assembly Provides New Insights into Genome Evolution and Tuberous Root Formation of Potentilla anserina. Genes (Basel) 2021; 12:genes12121993. [PMID: 34946942 PMCID: PMC8700974 DOI: 10.3390/genes12121993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
Potentilla anserina is a perennial stoloniferous plant with edible tuberous roots in Rosaceae, served as important food and medicine sources for Tibetans in the Qinghai-Tibetan Plateau (QTP), China, over thousands of years. However, a lack of genome information hindered the genetic study. Here, we presented a chromosome-level genome assembly using single-molecule long-read sequencing, and the Hi-C technique. The assembled genome was 454.28 Mb, containing 14 chromosomes, with contig N50 of 2.14 Mb. A total of 46,495 protein-coding genes, 169.74 Mb repeat regions, and 31.76 Kb non-coding RNA were predicted. P. anserina diverged from Potentilla micrantha ∼28.52 million years ago (Mya). Furthermore, P. anserina underwent a recent tetraploidization ∼6.4 Mya. The species-specific genes were enriched in Starch and sucrose metabolism and Galactose metabolism pathways. We identified the sub-genome structures of P. anserina, with A sub-genome was larger than B sub-genome and closer to P. micrantha phylogenetically. Despite lacking significant genome-wide expression dominance, the A sub-genome had higher homoeologous gene expression in shoot apical meristem, flower and tuberous root. The resistance genes was contracted in P. anserina genome. Key genes involved in starch biosynthesis were expanded and highly expressed in tuberous roots, which probably drives the tuber formation. The genomics and transcriptomics data generated in this study advance our understanding of the genomic landscape of P. anserina, and will accelerate genetic studies and breeding programs.
Collapse
|
22
|
Chun SH, Lee KW. Immune-enhancing effects of β-lactoglobulin glycated with lactose following in vitro digestion on cyclophosphamide-induced immunosuppressed mice. J Dairy Sci 2021; 105:623-636. [PMID: 34763913 DOI: 10.3168/jds.2021-20681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/16/2021] [Indexed: 11/19/2022]
Abstract
β-Lactoglobulin (β-LG) is a major milk protein, making up more than 53% of the total whey proteins, and is seen as a valuable ingredient in food processing because of its high essential amino acid content and diverse functional applications. The Maillard reaction can occur during the storage and processing of food and generate various beneficial effects, including anti-allergenicity, antioxidant, and immunomodulatory effects. The addition of an β-LG-lactose conjugate (LGL) produced by the Maillard reaction was shown to have a strong immune-enhancing effect, increasing both nitric oxide generation and cytokine expression through activation of RAW 264.7 cells, even after in vitro digestion. Furthermore, daily LGL administration resulted in the upregulation of several immune markers in a cyclophosphamide-induced immunosuppressive mouse model, indicating that this treatment stimulates multiple immune cells, including macrophages, natural killer cells, and lymphocytes, enhancing the proliferation and activation of both the innate and adaptive immune responses. Taken together, these findings indicate that consuming LGL on a regular basis can improve immunity by increasing the natural production of various immune cells.
Collapse
Affiliation(s)
- Su-Hyun Chun
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; Institute of Biomedical Science and Food Safety, Korea University, Anam-dong, Sungbuk-Gu, Seoul 02841, Republic of Korea
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
23
|
He L, Liu N, Wang K, Zhang L, Li D, Wang Z, Xu G, Liu Y, Xu Q. Rosamultin from Potentilla anserine L. exhibits nephroprotection and antioxidant activity by regulating the reactive oxygen species/C/EBP homologous protein signaling pathway. Phytother Res 2021; 35:6343-6358. [PMID: 34533242 DOI: 10.1002/ptr.7285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 01/06/2023]
Abstract
Rosamultin, a major bioactive constituent from Potentilla anserine L., has antioxidative and hepatoprotective activities. However, its protective effects on cisplatin-induced acute renal injury and the underlying mechanisms remain elusive. In this work, rosamultin could enhance the viability of HEK293 cells treated by cisplatin. In vivo experiment showed that rosamultin effectively decreased kidney index, reduced blood urea nitrogen level, decreased urinary protein excretion, and ameliorated the histopathological damage and fibrosis of renal tissue induced by cisplatin. Besides, rosamultin showed no obvious toxicity in mice. SILAC-based quantitative proteomic analysis identified 4,461 proteins and eight proteins including C/EBP homologous protein (CHOP) were markedly decreased in cisplatin-treated HEK293 cells when exposed to rosamultin. Biochemical experiments further discovered that rosamultin could inhibit p38 and JNK activation, and downregulate the levels of CHOP and proteins in its upstream PERK-eIF2α-ATF4 signaling pathway stimulated by cisplatin or tunicamycin. At the same time, rosamultin reduced the generation of intracellular ROS induced by cisplatin and enhanced the activities of antioxidant enzymes such as SOD, GSH, and CAT. Moreover, rosamultin markedly suppressed the expression of CHOP, apoptosis-associated proteins, and activation of p38 and JNK in renal tissue. These findings suggest that rosamultin might be a potential protectant against cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Luan He
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Ning Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Kexin Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Ling Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Dan Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Zhixiang Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Yanli Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Qiongming Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
24
|
Yang D, Han N, Wang YW, Zhai JX, Liu ZH, Li SK, Yin J. Pentacyclic Triterpenoid Saponins, Poterinasides A-J, from Silverweed Cinquefoil Roots Promising Hepatoprotective and Anti-inflammatory Agents. J Org Chem 2021; 86:11220-11236. [PMID: 34288682 DOI: 10.1021/acs.joc.1c00812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Silverweed cinquefoil roots, as dietary supplements, foods, and medicines, are widely used in western areas of China, specifically in Tibet Autonomous Region and Gansu and Qinghai Provinces. In this paper, 10 new natural pentacyclic triterpenoid saponins (1-10), named poterinasides A-J, along with 14 known compounds (11-24) were isolated and purified from silverweed cinquefoil roots. The chemical structures of 1-10 were established by extensive analysis of 1D and 2D NMR data and mass spectrometric data. Poterinasides A (1), B (2), and G (7) with the unique position of substituents on the E ring had never been discovered in natural products before. Saponins 1-8, 14, and 22 displayed potent hepatoprotective activities, and 1-8, 10, 11, 14, 16, 19, and 22-24 showed outstanding anti-inflammatory effects. On the basis of the present results, some structure-activity relationships were summarized, in which 3α-OH, 19β-CH3, 20α-CH3, 20β-CH3, 21α-OH, and 30-OH groups in isolated pentacyclic triterpenoid saponins were found to strengthen the hepatoprotective and anti-inflammatory activities, respectively. Further, the following pharmacophore-based virtual screening and docking studies on special targets proteins, SIRT1 and COX-2, revealed roughly similar results with the structure-activity relationships, and this combination method was used for the first time for active natural compound screening.
Collapse
Affiliation(s)
- Dan Yang
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Na Han
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu-Wei Wang
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian-Xiu Zhai
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhi-Hui Liu
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Si-Kai Li
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jun Yin
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
25
|
Shi J, Liu Z, Li M, Guo J, Chen L, Ding L, Ding X, Zhou T, Zhang J. Polysaccharide from Potentilla anserina L ameliorate pulmonary edema induced by hypobaric hypoxia in rats. Biomed Pharmacother 2021; 139:111669. [PMID: 34243609 DOI: 10.1016/j.biopha.2021.111669] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/29/2021] [Accepted: 04/24/2021] [Indexed: 02/04/2023] Open
Abstract
High-altitude pulmonary edema (HAPE) is a life-threatening disease occurs in hypobaric hypoxia (HH) environment, which could be treated by Dexamethasone, but might cause side-effects. Potentilla anserina L polysaccharide (PAP) holds promising physiological and pharmacological properties which could be beneficial for HAPE treatment. In our study, the anti-hypoxia effect of PAP was firstly investigated through anti-normobaric hypoxia test and anti-acute hypoxia test. Then we established a model of HAPE and measured the lung water content, pathological changes and MDA, NO, SOD, GSH concentrations in lung tissues. We also evaluated the protein and mRNA levels of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, VEGF, NF-κB and HIF-1α) by ELISA kits, RT-PCR and Western blotting. As expected, PAP could dramatically reduce the lung water content, alleviate lung tissue injury, and inhibit MDA and NO production, it also promote SOD activity and GSH expression. In addition, it has been found that PAP blocked the NF-κB and HIF-1α signaling pathway activation, inhibited the generation of downstream pro-inflammatory cytokines. Therefore, PAP provides great potential in HAPE treatment mainly through suppression of oxidative stress and inflammatory suppression.
Collapse
Affiliation(s)
- Jipeng Shi
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China; PLA Key Laboratory of the Plateau Environment Damage Control, Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese PLA, Lanzhou 730050, China
| | - Zhao Liu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Soochow University, Suzhou 215006, China
| | - Maoxing Li
- PLA Key Laboratory of the Plateau Environment Damage Control, Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese PLA, Lanzhou 730050, China
| | - Jie Guo
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China
| | - Lele Chen
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China
| | - Ling Ding
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China
| | - Xu Ding
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China
| | - Tao Zhou
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China.
| |
Collapse
|
26
|
Chen X, Wang S, Chen G, Wang Z, Kan J. The immunomodulatory effects of Carapax Trionycis ultrafine powder on cyclophosphamide-induced immunosuppression in Balb/c mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2014-2026. [PMID: 32949169 DOI: 10.1002/jsfa.10819] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/14/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND There are abundant resources of Carapax Trionycis from soft-shelled turtle processing wastes each year in China. Our preliminary work showed that Carapax Trionycis ultrafine powder (CTUP) obtained using ball-milling with a particle size of 2.24 μm (D0.025) contained more active ingredients. The CTUP D0.025 has a good bioaccessibility, but there has been no report about the immunomodulatory function of CTUP. Therefore, using a cyclophosphamide-induced immunosuppression mice model, we investigated the immunomodulatory effects of CTUP D0.025. RESULTS The results indicated that CTUP D0.025 administration significantly improved the immune organ (bone marrow, thymus and spleen) indices, ameliorated spleen tissue morphology and increased the capacity of splenocyte proliferation and the activity of macrophage phagocytosis. CTUP D0.025 also significantly promoted the secretion of cytokines (IL-2, IL-4, IL-10, IFN-γ and TNF-α), improved the related mRNA expression levels of IL2, IFN-γ, T-bet and GATA3 in immunosuppressed mice and increased the production of serum hemolysin and the levels of IgG, IgM as well as complement C3 . Moreover, CTUP D0.025 administration enhanced the antioxidant capacity of mice, exhibited a moderating effect on the damage of bone and skeletal muscle and improved the recovery of bone mineral density and calcium metabolism. CONCLUSIONS These findings demonstrated that CTUP D0.025 had an effective immune-enhancing function in immunosuppressive Balb/c mice and also exhibited anti-osteoporosis properties. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuhui Chen
- College of Food Science, Southwest University, Chongqing, PR China
- Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing, PR China
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, PR China
| | - Shasha Wang
- College of Food Science, Southwest University, Chongqing, PR China
- Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing, PR China
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, PR China
| | - Guangjing Chen
- College of Food and Pharmaceutical Engineering, Guiyang University, Guiyang, PR China
| | - Zhirong Wang
- College of Food Science, Southwest University, Chongqing, PR China
- Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing, PR China
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, PR China
| | - Jianquan Kan
- College of Food Science, Southwest University, Chongqing, PR China
- Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing, PR China
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, PR China
| |
Collapse
|
27
|
Kury LTA, Taha Z, Talib WH. Immunomodulatory and Anticancer Activities of Hyacinthus orientalis L.: An In Vitro and In Vivo Study. PLANTS (BASEL, SWITZERLAND) 2021; 10:617. [PMID: 33805000 PMCID: PMC8063964 DOI: 10.3390/plants10040617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022]
Abstract
Hyacinthus orientalis L. (family Hyacinthaceae) is traditionally used to treat different diseases including cancer. In this study, the anticancer and immunomodulatory effects of this plant were evaluated. Hydroalcoholic extract was prepared, and different solvent fractions were obtained using solvent-solvent extraction. In the anticancer part, MTT assay and caspase-3 ELISA kits were used to measure the antiproliferative and apoptosis induction ability for each extract, respectively. In the immunomodulatory part, lymphocyte proliferation assay and cytokines detection kit were used to measure the effect of extracts of acquired immunity. Phagocytosis and pinocytosis induction were used to evaluate the effect of extracts on the innate immunity. GC-MS, LC-MS, and Foline-Ciocalteu assays were used to identify the chemical composition of the plant. Balb/C mice were inoculated with breast cancer and treated with hydroalcoholic extract of H. orientalis L. Results showed that hydroalcoholic extract and n-hexane fraction were highly effective in apoptosis induction. Both extract and fraction were also effective in stimulating lymphocytes proliferation and phagocytosis. Significant reduction in tumor size was achieved after treating tumor-bearing mice with hydroalcoholic extract. Additionally, high cure percentages (50%) were obtained in treated mice. Results of this study showed that H. orientalis L. has promising anticancer and immunomodulatory activities. However, further studies are needed to explore more details of apoptosis induction ability and other mechanisms of action and to measure different signaling pathways responsible for the anticancer and immunomodulatory response.
Collapse
Affiliation(s)
- Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates;
| | - Zainab Taha
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates;
| | - Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| |
Collapse
|
28
|
Augustynowicz D, Latté KP, Tomczyk M. Recent phytochemical and pharmacological advances in the genus Potentilla L. sensu lato - An update covering the period from 2009 to 2020. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113412. [PMID: 32987127 DOI: 10.1016/j.jep.2020.113412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/12/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Potentilla plants are still common herbal medicines used in folk medicine. This review provides an update of research undertaken on Potentilla from 2009 until 2020. AIM OF THE STUDY This comprehensive review considers biological updates, recent advances in phytochemical and pharmacological research, and toxicological reports on Potentilla sensu lato based on available data since 2009. METHODS A literature search was conducted using available databases including ScienceDirect, PubMed, Scopus, Web of Science, China National Knowledge Infrastructure and Google Scholar. RESULTS Until now, more than 210 new and known compounds, including flavonoids, tannins, triterpenes and phenolic compounds, have been confirmed and elucidated for numerous Potentilla species, i.e., in the underground and aerial parts of this genus. Modern pharmacology studies have revealed that those structures are responsible for a broad spectrum of pharmacological activities, such as anti-neoplastic, antihyperglycemic, anti-inflammatory, antioxidant, hepatoprotective, neuroprotective, antibacterial and anti-yeast effects. CONCLUSIONS However, in vitro studies must be re-considered due to the discovery of urolithins and their origins, including microbiota, which can lead to different results when applying Potentilla species and their extracts to in vivo conditions. Thus, future research should focus more on in vivo and particularly clinical studies to confirm the validity and safety of traditional uses. Particularly, the use of Potentilla alba extracts in the treatment of thyroid gland disorders should be further explored to confirm the underlying mechanism of their action, efficacy and safety. In addition, more clinical studies should focus on Potentilla erecta rhizome extracts for application as herbal remedies against dysentery, diarrhoea and inflammation of the skin.
Collapse
Affiliation(s)
- Daniel Augustynowicz
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Białystok, ul. Mickiewicza 2a, 15-230, Białystok, Poland
| | | | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Białystok, ul. Mickiewicza 2a, 15-230, Białystok, Poland.
| |
Collapse
|
29
|
Liu K, Li XY, Luo JP, Zha XQ. Bioactivities. Food Hydrocoll 2021. [DOI: 10.1007/978-981-16-0320-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Akhtar HMS, Ye Z, Abdin M, Hamed YS, Chen G, Zeng X. Immunomodulatory Activity in vitro and in vivo of Polysaccharides from Kabuli Chickpea ( Cicer arietinum L.) Hull. Food Technol Biotechnol 2020; 58:370-380. [PMID: 33505200 PMCID: PMC7821783 DOI: 10.17113/ftb.58.04.20.6634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Research background Polysaccharides isolated from plants, fungi and bacteria are associated with immunomodulatory effects. Chickpea hull, which is regarded as food industrial waste, contains considerable amount of antioxidants and bioactive compounds. Experimental approach In the present study, we investigated the immunomodulatory activity of polysaccharides from kabuli chickpea (Cicer arietinum L.) hull (CHPS). In vitro study was conducted with RAW264.7 cell line while in vivo study was carried out using specific pathogen-free BALB/c mouse animal model. Results and discussion In in vitro test with RAW264.7 murine macrophage cells, the three purified fractions of chickpea hull polysaccharides showed potent immunomodulatory activity. Sample CHPS-3 showed stronger effect on cell viability, promoted the phagocytosis index to a greater extent and had the best effect on acid phosphatase activity. Moreover, it was found that CHPS-3 significantly (p<0.05) enhanced the secretion of nitrogen monoxide and cytokine (interleukins IL-6, IL-1β and tumor necrosis factor-alpha (TNF-α)) levels. In in vivo study, CHPS-3 improved thymus and spleen indices in cyclophosphamide-induced immunodeficient mice. Increased activities of lysozyme, catalase, superoxide dismutase and glutathione peroxidase, serum haemolysin content and total antioxidant capacity were observed, while the amount of malondialdehyde in the liver decreased. Novelty and scientific contribution The results suggest that chickpea hull polysaccharides enhanced the immune activity and could be developed as the ingredient of functional foods.
Collapse
Affiliation(s)
| | - Zipeng Ye
- College of Food Science and Technology, Nanjing Agricultural University, Weigang 1, 210095 Nanjing, PR China
| | - Mohamed Abdin
- College of Food Science and Technology, Nanjing Agricultural University, Weigang 1, 210095 Nanjing, PR China
| | - Yahya Saud Hamed
- College of Food Science and Technology, Nanjing Agricultural University, Weigang 1, 210095 Nanjing, PR China
| | - Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Weigang 1, 210095 Nanjing, PR China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Weigang 1, 210095 Nanjing, PR China
| |
Collapse
|
31
|
Immunostimulatory Effects of Polysaccharides from Spirulina platensis In Vivo and Vitro and Their Activation Mechanism on RAW246.7 Macrophages. Mar Drugs 2020; 18:md18110538. [PMID: 33126624 PMCID: PMC7692637 DOI: 10.3390/md18110538] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 01/28/2023] Open
Abstract
In this study, Spirulina platensis (S.p.) polysaccharide (PSP) was obtained by ultrasonic-microwave-assisted extraction (UMAE) and purified by an aqueous two-phase system (ATPS). Two different methods were applied to purified Spirulina platensis (S.p.) polysaccharide (PSP), respectively, due to PSP as a complex multi-component system. Three polysaccharide fractions (PSP-1, PSP-2, and PSP-3) with different acidic groups were obtained after PSP was fractionated by the diethyl aminoethyl (DEAE)-52 cellulose chromatography, and two polysaccharide fractions (PSP-L and PSP-H) with different molecular weight were obtained by ultrafiltration centrifugation. The chemoprotective effects of PSP in cyclophosphamide (Cy) treated mice were investigated. The results showed that PSP could significantly increase spleen and thymus index, peripheral white blood cells (PWBC), and peripheral blood lymphocytes (PBL). The in vivo immunostimulatory assays demonstrated that PSP could in dose-dependent increase of TNF-α, IL-10, and IFN-γ production in sera. The in vitro immunostimulatory assays showed that PSP and its fractions (PSPs) could evidently enhance the proliferation of splenocytes and RAW 264.7 cells and increase the productions of nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6). PSPs could also enhance phagocytic activity of RAW 264.7 cells. The acidic polysaccharide fractions of PSP-2, PSP-3, and PSP-L with small molecular weight had the higher immunostimulatory activity. Signaling pathway research results indicated that PSP-L activated RAW264.7 cells through MAPKs, NF-κB signaling pathways via TLR4 receptor.
Collapse
|
32
|
Characterization of antioxidant, α-glucosidase and tyrosinase inhibitors from the rhizomes of Potentilla anserina L. and their structure-activity relationship. Food Chem 2020; 336:127714. [PMID: 32828014 DOI: 10.1016/j.foodchem.2020.127714] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 01/27/2023]
Abstract
Five new flavonoids (1-5), along with 25 known compounds, were isolated from the rhizomes of Potentilla anserina L. and their structures were identified using spectroscopic and chemical evidence. The extract, all fractions, and all isolated compounds were evaluated for their antioxidant, α-glucosidase, and tyrosinase inhibitory activities, and their structure-activity relationship was interpreted. The biflavanols and quercetin-3-O-α-l-rhamnopyranoside-2″-gallate (14) exhibited significant antioxidant and α-glucosidase inhibition activities. In this study, anti-tyrosinase activity and its mechanism of active compounds (potenserin C (4), potenserin D (5), and quercetin-3-O-α-l-rhamnopyranoside-2″-gallate (14)) were explored by a combination of computational simulations and kinetic studies. Kinetic studies indicated that potenserin C (4) and quercetin-3-O-α-l-rhamnopyranoside-2″-gallate (14) inhibited tyrosinase in a competitive manner, whereas potenserin D (5) acted in a reversible noncompetitive manner. The molecular docking result indicated that the substitution of the glucose moiety with galloyl and the presence of 3', 4', 5'-OH in flavonoid aglycones played a crucial role for the tyrosinase inhibiting effect. Moreover, the presence of biflavanols increased the activity against tyrosinase because of strong hydrogen binding, π-alkyl binding, and electrostatic interaction. Thus, the presented experiments developed several new lead compounds that could act as antioxidants and α-glucosidase inhibitors. Furthermore, biflavanols and quercetin-3-O-α-l-rhamnopyranoside-2″-gallate played important roles in the anti-browning activity during food processing.
Collapse
|
33
|
Potentilla alba Extracts Affect the Viability and Proliferation of Non-Cancerous and Cancerous Colon Human Epithelial Cells. Molecules 2020; 25:molecules25133080. [PMID: 32640760 PMCID: PMC7411782 DOI: 10.3390/molecules25133080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to determine the anti-tumor activity of extracts isolated from Potentilla alba L. on human colon cancer cells of the HT-29 line and on non-cancer colon epithelial cells of the CCD 841 CoTr line. The research methods we used to determine the cytotoxic and proliferative properties were 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and neutral red (NR) assays, the ability to produce nitric oxide, the Griess method, and the biochemical properties like 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) methods indicating reduction activity of tested samples. In order to obtain a phytochemical profile of the different extracts an analytical method based on liquid chromatography-photodiode array detection-electrospray ionization ion-trap time-of-flight mass spectrometry (LC-PDA-ESI-MS/TOF) was applied. Finally, the effects of the extracts on the morphology and cell counts were assessed by May–Grünwald–Giemsa staining. After a comprehensive analysis of all the experiments, the extracts were found to demonstrate cytotoxic properties, they stimulated the division of non-cancer cells, and they were able to scavenge free radicals. In the NR method, the cell viability dropped to approximately 80% compared to the control. In the MTT assay, tumor cell proliferation decreased to 9.5% compared to the control. Therefore, we concluded that this plant has medical potential.
Collapse
|
34
|
Chu G, Miao Y, Huang K, Song H, Liu L. Role and Mechanism of Rhizopus Nigrum Polysaccharide EPS1-1 as Pharmaceutical for Therapy of Hepatocellular Carcinoma. Front Bioeng Biotechnol 2020; 8:509. [PMID: 32582655 PMCID: PMC7296140 DOI: 10.3389/fbioe.2020.00509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 04/30/2020] [Indexed: 12/16/2022] Open
Abstract
Objective: This work is to study the effect of Rhizopus nigrum polysaccharide EPS1-1 on hepatocellular carcinoma (HCC) in vitro and in vivo. Methods: HepG2 and Huh-7 cells and nude mice models of liver cancers were used in this study. The cells and nude mice were treated with EPS1-1 at different concentrations. The CCK8 assays were used to measure the proliferation activities of cells, apoptosis was determined with flow cytometry, cell migration was measured by wound-healing assays, cell invasion was evaluated by Transwell assay, and the survival periods of different groups of tumor-bearing mice were compared. Real-time PCR and Western blot were used to measure the expression levels of mRNAs and proteins of the genes related to proliferation, apoptosis, migration, and invasion. Results: In vitro experiments revealed that when treated with EPS1-1, HepG2 and Huh-7 cell proliferation activities decreased, while there was an increase for the apoptosis rate, and the migration and invasion capabilities were significantly reduced. In vivo experiments showed that EPS1-1 could significantly reduce the tumor growth and lung metastasis of HCC, and prolong the survival periods of tumor-bearing nude mice. Furthermore, EPS1-1 has no apparent damage to the heart, liver, and kidney. Further studies showed that EPS1-1 could affect the expression of proliferation-related genes CCND1 and c-Myc, apoptosis-related genes BAX and Bcl-2, and migration and invasion related genes Vimentin and Slug, thereby affecting the biological process of HCC. Conclusion: EPS1-1 can inhibit the malignant process of HCC in vitro and in vivo, which indicates that EPS1-1 has the potential value of clinical application as chemotherapy or adjuvant in the treatment of liver cancer.
Collapse
Affiliation(s)
- Guangyu Chu
- Department of Radiology, The Second Hospital of Jilin University, Changchun, China
| | - Yingying Miao
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Kexin Huang
- Department of Histology and Embryology, College of Basic Medicine, Jilin University, Changchun, China
| | - Han Song
- Department of Radiology, The Second Hospital of Jilin University, Changchun, China
| | - Liang Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
35
|
Chen Z, Liu J, Kong X, Li H. Characterization and Immunological Activities of Polysaccharides from Polygonatum sibiricum. Biol Pharm Bull 2020; 43:959-967. [DOI: 10.1248/bpb.b19-00978] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Zhangbao Chen
- College of Pharmaceutical Sciences, Southwest University
| | - Jiaojiao Liu
- College of Pharmaceutical Sciences, Southwest University
| | - Xia Kong
- College of Pharmaceutical Sciences, Southwest University
| | - Hui Li
- College of Pharmaceutical Sciences, Southwest University
| |
Collapse
|
36
|
Cao ZJ, Yip KM, Jiang YG, Ji SL, Ruan JQ, Wang C, Chen HB. Suitability evaluation on material specifications and edible methods of Dendrobii Officinalis Caulis based on holistic polysaccharide marker. Chin Med 2020; 15:46. [PMID: 32426031 PMCID: PMC7218507 DOI: 10.1186/s13020-020-0300-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/05/2020] [Indexed: 12/03/2022] Open
Abstract
Background Dendrobii Officinalis Caulis (DC) is a well-known tonic herbal medicine worldwide and has favorable immunomodulatory activity. Various material specifications of DC are available in herbal markets, and DC is ingested by different edible methods. However, whether these specifications and edible methods are suitable or not remains unknown. Methods In this study, we evaluated the suitability of four material specifications (fresh stem, dried stem, fengdou and powder) and three edible methods (making tea, soup and medicinal liquor) based on holistic polysaccharide marker (HPM), the major polysaccharide components in DC. First, the HPMs were extracted from the four specifications of DC by the three edible methods in different conditions. Second, qualitative and quantitative characterization of the extracted HPMs was performed using high performance gel permeation chromatography (HPGPC). Third, immunomodulatory activities of the extracted HPMs were evaluated in vivo. Results The results showed that the HPMs were found to be quantitatively different from various specification of DC and edible methods. In vivo analysis indicated that the HPMs exerted positive effects on innate immune responses by increment in proliferation of splenocytes, secretion of IL-2 and cytotoxicity activity of NK cells. Moreover, the dosage amount of HPM should be defined as a certain range, but not the larger the better, for exerting strong immunological activities. Conclusion According to the both chemical and biological results, fengdou by boiling with water for 4 h is the most recommended specification and edible method for DC.
Collapse
Affiliation(s)
- Zi-Jun Cao
- 1School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Ka-Man Yip
- 1School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Yi-Guo Jiang
- 2Department of Pharmacy, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, 215153 China
| | - Shi-Liang Ji
- 2Department of Pharmacy, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, 215153 China
| | - Jian-Qing Ruan
- 2Department of Pharmacy, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, 215153 China.,3Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123 China
| | - Cheng Wang
- 2Department of Pharmacy, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, 215153 China.,3Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123 China
| | - Hu-Biao Chen
- 1School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| |
Collapse
|
37
|
Shi J, Wang J, Zhang J, Li X, Tian X, Wang W, Wang P, Li M. Polysaccharide extracted from Potentilla anserina L ameliorate acute hypobaric hypoxia-induced brain impairment in rats. Phytother Res 2020; 34:2397-2407. [PMID: 32298011 DOI: 10.1002/ptr.6691] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/15/2020] [Accepted: 03/20/2020] [Indexed: 12/24/2022]
Abstract
High altitude cerebral edema (HACE) is a high altitude malady caused by acute hypobaric hypoxia (AHH), in which pathogenesis is associated with oxidative stress and inflammatory cytokines. Potentilla anserina L is mainly distributed in Tibetan Plateau, and its polysaccharide possesses many physiological and pharmacological properties. In the present study, the protective effect and potential treatment mechanism of Potentilla anserina L polysaccharide (PAP) in HACE were explored. First, we measured the brain water content and observed the pathological changes in brain tissues, furthermore, malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase (SOD), and glutathione (GSH) were evaluated by kits. Finally, the protein contents and mRNA expressions of pro-inflammatory (IL-1β, IL-6, TNF-α, vascular endothelial cell growth factor [VEGF], NF-κB, and hypoxia inducible factor-1 α [HIF-1α]) were detected by ELISA kits, RT-PCR, and western blotting. The results demonstrated that PAP reduced the brain water content, alleviated brain tissue injury, reduce the levels of MDA and NO, and increased the activity of SOD and GSH level. In addition, PAP blocking the NF-κB and HIF-1α signaling pathway activation inhibited the generation of downstream pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, and VEGF). Therefore, PAP has a potential to treat and prevent of HACE by suppression of oxidative stress and inflammatory response.
Collapse
Affiliation(s)
- Jipeng Shi
- Key Laboratory of the Prevention and Treatment for Injury in Plateau of PLA, Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese PLA, Lanzhou, China.,Department of Biochemistry, College of Life Science, Northwest Normal University, Lanzhou, China.,Department of Biochemistry, Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou, China
| | - Jinhui Wang
- Department of Pharmacy, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Ji Zhang
- Department of Biochemistry, College of Life Science, Northwest Normal University, Lanzhou, China.,Department of Biochemistry, Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou, China
| | - Xiaolin Li
- Key Laboratory of the Prevention and Treatment for Injury in Plateau of PLA, Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese PLA, Lanzhou, China.,Department of Pharmacy, College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiuyu Tian
- Key Laboratory of the Prevention and Treatment for Injury in Plateau of PLA, Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese PLA, Lanzhou, China.,Department of Pharmacy, College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Weigang Wang
- Key Laboratory of the Prevention and Treatment for Injury in Plateau of PLA, Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese PLA, Lanzhou, China.,Department of Pharmacy, College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Peng Wang
- Key Laboratory of the Prevention and Treatment for Injury in Plateau of PLA, Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese PLA, Lanzhou, China.,Department of Pharmacy, College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Maoxing Li
- Key Laboratory of the Prevention and Treatment for Injury in Plateau of PLA, Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese PLA, Lanzhou, China.,Department of Pharmacy, College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China.,Department of Pharmacy, College of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
38
|
M1 Polarization but Anti-LPS-Induced Inflammation and Anti-MCF-7 Breast Cancer Cell Growth Effects of Five Selected Polysaccharides. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9450246. [PMID: 32308723 PMCID: PMC7132352 DOI: 10.1155/2020/9450246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/16/2020] [Accepted: 02/28/2020] [Indexed: 12/24/2022]
Abstract
Five potential polysaccharides from guava seed (GSPS), common buckwheat (CBPS), bitter buckwheat (BBPS), red Formosa lambsquarters (RFLPS), and yellow Formosa lambsquarters (YFLPS) were selected to measure their effects on mouse peritoneal macrophages in the absence or presence of lipopolysaccharide (LPS). Macrophage-conditioned media (MCM) in the absence or presence of 5 selected polysaccharides were prepared to treat MCF-7 cells. The cell viability was determined using 3-(4,5-dimethylthiazol-2-diphenyl)-2,5-tetrazolium bromide (MTT) assay. Proinflammatory (also known as M1 type) (interleukin- (IL-) 1β, IL-6 and tumor necrosis factor- (TNF-) α) and anti-inflammatory (also known as M2 type) (IL-10) cytokines secreted by macrophages were determined using ELISA. The relationship between MCF-7 cell growth and M1/M2 cytokine secretion profiles in the corresponding MCM were delineated. The results showed that 5 selected polysaccharides, except BBPS, significantly (P < 0.05) and dose-dependently increased M1 (IL-1β + IL-6 + TNF-α)/M2 (IL-10) cytokine secretion ratios by macrophages in the absence of LPS, suggesting that four selected polysaccharides have M1 polarization property. However, all of 5 selected polysaccharides significantly (P < 0.05) decreased proinflammatory (IL-1β + IL-6 + TNF-α)/anti-inflammatory (IL-10) cytokine secretion ratios by LPS-stimulated macrophages, exhibiting that all of the 5 selected polysaccharides, particularly GSPS, have anti-inflammatory potential. All MCM prepared with these selected polysaccharides (except YFLPS) significantly enhanced their inhibitory effects on MCF-7 cell growth. A negative correlation was noted between MCF-7 cell viabilities and M1/M2 cytokine secretion ratios ((IL-6 + TNF-α)/IL-10) in the corresponding MCM, suggesting that increases in M1 macrophages in the tumor microenvironment might inhibit MCF-7 cell growth. Particular polysaccharides including RFLPS, GSPS, YFLPS, and CBPS may increase the percentage of M1 macrophages in the tumor environment and further inhibit MCF-7 cell growth via immunotherapy.
Collapse
|
39
|
Lin HC, Lin JY. Characterization of guava (Psidium guajava Linn) seed polysaccharides with an immunomodulatory activity. Int J Biol Macromol 2020; 154:511-520. [PMID: 32194116 DOI: 10.1016/j.ijbiomac.2020.03.137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/09/2020] [Accepted: 03/15/2020] [Indexed: 02/08/2023]
Abstract
To clarify the property of a novel guava seed polysaccharide (GSPS), GSPS was subjected to purify using Sepharose 6B gel filtration chromatography and further characterize the property of each individual isolated fraction. GSPS further resolved into three purified fractions, guava seed polysaccharide fraction 1 (GSF1), GSF2 and GSF3. Isolated GSF1, GSF2 and GSF3 were respectively subjected to high performance size exclusion chromatography; molecular weights of three polysaccharide fractions were determined. GSPS, GSF1, GSF2 and GSF3 were suggested to be proteopolysaccharides or glycoproteins. GSPS, GSF1, GSF2 and GSF3, particularly GSF3, were found to have a Th2-inclination property and anti-inflammatory potential. Heated GSF3 did not significantly (P > .05) decreased its immunomodulatory activity, suggesting that GSF3 is a proteopolysaccharide. The deproteinated GSF3 markedly lost its immunomodulatory activity, suggesting that both protein and carbohydrate moiety in GSF3 are essential to its immunomodulatory function. Analyses of monosaccharides composition in GSF3 using a pre-column derivatization high performance liquid chromatography exhibited that GSF3 was composed of glucuronic acid (3.28%), galacturonic acid (28.13%), galactose (14.88%), mannose (3.96%), glucose (22.99%), arabinose (7.31%), ribose (1.55%), xylose (14.81%), fucose (1.68%) and rhamnose (1.43%). Overall, we evidence that GSF3 is a low molecular weight proteopolysaccharide with potent anti-inflammatory and immunomodulatory effects.
Collapse
Affiliation(s)
- Hsiao-Chien Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402, Taiwan, ROC
| | - Jin-Yuarn Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402, Taiwan, ROC.
| |
Collapse
|
40
|
Yuan B, Zhao C, Cheng C, Huang DC, Cheng SJ, Cao CJ, Chen GT. A peptide-Fe(II) complex from Grifola frondosa protein hydrolysates and its immunomodulatory activity. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.100459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
41
|
Yuan L, Zhong ZC, Liu Y. Structural characterisation and immunomodulatory activity of a neutral polysaccharide from Sambucus adnata Wall. Int J Biol Macromol 2019; 154:1400-1407. [PMID: 31756460 DOI: 10.1016/j.ijbiomac.2019.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/22/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
Abstract
A neutral polysaccharide, SPW-2, was purified from the leaves of Sambucus adnata Wall. using water extraction and alcohol precipitation, Sevage deproteination, ion exchange chromatography and gel filtration chromatography. This molecule had an average molecular weight of 7040 Da and was composed of arabinose, xylose, mannose, glucose and galactose at a molar ratio of 1.5:0.5:1.2:5.0:1.8. The repetitive structural units of SPW-2 were deduced using methylation analysis and nuclear magnetic resonance (one- and two-dimensional) spectroscopy. In vitro immunological activity test showed that SPW-2 could induce the secretion of nitric oxide, interleukin-1β (IL-1β), IL-6 and tumour necrosis factor-alpha (TNF-α), and increase the mRNA expression level of inducible nitric oxide synthase (iNOS), IL-1β, IL-6 and TNF-α in macrophages. The data supported the notion that SPW-2 exerts an immunomodulatory effect by activating macrophages and enhancing the host immune system function, which enabled it to be used as a novel immunomodulator for application in the treatment of immunological diseases.
Collapse
Affiliation(s)
- Lei Yuan
- Centre of Physical & Chemic Analyses and Bio-tech, Tibet Agricultural & Animal Husbandry University, Linzhi 860000, Tibet, China; Key Laboratory of Wildlife Resources Evaluation and Utilization in Tibet, Linzhi 860000, Tibet, China.
| | - Zheng-Chang Zhong
- Key Laboratory of Wildlife Resources Evaluation and Utilization in Tibet, Linzhi 860000, Tibet, China; Food Science College, Tibet Agricultural & Animal Husbandry University, Linzhi 860000, Tibet China
| | - Yu Liu
- Food Science College, Tibet Agricultural & Animal Husbandry University, Linzhi 860000, Tibet China
| |
Collapse
|
42
|
In Vivo and In Vitro Study of Immunostimulation by Leuconostoc lactis-Produced Gluco-Oligosaccharides. Molecules 2019; 24:molecules24213994. [PMID: 31694180 PMCID: PMC6864623 DOI: 10.3390/molecules24213994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022] Open
Abstract
Glycosyltransferase-producing Leuconostoc lactis CCK940 produces CCK- oligosaccharides, gluco-oligosaccharide molecules, using sucrose and maltose as donor and acceptor molecules, respectively. In this study, the immunostimulatory activities of CCK-oligosaccharides on RAW264.7 macrophages and BALB/c mice were evaluated. CCK-oligosaccharides induced the expression of phosphorylated-p38, extracellular-signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) and upregulation of phagocytic activity in RAW264.7 macrophages, suggesting their involvement in mitogen-activated protein kinase (MAPK) signaling pathway and phagocytosis. When CCK-oligosaccharides were administered to mice intraperitoneally injected with cyclophosphamide (CY), spleen indices and expressions of interleukin (IL)-6, IL–10, and tumor necrosis factor-α increased, compared with those in only CY-treated group. These findings suggest that CCK-oligosaccharides can be used as an effective immunostimulating agent.
Collapse
|
43
|
Structural elucidation and immunomodulatory activity of a β-D-glucan prepared by freeze-thawing from Hericium erinaceus. Carbohydr Polym 2019; 222:114996. [DOI: 10.1016/j.carbpol.2019.114996] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
|
44
|
Immunoenhancement effects of pentadecapeptide derived from Cyclina sinensis on immune-deficient mice induced by Cyclophosphamide. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
45
|
Li Y, Ma J, Fang Q, Guo T, Li X. Protective effects of Nostoc sphaeroides Kütz against cyclophosphamide-induced immunosuppression and oxidative stress in mice. TOXIN REV 2019. [DOI: 10.1080/15569543.2019.1650067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yuanyuan Li
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Qian Fang
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Tingting Guo
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, China
| |
Collapse
|
46
|
Shen Y, Xu L, Huang J, Serra A, Yang H, Tam JP. Potentides: New Cysteine-Rich Peptides with Unusual Disulfide Connectivity from Potentilla anserina. Chembiochem 2019; 20:1995-2004. [PMID: 30927482 DOI: 10.1002/cbic.201900127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Indexed: 11/06/2022]
Abstract
Cysteine-rich peptides (CRPs), which are disulfide-constrained peptides with 3 to 5 disulfide bonds and molecular weights of 2 to 6 kDa, are generally hyperstable and resistant to thermal, chemical, and enzymatic degradation. Herein, the discovery and characterization of a novel suite of CRPs, collectively named potentides pA1-pA16 from the root of the medicinal herb Potentilla anserina L, are described. Through a combination of proteomic and transcriptomic methods, it is shown that 35-residue potentide pA3, which is the most abundant member of potentides, exhibits high stability against heat, acidic, and proteolytic degradation. Transcriptomic analysis revealed that potentide precursor sequences contained four tandem repeats in the mature domain, which is the first report on tandem repeats being found in the Rosaceae family. Disulfide mapping showed that potentide pA3 displayed a novel disulfide connectivity of C1-C3, C2-C6, and C4-C5; a cystine motif that has not been reported in plant CRPs. Transcriptomic data mining and a neighbor-joining clustering analysis revealed 56 potentide homologues and their distribution in the families of Rosaceae and Ranunculaceae in angiosperm. Altogether, these results reveal a new plant CRP structure with an unusual cystine connectivity. Additionally, this study expands the families and structure diversity of CRPs as potentially active peptide pharmaceuticals.
Collapse
Affiliation(s)
- Yuping Shen
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P.R. China.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Lili Xu
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P.R. China
| | - Jiayi Huang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Aida Serra
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Huan Yang
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P.R. China
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| |
Collapse
|
47
|
Chen SJ, Li JY, Zhang JM. Extraction of yellow pear residue polysaccharides and effects on immune function and antioxidant activity of immunosuppressed mice. Int J Biol Macromol 2019; 126:1273-1281. [DOI: 10.1016/j.ijbiomac.2018.12.248] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/28/2018] [Accepted: 12/26/2018] [Indexed: 01/15/2023]
|
48
|
Monmai C, You S, Park WJ. Immune-enhancing effects of anionic macromolecules extracted from Codium fragile on cyclophosphamide-treated mice. PLoS One 2019; 14:e0211570. [PMID: 30779763 PMCID: PMC6380620 DOI: 10.1371/journal.pone.0211570] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/16/2019] [Indexed: 12/22/2022] Open
Abstract
Immune-regulation and homeostasis are critical in cancer therapy and immunomodulatory biomaterials have been used to decrease side effects of immunosuppressant drugs. Anionic macromolecules (CFAMs) were isolated from the seaweed Codium fragile, and its immune-enhancing biological activities were examined in CY-induced immunosuppressed mice. CFAMs improved the splenic lymphocyte proliferation, NK cell activity, and spleen index. The expression of immune-associated genes was highly upregulated in splenic lymphocytes, and gene expression was differently regulated according to mitogens such as T-cell (Con A) and B-cell (LPS) mitogens. Additionally, CFAMs boosted the proliferation, NO production, and phagocytosis of peritoneal macrophages. CFAMs also considerably stimulated immune-associated gene expression in peritoneal macrophages. Moreover, our results showed CFAMs mediated its immune-enhancing effects via the MAPK pathway. These suggested CFAMs can be used as a potent immunomodulatory material under immune-suppressive condition. Furthermore, CFAMs may also be used as a bio-functional and pharmaceutical material for improving human health and immunity.
Collapse
Affiliation(s)
- Chaiwat Monmai
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
| | - Woo Jung Park
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
- * E-mail:
| |
Collapse
|
49
|
Study on the immunomodulatory activity of a novel polysaccharide from the lichen Umbilicaria Esculenta. Int J Biol Macromol 2019; 121:846-851. [DOI: 10.1016/j.ijbiomac.2018.10.080] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/30/2018] [Accepted: 10/14/2018] [Indexed: 11/21/2022]
|
50
|
Qi Q, Dong Z, Sun Y, Li S, Zhao Z. Protective Effect of Bergenin against Cyclophosphamide-Induced Immunosuppression by Immunomodulatory Effect and Antioxidation in Balb/c Mice. Molecules 2018; 23:E2668. [PMID: 30336565 PMCID: PMC6222609 DOI: 10.3390/molecules23102668] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 12/12/2022] Open
Abstract
In this study, the aim was to investigate the effect of bergenin on immune function and antioxidation in cyclophosphamide (Cy)-induced immunosuppressed mice. Firstly, we estimated its effect on immune organs. Histological analysis and indexes of immune organs showed that cyclophosphamide exhibited spleen and thymus injury compared with the normal control, which was alleviated by bergenin. Secondly, bergenin also enhanced the humoral immune function through increasing the level of IgM and IgG in serum. Thirdly, bergenin also enhanced the cellular immune function. The results indicate that bergenin increased peritoneal macrophage functions, the proliferation of T and B lymphocytes, NK and CTL cell activities, and T (CD4⁺ and CD8⁺) lymphocyte subsets. Besides, bergenin also had the ability to modulate the Th1/Th2 balance. Moreover, bergenin prevented the Cy-induced decrease in numbers of peripheral RBC, WBC and platelets, providing supportive evidence for their anti-leukopenia activities. Finally, bergenin also reversed the Cy-induced decrease in the total antioxidant capacity including activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px). In conclusion, bergenin protected against Cy-induced adverse reactions by enhancing humoral and cellular immune functions and augmenting antioxidative activity and could be considered as a potential immunomodulatory agent.
Collapse
Affiliation(s)
- Qiuchen Qi
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, Shandong, China.
| | - Zhonghua Dong
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, Shandong, China.
| | - Yueyue Sun
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, Shandong, China.
| | - Siying Li
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China.
| | - Zhongxi Zhao
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, Shandong, China.
- Shandong Engineering & Technology Research Center for Jujube Food and Drug, 44 West Wenhua Road, Jinan 250012, Shandong, China.
- Shandong Provincial Key Laboratory of Mucosal and Transdermal Drug Delivery Technologies, Shandong Academy of Pharmaceutical Sciences, 989 Xinluo Street, Jinan 250101, Shandong, China.
| |
Collapse
|