1
|
Xiao S, Yin H, Lv X, Wang Z, Jiang L, Xia Y, Liu Y. Inhibition of human UDP-glucuronosyltransferase (UGT) enzymes by darolutamide: Prediction of in vivo drug-drug interactions. Chem Biol Interact 2024; 403:111246. [PMID: 39278459 DOI: 10.1016/j.cbi.2024.111246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Darolutamide is a potent second-generation, selective nonsteroidal androgen receptor inhibitor (ARI), which has been approved by the US Food and Drug Administration (FDA) in treating castrate-resistant, non-metastatic prostate cancer (nmCRPC). Whether darolutamide affects the activity of UDP-glucuronosyltransferases (UGTs) is unknown. The purpose of the present study is to evaluate the inhibitory effect of darolutamide on recombinant human UGTs and pooled human liver microsomes (HLMs), and explore the potential for drug-drug interactions (DDIs) mediated by darolutamide through UGTs inhibition. The product formation rate of UGTs substrates with or without darolutamide was determined by HPLC or UPLC-MS/MS to estimate the inhibitory effect and inhibition modes of darolutamide on UGTs were evaluated by using the inhibition kinetics experiments. The results showed that 100 μM darolutamide exhibited inhibitory effects on most of the 12 UGTs tested. Inhibition kinetic studies of the enzyme revealed that darolutamide noncompetitively inhibited UGT1A1 and competitively inhibited UGT1A7 and 2B15, with the Ki of 14.75 ± 0.78 μM, 14.05 ± 0.42 μM, and 6.60 ± 0.08 μM, respectively. In particular, it also potently inhibited SN-38, the active metabolite of irinotecan, glucuronidation in HLMs with an IC50 value of 3.84 ± 0.46 μM. In addition, the in vitro-in vivo extrapolation (IVIVE) method was used to quantitatively predict the risk of darolutamide-mediated DDI via inhibiting UGTs. The prediction results showed that darolutamide may increase the risk of DDIs when administered in combination with substrates of UGT1A1, UGT1A7, or UGT2B15. Therefore, the combined administration of darolutamide and drugs metabolized by the above UGTs should be used with caution to avoid the occurrence of potential DDIs.
Collapse
Affiliation(s)
- Shichao Xiao
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Hang Yin
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Xin Lv
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Zhen Wang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Lili Jiang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Yangliu Xia
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China.
| | - Yong Liu
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China.
| |
Collapse
|
2
|
Hu J, Hu T, Guo Z, Song Y, Shan L, Shi X. Species Difference in the Metabolism of Mulberrin in Vitro and Its Inhibitory Effect on Cytochrome P450 and UDP-Glucuronosyltransferase Enzymes. Chem Pharm Bull (Tokyo) 2022; 70:669-678. [PMID: 36184449 DOI: 10.1248/cpb.c22-00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to evaluate the interspecies difference in metabolism of mulberrin and examine the interaction between mulberrin and CYP enzymes or recombinant human uridine 5'-diphosphate (UDP)-glucuronosyltransferase (UGT) enzymes. Liver microsomes from human (HLMs), Beagle dog (DLMs), minipig (PLMs), monkey (MLMs), rabbit (RLMs), rat (RAMs), and mouse (MIMs) were used to investigate metabolic diversity among different species. Additionally, recombinant human supersomes were used to confirm that metabolic enzymes are involved in the biotransformation of mulberrin. We also evaluated the influence of mulberrin on protein expression by Western blot analysis. Mulberrin metabolism showed significant interspecies differences. We found four and two metabolites in phase I and II reaction systems, respectively. In phase I metabolism profiles of mulberrin for HLMs, PLMs and MLMs conformed to the classic Michaelis-Menten kinetics, RAMs and MIMs followed biphasic kinetics; phase II reaction of mulberrin in HLMs, DLMs, PLMs, MLMs, RLMs, RAMs and MIMs followed biphasic kinetics. UGT1A1 were the major CYP isoforms responsible for the metabolism of mulberrin. Mulberrin showed potent inhibitory effects against CYP3A4, CYP2C9, CYP2E1, UGT1A1, UGT1A3 and UGT2B7 with IC50 values of 54.21, 9.93, 39.12, 3.84, 2.01, 16.36 µM, respectively. According to Western blot analysis, mulberrin can upregulate the protein expression of CYP2C19, and downregulate the expression levels of CYP3A5 and CYP2C9 in HepG2 cells as concentration increased. The interspecies comparisons can help find other species with metabolic pathways similar to those in humans for future in vivo studies.
Collapse
Affiliation(s)
- Jiayin Hu
- The First Affiliated Hospital of Jinzhou Medical University
| | - Tingting Hu
- The First Affiliated Hospital of Jinzhou Medical University
| | - Zhe Guo
- The First Affiliated Hospital of Jinzhou Medical University
| | - Yonggui Song
- Jiangxi University of Traditional Chinese Medicine
| | - Lina Shan
- The First Affiliated Hospital of Jinzhou Medical University
| | - Xianbao Shi
- The First Affiliated Hospital of Jinzhou Medical University
| |
Collapse
|
3
|
Zhang R, Wei Y, Yang T, Huang X, Zhou J, Yang C, Zhou J, Liu Y, Shi S. Inhibitory effects of quercetin and its major metabolite quercetin-3-O-β-D-glucoside on human UDP-glucuronosyltransferase 1A isoforms by liquid chromatography-tandem mass spectrometry. Exp Ther Med 2021; 22:842. [PMID: 34149888 PMCID: PMC8210293 DOI: 10.3892/etm.2021.10274] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
Quercetin is a flavonoid that is widely present in plant-derived food. Quercetin-3-O-β-D-glucoside (Q3GA) is a predominant metabolite of quercetin in animal and human plasma. The inhibitory effects of the UDP-glucuronosyl transferases (UGTs) caused by herbal components may be a key factor for the clinical assessment of herb-drug interactions (HDIs). The present study aimed to investigate the inhibitory profile of quercetin and Q3GA on recombinant UGT1A isoforms in vitro. The metabolism of the nonspecific substrate 4-methylumbelliferone (4-MU) by the UGT1A isoforms was assessed by liquid chromatography-tandem mass spectrometry. Preliminary screening experiments indicated that quercetin exhibited stronger inhibitory effects on UGT1A1, UGT1A3, UGT1A6 and UGT1A9 enzymes than Q3GA. Kinetic experiments were performed to characterize the type of inhibition caused by quercetin and Q3GA towards these UGT isoforms. Quercetin exerted non-competitive inhibition on UGT1A1 and UGT1A6, with half maximal inhibitory concentration (IC50) values of 7.47 and 7.07 µM and inhibition kinetic parameter (Ki) values of 2.18 and 28.87 µM, respectively. Quercetin also exhibited competitive inhibition on UGT1A3 and UGT1A9, with IC50 values of 10.58 and 2.81 µM and Ki values of 1.60 and 0.51 µM, respectively. However, Q3GA displayed weak inhibition on UGT1A1, UGT1A3 and UGT1A6 enzymes with IC50 values of 45.21, 106.5 and 51.37 µM, respectively. In the present study, quercetin was a moderate inhibitor of UGT1A1 and UGT1A3, a weak inhibitor of UGT1A6, and a strong inhibitor on UGT1A9. The results of the present study suggested potential HDIs that may occur following quercetin co-administration with drugs that are mainly metabolized by UGT1A1, UGT1A3 and UGT1A9 enzymes.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Ye Wei
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Tingyu Yang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xixi Huang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jinping Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Chunxiao Yang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jiani Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yani Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shaojun Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
4
|
Potential of herb-drug / herb interactions between substrates and inhibitors of UGTs derived from herbal medicines. Pharmacol Res 2019; 150:104510. [DOI: 10.1016/j.phrs.2019.104510] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/14/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022]
|
5
|
Natural products in licorice for the therapy of liver diseases: Progress and future opportunities. Pharmacol Res 2019; 144:210-226. [PMID: 31022523 DOI: 10.1016/j.phrs.2019.04.025] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/18/2019] [Accepted: 04/21/2019] [Indexed: 12/16/2022]
Abstract
Liver diseases related complications represent a significant source of morbidity and mortality worldwide, creating a substantial economic burden. Oxidative stress, excessive inflammation, and dysregulated energy metabolism significantly contributed to liver diseases. Therefore, discovery of novel therapeutic drugs for the treatment of liver diseases are urgently required. Licorice is one of the most commonly used herbal drugs in Traditional Chinese Medicine for the treatment of liver diseases and drug-induced liver injury (DILI). Various bioactive components have been isolated and identified from the licorice, including glycyrrhizin, glycyrrhetinic acid, liquiritigenin, Isoliquiritigenin, licochalcone A, and glycycoumarin. Emerging evidence suggested that these natural products relieved liver diseases and prevented DILI through multi-targeting therapeutic mechanisms, including anti-steatosis, anti-oxidative stress, anti-inflammation, immunoregulation, anti-fibrosis, anti-cancer, and drug-drug interactions. In the current review, we summarized the recent progress in the research of hepatoprotective and toxic effects of different licorice-derived bioactive ingredients and also highlighted the potency of these compounds as promising therapeutic options for the treatment of liver diseases and DILI. We also outlined the networks of underlying molecular signaling pathways. Further pharmacology and toxicology research will contribute to the development of natural products in licorice and their derivatives as medicines with alluring prospect in the clinical application.
Collapse
|
6
|
Lv X, Xia Y, Finel M, Wu J, Ge G, Yang L. Recent progress and challenges in screening and characterization of UGT1A1 inhibitors. Acta Pharm Sin B 2019; 9:258-278. [PMID: 30972276 PMCID: PMC6437557 DOI: 10.1016/j.apsb.2018.09.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/16/2018] [Accepted: 08/27/2018] [Indexed: 02/07/2023] Open
Abstract
Uridine-diphosphate glucuronosyltransferase 1A1 (UGT1A1) is an important conjugative enzyme in mammals that is responsible for the conjugation and detoxification of both endogenous and xenobiotic compounds. Strong inhibition of UGT1A1 may trigger adverse drug/herb-drug interactions, or result in metabolic disorders of endobiotic metabolism. Therefore, both the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) have recommended assaying the inhibitory potential of drugs under development on the human UGT1A1 prior to approval. This review focuses on the significance, progress and challenges in discovery and characterization of UGT1A1 inhibitors. Recent advances in the development of UGT1A1 probes and their application for screening UGT1A1 inhibitors are summarized and discussed in this review for the first time. Furthermore, a long list of UGT1A1 inhibitors, including information on their inhibition potency, inhibition mode, and affinity, has been prepared and analyzed. Challenges and future directions in this field are highlighted in the final section. The information and knowledge that are presented in this review provide guidance for rational use of drugs/herbs in order to avoid the occurrence of adverse effects via UGT1A1 inhibition, as well as presenting methods for rapid screening and characterization of UGT1A1 inhibitors and for facilitating investigations on UGT1A1-ligand interactions.
Collapse
|
7
|
Chen N, Yang XY, Guo CE, Bi XN, Chen JH, Chen HY, Li HP, Lin HY, Zhang YJ. The oral bioavailability, excretion and cytochrome P450 inhibition properties of epiberberine: an in vivo and in vitro evaluation. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 12:57-65. [PMID: 29343943 PMCID: PMC5749554 DOI: 10.2147/dddt.s151660] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epiberberine (EPI) is a novel and potentially effective therapeutic and preventive agent for diabetes and cardiovascular disease. To evaluate its potential value for drug development, a specific, sensitive and robust high-performance liquid chromatography-tandem mass spectrometry assay for the determination of EPI in rat biological samples was established. This assay was used to study the pharmacokinetics, bioavailability and excretion of EPI in rats after oral administration. In addition, a cocktail method was used to compare the inhibition characteristics of EPI on cytochrome P450 (CYP450) isoforms in human liver microsomes (HLMs) and rat liver microsomes (RLMs). The results demonstrated that EPI was rapidly absorbed and metabolized after oral administration (10, 54 or 81 mg/kg) in rats, with Tmax of 0.37–0.42 h and T1/2 of 0.49–2.73 h. The Cmax and area under the curve values for EPI increased proportionally with the dose, and the oral absolute bioavailability was 14.46%. EPI was excreted mainly in bile and feces, and after its oral administration to rats, EPI was eliminated predominantly by the kidneys. A comparison of the current half-maximal inhibitory concentration and Ki values revealed that EPI demonstrated an obvious inhibitory effect on CYP2C9 and CYP2D6. Furthermore, its effect was stronger in HLM than in RLM, more likely to be a result of noncompetitive inhibition.
Collapse
Affiliation(s)
- Ning Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing
| | - Xiao-Yan Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing.,Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing, China
| | - Chang-E Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing
| | - Xin-Ning Bi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing
| | - Jian-Hua Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing
| | - Hong-Ying Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing
| | - Hong-Pin Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing
| | - Hong-Ying Lin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing
| | - Yu-Jie Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing
| |
Collapse
|
8
|
Xin H, Qi XY, Wu JJ, Wang XX, Li Y, Hong JY, He W, Xu W, Ge GB, Yang L. Assessment of the inhibition potential of Licochalcone A against human UDP-glucuronosyltransferases. Food Chem Toxicol 2016; 90:112-22. [DOI: 10.1016/j.fct.2016.02.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 01/24/2016] [Accepted: 02/05/2016] [Indexed: 01/19/2023]
|
9
|
Salleh NAM, Ismail S, Ab Halim MR. Effects of Curcuma xanthorrhiza Extracts and Their Constituents on Phase II Drug-metabolizing Enzymes Activity. Pharmacognosy Res 2016; 8:309-315. [PMID: 27695274 PMCID: PMC5004525 DOI: 10.4103/0974-8490.188873] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background: Curcuma xanthorrhiza is a native Indonesian plant and traditionally utilized for a range of illness including liver damage, hypertension, diabetes, and cancer. Objective: The study determined the effects of C. xanthorrhiza extracts (ethanol and aqueous) and their constituents (curcumene and xanthorrhizol) on UDP-glucuronosyltransferase (UGT) and glutathione transferase (GST) activities. Materials and Methods: The inhibition studies were evaluated both in rat liver microsomes and in human recombinant UGT1A1 and UGT2B7 enzymes. p-nitrophenol and beetle luciferin were used as the probe substrates for UGT assay while 1-chloro-2,4-dinitrobenzene as the probe for GST assay. The concentrations of extracts studied ranged from 0.1 to 1000 μg/mL while for constituents ranged from 0.01 to 500 μM. Results: In rat liver microsomes, UGT activity was inhibited by the ethanol extract (IC50 =279.74 ± 16.33 μg/mL). Both UGT1A1 and UGT2B7 were inhibited by the ethanol and aqueous extracts with IC50 values ranging between 9.59–22.76 μg/mL and 110.71–526.65 μg/Ml, respectively. Rat liver GST and human GST Pi-1 were inhibited by ethanol and aqueous extracts, respectively (IC50 =255.00 ± 13.06 μg/mL and 580.80 ± 18.56 μg/mL). Xanthorrhizol was the better inhibitor of UGT1A1 (IC50 11.30 ± 0.27 μM) as compared to UGT2B7 while curcumene did not show any inhibition. For GST, both constituents did not show any inhibition. Conclusion: These findings suggest that C. xanthorrhiza have the potential to cause herb-drug interaction with drugs that are primarily metabolized by UGT and GST enzymes. SUMMARY Findings from this study would suggest which of Curcuma xanthorrhiza extracts and constituents that would have potential interactions with drugs which are highly metabolized by UGT and GST enzymes. Further clinical studies can then be designed if needed to evaluate the in vivo pharmacokinetic relevance of these interactions
Abbreviations Used: BSA: Bovine serum albumin, CAM: Complementary and alternative medicine, cDNA: Complementary deoxyribonucleic acid, CDNB: 1-Chloro-2,4-dinitrobenzene, CuSO4.5H2O: Copper(II) sulfate pentahydrate, CXEE: Curcuma xanthorrhiza ethanol extract, CXAE: Curcuma xanthorrhiza aqueous extract, GC-MS: Gas chromatography-mass spectroscopy, GSH: Glutathione, GST: Glutathione S-transferase, KCl: Potassium chloride, min: Minutes, MgCl2: Magnesium chloride, mg/mL: Concentration (weight of test substance in milligrams per volume of test concentration), mM: Milimolar, Na2CO3: Sodium carbonate, NaOH: Sodium hydroxide, nmol: nanomol, NSAIDs: Non-steroidal antiinflammatory drug, p-NP: para-nitrophenol, RLU: Relative light unit, SEM: Standard error of mean, UDPGA: UDP-glucuronic acid, UGT: UDP-glucuronosyltransferase.
Collapse
Affiliation(s)
| | - Sabariah Ismail
- Centre for Drug Research, Universiti Sains, Penang, Malaysia
| | | |
Collapse
|
10
|
Guo B, Fang Z, Yang L, Xiao L, Xia Y, Gonzalez FJ, Zhu L, Cao Y, Ge G, Yang L, Sun H. Tissue and species differences in the glucuronidation of glabridin with UDP-glucuronosyltransferases. Chem Biol Interact 2015; 231:90-7. [PMID: 25765239 DOI: 10.1016/j.cbi.2015.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 02/10/2015] [Accepted: 03/02/2015] [Indexed: 02/04/2023]
Abstract
Glabridin (GA) has gained wide application in the cosmetics and food industry. This study was performed to investigate its metabolic inactivation and elimination by glucuronidation by use of liver and intestine microsomes from humans (HLM and HIM) and rats (RLM and RIM), and liver microsomes from cynomolgus monkeys and beagle dogs (CyLM and DLM). Both hydroxyl groups at the C2 and C4 positions of the B ring are conjugated to generate two mono-glucuronides (M1 and M2). HIM, RIM and RLM showed the most robust activity in catalyzing M2 formation with intrinsic clearance values (Clint) above 2000 μL/min/mg, with little measurable M1 formation activity. DLM displayed considerable activity both in M1 and M2 formation, with Clint values of 71 and 214 μL/min/mg, respectively, while HLM and CyLM exhibited low activities in catalyzing M1 and M2 formation, with Clint values all below 20 μL/min/mg. It is revealed that UGT1A1, 1A3, 1A9, 2B7, 2B15 and extrahepatic UGT1A8 and 1A10 are involved in GA glucuronidation. Nearly all UGTs preferred M2 formation except for UGT1A1. Notably, UGT1A8 displayed the highest activity with a Clint value more than 5-fold higher than the other isoforms. Chemical inhibition studies, using selective inhibitors of UGT1A1, 1A9, 2B7 and 1A8, further revealed that UGT1A8 contributed significantly to intestinal GA glucuronidation in humans. In summary, this in vitro study demonstrated large species differences in GA glucuronidation by liver and intestinal microsomes, and that intestinal UGTs are important for the pathway in humans.
Collapse
Affiliation(s)
- Bin Guo
- The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China; Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and The First Affiliated Hospital of Liaoning Medical University, Dalian, China.
| | - Zhongze Fang
- Department of Toxicology, School of Public Health, Tianjin Medical University, Tianjin, China; Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and The First Affiliated Hospital of Liaoning Medical University, Dalian, China
| | - Lu Yang
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and The First Affiliated Hospital of Liaoning Medical University, Dalian, China
| | - Ling Xiao
- The Centre for Drug and Food Safety Evaluation, School of Life Science, Anqing Normal University, Anqing, China
| | - Yangliu Xia
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, USA
| | - Liangliang Zhu
- The Centre for Drug and Food Safety Evaluation, School of Life Science, Anqing Normal University, Anqing, China.
| | - Yunfeng Cao
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and The First Affiliated Hospital of Liaoning Medical University, Dalian, China; Key Laboratory of Contraceptives and Devices Research (NPFPC), Shanghai Engineer and Technology Research Center of Reproductive Health Drug and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Guangbo Ge
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Ling Yang
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Hongzhi Sun
- The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| |
Collapse
|
11
|
Wang H, Dong WH, Zuo WJ, Wang H, Zhong HM, Mei WL, Dai HF. Three new phenolic compounds from Dalbergia odorifera. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2014; 16:1109-1118. [PMID: 25483266 DOI: 10.1080/10286020.2014.968559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 09/18/2014] [Indexed: 06/04/2023]
Abstract
Three new phenolic compounds (1-3) were isolated from the heartwood of Dalbergia odorifera T. Chen. (Leguminosae). Their structures were established based on spectroscopic methods including 1D and 2D NMR (HSQC, COSY, HMBC and ROESY). Compound 2 exhibited cytotoxicity against BEL-7402 tumor cell lines.
Collapse
MESH Headings
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/isolation & purification
- Antineoplastic Agents, Phytogenic/pharmacology
- Benzofurans/chemistry
- Benzofurans/isolation & purification
- Benzofurans/pharmacology
- Chromones/chemistry
- Chromones/isolation & purification
- Chromones/pharmacology
- Dalbergia/chemistry
- Drug Screening Assays, Antitumor
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/isolation & purification
- Drugs, Chinese Herbal/pharmacology
- Flavonoids/chemistry
- Flavonoids/isolation & purification
- Flavonoids/pharmacology
- Heterocyclic Compounds, 4 or More Rings/chemistry
- Heterocyclic Compounds, 4 or More Rings/isolation & purification
- Heterocyclic Compounds, 4 or More Rings/pharmacology
- Humans
- Molecular Structure
- Nuclear Magnetic Resonance, Biomolecular
- Phenols/chemistry
Collapse
Affiliation(s)
- Hao Wang
- a Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture , Haikou 571101 , China
| | | | | | | | | | | | | |
Collapse
|
12
|
Comparison of the Inhibitory Potential of Bavachalcone and Corylin against UDP-Glucuronosyltransferases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:958937. [PMID: 24829606 PMCID: PMC4009204 DOI: 10.1155/2014/958937] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 12/26/2022]
Abstract
Bavachalcone and corylin are two major bioactive compounds isolated from Psoralea corylifolia L., which has been widely used as traditional Chinese medicine for many years. As two antibiotic or anticancer drugs, bavachalcone and corylin are used in combination with other drugs; thus it is necessary to evaluate potential pharmacokinetic herb-drug interactions (HDI) of the two bioactive compounds. The aim of the present study was to compare the effects of liver UDP-glucuronosyltransferase (UGT) 1A1, UGT1A3, UGT1A7, UGT1A8, UGT 1A10, and UGT2B4 inhibited by bavachalcone and corylin. 4-Methylumbelliferone (4-MU) was used as a nonspecific “probe” substrate. Bavachalcone had stronger inhibition on UGT1A1 and UGT1A7 than corylin which did not inhibit UGT1A1, UGT1A3, UGT1A7, UGT1A8, UGT1A10, and UGT2B4. Data fitting using Dixon and Lineweaver-Burk plots demonstrated the noncompetitive inhibition of bavachalcone against UGT1A1 and UGT1A7-mediated 4-MU glucuronidation reaction. The values of inhibition kinetic parameters (Ki) were 5.41 μM and 4.51 μM for UGT1A1 and UGT1A7, respectively. The results of present study suggested that there was a possibility of UGT1A1 and UGT1A7 inhibition-based herb-drug interaction associated with bavachalcone and provided the basis for further in vivo studies to investigate the HDI potential between bavachalcone and UGT substrates.
Collapse
|
13
|
Fang ZZ, He RR, Cao YF, Tanaka N, Jiang C, Krausz KW, Qi Y, Dong PP, Ai CZ, Sun XY, Hong M, Ge GB, Gonzalez FJ, Ma XC, Sun HZ. A model of in vitro UDP-glucuronosyltransferase inhibition by bile acids predicts possible metabolic disorders. J Lipid Res 2013; 54:3334-44. [PMID: 24115227 DOI: 10.1194/jlr.m040519] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Increased levels of bile acids (BAs) due to the various hepatic diseases could interfere with the metabolism of xenobiotics, such as drugs, and endobiotics including steroid hormones. UDP-glucuronosyltransferases (UGTs) are involved in the conjugation and elimination of many xenobiotics and endogenous compounds. The present study sought to investigate the potential for inhibition of UGT enzymes by BAs. The results showed that taurolithocholic acid (TLCA) exhibited the strongest inhibition toward UGTs, followed by lithocholic acid. Structure-UGT inhibition relationships of BAs were examined and in vitro-in vivo extrapolation performed by using in vitro inhibition kinetic parameters (Ki) in combination with calculated in vivo levels of TLCA. Substitution of a hydrogen with a hydroxyl group in the R1, R3, R4, R5 sites of BAs significantly weakens their inhibition ability toward most UGTs. The in vivo inhibition by TLCA toward UGT forms was determined with following orders of potency: UGT1A4 > UGT2B7 > UGT1A3 > UGT1A1 ∼ UGT1A7 ∼ UGT1A10 ∼ UGT2B15. In conclusion, these studies suggest that disrupted homeostasis of BAs, notably taurolithocholic acid, found in various diseases such as cholestasis, could lead to altered metabolism of xenobiotics and endobiotics through inhibition of UGT enzymes.
Collapse
Affiliation(s)
- Zhong-Ze Fang
- First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Jiang HM, Fang ZZ, Cao YF, Hu CM, Sun XY, Hong M, Yang L, Ge GB, Liu Y, Zhang YY, Dong Q, Liu RJ. New insights for the risk of bisphenol A: inhibition of UDP-glucuronosyltransferases (UGTs). CHEMOSPHERE 2013; 93:1189-1193. [PMID: 23948605 DOI: 10.1016/j.chemosphere.2013.06.070] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/12/2013] [Accepted: 06/19/2013] [Indexed: 06/02/2023]
Abstract
Bisphenol A (BPA), the important endocrine-disrupting chemical (EDC), has been reported to be able to induce various toxicity. The present study aims to understand the toxicity behavior of bisphenol A through evaluating the inhibition profile of bisphenol A towards UDP-glucuronosyltransferase (UGT) isoforms. In vitro recombinant UGTs-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction was employed as probe reaction for all the tested UGT isoforms. The results showed that bisphenol A exerted stronger inhibition towards UGT2B isoforms than UGT1A isoforms. Furthermore, the inhibition kinetic type and parameters (K(i)) were determined for the inhibition of bisphenol A towards UGT2B4, 2B7, 2B15, and 2B17. Bisphenol A exhibited the competitive inhibition towards UGT2B4, and noncompetitive inhibition towards UGT2B7, 2B15 and 2B17. The inhibition kinetic parameters (K(i)) were calculated to be 1.1, 32.6, 5.6, and 19.9 μM for UGT2B4, 2B7, 2B15 and 2B17, respectively. In combination with the in vivo concentration of bisphenol A, the elevation of exposure dose was predicted to increase by 29.1%, 1%, 5.7%, and 1.6% for UGT2B4, 2B7, 2B15, and 2B17, indicating the high influence of bisphenol A towards the in vivo UGT2B isofroms-mediated metabolism of xenobiotics and endogenous substances. All these data provide the supporting information for deeper understanding of toxicology of bisphenol A.
Collapse
Affiliation(s)
- Hua-Mao Jiang
- Liaoning Medical University, Jinzhou, Liaoning, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chengcheng G, Rui X, Tianheng M, Wei Y, Liqun P. Probe substrate and enzyme source-dependent inhibition of UDP-glucuronosyltransferase (UGT) 1A9 by wogonin. Afr Health Sci 2013; 13:551-5. [PMID: 24250287 DOI: 10.4314/ahs.v13i3.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Drug-metabolizing enzymes (DMEs) inhibition based drug-drug interaction and herb-drug interaction severely challenge the R&D process of drugs or herbal ingredients. OBJECTIVE To evaluate the inhibition potential of wogonin (an important flavonoid isolated from the root of Scutellaria baicalensis) towards one of the most important phase II DMEs, UDP-glucuronosyltransferase (UGT) 1A9. METHODS Both recombinant UGT1A9-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction and human liver microsomes (HLMs)-catalyzed propofol glucuronidation reaction were used as two different probe reactions. RESULTS Wogonin noncompetitively inhibited recombinant UGT1A9-catalyzed 4-MU glucuronidation, and exerted competitive inhibition towards HLMs-catalyzed propofol glucuronidation. The inhibition kinetic parameters (Ki) were calculated to be 3.2 µM and 52.0µM, respectively. CONCLUSION Necessary monitoring was needed when wogonin was co-administered with the clinical drugs mainly undergoing UGT1A9-mediated glucuronidation elimination. Additionally, probe reactions-dependent inhibition of wogonin towards the activity of UGT1A9 should be paid attention when translating these in vitro data into in vivo situation.
Collapse
Affiliation(s)
- Gao Chengcheng
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300, P. R. China
| | | | | | | | | |
Collapse
|