1
|
Kumari H, Ganjoo A, Shafeeq H, Ayoub N, Babu V, Ahmed Z. Microbial transformation of some phytochemicals into value-added products: A review. Fitoterapia 2024; 178:106149. [PMID: 39089598 DOI: 10.1016/j.fitote.2024.106149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Phytochemicals, plant-derived compounds, are the major components of traditional medicinal plants. Some phytochemicals have restricted applications, due to low bioavailability and less efficacy. However, their medicinal properties can be enhanced by converting them into value-added products for different bioactivities like anti-oxidant, neuroprotective, anti-obesity, anti-neuroinflammatory, anti-microbial, anti-cancer and anti-inflammatory. Microbial transformation is one such process that is generally more specific and makes it possible to modify a compound without making any unwanted alterations in the molecule. This has led to the efficient production of value-added products with important pharmacological properties and the discovery of new active compounds. The present review assimilates the existing knowledge of the microbial transformation of some phytochemicals like eugenol, curcumin, ursolic acid, cinnamaldehyde, piperine, β-carotene, β-sitosterol, and quercetin to value-added products for their application in food, fragrances, and pharmaceutical industries.
Collapse
Affiliation(s)
- Hema Kumari
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ananta Ganjoo
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Haseena Shafeeq
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nargis Ayoub
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vikash Babu
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Zabeer Ahmed
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Rustamova N, Huang G, Isokov M, Movlanov J, Farid R, Buston I, Xiang H, Davranov K, Yili A. Modification of natural compounds through biotransformation process by microorganisms and their pharmacological properties. Fitoterapia 2024; 179:106227. [PMID: 39326800 DOI: 10.1016/j.fitote.2024.106227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
The biotransformation of natural compounds by fungal microorganisms is a complex biochemical process. Tandem whole-cell biotransformation offers a promising, alternative, and cost-effective method for modifying of bioactive novel compounds. This approach is particularly beneficial for structurally complex natural products that are difficult to be synthesized through traditional synthetic methods. Biotransformation also provides significant regio- and stereoselectivity, making it a valuable tool for the chemical modification of natural compounds. By utilizing microbial conversion reactions, the biological activity and structural diversity of natural products can be enhanced. In this review, we have summarized 282 novel metabolites resulting from microbial transformation by various microorganisms. We discussed the chemical structures and pharmacological properties of these novel biotransformation products. The review would assist scientists working in the fields of biotechnology, organic chemistry, medicinal chemistry, and pharmacology.
Collapse
Affiliation(s)
- Nigora Rustamova
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; Department of Enzymology, Institute of Microbiology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Shaykhantakhur district, street Abdulla Kadiriy, 7 B100128, Uzbekistan; Department of Biology, Samarkand State University, University Boulevard 15, Samarkand 703004, Uzbekistan.
| | - Guozheng Huang
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, 59 Hudong Road, Ma'anshan 243002, Anhui, China
| | - Maksud Isokov
- University of Geological Science, Center of Geoinnovation Technologies, 100041 Tashkent, Uzbekistan
| | - Jakhongir Movlanov
- University of Geological Science, Center of Geoinnovation Technologies, 100041 Tashkent, Uzbekistan
| | - Ruziev Farid
- Department of Biology, Samarkand State University, University Boulevard 15, Samarkand 703004, Uzbekistan
| | - Islamov Buston
- Department of Biology, Samarkand State University, University Boulevard 15, Samarkand 703004, Uzbekistan
| | - Hua Xiang
- Institute Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kahramon Davranov
- Department of Enzymology, Institute of Microbiology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Shaykhantakhur district, street Abdulla Kadiriy, 7 B100128, Uzbekistan
| | - Abulimiti Yili
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| |
Collapse
|
3
|
Zanin LL, de Queiroz TM, Porto ALM. Microbial transformation of Knoevenagel adducts by whole cells of Brazilian marine-derived fungi: A green approach to remove organic compounds from the aqueous medium. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2145556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Lucas Lima Zanin
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Thayane Melo de Queiroz
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - André Luiz Meleiro Porto
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| |
Collapse
|
4
|
Bakhtra D, Yanwirasti Y, Wahyuni FS, Aminah I, Handayani D. Antimicrobial and Cytotoxic Activities Screening of Marine Invertebrate-Derived Fungi Extract from West Sumatera, Indonesia. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: The coral reef on Mandeh Island, West Sumatra, Indonesia, consists of an abundant source of sponge and soft coral. Secondary metabolites of marine-derived fungi isolated from the sponge and soft coral possess numerous biological activities.
AIM: This study collected, identified, and screened marine-derived fungi isolated from marine invertebrates for antibacterial and cytotoxic bioactivities.
MATERIALS AND METHODS: The marine invertebrates used are sponges; Xestospongia testudinaria and Placortis communis) and soft corals (Sarcophyton elegan and Subergorgia suberosa). The EtOAc extracts were analyzed for antimicrobial and cytotoxic activities using the diffusion agar method and brine shrimps lethality test.
RESULTS: After cultivating on rice medium, the EtOAc extracts of 22 isolated fungi showed potent antimicrobial activity with an inhibitory zone of 15.9 mm against Staphylococcus aureus (XT2 extract), and Pseudomonas aeruginosa of 26.7 mm (XT6 extract), and Candida albicans of 29 mm (SE5 extract). XT6 extract showed the potential cytotoxic activity with an LC50 value of 100 μg/ml.
CONCLUSION: The ability of the marine-derived fungi to produce bioactive compounds is promising potential as a source of antimicrobial and cytotoxic compounds.
Collapse
|
5
|
Chu C, Song K, Zhang Y, Yang M, Fan B, Huang H, Chen G. Biotransformation of ursolic acid by Circinella muscae and their anti-neuroinflammatory activities of metabolites. Nat Prod Res 2022; 36:2777-2782. [PMID: 33977841 DOI: 10.1080/14786419.2021.1925893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
In this study, the biotransformation of ursolic acid by Circinella muscae CGMCC 3.2695 was investigated. Scaled-up biotransformation reactions yielded ten metabolites. Their structures were established based on extensive NMR and HR-ESI-MS data analyses, and four of them are new compounds. C. muscae could selectively catalyze hydroxylation, lactonisation, carbonylation and carboxyl reduction reactions. Furthermore, all the identified metabolites were evaluated for their anti-neuroinflammatory activities in LPS-induced BV-2 cells. Most metabolites displayed pronounced inhibitory effect on nitric oxide (NO) production. The results suggested that biotransformed derivatives of ursolic acid might be served as potential neuroinflammatory inhibitors.
Collapse
Affiliation(s)
- Chengjiao Chu
- School of Pharmacy, Nantong University, Nantong, China
| | - Kainan Song
- School of Pharmacy, Nantong University, Nantong, China
| | | | - Min Yang
- School of Pharmacy, Nantong University, Nantong, China
| | - Boyi Fan
- School of Pharmacy, Nantong University, Nantong, China
| | - Huilian Huang
- Key Laboratory of Modern Preparation of TCM, Jiangxi University of Traditional Chinese Medicine, ministry of education, Nanchang, China
| | | |
Collapse
|
6
|
Luchnikova NA, Grishko VV, Ivshina IB. Biotransformation of Oleanane and Ursane Triterpenic Acids. Molecules 2020; 25:E5526. [PMID: 33255782 PMCID: PMC7728323 DOI: 10.3390/molecules25235526] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Oleanane and ursane pentacyclic triterpenoids are secondary metabolites of plants found in various climatic zones and regions. This group of compounds is highly attractive due to their diverse biological properties and possible use as intermediates in the synthesis of new pharmacologically promising substances. By now, their antiviral, anti-inflammatory, antimicrobial, antitumor, and other activities have been confirmed. In the last decade, methods of microbial synthesis of these compounds and their further biotransformation using microorganisms are gaining much popularity. The present review provides clear evidence that industrial microbiology can be a promising way to obtain valuable pharmacologically active compounds in environmentally friendly conditions without processing huge amounts of plant biomass and using hazardous and expensive chemicals. This review summarizes data on distribution, microbial synthesis, and biological activities of native oleanane and ursane triterpenoids. Much emphasis is put on the processes of microbial transformation of selected oleanane and ursane pentacyclic triterpenoids and on the bioactivity assessment of the obtained derivatives.
Collapse
Affiliation(s)
- Natalia A. Luchnikova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 614081 Perm, Russia;
- Department of Microbiology and Immunology, Perm State National Research University, 614990 Perm, Russia
| | - Victoria V. Grishko
- Institute of Technical Chemistry, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 614013 Perm, Russia;
| | - Irina B. Ivshina
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 614081 Perm, Russia;
- Department of Microbiology and Immunology, Perm State National Research University, 614990 Perm, Russia
| |
Collapse
|
7
|
Cano-Flores A, Gómez J, S. Escalona-Torres I, Velasco-Bejarano B. Microorganisms as Biocatalysts and Enzyme Sources. Microorganisms 2020. [DOI: 10.5772/intechopen.90338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
8
|
Abstract
The viral infection and resistance to the existing antiviral drugs are alarming, which is a serious public health concern. Medicinal plants are valuable resources for treatment of viral infections and can be used for the management of infections like herpes simplex virus (HSV), human immunodeficiency virus (HIV), influenza, etc. The antiviral screening of plant extracts should be highly selective, specific, and sensitive for bioactivity guided isolation of the active compounds from the plant extracts. The antiviral screening system should be validated for accuracy, reproducibility, simplicity, and cost effectiveness. This chapter highlights on various aspects for screening and evaluation of antiviral natural components including factors affecting antiviral in vivo studies, host cells, organisms, and culture media followed by different virus-specific assays for antiviral screening of natural products.
Collapse
|
9
|
Wijayawardene NN, Pawłowska J, Letcher PM, Kirk PM, Humber RA, Schüßler A, Wrzosek M, Muszewska A, Okrasińska A, Istel Ł, Gęsiorska A, Mungai P, Lateef AA, Rajeshkumar KC, Singh RV, Radek R, Walther G, Wagner L, Walker C, Wijesundara DSA, Papizadeh M, Dolatabadi S, Shenoy BD, Tokarev YS, Lumyong S, Hyde KD. Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota). FUNGAL DIVERS 2018. [DOI: 10.1007/s13225-018-0409-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Microbe-mediate transformation of echinocystic acid by whole cells of filamentous fungus Cunninghamella blakesleana CGMCC 3.910. Mol Biol Rep 2018; 45:2795-2800. [PMID: 30194559 DOI: 10.1007/s11033-018-4357-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/03/2018] [Indexed: 10/28/2022]
Abstract
Structural modification of echinocystic acid (EA), a pentacyclic triterpenoid with wide spread biological activities was investigated by microbial transformation. Microbe-mediate transformation of EA was carried out by filamentous fungus Cunninghamella blakesleana CGMCC 3.910. Four metabolites 3β, 7β, 16α-trihydroxy-olean-12-en-28-oic acid (EA-2); 3β, 7β, 16β,19β-tetrahydroxy-olean-12-en-28-oic acid (EA-3); 3β, 7β, 16α, 21β-tetrahydroxy-olean-12-en-28-oic acid (EA-4); 3β, 7β, 16α-trihydroxy-olean-11, 13(18)-dien-28-oic acid (EA-5) were produced. Structures of transformed products were elucidated by 1D and 2D NMR and HR-MS data. EA-3 and EA-4 were new compounds.
Collapse
|
11
|
Nguyen TAT, Duong TH, Le Pogam P, Beniddir MA, Nguyen HH, Nguyen TP, Do TML, Nguyen KPP. Two new triterpenoids from the roots of Phyllanthus emblica. Fitoterapia 2018; 130:140-144. [PMID: 30170172 DOI: 10.1016/j.fitote.2018.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 10/28/2022]
Abstract
Two new triterpenes, the seco-friedelane type secofriedelanophyllemblicine and the ursane-derived saponin ursophyllemblicoside were isolated from the roots of the edible fruit-producing Phyllanthus emblica. Their structures were unambiguously elucidated using extensive 1D and 2D NMR analyses, high resolution mass spectrometry and single-crystal X-ray crystallographic analyses along with comparison with literature data. Secofriedelanophyllemblicine represents the first 3,4-secofriedelane bearing a carboxylic acid group substituent at C-20. Ursophyllemblicoside, incorporating the rare 21α hydroxyursolic acid as a sapogenol represents the first example of saponin comprising this aglycone. Secofriedelanophyllemblicine displayed a moderate cytotoxicity against K562 and HepG2 cancer cell lines.
Collapse
Affiliation(s)
- Thi-Anh-Tuyet Nguyen
- Department of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, District 5, 748342 Ho Chi Minh City, Viet Nam
| | - Thuc-Huy Duong
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Pierre Le Pogam
- Équipe «Pharmacognosie-Chimie des Substances Naturelles », BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France.
| | - Mehdi A Beniddir
- Équipe «Pharmacognosie-Chimie des Substances Naturelles », BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Hung-Huy Nguyen
- Department of Organic Chemistry, University of Science, Ha Noi National University, 19 Le Thanh Tong Street, District Hoan Kiem, Ha Noi City, Viet Nam
| | - Thi-Phuong Nguyen
- Faculty of Biotechnology and environment, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, Viet Nam
| | - Thi-My-Lien Do
- Institute of Environment-Energy Technology, Sai Gon University, Ho Chi Minh City, Viet Nam
| | - Kim-Phi-Phung Nguyen
- Department of Organic Chemistry, University of Science, National University, Ho Chi Minh City, 227 Nguyen Van Cu Str., Dist. 5, Ho Chi Minh City 748355, Viet Nam.
| |
Collapse
|
12
|
Janeczko T, Popłoński J, Kozłowska E, Dymarska M, Huszcza E, Kostrzewa-Susłow E. Application of α- and β-naphthoflavones as monooxygenase inhibitors of Absidia coerulea KCh 93, Syncephalastrum racemosum KCh 105 and Chaetomium sp. KCh 6651 in transformation of 17α-methyltestosterone. Bioorg Chem 2018; 78:178-184. [PMID: 29574302 DOI: 10.1016/j.bioorg.2018.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/15/2018] [Accepted: 03/18/2018] [Indexed: 12/11/2022]
Abstract
In this work, 17α-methyltestosterone was effectively hydroxylated by Absidia coerulea KCh 93, Syncephalastrum racemosum KCh 105 and Chaetomium sp. KCh 6651. A. coerulea KCh 93 afforded 6β-, 12β-, 7α-, 11α-, 15α-hydroxy derivatives with 44%, 29%, 6%, 5% and 9% yields, respectively. S. racemosum KCh 105 afforded 7α-, 15α- and 11α-hydroxy derivatives with yields of 45%, 19% and 17%, respectively. Chaetomium sp. KCh 6651 afforded 15α-, 11α-, 7α-, 6β-, 9α-, 14α-hydroxy and 6β,14α-dihydroxy derivatives with yields of 31%, 20%, 16%, 7%, 5%, 7% and 4%, respectively. 14α-Hydroxy and 6β,14α-dihydroxy derivatives were determined as new compounds. Effect of various sources of nitrogen and carbon in the media on biotransformations were tested, however did not affect the degree of substrate conversion or the composition of the products formed. The addition of α- or β-naphthoflavones inhibited 17α-methyltestosterone hydroxylation but did not change the percentage composition of the resulting products.
Collapse
Affiliation(s)
- Tomasz Janeczko
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Jarosław Popłoński
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Ewa Kozłowska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Monika Dymarska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Ewa Huszcza
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Edyta Kostrzewa-Susłow
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
13
|
Zhang CX, Ma WJ, Liu DL, Jia XJ, Zhao YM. Biotransformation of ursolic acid by Alternaria longipes AS3.2875. Nat Prod Res 2018; 32:536-543. [PMID: 28553725 DOI: 10.1080/14786419.2017.1327860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/27/2017] [Indexed: 01/27/2023]
Abstract
Microbial transformation of ursolic acid (1) was carried out by Alternaria longipes AS 3.2875. Six transformed products (2-7) from 1 were isolated and their structures were identified as 3-carbonyl ursolic acid 28-O-β-D-glucopyranosyl ester (2), ursolic acid 3-O-β-D-glucopyranoside (3), ursolic acid 28-O-β-D-glucopyranosyl ester (4), 2α, 3β-dihydroxy ursolic acid 28-O-β-D-glucopyranosyl ester (5), 3β, 21β dihydroxy ursolic acid 28-O-β-D-glucopyranosyl ester (6), and 3-O-(β-D-glucopyranosyl)- ursolic acid 28-O-(β-D-glucopyranosyl) ester (7) based on the analysis of 1D NMR, 2DNMR and MS data. The product 2 was a new compound among them and showed stronger antibacterial activity against S. aureu, MRSA and MRCA than substrate. In this study, we modified structure of ursolic acid through biotransformation to enhance its activities and preliminarily discussed the transformation way of the products.
Collapse
Affiliation(s)
- Chen-Xi Zhang
- a Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazard , Logistics University of Chinese People's Armed Police Forces , Tianjin , P.R. China
- b College of Traditional Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China
| | - Wei-Jun Ma
- a Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazard , Logistics University of Chinese People's Armed Police Forces , Tianjin , P.R. China
| | - Dai-Lin Liu
- a Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazard , Logistics University of Chinese People's Armed Police Forces , Tianjin , P.R. China
| | - Xiu-Juan Jia
- b College of Traditional Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China
| | - Yan-Min Zhao
- a Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazard , Logistics University of Chinese People's Armed Police Forces , Tianjin , P.R. China
- b College of Traditional Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China
| |
Collapse
|
14
|
Fu S, Meng Q, Yang J, Tu J, Sun DA. Biocatalysis of ursolic acid by the fungus Gliocladium roseum CGMCC 3.3657 and resulting anti-HCV activity. RSC Adv 2018; 8:16400-16405. [PMID: 35542219 PMCID: PMC9080225 DOI: 10.1039/c8ra01217b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/21/2018] [Indexed: 01/23/2023] Open
Abstract
Biocatalysis of ursolic acid (UA 1) by Gliocladium roseum CGMCC 3.3657 was investigated.
Collapse
Affiliation(s)
- Shaobin Fu
- Institute of Medical Plant Development
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100193
- China
| | - Qingfeng Meng
- Department of Public Health
- Zunyi Medical University
- Zunyi 563000
- China
| | - Junshan Yang
- Institute of Medical Plant Development
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100193
- China
| | - Jiajia Tu
- Pharmacy School of Zunyi Medical University
- Zunyi 563000
- China
| | - Di-An Sun
- Institute of Medical Plant Development
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100193
- China
| |
Collapse
|
15
|
Biotransformation of Ergostane Triterpenoid Antcin K from Antrodia cinnamomea by Soil-Isolated Psychrobacillus sp. AK 1817. Catalysts 2017. [DOI: 10.3390/catal7100299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
16
|
Zhang C, Xu SH, Ma BL, Wang WW, Yu BY, Zhang J. New derivatives of ursolic acid through the biotransformation by Bacillus megaterium CGMCC 1.1741 as inhibitors on nitric oxide production. Bioorg Med Chem Lett 2017; 27:2575-2578. [PMID: 28427811 DOI: 10.1016/j.bmcl.2017.03.076] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/11/2017] [Accepted: 03/24/2017] [Indexed: 11/19/2022]
Abstract
Microbial transformation of ursolic acid (1) by Bacillus megaterium CGMCC 1.1741 was investigated and yielded five metabolites identified as 3-oxo-urs-12-en-28-oic acid (2); 1β,11α-dihydroxy-3-oxo-urs-12-en-28-oic acid (3); 1β-hydroxy-3-oxo-urs-12-en-28, 13-lactoe (4); 1β,3β, 11α-trihydroxyurs-12-en-28-oic acid (5) and 1β,11α-dihydroxy-3-oxo-urs-12-en-28-O-β-d-glucopyranoside (6). Metabolites 3, 4, 5 and 6 were new natural products. Their nitric oxide (NO) production inhibitory activity was assessed in lipopolysaccharide (LPS) - stimulated RAW 264.7 cells. Compounds 3 and 4 exhibited significant activities with the IC50 values of 1.243 and 1.711μM, respectively. A primary structure-activity relationship was also discussed.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Shao-Hua Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Bai-Ling Ma
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Wei-Wei Wang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Bo-Yang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Jian Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
17
|
Huang Q, Chen H, Ren Y, Wang Z, Zeng P, Li X, Wang J, Zheng X. Anti-hepatocellular carcinoma activity and mechanism of chemopreventive compounds: ursolic acid derivatives. PHARMACEUTICAL BIOLOGY 2016; 54:3189-3196. [PMID: 27564455 DOI: 10.1080/13880209.2016.1214742] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT Hepatocellular carcinoma (HCC) is a common cancer around the world, with high mortality rate. Currently, there is no effective drug for the therapy of HCC. Ursolic acid (UA) is a natural product which exists in various medicinal herbs and fruits, exhibiting multiple biological effects such as its outstanding anticancer and hepatoprotective activity, which has drawn many pharmacists' attention. OBJECTIVE This paper summarizes the current status of the hepatoprotective activity of UA analogues and explains the related mechanism, providing a clear direction for the development of novel anti-HCC drugs. METHODS All of the data resources were derived from PubMed. By comparing the IC50 values and analyzing the structure-activity relationships, we listed compounds with good pharmacological activity from the relevant literature, and summarized their anti-HCC mechanism. RESULTS From the database, 58 new UA derivatives possessing wonderful anticancer and hepatoprotective effects were listed, and the relevant anti-HCC mechanism were discussed. CONCLUSION UA's anti-HCC effect is the result of combined action of many mechanisms. These 58 new UA derivatives, particularly compounds 45 and 53, can be used as potential drugs for the treatment of liver cancer.
Collapse
Affiliation(s)
- Qiuxia Huang
- a Department of Pharmacy & Pharmacology , University of South China , Hengyang , China
- b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang , China
| | - Hongfei Chen
- a Department of Pharmacy & Pharmacology , University of South China , Hengyang , China
- b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang , China
| | - Yuyan Ren
- a Department of Pharmacy & Pharmacology , University of South China , Hengyang , China
- b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang , China
| | - Zhe Wang
- a Department of Pharmacy & Pharmacology , University of South China , Hengyang , China
- b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang , China
| | - Peiyu Zeng
- a Department of Pharmacy & Pharmacology , University of South China , Hengyang , China
- b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang , China
- c Research Interest Group of Pharmacy , University of South China , Hengyang , China
| | - Xuan Li
- a Department of Pharmacy & Pharmacology , University of South China , Hengyang , China
- b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang , China
- c Research Interest Group of Pharmacy , University of South China , Hengyang , China
| | - Juan Wang
- a Department of Pharmacy & Pharmacology , University of South China , Hengyang , China
- b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang , China
| | - Xing Zheng
- a Department of Pharmacy & Pharmacology , University of South China , Hengyang , China
- b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang , China
| |
Collapse
|
18
|
Świzdor A, Panek A, Milecka-Tronina N. Biohydroxylation of 7-oxo-DHEA, a natural metabolite of DHEA, resulting in formation of new metabolites of potential pharmaceutical interest. Chem Biol Drug Des 2016; 88:844-849. [DOI: 10.1111/cbdd.12813] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/24/2016] [Accepted: 06/26/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Alina Świzdor
- Department of Chemistry; Wrocław University of Environmental and Life Sciences; Wrocław Poland
| | - Anna Panek
- Department of Chemistry; Wrocław University of Environmental and Life Sciences; Wrocław Poland
| | - Natalia Milecka-Tronina
- Department of Chemistry; Wrocław University of Environmental and Life Sciences; Wrocław Poland
| |
Collapse
|
19
|
Fu S, Li Y, Meng Q, Yue C, Sun Y, Wei G. Regio-selective Reduction of Oxysophoridine by Microorganism Isolated from Soil. J CHIN CHEM SOC-TAIP 2016. [DOI: 10.1002/jccs.201500501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Fu S, Meng Q, Long SA, Zhang Y, Sun DA, Wei G. Biocatalytic Synthesis of the Anti-diabetes Agent-corosolic Acid by Whole Cells of Microorganisms. J CHIN CHEM SOC-TAIP 2015. [DOI: 10.1002/jccs.201500035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Xia B, Bai L, Li X, Xiong J, Xu P, Xue M. Structural analysis of metabolites of asiatic acid and its analogue madecassic acid in zebrafish using LC/IT-MSn. Molecules 2015; 20:3001-19. [PMID: 25685908 PMCID: PMC6272356 DOI: 10.3390/molecules20023001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/26/2015] [Accepted: 02/04/2015] [Indexed: 12/28/2022] Open
Abstract
Although zebrafish has become a significant animal model for drug discovery and screening, drug metabolism in zebrafish remains largely unknown. Asiatic acid (AA) and madecassic acid (MA), two natural pentacyclic triterpenoids mainly obtained from Centella asiatica (L.) Urban, have been found to possess many pharmacological effects. This study is to probe the metabolic capability of zebrafish via investigation of the drug metabolism of AA and MA in zebrafish, using a sensitive LC/IT-MSn method. In addition, the main fragmentation pathways of AA and MA were reported for the first time. Nineteen metabolites of AA and MA were firstly identified after zebrafish was exposed to the drug, which all were the phase I metabolites and mainly formed from hydroxylation, dehydrogenation, hydroxylation and dehydrogenation, dihydroxylation and dehydrogenation, and dehydroxylation reaction. The results indicated that zebrafish possessed strong metabolic capacity, and the metabolites of AA and MA were formed via similar metabolic pathways and well matched with the known metabolic rules in vivo and in vitro, which supports the widely use of this system in drug metabolism research. This investigation would also contribute to the novel information on the structural elucidation, in vivo metabolites and metabolic mechanism of pentacyclic triterpenoids.
Collapse
Affiliation(s)
- Binbin Xia
- Beijing Laboratory for Biomedical Detection Technology and Instrument, Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| | - Lu Bai
- Beijing Laboratory for Biomedical Detection Technology and Instrument, Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| | - Xiaorong Li
- Beijing Laboratory for Biomedical Detection Technology and Instrument, Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| | - Jie Xiong
- Beijing Laboratory for Biomedical Detection Technology and Instrument, Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| | - Pinxiang Xu
- Beijing Laboratory for Biomedical Detection Technology and Instrument, Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| | - Ming Xue
- Beijing Laboratory for Biomedical Detection Technology and Instrument, Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
22
|
Chattopadhyay D, Ojha D, Mondal S, Goswami D. Validation of Antiviral Potential of Herbal Ethnomedicine. EVIDENCE-BASED VALIDATION OF HERBAL MEDICINE 2015. [PMCID: PMC7150199 DOI: 10.1016/b978-0-12-800874-4.00008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Natural products are the basis of treatment since the dawn of human civilization, and modern medicine has gradually developed, over the years, by scientific and observational efforts from traditional medicine. Today most of the synthetic drugs showed adverse and unacceptable side effects, however, impressive bioactivities with reduced toxicities were reported for many botanicals against several chronic or difficult-to-treat diseases. A whole range of viral diseases including human immunodeficiency virus/acquired immunodeficiency syndrome, severe acute respiratory syndrome, Rabies, Dengue, and Herpes need effective drugs. Considerable research has been carried out on the pharmacognosy, chemistry, pharmacology, and therapeutics of traditional medicines of diverse cultures, and many pharmaceutical companies have renewed their strategies for antiviral drug development where no effective drugs or vaccine exist. Thus, phytochemicals with antiviral potentials need to be studied in depth with standardization, chemical isolation, effectivity, molecular mechanism, along with in vivo toxicity and efficacy to reduce cost and time. This review will portray the scientific approaches and methodologies used for the development of antiviral leads from traditional medicines against selected genetically and functionally diverse viral infections.
Collapse
|
23
|
Feng X, Li DP, Zhang ZS, Chu ZY, Luan J. Microbial transformation of the anti-diabetic agent corosolic acid. Nat Prod Res 2014; 28:1879-86. [DOI: 10.1080/14786419.2014.955485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Shah SAA, Tan HL, Sultan S, Faridz MABM, Shah MABM, Nurfazilah S, Hussain M. Microbial-catalyzed biotransformation of multifunctional triterpenoids derived from phytonutrients. Int J Mol Sci 2014; 15:12027-60. [PMID: 25003642 PMCID: PMC4139828 DOI: 10.3390/ijms150712027] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/12/2014] [Accepted: 06/26/2014] [Indexed: 02/06/2023] Open
Abstract
Microbial-catalyzed biotransformations have considerable potential for the generation of an enormous variety of structurally diversified organic compounds, especially natural products with complex structures like triterpenoids. They offer efficient and economical ways to produce semi-synthetic analogues and novel lead molecules. Microorganisms such as bacteria and fungi could catalyze chemo-, regio- and stereospecific hydroxylations of diverse triterpenoid substrates that are extremely difficult to produce by chemical routes. During recent years, considerable research has been performed on the microbial transformation of bioactive triterpenoids, in order to obtain biologically active molecules with diverse structures features. This article reviews the microbial modifications of tetranortriterpenoids, tetracyclic triterpenoids and pentacyclic triterpenoids.
Collapse
Affiliation(s)
- Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.
| | - Huey Ling Tan
- Faculty of Chemical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor Darul Ehsan, Malaysia.
| | - Sadia Sultan
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.
| | - Muhammad Afifi Bin Mohd Faridz
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.
| | - Mohamad Azlan Bin Mohd Shah
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.
| | - Sharifah Nurfazilah
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.
| | - Munawar Hussain
- Department of Basic Sciences, DHA Suffa University, Off, Khayaban-e-Tufail, Phase VII (Extension), DHA, Karachi 75500, Pakistan.
| |
Collapse
|