1
|
Háznagy M, Girst G, Vágvölgyi M, Cholke K, Krishnan SR, Gertsch J, Hunyadi A. Semisynthetic Ecdysteroid Cinnamate Esters and tert-Butyl Oxime Ether Derivatives with Trypanocidal Activity. JOURNAL OF NATURAL PRODUCTS 2024; 87:2478-2486. [PMID: 39417525 PMCID: PMC11519910 DOI: 10.1021/acs.jnatprod.4c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
The parasite Trypanosoma cruzi is the causative agent of Chagas disease, a neglected tropical disease that affects the lives of millions of indigenous people in Latin America. As medications to treat Chagas disease are limited to the application of benznidazole and nifurtimox, which are not ideal treatments for the chronic stage of the disease, the search for new antichagasic drug candidates is an important need. Ecdysone has previously been shown to interfere with the life cycle of T. cruzi. Here, we report the biological profiling and subsequent semisynthetic structure optimization of 47 ecdysteroids against T. cruzi with the aim of identifying selective trypanocidal ecdysteroids. Two moderately trypanocidal pharmacophores were identified: ecdysteroids containing a 6-tert-butyl oxime ether and a cinnamic ester moiety. These functional groups were combined into the structures of four new semisynthetic ecdysteroids (44-47), among which 44 exerted potent and selective trypanocidal activity (IC50 < 2 μM). Cellular infection assays showed that ecdysteroid 44 potently and efficiently inhibited amastigote replication as determined by trypomastigote release after cellular infection with an IC50 of 2.7 ± 0.1 μM. The compound was similarly potent to benznidazole (IC50 = 3.8 ± 0.7 μM) and more than 5-fold more cytotoxic toward T. cruzi over RAW264.7 host macrophages. Overall, the ecdysteroid cinnamate ester 44 is a novel trypanocidal lead structure that needs to be further characterized in follow-up studies.
Collapse
Affiliation(s)
- Márton
B. Háznagy
- Institute
of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Gábor Girst
- Institute
of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Máté Vágvölgyi
- Institute
of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Kaushavi Cholke
- Institute
of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Sandhya Radha Krishnan
- Institute
of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Jürg Gertsch
- Institute
of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Attila Hunyadi
- Institute
of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
- Interdisciplinary
Centre of Natural Products, University of
Szeged, Eötvös
u. 6, H-6720 Szeged, Hungary
- HUN-REN-SZTE
Biologically Active Natural Products Research Group, Eötvös u. 6, H-6720 Szeged, Hungary
- Graduate
Institute of Natural Products, Kaohsiung
Medical University, Shih-Chuan
1st Rd. 100, Kaohsiung 807, Taiwan
| |
Collapse
|
2
|
Wang L, Li H, Chen J, Wang Y, Gu Y, Jiu M. Antibacterial Mechanisms and Antivirulence Activities of Oridonin against Pathogenic Aeromonas hydrophila AS 1.1801. Microorganisms 2024; 12:415. [PMID: 38399819 PMCID: PMC10891661 DOI: 10.3390/microorganisms12020415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Aeromonas hydrophila, a Gram-negative bacterium widely found in freshwater environments, acts as a common conditional pathogen affecting humans, livestock, and aquatic animals. In this study, the impact of oridonin, an ent-kaurane diterpenoid compound derived from Rabdosia rubescens, on the virulence factors of A. hydrophila AS 1.1801 and its antibacterial mechanism was elucidated. The minimum inhibitory concentration (MIC) of oridonin against A. hydrophila AS 1.1801 was 100 μg/mL. Oridonin at inhibitory concentrations could significantly increase the electrical conductivity in the supernatant and escalate nucleic acid leakage (p < 0.01). This effect was concomitant with observed distortions in bacterial cells, the formation of cytoplasmic cavities, cellular damage, and pronounced inhibition of protein and nucleic acid synthesis. Additionally, oridonin at inhibitory levels exhibited a noteworthy suppressive impact on A. hydrophila AS 1.1801 across biofilm formation, motility, hemolytic activity, lipase activity, and protease activity (p < 0.05), demonstrating a dose-dependent enhancement. qRT-PCR analysis showed that the gene expression of luxR, qseB and omp were significantly downregulated after oridonin treatment in A. hydrophila AS 1.1801 (p < 0.05). Our results indicated that oridonin possessed significant antibacterial and anti-virulence effects on A. hydrophila AS 1.1801.
Collapse
Affiliation(s)
- Lunji Wang
- Key Laboratory of Microbial Resources Development and Utilization, Henan University of Science and Technology, Luoyang 471023, China; (L.W.); (J.C.)
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (H.L.); (Y.W.); (Y.G.)
| | - Huijuan Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (H.L.); (Y.W.); (Y.G.)
| | - Jinhao Chen
- Key Laboratory of Microbial Resources Development and Utilization, Henan University of Science and Technology, Luoyang 471023, China; (L.W.); (J.C.)
| | - Yi Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (H.L.); (Y.W.); (Y.G.)
| | - Yuqing Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (H.L.); (Y.W.); (Y.G.)
| | - Min Jiu
- Key Laboratory of Microbial Resources Development and Utilization, Henan University of Science and Technology, Luoyang 471023, China; (L.W.); (J.C.)
| |
Collapse
|
3
|
Chen GQ, Guo HY, Quan ZS, Shen QK, Li X, Luan T. Natural Products-Pyrazine Hybrids: A Review of Developments in Medicinal Chemistry. Molecules 2023; 28:7440. [PMID: 37959859 PMCID: PMC10649211 DOI: 10.3390/molecules28217440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Pyrazine is a six-membered heterocyclic ring containing nitrogen, and many of its derivatives are biologically active compounds. References have been downloaded through Web of Science, PubMed, Science Direct, and SciFinder Scholar. The structure, biological activity, and mechanism of natural product derivatives containing pyrazine fragments reported from 2000 to September 2023 were reviewed. Publications reporting only the chemistry of pyrazine derivatives are beyond the scope of this review and have not been included. The results of research work show that pyrazine-modified natural product derivatives have a wide range of biological activities, including anti-inflammatory, anticancer, antibacterial, antiparasitic, and antioxidant activities. Many of these derivatives exhibit stronger pharmacodynamic activity and less toxicity than their parent compounds. This review has a certain reference value for the development of heterocyclic compounds, especially pyrazine natural product derivatives.
Collapse
Affiliation(s)
- Guo-Qing Chen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (G.-Q.C.); (H.-Y.G.); (Z.-S.Q.); (Q.-K.S.)
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (G.-Q.C.); (H.-Y.G.); (Z.-S.Q.); (Q.-K.S.)
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (G.-Q.C.); (H.-Y.G.); (Z.-S.Q.); (Q.-K.S.)
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (G.-Q.C.); (H.-Y.G.); (Z.-S.Q.); (Q.-K.S.)
| | - Xiaoting Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (G.-Q.C.); (H.-Y.G.); (Z.-S.Q.); (Q.-K.S.)
| | - Tian Luan
- Department of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| |
Collapse
|
4
|
Chen G, Yang Z, Wen D, Li P, Xiong Q, Wu C. Oridonin Inhibits Mycobacterium marinum Infection-Induced Oxidative Stress In Vitro and In Vivo. Pathogens 2023; 12:799. [PMID: 37375489 DOI: 10.3390/pathogens12060799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Prior to the COVID-19 pandemic, tuberculosis (TB) was the leading cause of death globally attributable to a single infectious agent, ranking higher than HIV/AIDS. Consequently, TB remains an urgent public health crisis worldwide. Oridonin (7a,20-Epoxy-1a,6b,7,14-tetrahydroxy-Kaur-16-en-15-one Isodonol, C20H28O6, Ori), derived from the Rabdosia Rrubescens plant, is a natural compound that exhibits antioxidant, anti-inflammatory, and antibacterial properties. Our objective was to investigate whether Ori's antioxidant and antibacterial effects could be effective against the infection Mycobacterium marinum (Mm)-infected cells and zebrafish. We observed that Ori treatment significantly impeded Mm infection in lung epithelial cells, while also suppressing inflammatory response and oxidative stress in Mm-infected macrophages. Further investigation revealed that Ori supplementation inhibited the proliferation of Mm in zebrafish, as well as reducing oxidative stress levels in infected zebrafish. Additionally, Ori promoted the expression of NRF2/HO-1/NQO-1 and activated the AKT/AMPK-α1/GSK-3β signaling pathway, which are both associated with anti-inflammatory and antioxidant effects. In summary, our results demonstrate that Ori exerts inhibitory effects on Mm infection and proliferation in cells and zebrafish, respectively. Additionally, Ori regulates oxidative stress by modulating the NRF2/HO-1/NQO-1 and AKT/AMPK-α1/GSK-3β signaling pathways.
Collapse
Affiliation(s)
- Guangxin Chen
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Taiyuan 030006, China
| | - Ziyue Yang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Taiyuan 030006, China
| | - Da Wen
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Taiyuan 030006, China
| | - Ping Li
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Taiyuan 030006, China
| | - Qiuhong Xiong
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Taiyuan 030006, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, Taiyuan 030006, China
| |
Collapse
|
5
|
WU S, ZHOU W. Antimicrobial activity of oridonin. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.110222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Saile WU
- Henan Institute of Science and Technology, China
| | - Wei ZHOU
- Henan Institute of Science and Technology, China
| |
Collapse
|
6
|
Acero D, Khan FST, Medina-Ortiz AJ, Rivero-Cruz I, Raja HA, Flores-Bocanegra L, Fajardo-Hernández CA, Wan B, Franzblau SG, Hematian S, Figueroa M. New Terpenoids from the Corticioid Fungus Punctularia atropurpurascens and their Antimycobacterial Evaluation. PLANTA MEDICA 2022; 88:729-734. [PMID: 35354220 DOI: 10.1055/a-1786-8072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chemical investigation of Punctularia atropurpurascens strain HM1 (Punctulariaceae), a corticioid isolated from a decorticated piece of Quercus bark collected in Bosque de Tlalpan, Mexico City, led to the isolation of a new drimane, 1-α-hydroxy-isodrimenine (1: ) and a new tetrahydroxy kauranol, 16-hydroxy-phlebia-nor-kauranol (2: ), together with the known N-phenylacetamide (3: ). Structures of all compounds were elucidated by spectroscopic and spectrometric methods, and the absolute configuration of 1: and 2: was confirmed via single-crystal X-ray crystallography. The isolated compounds showed modest antimycobacterial activity.
Collapse
Affiliation(s)
- Daniel Acero
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Firoz Shah Tuglak Khan
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Abraham J Medina-Ortiz
- Departamento de Laboratorios, Colegio de Ciencias y Humanidades Plantel Sur, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Isabel Rivero-Cruz
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Laura Flores-Bocanegra
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | | | - Baojie Wan
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Shabnam Hematian
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Mario Figueroa
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
7
|
An Y, Zhu J, Wang X, Sun X, Luo C, Zhang Y, Ye Y, Li X, Abulizi A, Huang Z, Zhang H, Yang B, Xie Z. Oridonin Delays Aging Through the AKT Signaling Pathway. Front Pharmacol 2022; 13:888247. [PMID: 35662728 PMCID: PMC9157590 DOI: 10.3389/fphar.2022.888247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/29/2022] [Indexed: 12/18/2022] Open
Abstract
Aging is a major risk factor for chronic diseases and disability in humans. Nowadays, no effective anti-aging treatment is available clinically. In this study, oridonin was selected based on the drug screening strategy similar to Connectivity MAP (CMAP) but upon transcriptomes of 102 traditional Chinese medicines treated cell lines. Oridonin is a diterpenoid isolated from Rabdosia rubescens. As reported, Oridonin exhibits a variety of pharmacological activities, including antitumor, antibacterial and anti-inflammatory activities. Here, we found that oridonin inhibited cellular senescence in human diploid fibroblasts (2BS and WI-38), manifested by decreased senescence-associated β-galactosidase (SA-β-gal) staining. Compared with the elderly control group, the positive cell rate in the oridonin intervention group was reduced to 48.5%. Notably, oridonin prolonged the lifespan of yeast by 48.9%, and extended the average life span of naturally aged mice by 21.6%. Our mice behavior experiments exhibited that oridonin significantly improved the health status of naturally aged mice. In addition, oridonin also delayed doxorubicin-induced cellular senescence and mouse senescence. Compared with the model group, the percentage of SA-β-gal positive cells in the oridonin treatment group was reduced to 59.8%. It extended the average lifespan of mice by 53.8% and improved healthspan. Mechanistically, we showed that oridonin delayed aging through the AKT signaling pathway and reversed the genetic changes caused by doxorubicin-induced cell senescence. Therefore, oridonin is a potential candidate for the development of anti-aging drugs.
Collapse
Affiliation(s)
- Yongpan An
- Department of Pharmacology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University, Beijing, China
| | - Jie Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University, Beijing, China
| | - Xin Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University, Beijing, China
| | - Xinpei Sun
- Department of Pharmacology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University, Beijing, China
| | - Chunxiong Luo
- School of Physics, Peking University, Beijing, China
| | - Yukun Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University, Beijing, China
| | - Yuwei Ye
- Department of Pharmacology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University, Beijing, China
| | - Xiaowei Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University, Beijing, China
| | - Abudumijiti Abulizi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University, Beijing, China
| | - Zhizhen Huang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University, Beijing, China
| | - Hang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University, Beijing, China
| | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University, Beijing, China
| | - Zhengwei Xie
- Department of Pharmacology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University, Beijing, China.,Peking University-Yunnan Baiyao International Medical Research Center, Peking University Health Science Center, Peking University, Beijing, China.,Beijing Gigaceuticals Tech. Co. Ltd., Beijing, China
| |
Collapse
|
8
|
Liu M, Littler DR, Rossjohn J, Quinn RJ. Binding Studies of the Prodrug HAO472 to SARS-Cov-2 Nsp9 and Variants. ACS OMEGA 2022; 7:7327-7332. [PMID: 35224406 PMCID: PMC8862745 DOI: 10.1021/acsomega.1c07186] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
SARS-CoV-2 (COVID-19) has infected over 219 million people and caused the death of over 4.55 million worldwide. In a previous screen of a natural product library against purified SARS-CoV-2 Nsp9 using a native mass spectrometry-based approach, we identified an ent-kaurane natural product, oridonin (1), with micromolar affinities. In this work, we have found that the prodrug HAO472 (2) directly binds to Nsp9, establishing replacement of the labile ester with a bioisostere as a candidate drug strategy. We further tested 1 and its clinical analogue 2 against two Nsp9 variants from human coronavirus 229E (HCoV-229E) and ferret systemic coronavirus F56 (FSCoV-F56). Both compounds showed significant binding selectivity to COVID-19 and HCoV-229E Nsp9 over FSCoV-F56 Nsp9, confirming the covalent bond with Cys73.
Collapse
Affiliation(s)
- Miaomiao Liu
- Griffith
Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Dene R. Littler
- Infection
and Immunity Program & Department of Biochemistry and Molecular
Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
| | - Jamie Rossjohn
- Infection
and Immunity Program & Department of Biochemistry and Molecular
Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
- Institute
of Infection and Immunity, Cardiff University
School of Medicine, Heath
Park, Cardiff CF14 4XN, United Kingdom
| | - Ronald J Quinn
- Griffith
Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| |
Collapse
|
9
|
Lu CW, Huang YC, Chiu KM, Lee MY, Lin TY, Wang SJ. Enmein Decreases Synaptic Glutamate Release and Protects against Kainic Acid-Induced Brain Injury in Rats. Int J Mol Sci 2021; 22:ijms222312966. [PMID: 34884781 PMCID: PMC8657722 DOI: 10.3390/ijms222312966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
This study investigated the effects of enmein, an active constituent of Isodon japonicus Hara, on glutamate release in rat cerebrocortical nerve terminals (synaptosomes) and evaluated its neuroprotective potential in a rat model of kainic acid (KA)-induced glutamate excitotoxicity. Enmein inhibited depolarization-induced glutamate release, FM1-43 release, and Ca2+ elevation in cortical nerve terminals but had no effect on the membrane potential. Removing extracellular Ca2+ and blocking vesicular glutamate transporters, N- and P/Q-type Ca2+ channels, or protein kinase C (PKC) prevented the inhibition of glutamate release by enmein. Enmein also decreased the phosphorylation of PKC, PKC-α, and myristoylated alanine-rich C kinase substrates in synaptosomes. In the KA rat model, intraperitoneal administration of enmein 30 min before intraperitoneal injection of KA reduced neuronal cell death, glial cell activation, and glutamate elevation in the hippocampus. Furthermore, in the hippocampi of KA rats, enmein increased the expression of synaptic markers (synaptophysin and postsynaptic density protein 95) and excitatory amino acid transporters 2 and 3, which are responsible for glutamate clearance, whereas enmein decreased the expression of glial fibrillary acidic protein (GFAP) and CD11b. These results indicate that enmein not only inhibited glutamate release from cortical synaptosomes by suppressing Ca2+ influx and PKC but also increased KA-induced hippocampal neuronal death by suppressing gliosis and decreasing glutamate levels by increasing glutamate uptake.
Collapse
Affiliation(s)
- Cheng-Wei Lu
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan; (C.-W.L.); (Y.-C.H.)
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Yu-Chen Huang
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan; (C.-W.L.); (Y.-C.H.)
| | - Kuan-Ming Chiu
- Division of Cardiovascular Surgery, Cardiovascular Center, Far-Eastern Memorial Hospital, New Taipei 22060, Taiwan; (K.-M.C.); (M.-Y.L.)
- Department of Nursing, Asia Eastern University of Science and Technology, New Taipei City 22060, Taiwan
- Department of Photonics Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Ming-Yi Lee
- Division of Cardiovascular Surgery, Cardiovascular Center, Far-Eastern Memorial Hospital, New Taipei 22060, Taiwan; (K.-M.C.); (M.-Y.L.)
| | - Tzu-Yu Lin
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan; (C.-W.L.); (Y.-C.H.)
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
- Correspondence: (T.-Y.L.); (S.-J.W.)
| | - Su-Jane Wang
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
- Correspondence: (T.-Y.L.); (S.-J.W.)
| |
Collapse
|
10
|
Gilbert-Girard S, Reigada I, Savijoki K, Yli-Kauhaluoma J, Fallarero A. Screening of natural compounds identifies ferutinin as an antibacterial and anti-biofilm compound. BIOFOULING 2021; 37:791-807. [PMID: 34455871 DOI: 10.1080/08927014.2021.1971655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Antibacterial screenings are most commonly targeted at planktonic bacteria but less effort is dedicated to the exploration of agents acting on biofilms. Here, a natural compounds library was screened against Staphylococcus aureus using a 384-well plate platform to identify compounds preventing biofilm formation. Five structurally diverse hits were selected for follow-up studies: honokiol, tschimganidin, ferutinin, oridonin and deoxyshikonin. The compounds were evaluated against different bacterial species for their capacity to prevent and disrupt biofilms. The development of resistance and cytotoxicity were also investigated. Ferutinin displayed the best antibacterial activity, with a minimum inhibitory, bactericidal and biofilm preventive concentration of 25 µM against S. aureus. It efficiently disrupted pre-formed biofilms (over 5-log reduction of viable cells) and reduced biofilm formation on a catheter in the presence of neutrophils. This work provides new information on the antibacterial activity of five natural compounds and identified ferutinin as a promising candidate against S. aureus biofilms.
Collapse
Affiliation(s)
- Shella Gilbert-Girard
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Inés Reigada
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Kirsi Savijoki
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Adyary Fallarero
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Hu X, Wang Y, Gao X, Xu S, Zang L, Xiao Y, Li Z, Hua H, Xu J, Li D. Recent Progress of Oridonin and Its Derivatives for the Treatment of Acute Myelogenous Leukemia. Mini Rev Med Chem 2020; 20:483-497. [PMID: 31660811 DOI: 10.2174/1389557519666191029121809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/13/2019] [Accepted: 09/06/2019] [Indexed: 01/03/2023]
Abstract
First stage human clinical trial (CTR20150246) for HAO472, the L-alanine-(14-oridonin) ester trifluoroacetate, was conducted by a Chinese company, Hengrui Medicine Co. Ltd, to develop a new treatment for acute myelogenous leukemia. Two patents, WO2015180549A1 and CN201410047904.X, covered the development of the I-type crystal, stability experiment, conversion rate research, bioavailability experiment, safety assessment, and solubility study. HAO472 hewed out new avenues to explore the therapeutic properties of oridonin derivatives and develop promising treatment of cancer originated from naturally derived drug candidates. Herein, we sought to overview recent progress of the synthetic, physiological, and pharmacological investigations of oridonin and its derivatives, aiming to disclose the therapeutic potentials and broaden the platform for the discovery of new anticancer drugs.
Collapse
Affiliation(s)
- Xu Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yan Wang
- Valiant Co. Ltd., 11 Wuzhishan Road, YEDA Yantai, Shandong 264006, China
| | - Xiang Gao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Shengtao Xu
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Linghe Zang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yan Xiao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Zhanlin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jinyi Xu
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
12
|
Zhang Y, Wang S, Dai M, Nai J, Zhu L, Sheng H. Solubility and Bioavailability Enhancement of Oridonin: A Review. Molecules 2020; 25:E332. [PMID: 31947574 PMCID: PMC7024198 DOI: 10.3390/molecules25020332] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/12/2022] Open
Abstract
Oridonin (ORI), an ent-kaurene tetracyclic diterpenoid compound, is isolated from Chinese herb Rabdosia rubescens with various biological and pharmacological activities including anti-tumor, anti-microbial and anti-inflammatory effects. However, the clinical application of ORI is limited due to its low solubility and poor bioavailability. In order to overcome these shortcomings, many strategies have been explored such as structural modification, new dosage form, etc. This review provides a detailed discussion on the research progress to increase the solubility and bioavailability of ORI.
Collapse
Affiliation(s)
| | | | | | | | - Liqiao Zhu
- College of pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Z.); (S.W.); (M.D.); (J.N.)
| | - Huagang Sheng
- College of pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Z.); (S.W.); (M.D.); (J.N.)
| |
Collapse
|
13
|
Hydrogen sulfide releasing enmein-type diterpenoid derivatives as apoptosis inducers through mitochondria-related pathways. Bioorg Chem 2019; 82:192-203. [DOI: 10.1016/j.bioorg.2018.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/21/2018] [Accepted: 10/04/2018] [Indexed: 01/20/2023]
|
14
|
Hou W, Fan Q, Su L, Xu H. Synthesis of Oridonin Derivatives via Mizoroki-Heck Reaction and Click Chemistry for Cytotoxic Activity. Anticancer Agents Med Chem 2019; 19:935-947. [PMID: 30657049 DOI: 10.2174/1871520619666190118121439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 01/01/2019] [Accepted: 01/07/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Natural products (NPs) are evolutionarily chosen "privileged structures" that have a profound impact upon the anticancer drug discovery and development progress. However, the search for new drugs based on structure modification of NPs has often been hindered due to the tedious and complicated synthetic pathways. Fortunately, Mizoroki-Heck reaction and copper-catalyzed alkyne-azide cycloaddition (CuAAC) could provide perfect strategies for selective modification on NPs even in the presence of liable functionalities. OBJECTIVE Here, we used oridonin, an ent-kaurane diterpenoid that showed a wide range of biological activities, as a parent molecule for the generation of analogues with anticancer activity. METHODS Derivatives of oridonin were generated based on the structure-activity relationship study of oridonin and synthesized via Mizoroki-Heck reaction and CuAAC. The cytotoxicity of new oridonin derivatives were evaluated on both cancer cells and normal cells. Furthermore, the apoptotic effect and cell cycle arrest effect of the selected potent analogue were evaluated by flow cytometry and western blotting analysis. RESULTS Two series of novel C-14 and C-17 modified derivatives of oridonin were obtained via Heck reaction and copper-catalyzed alkyne-azide cycloaddition (CuAAC), respectively. In vitro antiproliferative activities showed that the introduction of C-14 (2-triazole)acetoxyl- moiety could retain or enhance cytotoxicity, whereas the introduction of C-17 phenyl ring might exert negative effect. Further studies demonstrated that derivative 23 exhibited broad-spectrum antiproliferative activity, effectively overcame drug-resistance and showed weak cytotoxicity on non-cancer cells. Preliminary mechanistic studies indicated that 23 might cause G2/M phase arrest and induce apoptosis in PC-3 cells. CONCLUSION Mizoroki-Heck reaction and CuAAC are perfect strategies for structure modification of complex natural products. The introduction of C-14 (2-triazole)acetoxyl- moiety could retain or enhance the cytotoxicity of oridonin, the introduction of C-17 phenyl group might exert negative effect on its cytotoxicity.
Collapse
Affiliation(s)
- Wei Hou
- College of Pharmaceutical Science, and Institute of Drug Development & Chemical Biology (IDD&CB), Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qiuju Fan
- Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Lin Su
- College of Pharmaceutical Science, and Institute of Drug Development & Chemical Biology (IDD&CB), Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, 201210, China
| |
Collapse
|
15
|
Cheng W, Huang C, Ma W, Tian X, Zhang X. Recent Development of Oridonin Derivatives with Diverse Pharmacological Activities. Mini Rev Med Chem 2019; 19:114-124. [PMID: 28425866 DOI: 10.2174/1389557517666170417170609] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 04/03/2017] [Accepted: 04/10/2017] [Indexed: 01/20/2023]
Abstract
Oridonin is one of the major components isolated from Isodon rubescens, a traditional Chinese medicine, and it has been confirmed to exhibit many kinds of biological activities including anticancer, anti-inflammation, antibacterial and so on. However, the poor pharmaceutical property limits the clinical applications of oridonin. So many strategies have been explored in the purpose of improving the potencies of oridonin, and structure modification is one thus way. This review outlines the landscape of the recent development of oridonin derivatives with diverse pharmacological activities, mainly focusing on the biological properties, structure-activity relationships, and mechanism of actions.
Collapse
Affiliation(s)
- Weiyan Cheng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chuanhui Huang
- Xinyang Vocational and Technical College, Xinyang 464000, China
| | - Weifeng Ma
- Department of Pharmacy, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
16
|
Chen Y, Jia Y, Song W, Zhang L. Therapeutic Potential of Nitrogen Mustard Based Hybrid Molecules. Front Pharmacol 2018; 9:1453. [PMID: 30618747 PMCID: PMC6304445 DOI: 10.3389/fphar.2018.01453] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/27/2018] [Indexed: 12/22/2022] Open
Abstract
As medicine advances, cancer is still among one of the major health problems, posing significant threats to human health. New anticancer agents features with novel scaffolds and/or unique mechanisms of action are highly desirable for the treatment of cancers, especially those highly aggressive and drug-resistant ones. Nitrogen mustard has been widely used as an anticancer drug since the discovery of its antitumor effect in the 1942. However, the lack of selectivity to cancer cells restricts the wide usage of a mass of nitrogen mustard agents to achieve further clinical significance. Discovery of antitumor hybrids using nitrogen mustards as key functional groups has exhibited enormous potential in the drug development. Introduction of nitrogen mustards resulted in improvement in the activity, selectivity, targetability, safety, pharmacokinetics and pharmacodynamics properties of corresponding lead compounds or agents. Herein, the recently developed nitrogen mustard based hybrids have been introduced in the cancer therapy.
Collapse
Affiliation(s)
- Yiming Chen
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Yuping Jia
- Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Weiguo Song
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Lei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
17
|
Li H, Sun B, Wang M, Hu X, Gao X, Xu S, Xu Y, Xu J, Hua H, Li D. Bioactive enmein-type 6,7-seco-ent-kaurane diterpenoids: natural products, synthetic derivatives and apoptosis related mechanism. Arch Pharm Res 2018; 41:1051-1061. [DOI: 10.1007/s12272-018-1078-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/15/2018] [Indexed: 12/12/2022]
|
18
|
Therapeutic Potential of Oridonin and Its Analogs: From Anticancer and Antiinflammation to Neuroprotection. Molecules 2018; 23:molecules23020474. [PMID: 29470395 PMCID: PMC6017549 DOI: 10.3390/molecules23020474] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/13/2018] [Accepted: 02/21/2018] [Indexed: 02/06/2023] Open
Abstract
Oridonin, a diterpenoid natural product commonly used in East Asian herbal medicine, is garnering increased attention in the biomedical community due to its extensive biological activities that include antitumor, anti-inflammatory, antimicrobial, hepatic fibrosis prevention, and neurological effects. Over the past decade, significant progress has been made in structure activity relationship and mechanism of action studies of oridonin for the treatment of cancer and other diseases. This review provides a brief summary on oridonin and its analogs in cancer drug discovery and antiinflammation and highlights its emerging therapeutic potential in neuroprotection applications.
Collapse
|
19
|
Novel enmein-type diterpenoid hybrids coupled with nitrogen mustards: Synthesis of promising candidates for anticancer therapeutics. Eur J Med Chem 2018; 146:588-598. [DOI: 10.1016/j.ejmech.2018.01.069] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/20/2022]
|
20
|
Shen QK, Chen ZA, Zhang HJ, Li JL, Liu CF, Gong GH, Quan ZS. Design and synthesis of novel oridonin analogues as potent anticancer agents. J Enzyme Inhib Med Chem 2018; 33:324-333. [PMID: 29303372 PMCID: PMC6054517 DOI: 10.1080/14756366.2017.1419219] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
To identify anticancer agents with higher potency and lower toxicity, a series of oridonin derivatives with substituted benzene moieties at the C17 position were designed, synthesised, and evaluated for their antiproliferative properties. Most of the derivatives exhibited antiproliferative effects against AGS, MGC803, Bel7402, HCT116, A549, and HeLa cells. Compound 2p (IC50 = 1.05 µM) exhibited the most potent antiproliferative activity against HCT116 cells; it was more potent than oridonin (IC50 = 6.84 µM) and 5-fluorouracil (5-FU) (IC50 = 24.80 µM). The IC50 value of 2p in L02 cells was 6.5-fold higher than that in HCT116 cells. Overall, it exhibited better selective antiproliferative activity and specificity than oridonin and 5-FU. Furthermore, compound 2p arrested HCT116 cells at the G2 phase of the cell cycle and increased the percentage of apoptotic cells to a greater extent than oridonin.
Collapse
Affiliation(s)
- Qing-Kun Shen
- a Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy , Yanbian University , Yanji , China
| | - Zheng-Ai Chen
- b Department of Pharmacology , Medical School of Yanbian University , Yanji , China
| | - Hong-Jian Zhang
- a Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy , Yanbian University , Yanji , China
| | - Jia-Li Li
- a Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy , Yanbian University , Yanji , China
| | - Chuan-Feng Liu
- a Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy , Yanbian University , Yanji , China
| | - Guo-Hua Gong
- c Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities , Tongliao , China.,d Inner Mongolia Autonomous Region Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System , Tongliao , China
| | - Zhe-Shan Quan
- a Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy , Yanbian University , Yanji , China
| |
Collapse
|
21
|
Zhang YY, Jiang HY, Liu M, Hu K, Wang WG, Du X, Li XN, Pu JX, Sun HD. Bioactive ent-kaurane diterpenoids from Isodon rubescens. PHYTOCHEMISTRY 2017; 143:199-207. [PMID: 28869908 DOI: 10.1016/j.phytochem.2017.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
Seven previously undescribed 7,20-epoxy-ent-kaurane diterpenoids, isojiangrubesins A-G, along with seventeen known ones, were isolated from the aerial parts of Isodon rubescens. Their structures were characterized on the basis of spectroscopic methods and signal-crystal X-ray diffraction. All of these compounds were evaluated for their in vitro cytotoxicity against five human tumor cell lines (HL-60, SMMC-7721, A-549, MCF-7, and SW480). Four isolates exhibited significant inhibitory ability against all cell lines, with IC50 values ranging from 0.5 to 6.5 μM; They also strongly inhibited NO production in LPS-stimulated RAW264.7 cells.
Collapse
MESH Headings
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/isolation & purification
- Antineoplastic Agents, Phytogenic/pharmacology
- Crystallography, X-Ray
- Diterpenes, Kaurane/chemistry
- Diterpenes, Kaurane/isolation & purification
- Diterpenes, Kaurane/pharmacology
- Drug Screening Assays, Antitumor
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/isolation & purification
- Drugs, Chinese Herbal/pharmacology
- HL-60 Cells
- Humans
- Isodon/chemistry
- Lipopolysaccharides/pharmacology
- Macrophages/drug effects
- Molecular Structure
- Nitric Oxide/biosynthesis
- Plant Components, Aerial/chemistry
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 10039, People's Republic of China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Hua-Yi Jiang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Miao Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Kun Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Wei-Guang Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Xue Du
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Jian-Xin Pu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| | - Han-Dong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| |
Collapse
|
22
|
Xu S, Yao H, Luo S, Zhang YK, Yang DH, Li D, Wang G, Hu M, Qiu Y, Wu X, Yao H, Xie W, Chen ZS, Xu J. A Novel Potent Anticancer Compound Optimized from a Natural Oridonin Scaffold Induces Apoptosis and Cell Cycle Arrest through the Mitochondrial Pathway. J Med Chem 2017; 60:1449-1468. [DOI: 10.1021/acs.jmedchem.6b01652] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shengtao Xu
- State
Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Hong Yao
- State
Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Shanshan Luo
- Department
of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Yun-Kai Zhang
- College
of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia
Parkway, Queens, New York 11439, United States
| | - Dong-Hua Yang
- College
of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia
Parkway, Queens, New York 11439, United States
| | - Dahong Li
- State
Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
- Key
Laboratory of Structure-Based Drug Design and Discovery of Ministry
of Education and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wen Hua Road, Shenyang 110016, China
| | - Guangyu Wang
- State
Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Mei Hu
- State
Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Yangyi Qiu
- State
Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Xiaoming Wu
- State
Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Hequan Yao
- State
Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Weijia Xie
- State
Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Zhe-Sheng Chen
- College
of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia
Parkway, Queens, New York 11439, United States
| | - Jinyi Xu
- State
Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| |
Collapse
|
23
|
Lasiokaurin derivatives: synthesis, antimicrobial and antitumor biological evaluation, and apoptosis-inducing effects. Arch Pharm Res 2017; 40:796-806. [DOI: 10.1007/s12272-016-0867-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 11/21/2016] [Indexed: 01/10/2023]
|
24
|
Barros de Alencar MVO, de Castro E Sousa JM, Rolim HML, de Medeiros MDGF, Cerqueira GS, de Castro Almeida FR, Citó AMDGL, Ferreira PMP, Lopes JAD, de Carvalho Melo-Cavalcante AA, Islam MT. Diterpenes as lead molecules against neglected tropical diseases. Phytother Res 2016; 31:175-201. [PMID: 27896890 DOI: 10.1002/ptr.5749] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/29/2016] [Accepted: 10/31/2016] [Indexed: 01/19/2023]
Abstract
Nowadays, neglected tropical diseases (NTDs) are reported to be present everywhere. Poor and developing areas in the world have received great attention to NTDs. Drug resistance, safety profile, and various challenges stimulate the search for alternative medications. Plant-based drugs are viewed with great interest, as they are believed to be devoid of side effects. Diterpenes, a family of essential oils, have showed attractive biological effects. A systematic review of the literature was carried out to summarize available evidences of diterpenes against NTDs. For this, databases were searched using specific search terms. Among the 2338 collected reports, a total of 181 articles were included in this review. Of them, 148 dealt with investigations using single organisms, and 33 used multiple organisms. No mechanisms of action were reported in the case of 164 reports. A total of 93.92% were related to nonclinical studies, and 4.42% and 1.66% dealt with preclinical and clinical studies, respectively. The review displays that many diterpenes are effective upon Chagas disease, chikungunya, echinococcosis, dengue, leishmaniasis, leprosy, lymphatic filariasis, malaria, schistosomiasis, and tuberculosis. Indeed, diterpenes are amazing drug candidates against NTDs. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - João Marcelo de Castro E Sousa
- Department of Biological Sciences, Federal University of Piauí, Picos, (Piauí), 64.607-670, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Hercília Maria Lins Rolim
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Department of Pharmacy, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Maria das Graças Freire de Medeiros
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Department of Pharmacy, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Gilberto Santos Cerqueira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Postgraduate Program in Biotechnology, Biotechnology and Biodiversity Center for Research (BIOTEC), Federal University of Piauí (LAFFEX), Parnaíba, Piauí, 64.218-470, Brazil
| | - Fernanda Regina de Castro Almeida
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Antônia Maria das Graças Lopes Citó
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Department of Chemistry, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | | | - Ana Amélia de Carvalho Melo-Cavalcante
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Md Torequl Islam
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Department of Pharmacy, Southern University Bangladesh, Mehedibag, Chittagong, 4000, Bangladesh
| |
Collapse
|
25
|
Dalton JP, Uy B, Okuda KS, Hall CJ, Denny WA, Crosier PS, Swift S, Wiles S. Screening of anti-mycobacterial compounds in a naturally infected zebrafish larvae model. J Antimicrob Chemother 2016; 72:421-427. [PMID: 27798206 DOI: 10.1093/jac/dkw421] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/28/2016] [Accepted: 09/07/2016] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Mycobacterium tuberculosis is a deadly human pathogen that causes the lung disease TB. M. tuberculosis latently infects a third of the world's population, resulting in ∼1.5 million deaths per year. Due to the difficulties and expense of carrying out animal drug trials using M. tuberculosis and rodents, infections of the zebrafish Danio rerio with Mycobacterium marinum have become a useful surrogate. However, the infection methods described to date require specialized equipment and a high level of operator expertise. METHODS We investigated whether zebrafish larvae could be naturally infected with bioluminescently labelled M. marinum by immersion, and whether infected larvae could be used for rapid screening of anti-mycobacterial compounds using bioluminescence. We used rifampicin and a variety of nitroimidazole-based next-generation and experimental anti-mycobacterial drugs, selected for their wide range of potencies against M. tuberculosis, to validate this model for anti-mycobacterial drug discovery. RESULTS We observed that five of the six treatments (rifampicin, pretomanid, delamanid, SN30488 and SN30527) significantly reduced the bioluminescent signal from M. marinum within naturally infected zebrafish larvae. Importantly, these same five treatments also retarded the growth of M. tuberculosis in vitro. In contrast, only three of the six treatments tested (rifampicin, delamanid and SN30527) retarded the growth of M. marinum in vitro. CONCLUSIONS We have demonstrated that zebrafish larvae naturally infected with bioluminescent M. marinum M can be used for the rapid screening of anti-mycobacterial compounds with readily available equipment and limited expertise. The result is an assay that can be carried out by a wide variety of laboratories for minimal cost and without high levels of zebrafish expertise.
Collapse
Affiliation(s)
- J P Dalton
- Bioluminescent Superbugs Lab, University of Auckland, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - B Uy
- Bioluminescent Superbugs Lab, University of Auckland, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - K S Okuda
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - C J Hall
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - W A Denny
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.,Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - P S Crosier
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - S Swift
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - S Wiles
- Bioluminescent Superbugs Lab, University of Auckland, Auckland, New Zealand .,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
26
|
NO-Releasing Enmein-Type Diterpenoid Derivatives with Selective Antiproliferative Activity and Effects on Apoptosis-Related Proteins. Molecules 2016; 21:molecules21091193. [PMID: 27617998 PMCID: PMC6272893 DOI: 10.3390/molecules21091193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/23/2016] [Accepted: 09/02/2016] [Indexed: 12/26/2022] Open
Abstract
A series of nine enmein-type ent-kaurane diterpenoid and furoxan-based nitric oxide (NO) donor hybrids (10a-i) were designed and synthesized from commercially available oridonin (1). These hybrids were evaluated for their antiproliferative activity against Bel-7402, K562, MGC-803, and CaEs-17 human cancer cell lines and L-02 normal liver cells. The antiproliferative activity against tumor cells was stronger than the lead compound 1 and parent molecule 9 in most cases. Especially, compound 10f showed the strongest activity against human hepatocarcinoma Bel-7402 cell line with an IC50 of 0.81 μM and could also release 33.7 μmol/L NO at the time point of 60 min. Compounds 10a-i also showed cytotoxic selectivity between tumor and normal liver cells with IC50 ranging from 22.1 to 33.9 μM. Furthermore, the apoptotic properties on Bel-7402 cells revealed that 10f could induce S phase cell cycle arrest and apoptosis at low micromolar concentrations. The effects of 10f on apoptosis-related proteins were also investigated. The potent antiproliferative activities and mechanistic studies warrant further preclinical investigations.
Collapse
|
27
|
Li D, Han T, Liao J, Hu X, Xu S, Tian K, Gu X, Cheng K, Li Z, Hua H, Xu J. Oridonin, a Promising ent-Kaurane Diterpenoid Lead Compound. Int J Mol Sci 2016; 17:E1395. [PMID: 27563888 PMCID: PMC5037675 DOI: 10.3390/ijms17091395] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 12/16/2022] Open
Abstract
Oridonin belongs to ent-kaurane tetracyclic diterpenoid and was first isolated from Isodon species. It exhibits inhibitory activities against a variety of tumor cells, and pharmacological study shows that oridonin could inhibit cell proliferation, DNA, RNA and protein synthesis of cancer cells, induce apoptosis and exhibit an antimutagenic effect. In addition, the large amount of the commercially-available supply is also very important for the natural lead oridonin. Moreover, the good stability, suitable molecular weight and drug-like property guarantee its further generation of a natural-like compound library. Oridonin has become the hot molecule in recent years, and from the year 2010, more than 200 publications can be found. In this review, we summarize the synthetic medicinal chemistry work of oridonin from the first publication 40 years ago and share our research experience of oridonin for about 10 years, which may provide useful information to those who are interested in this research field.
Collapse
Affiliation(s)
- Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Tong Han
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jie Liao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xu Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Shengtao Xu
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Kangtao Tian
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xiaoke Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou 221004, China.
| | - Keguang Cheng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, and School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China.
| | - Zhanlin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jinyi Xu
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
28
|
Moloney MG. Natural Products as a Source for Novel Antibiotics. Trends Pharmacol Sci 2016; 37:689-701. [DOI: 10.1016/j.tips.2016.05.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/02/2016] [Accepted: 05/02/2016] [Indexed: 01/04/2023]
|
29
|
Ding Y, Ding C, Ye N, Liu Z, Wold EA, Chen H, Wild C, Shen Q, Zhou J. Discovery and development of natural product oridonin-inspired anticancer agents. Eur J Med Chem 2016; 122:102-117. [PMID: 27344488 DOI: 10.1016/j.ejmech.2016.06.015] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 12/17/2022]
Abstract
Natural products have historically been, and continue to be, an invaluable source for the discovery of various therapeutic agents. Oridonin, a natural diterpenoid widely applied in traditional Chinese medicines, exhibits a broad range of biological effects including anticancer and anti-inflammatory activities. To further improve its potency, aqueous solubility and bioavailability, the oridonin template serves as an exciting platform for drug discovery to yield better candidates with unique targets and enhanced drug properties. A number of oridonin derivatives (e.g. HAO472) have been designed and synthesized, and have contributed to substantial progress in the identification of new agents and relevant molecular mechanistic studies toward the treatment of human cancers and other diseases. This review summarizes the recent advances in medicinal chemistry on the explorations of novel oridonin analogues as potential anticancer therapeutics, and provides a detailed discussion of future directions for the development and progression of this class of molecules into the clinic.
Collapse
Affiliation(s)
- Ye Ding
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, United States
| | - Chunyong Ding
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, United States
| | - Na Ye
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, United States
| | - Zhiqing Liu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, United States
| | - Eric A Wold
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, United States
| | - Christopher Wild
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, United States
| | - Qiang Shen
- Department of Clinical Cancer Prevention, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, United States.
| |
Collapse
|
30
|
Li D, Han T, Xu S, Zhou T, Tian K, Hu X, Cheng K, Li Z, Hua H, Xu J. Antitumor and Antibacterial Derivatives of Oridonin: A Main Composition of Dong-Ling-Cao. Molecules 2016; 21:molecules21050575. [PMID: 27144553 PMCID: PMC6272837 DOI: 10.3390/molecules21050575] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 11/16/2022] Open
Abstract
Isodon rubescens has been used as a traditional green tea for more than 1000 years and many medicinal functions of I. rubescens are also very useful, such as its well-known antitumor and antibacterial activities. Oridonin, a bioactive ent-kaurane diterpenoid, is the major ingredient of this medicinal tea. Herein, 22 novel oridonin derivatives were designed and synthesized. The antibacterial activity was evaluated for the first time. Compound 12 was the most promising one with MIC of 2.0 μg/mL against B. subtilis, which was nearly 3-fold stronger than positive control chloromycetin. The antiproliferative property was also assayed and compound 19 showed stronger activity than taxol. The apoptosis-inducing ability, cell cycle arrest effect at S phase and influence of mitochondrial membrane potential by 19 in CaEs-17 cancer cells were first disclosed. Based on the above results, the cell apoptosis induced by compound 19 in CaEs-17 cells was most probably involved in the intrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Processes, National Post-Doctoral Research Workstation, Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang 222001, China.
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China.
| | - Tong Han
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Shengtao Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| | - Tingting Zhou
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Kangtao Tian
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xu Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Keguang Cheng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China.
| | - Zhanlin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
31
|
Zhu N, Lin Y, Li D, Gao N, Liu C, You X, Jiang J, Jiang W, Si S. Identification of an anti-TB compound targeting the tyrosyl-tRNA synthetase. J Antimicrob Chemother 2015; 70:2287-94. [DOI: 10.1093/jac/dkv110] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/01/2015] [Indexed: 11/13/2022] Open
|
32
|
Abstract
This review covers the isolation and chemistry of diterpenoids from terrestrial as opposed to marine sources and includes, labdanes, clerodanes, pimaranes, abietanes, kauranes, gibberellins, cembranes and their cyclization products. The literature from January to December, 2014 is reviewed.
Collapse
|