1
|
Dvorakova M, Soudek P, Pavicic A, Langhansova L. The traditional utilization, biological activity and chemical composition of edible fern species. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117818. [PMID: 38296173 DOI: 10.1016/j.jep.2024.117818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ferns form an important part of the human diet. Young fern fiddleheads are mostly consumed as vegetables, while the rhizomes are often extracted for starch. These edible ferns are also often employed in traditional medicine, where all parts of the plant are used, mostly to prepare extracts. These extracts are applied either externally as lotions and baths or internally as potions, decoctions and teas. Ailments traditionally treated with ferns include coughs, colds, fevers, pain, burns and wounds, asthma, rheumatism, diarrhoea, or skin diseases (eczema, rashes, itching, leprosy). AIM OF THE REVIEW This review aims to compile the worldwide knowledge on the traditional medicinal uses of edible fern species correlating to reported biological activities and isolated bioactive compounds. MATERIALS AND METHODS The articles and books published on edible fern species were searched through the online databases Web of Science, Pubmed and Google Scholar, with critical evaluation of the hits. The time period up to the end of 2022 was included. RESULTS First, the edible fern species were identified based on the literature data. A total of 90 fern species were identified that are eaten around the world and are also used in traditional medicine. Ailments treated are often associated with inflammation or bacterial infection. However, only the most common and well-known fern species, were investigated for their biological activity. The most studied species are Blechnum orientale L., Cibotium barometz (L.) J. Sm., Diplazium esculentum (Retz.) Sw., Marsilea minuta L., Osmunda japonica Thunb., Polypodium vulgare L., and Stenochlaena palustris (Burm.) Bedd. Most of the fern extracts have been studied for their antioxidant, anti-inflammatory and antimicrobial activities. Not surprisingly, antioxidant capacity has been the most studied, with results reported for 28 edible fern species. Ferns have been found to be very rich sources of flavonoids, polyphenols, polyunsaturated fatty acids, carotenoids, terpenoids and steroids and most of these compounds are remarkable free radical scavengers responsible for the outstanding antioxidant capacity of fern extracts. As far as clinical trials are concerned, extracts from only three edible fern species have been evaluated. CONCLUSIONS The extracts of edible fern species exert antioxidant anti-inflammatory and related biological activities, which is consistent with their traditional medicinal use in the treatment of wounds, burns, colds, coughs, skin diseases and intestinal diseases. However, studies to prove pharmacological activities are scarce, and require chemical-biological standardization. Furthermore, correct botanical classification needs to be included in publications to simplify data acquisition. Finally, more in-depth phytochemical studies, allowing the linking of traditional use to pharmacological relevance are needed to be done in a standardized way.
Collapse
Affiliation(s)
- Marcela Dvorakova
- Czech Academy of Sciences, Institute of Experimental Botany, Rozvojova 263, CZ-16200, Prague 6, Czech Republic.
| | - Petr Soudek
- Czech Academy of Sciences, Institute of Experimental Botany, Rozvojova 263, CZ-16200, Prague 6, Czech Republic.
| | - Antonio Pavicic
- Czech Academy of Sciences, Institute of Experimental Botany, Rozvojova 263, CZ-16200, Prague 6, Czech Republic; Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, CZ-50005, Hradec Králové, Czech Republic.
| | - Lenka Langhansova
- Czech Academy of Sciences, Institute of Experimental Botany, Rozvojova 263, CZ-16200, Prague 6, Czech Republic.
| |
Collapse
|
2
|
Tsuchiya A, Kobayashi M, Kamatari YO, Mitsunaga T, Yamauchi K. Development of flavonoid probes and the binding mode of the target protein and quercetin derivatives. Bioorg Med Chem 2022; 68:116854. [PMID: 35667156 DOI: 10.1016/j.bmc.2022.116854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022]
Abstract
This study investigated the mechanism underlying anti-cancer cell migration activity of quercetin derivatives by investigating the binding mode of the target protein. Five flavonoid probes were newly synthesized, and pull down assay using synthesized flavonoid probes indicated matrix metalloproteinase-1 (MMP-1) as the target protein of quercetin derivatives. Quercetin and 3-O-methylquercetin (3MQ) inhibited MMP-1. SPR analysis demonstrated dose dependent interaction between quercetin derivatives and recombinant MMP-1 catalytic domain. And 1H-15N heteronuclear single quantum coherence (HSQC) NMR analysis using 15N-labeled MMP-1 catalytic domain indicated that 3MQ interacted around metal ions in the MMP-1. The development of flavonoid probes can broaden the possibility to discover the new target proteins and elucidate the core mechanisms of the multi bioactivity of flavonoids.
Collapse
Affiliation(s)
- Ayaka Tsuchiya
- United Graduate School of Agricultural Science, Gifu University, Gifu, Gifu 501-1193, Japan
| | - Miho Kobayashi
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Gifu 501-1193, Japan; Life Science Research Center, Gifu University, Gifu, Gifu 501-1193, Japan
| | - Yuji O Kamatari
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Gifu 501-1193, Japan; Life Science Research Center, Gifu University, Gifu, Gifu 501-1193, Japan; United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Gifu 501-1193, Japan
| | - Tohru Mitsunaga
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu 501-1193, Japan
| | - Kosei Yamauchi
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu 501-1193, Japan.
| |
Collapse
|
3
|
Shah AB, Baiseitova A, Kim JH, Lee YH, Park KH. Inhibition of Bacterial Neuraminidase and Biofilm Formation by Ugonins Isolated From Helminthostachys Zeylanica (L.) Hook. Front Pharmacol 2022; 13:890649. [PMID: 35645800 PMCID: PMC9130766 DOI: 10.3389/fphar.2022.890649] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial neuraminidase (BNA) plays a pivotal role in the pathogenesis of several microbial diseases including biofilm formation. The aim of this study is to reveal the neuraminidase inhibitory potential of metabolites from Helminthostachys zeylanica (L.) Hook. which have diverse biological activities including PTP1B and α-glucosidase. The six ugonins (1–6) from the target plant showed significant neuraminidase inhibition. The inhibitory potencies were observed at a nanomolar level of 35–50 nM, which means they are 100 times more active than their corresponding mother compounds (eriodyctiol and luteolin). A detailed kinetic study revealed that all ugonins were reversible noncompetitive inhibitors. An in-depth investigation of the most potent compound 1 showed its time-dependent inhibition with the isomerization model having k5 = 0.0103 min−1, k6 = 0.0486 min−1, and Kiapp = 0.062 μM. The binding affinities (Ksv) were agreed closely with our prediction based on the inhibitory potencies. Particularly, ugonin J (1) blocked the biofilm formation of E. coli dose-dependently up to 150 µM without the inhibition of bacteria. The major compounds (1–6) in the extract were characterized by UPLC-ESI-Q-TOF/MS.
Collapse
|
4
|
Çiçek SS, Galarza Pérez M, Wenzel-Storjohann A, Bezerra RM, Segovia JFO, Girreser U, Kanzaki I, Tasdemir D. Antimicrobial Prenylated Isoflavones from the Leaves of the Amazonian Medicinal Plant Vatairea guianensis Aubl. JOURNAL OF NATURAL PRODUCTS 2022; 85:927-935. [PMID: 35271771 DOI: 10.1021/acs.jnatprod.1c01035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Vatairea guianenis Aubl. (Fabaceae) is an Amazonian medicinal plant species traditionally used for treating skin diseases. In an initial screening, a V. guianensis leaf extract and its subextracts showed antibacterial and antifungal activities. The EtOAc subextract was selected for chemical workup and afforded five known (1-4 and 8) and six undescribed isoflavones, vatairenones C-H (5-7 and 9-11). All isoflavones are prenylated in position C-8, displaying either chain-prenylated (1-7) or ring-closed forms (8-11). The most bioactive compound (3) exhibited in vitro activity against clinically relevant bacteria and fungi with IC50 values ranging from 6.8 to 26.9 μM. Due to its broad antimicrobial activity and low general toxicity, compound 3 is a potential lead compound for structural modifications. The results of the present study support the ethnomedicinal use of V. guianensis in the treatment of dermatological disorders. 1H NMR spectra of some of the isolated compounds showed intricate signal patterns, which might explain repeated errors in assigning the correct structure of the isoflavonoid B-ring in the literature and which we resolved by higher order spectra simulations.
Collapse
Affiliation(s)
- Serhat S Çiçek
- Department of Pharmaceutical Biology, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany
| | - Mayra Galarza Pérez
- Department of Pharmaceutical Biology, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany
| | - Arlette Wenzel-Storjohann
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany
| | - Roberto M Bezerra
- Laboratory of Bioprospection and Atomic Absorption, Federal University of Amapá, Rod. JK, Macapá, 68903-419 Amapá, Brazil
| | - Jorge F O Segovia
- Brazilian Agricultural Research Corporation, Ecoregional Research Unit, Rod. JK, Km 5, Macapá, 68903-419 Amapá, Brazil
| | - Ulrich Girreser
- Department of Pharmaceutical and Medicinal Chemistry, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany
| | - Isamu Kanzaki
- Laboratory of Bioprospection, University of Brasilia, Darcy Ribeiro Campus, 70910-900 Brasilia, DF, Brazil
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany
- Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| |
Collapse
|
5
|
Juszczak AM, Wöelfle U, Končić MZ, Tomczyk M. Skin cancer, including related pathways and therapy and the role of luteolin derivatives as potential therapeutics. Med Res Rev 2022; 42:1423-1462. [PMID: 35187675 PMCID: PMC9303584 DOI: 10.1002/med.21880] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/16/2021] [Accepted: 01/23/2022] [Indexed: 12/12/2022]
Abstract
Cutaneous malignant melanoma is the fastest growing and the most aggressive form of skin cancer that is diagnosed. However, its incidence is relatively scarce compared to the highest mortality rate of all skin cancers. The much more common skin cancers include nonmelanoma malignant skin cancers. Moreover, over the past several decades, the frequency of all skin cancers has increased much more dynamically than that of almost any other type of cancer. Among the available therapeutic options for skin cancers, chemotherapy used immediately after the surgical intervention has been an essential element. Unfortunately, the main problem with conventional chemopreventive regimens involves the lack of response to treatment and the associated side effects. Hence, there is a need for much more effective anticancer drugs. Correspondingly, the targeted alternatives have involved phytochemicals, which are safer chemotherapeutic agents and exhibit competitive anticancer activity with high therapeutic efficacy. Among polyphenolic compounds, some flavonoids and their derivatives, which are mostly found in medicinal plants, have been demonstrated to influence the modulation of signaling pathways at each stage of the carcinogenesis process, which is also important in the context of skin cancers. Hence, this review focuses on an exhaustive overview of the therapeutic effects of luteolin and its derivatives in the treatment and prevention of skin cancers. The bioavailability and structure–activity relationships of luteolin derivatives are also discussed. This review is the first such complete account of all of the scientific reports concerning this particular group of natural compounds that target a specific area of neoplastic diseases.
Collapse
Affiliation(s)
- Aleksandra M. Juszczak
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine Medical University of Białystok Białystok Poland
| | - Ute Wöelfle
- Department of Dermatology and Venereology, Research Center Skinitial, Medical Center, Faculty of Medicine University of Freiburg Freiburg Germany
| | - Marijana Zovko Končić
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry University of Zagreb Zagreb Croatia
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine Medical University of Białystok Białystok Poland
| |
Collapse
|
6
|
Inhibitory Effects of the Bioactive Thermorubin Isolated from the Fungus Thermoactinomyces Antibioticus on Melanogenesis. COSMETICS 2020. [DOI: 10.3390/cosmetics7030061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Skin hyperpigmentation disorders arise due to aberrant regulation of melanin synthesis and export. Current treatments include natural compounds like kojic acid and hydroquinone, which suffer from limitations due to adverse reactions. Thermorubin (TR) is a secondary metabolite derived from the fungus Thermoactinomyces antibioticus and has previously demonstrated to possess anti-inflammatory properties by inhibition of matrix metalloproteinases (MMPs), as well as antimicrobial activity. In the current study, we explored whether TR might be a used as a candidate for the treatment of skin hyperpigmentation disorders by studying its effects on melanin synthesis and melanin export in B16F10 mouse melanoma cells and primary human melanocytes derived from darkly-pigmented (DP) skin. Non-toxic doses of TR were first identified in B16F10 mouse melanoma cells. These doses were subsequently tested for their effects on both extracellular and intracellular melanin levels under conditions of basal and hormone-stimulated melanogenesis. Our results demonstrated that TR at 25 µM inhibited total melanin levels with selective inhibition of extracellular melanin in B16F10 cells under both basal and hormone-stimulated conditions. The mechanisms of inhibition did not include tyrosinase inhibition, either in cellular lysates or cell-free system. However, TR potently inhibited activity of α-glucosidase enzyme in vitro and exhibited antioxidant activity. Furthermore, our results with primary human melanocytes from DP skin showed that TR at 10 µM significantly suppressed dendricity along with an increase in accumulation of intracellular melanin. These findings point to a mechanism of action of TR as an exclusive inhibitor of melanosome export. Taken together, our preliminary results demonstrate that TR might offer a novel ingredient as a skin depigmenting agent for inclusion in cosmetic formulations. Further studies delineating molecular mechanisms of hypopigmentation of TR and testing in human skin tissue-equivalents are warranted.
Collapse
|
7
|
Chang TC, Chiang H, Lai YH, Huang YL, Huang HC, Liang YC, Liu HK, Huang C. Helminthostachys zeylanica alleviates hepatic steatosis and insulin resistance in diet-induced obese mice. Altern Ther Health Med 2019; 19:368. [PMID: 31836013 PMCID: PMC6911300 DOI: 10.1186/s12906-019-2782-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/29/2019] [Indexed: 12/27/2022]
Abstract
Background Obesity and its associated health conditions, type 2 diabetes mellitus (T2DM) and nonalcoholic fatty liver disease (NAFLD), are worldwide health problems. It has been shown that insulin resistance is associated with increased hepatic lipid and causes hepatic steatosis through a myriad of mechanisms, including inflammatory signaling. Methods Helminthostachys zeylanica (HZ) is used widely as a common herbal medicine to relieve fever symptoms and inflammatory diseases in Asia. In the present study, we evaluated whether HZ has therapeutic effects on obesity, NAFLD and insulin resistance. The protective effects of HZ extract were examined using free fatty acid-induced steatosis in human HuS-E/2 cells and a high-fat diet-induced NAFLD in mice. Results The major components of the HZ extract are ugonins J and K, confirmed by HPLC. Incubation of human hepatocytes, HuS-E/2 cells, with palmitate markedly increased lipid accumulation and treatment with the HZ extract significantly decreased lipid deposition and facilitated AMPK and ACC activation. After 12 weeks of a high-fat diet with HZ extract treatment, the HFD mice were protected from hyperlipidemia and hyperglycemia. HZ extract prevented body weight gain, adipose tissue expansion and adipocyte hypertrophy in the HFD mice. In addition, fat accumulation was reduced in mice livers. Moreover, the insulin sensitivity-associated index, which evaluates insulin function, was also significantly restored. Conclusions These results suggest that HZ has a promising pharmacological effect on high-fat diet-induced obesity, hepatic steatosis and insulin resistance, which may have the potential for clinical application.
Collapse
|
8
|
Natural and Bioinspired Phenolic Compounds as Tyrosinase Inhibitors for the Treatment of Skin Hyperpigmentation: Recent Advances. COSMETICS 2019. [DOI: 10.3390/cosmetics6040057] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
One of the most common approaches for control of skin pigmentation involves the inhibition of tyrosinase, a copper-containing enzyme which catalyzes the key steps of melanogenesis. This review focuses on the tyrosinase inhibition properties of a series of natural and synthetic, bioinspired phenolic compounds that have appeared in the literature in the last five years. Both mushroom and human tyrosinase inhibitors have been considered. Among the first class, flavonoids, in particular chalcones, occupy a prominent role as natural inhibitors, followed by hydroxystilbenes (mainly resveratrol derivatives). A series of more complex phenolic compounds from a variety of sources, first of all belonging to the Moraceae family, have also been described as potent tyrosinase inhibitors. As to the synthetic compounds, hydroxycinnamic acids and chalcones again appear as the most exploited scaffolds. Several inhibition mechanisms have been reported for the described inhibitors, pointing to copper chelating and/or hydrophobic moieties as key structural requirements to achieve good inhibition properties. Emerging trends in the search for novel skin depigmenting agents, including the development of assays that could distinguish between inhibitors and potentially toxic substrates of the enzyme as well as of formulations aimed at improving the bioavailability and hence the effectiveness of well-known inhibitors, have also been addressed.
Collapse
|
9
|
Santi MD, Peralta MA, Puiatti M, Cabrera JL, Ortega MG. Melanogenic inhibitory effects of Triangularin in B16F0 melanoma cells, in vitro and molecular docking studies. Bioorg Med Chem 2019; 27:3722-3728. [DOI: 10.1016/j.bmc.2019.06.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/04/2019] [Accepted: 06/26/2019] [Indexed: 12/16/2022]
|
10
|
Structure-activity relationship for vanilloid compounds from extract of Zingiber officinale var rubrum rhizomes: effect on extracellular melanogenesis inhibitory activity. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02380-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Inhibition of melanin production by sesquiterpene lactones from Saussurea lappa and their analogues. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02338-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Isolation of phenylpropanoid sucrose esters from the roots of Persicaria orientalis and their potential as inhibitors of melanogenesis. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02312-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Wu KC, Ho YL, Kuo YH, Huang SS, Huang GJ, Chang YS. Hepatoprotective Effect of Ugonin M, A Helminthostachyszeylanica Constituent, on Acetaminophen-Induced Acute Liver Injury in Mice. Molecules 2018; 23:E2420. [PMID: 30241403 PMCID: PMC6222678 DOI: 10.3390/molecules23102420] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to discover the possible effectiveness of Ugonin M, a unique flavonoid isolated from Helminthostachys zeylanica-a traditional Chinese medicine used as anti-inflammatory medicine-and to elucidate the potential mechanisms of Ugonin M in the acute liver injury induced by acetaminophen (APAP). In this study, Ugonin M significantly ameliorated APAP-induced histopathological changes and the typical liver function biomarkers (i.e., alanine aminotransferase (ALT), aspartate aminotransferase (AST), and total bilirubin (T-Bil)). It also affected APAP-induced abnormal lipid metabolism including total cholesterol (TC) and triglyceride (TG) in the serum. In inflammatory pharmacological action, Ugonin M suppressed the pro-inflammatory mediators such as nitric oxide (NO) and the lipid peroxidation indicator malondialdehyde (MDA). In addition, Ugonin M reinforced hemeoxygenase-1 (HO-1) protein expression and the production of antioxidant enzymes viz superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT). Furthermore, inflammation-associated cytokines including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β as well as proteins such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were decreased by the pretreatment of Ugonin M. Moreover, this study found that pretreatment of Ugonin M apparently decreased nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) activation via inhibition of the degradation of NF-κB, inhibitory κB-α (IκB-α), extracellular regulated kinase (ERK), c-Jun-N-terminal (JNK), and p38 active phosphorylation. In conclusion, Ugonin M significantly showed a protective effect against APAP-induced liver injury by reducing oxidative stress and inflammation. Thus, Ugonin M could be one of the effective components of H. zeylanica that plays a major role in the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Kun-Chang Wu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| | - Yu-Ling Ho
- Department of Nursing, Hungkuang University, Taichung 43302, Taiwan.
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan.
| | - Shyh-Shyun Huang
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Yuan-Shiun Chang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
- Chinese Crude Drug Pharmacy, China Medical University Hospital, Taichung 40402, Taiwan.
| |
Collapse
|
14
|
Selective synthesis of 7- O -substituted luteolin derivatives and their melanonenesis and proliferation inhibitory activity in B16 melanoma cells. Bioorg Med Chem Lett 2018; 28:2518-2522. [DOI: 10.1016/j.bmcl.2018.05.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 11/20/2022]
|
15
|
Yamauchi K, Mitsunaga T. Methylquercetins stimulate melanin biosynthesis in a three-dimensional skin model. J Nat Med 2018; 72:563-569. [PMID: 29442220 DOI: 10.1007/s11418-018-1175-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/15/2018] [Indexed: 11/26/2022]
Abstract
In a previous study, we found that both synthetic 3-O-methylquercetin (3MQ) and 3,4',7-O-trimethylquercetin (34'7TMQ) increased extracellular melanin content. 34'7TMQ increased the activity of melanogenic enzymes by stimulating the p38 pathway and the expression of microphthalmia-associated transcription factor (MITF). In contrast, 3MQ increased the activity of melanogenic enzymes without the involvement of MITF, which suggests that 3MQ inhibits the degradation of melanogenic enzymes. In the present study, we investigated the effects of 3MQ and 34'7TMQ on melanogenesis in normal human melanocytes and using a commercial three-dimensional (3D) skin model system. Both 3MQ and 34'7TMQ elongated the dendrites of normal human melanocytes from a Caucasian donor, but did not stimulate melanogenesis in the melanocytes. In the 3D skin model, which included melanocytes from an Asian donor, 3MQ and 34'7TMQ increased and elongated the melanocytes and showed a tendency to stimulate melanogenesis. These results suggest that 3MQ and 34'7TMQ could be put to practical use in skin care products and agents aimed at preventing hair graying.
Collapse
Affiliation(s)
- Kosei Yamauchi
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| | - Tohru Mitsunaga
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
16
|
Melanogenesis inhibitory activity of components from Salam leaf (Syzygium polyanthum) extract. J Nat Med 2018; 72:474-480. [DOI: 10.1007/s11418-018-1171-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 12/29/2017] [Indexed: 10/18/2022]
|
17
|
Pan CH, Li PC, Chien YC, Yeh WT, Liaw CC, Sheu MJ, Wu CH. Suppressive activities and mechanisms of ugonin J on vascular smooth muscle cells and balloon angioplasty-induced neointimal hyperplasia. Phytother Res 2017; 32:312-320. [PMID: 29250830 DOI: 10.1002/ptr.5979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/30/2017] [Accepted: 10/18/2017] [Indexed: 11/06/2022]
Abstract
Neointimal hyperplasia (or restenosis) is primarily attributed to excessive proliferation and migration of vascular smooth muscle cells (VSMCs). In this study, we investigated the inhibitory effects and mechanisms of ugonin J on VSMC proliferation and migration as well as neointimal formation. Cell viability and the cell-cycle distribution were, respectively, analyzed using an MTT assay and flow cytometry. Cell migration was examined using a wound-healing analysis and a transwell assay. Protein expressions and gelatinase activities were, respectively, measured using Western blot and gelatin zymography. Balloon angioplasty-induced neointimal formation was induced in a rat carotid artery model and then examined using immunohistochemical staining. Ugonin J induced cell-cycle arrest at the G0 /G1 phase and apoptosis to inhibit VSMC growth. Ugonin J also exhibited marked suppressive activity on VSMC migration. Ugonin J significantly reduced activations of focal adhesion kinase, phosphoinositide 3-kinase, v-akt murine thymoma viral oncogene homolog 1, and extracellular signal-regulated kinase 1/2 proteins. Moreover, ugonin J obviously reduced expressions and activity levels of matrix metalloproteinase-2 and matrix metalloproteinase-9. In vivo data indicated that ugonin J prevented balloon angioplasty-induced neointimal hyperplasia. Our study suggested that ugonin J has the potential for application in the prevention of balloon injury-induced neointimal formation.
Collapse
Affiliation(s)
- Chun-Hsu Pan
- School of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Pei-Chuan Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA.,USC-Taiwan Center for Translational Research, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yi-Chung Chien
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan.,Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan
| | - Wan-Ting Yeh
- School of Pharmacy, China Medical University, Taichung, 404, Taiwan
| | - Chih-Chuang Liaw
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Ming-Jyh Sheu
- School of Pharmacy, China Medical University, Taichung, 404, Taiwan
| | - Chieh-Hsi Wu
- School of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| |
Collapse
|
18
|
Zhang J, Zhu WF, Zhu WY, Yang PP, Xu J, Manosroi J, Kikuchi T, Abe M, Akihisa T, Feng F. Melanogenesis-Inhibitory and Cytotoxic Activities of Chemical Constituents from the Leaves of Sauropus androgynus L. Merr. (Euphorbiaceae). Chem Biodivers 2017; 15. [PMID: 29144597 DOI: 10.1002/cbdv.201700486] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 11/13/2017] [Indexed: 11/08/2022]
Abstract
A new steroid, 20-hydroxyisofucosterol (stigmasta-5,24(28)-diene-3β,20β-diol) (7), along with six known compounds 1 - 6 were isolated from the MeOH extract of the leaves of Sauropus androgynus L. Merr. (Euphorbiaceae). The structure of new steroid was determined by HR-APCI-MS and various NMR techniques in combination with literature data. Subsequently, their anti-inflammatory, cytotoxic activities against five human cell lines, as well as inhibitory activities against the α-MSH induced melanogenesis on the B16 cell line were evaluated. As the results, steroid compounds, 6 and 7 exhibited moderate cytotoxic to HL60, AZ521, SKBR3, and A549 tumor cell lines (IC50 26.9 - 45.1 μm) with high tumor selectivity for A549 relative to WI38 cell lines (SI 2.6 and 3.0, resp.). And, flavonoid compounds, 4 and 5 exhibited superior inhibitory activities against melanogenesis (67.0 - 94.7% melanin content), even with no or low toxicity to the cells (90.1 - 99.6% cell viability) at the concentrations from 10 to 100 μm. Furthermore, Western blot analysis suggested that compound 5 could inhibit melanogenesis by suppressing the protein expressions of MITF, TRP-1, TRP-2, and tyrosinase.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Natural Medicine Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, P. R. China.,Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Wan-Fang Zhu
- Department of Natural Medicine Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, P. R. China
| | - Wei-Yuan Zhu
- Department of Natural Medicine Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, P. R. China
| | - Pan Pan Yang
- Department of Natural Medicine Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, P. R. China
| | - Jian Xu
- Department of Natural Medicine Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, P. R. China
| | - Jiradej Manosroi
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Takashi Kikuchi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Masahiko Abe
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Toshihiro Akihisa
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Feng Feng
- Department of Natural Medicine Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, P. R. China.,Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 211198, P. R. China.,Jiangsu Food and Pharmaceutical Science College, Huaian, 223003, P. R. China
| |
Collapse
|
19
|
Wu KC, Kao CP, Ho YL, Chang YS. Quality Control of the Root and Rhizome of Helminthostachys zeylanica (Daodi-Ugon) by HPLC Using Quercetin and Ugonins as Markers. Molecules 2017; 22:molecules22071115. [PMID: 28678195 PMCID: PMC6152333 DOI: 10.3390/molecules22071115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 06/26/2017] [Accepted: 07/02/2017] [Indexed: 11/23/2022] Open
Abstract
Daodi-Ugon is the dried root and rhizome of Helminthostachys zeylanica (L.) Hook. and has been used for centuries in the treatment of inflammation, fever, pneumonia, burns, and various disorders. However, the chromatographic methods to determine the phytochemical composition of H. zeylanica have never been reported. This study not only aims to develop a valid high-performance liquid chromatography (HPLC) method and to establish a chromatographic fingerprint for the quality control of H. zeylanica, it also establish the proposed content limits of Quercetin, Ugonin J, and Ugonin M. An HPLC method with a RP18 column (250 × 4.6 mm, 5 μm) was developed for the quantitative analysis of Quercetin, Ugonin J, and Ugonin M in H. zeylanica. A simple gradient of (A) methanol/(B) phosphoric acid in water (5–45 min, 70–80% A; 50–55 min, 80–70% A) was used and 360 nm was selected as the detection wavelength. The average contents and proposed content limits for H. zeylanica were calculated with a t-test and a measurement uncertainty test based on 20 batches of authentic H. zeylanica samples. Limits of detection (LOD), quantification (LOQ), linearity, precision, repeatability, stability, and recovery of the developed method were validated. All of the validation results of quantitative determination and fingerprinting methods were satisfactory. The developed method was then applied to assay the contents of Quercetin, Ugonin J, and Ugonin M and to acquire the fingerprints of all of the collected H. zeylanica samples. At the 99% confidence level, the calculated content limits were 56.45, 112.15, and 277.98 mg/kg for Quercetin, Ugonin J, and Ugonin M, respectively. Those validated HPLC quantitative method, fingerprinting profile, and the proposed content limits of three chemical markers that could be used in the quality control of H. zeylanica in the market.
Collapse
Affiliation(s)
- Kun-Chang Wu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Chun-Pin Kao
- Department of Nursing, Hsin Sheng Junior College of Medical Care and Management, Taoyuan 32544, Taiwan.
| | - Yu-Ling Ho
- Department of Nursing, Hungkuang University, Taichung 43302, Taiwan.
| | - Yuan-Shiun Chang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
- Chinese Crude Drug Pharmacy, China Medical University Hospital, Taichung 40402, Taiwan.
| |
Collapse
|
20
|
Huang YL, Shen CC, Shen YC, Chiou WF, Chen CC. Anti-inflammatory and Antiosteoporosis Flavonoids from the Rhizomes of Helminthostachys zeylanica. JOURNAL OF NATURAL PRODUCTS 2017; 80:246-253. [PMID: 28169537 DOI: 10.1021/acs.jnatprod.5b01164] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Chemical investigation of the rhizomes of Helminthostachys zeylanica led to the isolation of eight new flavonoids including six cyclized geranylflavonoids, ugonins V-X (1-3), (10R,11S)-ugonin N (4), (10R,11S)-ugonin S (5), and ugonin Y (6), as well as two quercetin glucosides, quercetin-4'-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside (7) and quercetin-3-O-β-d-glucopyranosyl-4'-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside (8). The structures of these compounds were established by spectroscopic analyses and acid hydrolysis of the sugar moiety. Among the isolated compounds, 1, 2, 5, 6, ugonins J-S (9-13), ugonstilbene A (14), and ugonin L (23) were evaluated for their anti-inflammatory activity on lipopolysaccharide-induced nitric oxide (NO) production in microglial cells. Except for 1, 5, and 13, all other compounds inhibited NO production with IC50 values of 6.2-10.1 μM and were more potent than the positive control, pyrrolidine dithiocarbamate. Compounds 1, 2, 5, 6, and 10-13 were tested for antiosteoporotic activities, and ugonin K (10) exhibited the highest inhibitory activity against RANKL-induced osteoclast differentiation in RAW264.7 cells with an IC50 value of 1.8 ± 0.2 μM.
Collapse
Affiliation(s)
- Yu-Ling Huang
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare , No. 155-1, Sec. 2, Li-Nung Street, Peitou, Taipei 11221, Taiwan
- Department of Cosmetic Science, Chang Gung University of Science and Technology , Taoyuan 33302, Taiwan
| | - Chien-Chang Shen
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare , No. 155-1, Sec. 2, Li-Nung Street, Peitou, Taipei 11221, Taiwan
| | - Yuh-Chiang Shen
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare , No. 155-1, Sec. 2, Li-Nung Street, Peitou, Taipei 11221, Taiwan
- Institute of Biomedical Sciences, National Chung-Hsing University , Taichung 40227, Taiwan
- National Taipei University of Nursing and Health Science , Taipei, Taiwan
| | - Wen-Fei Chiou
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare , No. 155-1, Sec. 2, Li-Nung Street, Peitou, Taipei 11221, Taiwan
| | - Chien-Chih Chen
- Department of Biotechnology, Hungkuang University , Taichung 433, Taiwan
| |
Collapse
|