1
|
El-Seedi HR, Ibrahim HMS, Yosri N, Ibrahim MAA, Hegazy MEF, Setzer WN, Guo Z, Zou X, Refaey MS, Salem SE, Musharraf SG, Saeed A, Salem SE, Xu B, Zhao C, Khalifa SAM. Naturally Occurring Xanthones; Biological Activities, Chemical Profiles and In Silico Drug Discovery. Curr Med Chem 2024; 31:62-101. [PMID: 36809956 DOI: 10.2174/0929867330666230221111941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 02/24/2023]
Abstract
Xanthones are widely distributed polyphenols, present commonly in higher plants; Garcinia, Calophyllum, Hypericum, Platonia, Mangifera, Gentiana and Swertia. Xanthone tricyclic scaffold is able to interact with different biological targets, showing antibacterial and cytotoxic effects, as well as potent effects against osteoarthritis, malaria, and cardiovascular diseases. Thus, in this article we focused on pharmacological effects, applications and preclinical studies with the recent updates of xanthon´s isolated compounds from 2017-2020. We found that only α-mangostin, gambogic acid, and mangiferin, have been subjected to preclinical studies with particular emphasis on the development of anticancer, diabetes, antimicrobial and hepatoprotective therapeutics. Molecular docking calculations were performed to predict the binding affinities of xanthone-derived compounds against SARS-CoV-2 Mpro. According to the results, cratoxanthone E and morellic acid demonstrated promising binding affinities towards SARS-CoV-2 Mpro with docking scores of -11.2 and -11.0 kcal/mol, respectively. Binding features manifested the capability of cratoxanthone E and morellic acid to exhibit nine and five hydrogen bonds, respectively, with the key amino acids of the Mpro active site. In conclusion, cratoxanthone E and morellic acid are promising anti-COVID-19 drug candidates that warrant further detailed in vivo experimental estimation and clinical assessment.
Collapse
Affiliation(s)
- Hesham R El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
- Department of Chemistry, Faculty of Science, Menoufia University, 32512, Shebin El-Kom, Egypt
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University, Nanjing, 210024, China
| | - Hasnaa M S Ibrahim
- Department of Chemistry, Faculty of Science, Menoufia University, 32512, Shebin El-Kom, Egypt
| | - Nermeen Yosri
- Chemistry of Natural Products, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt
| | - Mohamed-Elamir F Hegazy
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudingerweg 5, Mainz, 55128, Germany
- 7Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, 35899, AL, USA
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, 84043, UT, USA
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Mohamed S Refaey
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Suhila E Salem
- Clinical Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Syed G Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Aamer Saeed
- Chemistry Department, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Sara E Salem
- Faculty of Pharmacy, The British University in Egypt, El Sherouk, Cairo, Egypt
| | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, 519087, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaden A M Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, SE 106 91, Sweden
| |
Collapse
|
2
|
An NTK, Van Hien N, Thi Thuy N, Lan Phuong D, Gia Bach H, Tra NT, Quang Tung N, Tham PT, Tai BH, Thu Thuy TT. Garcicowanones C-E, three new hydrated-geranylated xanthones from the roots of Garcinia cowa Roxb. ex Choisy, and their α-glucosidase inhibition activities. Nat Prod Res 2023; 37:3668-3676. [PMID: 35856477 DOI: 10.1080/14786419.2022.2098956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/27/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022]
Abstract
Three new xanthones, garcicowanones C-E (1 - 3), and six known xanthones (4 - 9) were isolated from the roots of Garcinia cowa Roxb. ex Choisy. Their chemical structures were determined using spectroscopic technics, including HR-ESI-MS and 2 D NMR. All isolated compounds were evaluated for in vitro α-glucosidase inhibition. Cowanol (6) and norcowanin (8) had the most potent α-glucosidase inhibitory activity, with respective IC50 values of 33.5 ± 0.8 and 17.2 ± 0.3 µM, compared with the positive control, acarbose (IC50 257.3 ± 4.8 µM).
Collapse
Affiliation(s)
| | | | - Nguyen Thi Thuy
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), Vietnam
| | - Doan Lan Phuong
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), Vietnam
| | - Ha Gia Bach
- Faculty of Chemistry, VNU University of Science, VNU, Hanoi, Hoan Kiem, Hanoi, Vietnam
| | | | | | - Pham Thi Tham
- Hanoi University of Industry, Bac Tu Liem, Hanoi, Vietnam
| | - Bui Huu Tai
- Institute of Marine Biochemistry, VAST, Hanoi, Vietnam
| | - Tran Thi Thu Thuy
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), Vietnam
| |
Collapse
|
3
|
Wang Y, Huang Q, Zhang L, Zheng C, Xu H. Biphenyls in Clusiaceae: Isolation, structure diversity, synthesis and bioactivity. Front Chem 2022; 10:987009. [PMID: 36531325 PMCID: PMC9751493 DOI: 10.3389/fchem.2022.987009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
Clusiaceae plants contain a wide range of biologically active metabolites that have gotten a lot of interest in recent decades. The chemical compositions of these plants have been demonstrated to have positive effects on a variety of ailments. The species has been studied for over 70 years, and many bioactive compounds with antioxidant, anti-proliferative, and anti-inflammatory properties have been identified, including xanthones, polycyclic polyprenylated acylphloroglucinols (PPAPs), benzophenones, and biphenyls. Prenylated side chains have been discovered in many of these bioactive substances. To date, there have been numerous studies on PPAPs and xanthones, while no comprehensive review article on biphenyls from Clusiaceae has been published. The unique chemical architectures and growing biological importance of biphenyl compounds have triggered a flurry of research and interest in their isolation, biological evaluation, and mechanistic studies. In particular, the FDA-approved drugs such as sonidegib, tazemetostat, daclatasvir, sacubitril and trifarotene are closely related to their biphenyl-containing moiety. In this review, we summarize the progress and development in the chemistry and biological activity of biphenyls in Clusiaceae, providing an in-depth discussion of their structural diversity and medicinal potential. We also present a preliminary discussion of the biological effects with or without prenyl groups on the biphenyls.
Collapse
Affiliation(s)
- Youyi Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Changwu Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Changwu Zheng, ; Hongxi Xu,
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Changwu Zheng, ; Hongxi Xu,
| |
Collapse
|
4
|
Cytotoxic and Anti-Inflammatory Activities of Dihydroisocoumarin and Xanthone Derivatives from Garcinia picrorhiza. Molecules 2021; 26:molecules26216626. [PMID: 34771035 PMCID: PMC8587515 DOI: 10.3390/molecules26216626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
Garcinia picrorhiza, a woody plant native to Sulawesi and Maluku Islands, Indonesia, has been traditionally used as a wound healing ointment. In our continuous search for bioactive compounds from this plant, 15 phenolic compounds were isolated from its stem bark, including a previously undescribed dihydroisocoumarin, 2'-hydroxyannulatomarin, and two undescribed furanoxanthones, gerontoxanthone C hydrate and 3'-hydroxycalothorexanthone. The structures of the new metabolites were elucidated on the basis of spectroscopic analysis, including 1D and 2D NMR and HRESIMS. Gerontoxanthone C hydrate possessed cytotoxicity against four cancer cells (KB, HeLa S3, MCF-7, and Hep G2) with IC50 values ranging from 5.6 to 7.5 µM. Investigation on the anti-inflammatory activities showed that 3'-hydroxycalothorexanthone inhibited NO production in RAW 264.7 and BV-2 cell lines with IC50 values of 16.4 and 13.8 µM, respectively, whereas only (-)-annulatomarin possessed inhibition activity on COX-2 enzyme over 10% at 20 µM. This work describes the presence of 3,4-dihydroisocoumarin structures with a phenyl ring substituent at C-3, which are reported the first time in genus Garcinia. These findings also suggest the potential of furanxanthone derivatives as cytotoxic and anti-inflammatory agents for further pharmacological studies.
Collapse
|
5
|
Tan Y, Chen B, Ren C, Guo M, Wang J, Shi K, Wu X, Feng Y. Rapid identification model based on decision tree algorithm coupling with 1H NMR and feature analysis by UHPLC-QTOFMS spectrometry for sandalwood. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1161:122449. [PMID: 33246279 DOI: 10.1016/j.jchromb.2020.122449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 10/25/2020] [Accepted: 11/04/2020] [Indexed: 12/01/2022]
Abstract
Sandalwood is one of the most valuable woods in the world. However, today's counterfeits are widespread, it is difficult to distinguish authenticity. In this paper, similar genus (Dalbergia and Pterocarpus) and confused species (Gluta sp.) of sandalwood were quickly and efficiently identified. Rapid identification model based on 1H NMR and decision tree (DT) algorithm was firstly developed for the identification of sandalwood, and the accuracy was improved by introducing the AdaBoost algorithm. The accuracy of the final model was above 95%. And the feature components between different species of sandalwood were further explored using UHPLC-QTOFMS and NMR spectrometry. The results showed that 183 compounds were identified, among which 99 were known components, 84 were unknown components. The 1H NMR and 13C NMR signals of 505 samples were assigned, among them, 14 compounds were attributed, characteristic chemical shift intervals with great differences in the model were analysed. Furthermore, the fragmentation pattern of different compounds from sandalwood, in both positive and negative ion ESI modes, was summarized. The results showed a potential and rapid tool based on DT, NMR spectroscopy and UHPLC-QTOFMS, which had performed great potential for rapid identification and feature analysis of sandalwood.
Collapse
Affiliation(s)
- Youzhen Tan
- New Drug Reserach And Development Center, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Biying Chen
- New Drug Reserach And Development Center, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Cui Ren
- New Drug Reserach And Development Center, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Mingxin Guo
- New Drug Reserach And Development Center, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Juanxia Wang
- New Drug Reserach And Development Center, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Kexing Shi
- New Drug Reserach And Development Center, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Xia Wu
- New Drug Reserach And Development Center, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Yifan Feng
- New Drug Reserach And Development Center, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
6
|
Purnomo AS, Sariwati A, Kamei I. Synergistic interaction of a consortium of the brown-rot fungus Fomitopsis pinicola and the bacterium Ralstonia pickettii for DDT biodegradation. Heliyon 2020; 6:e04027. [PMID: 32548317 PMCID: PMC7284076 DOI: 10.1016/j.heliyon.2020.e04027] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/08/2020] [Accepted: 05/15/2020] [Indexed: 01/31/2023] Open
Abstract
1,1,1-Trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) is a toxic and recalcitrant pesticide that has been greatly used to eradicate malaria mosquitos since the 1940s. However, the US Environmental Protection Agency banned and classified DDT as priority pollutants due to its negative impact on wildlife and human health. Considering its negative effects, it is necessary to develop effective methods of DDT degradation. A synergistic interaction of a consortium consisting of the brown-rot fungus Fomitopsis pinicola and the bacterium Ralstonia pickettii was adopted to degrade DDT. For the microbial consortia, F. pinicola was mixed with R. pickettii at 1, 3, 5, 7 and 10 ml (1 ml ≈ 1.44 × 1013 CFU) in a potato dextrose broth (PDB) medium to degrade DDT throughout the seven days incubation period. The degradation of DDT by only the fungus F. pinicola was roughly 42%, while by only R. pickettii was 31%. The addition of 3 ml of R. pickettii into F. pinicola culture presented appropriate optimization for efficient DDT degradation at roughly 61%. The DDT transformation pathway by co-inoculation of F. pinicola and R. pickettii showed that DDT was converted to 1,1-dichloro-2,2-bis(4-chlorophenyl) ethane (DDD), further transformed to 1,1-dichloro-2,2-bis(4-chlorophenyl) ethylene (DDE), and then ultimately transformed to 1-chloro-2,2-bis(4-chlorophenyl) ethylene (DDMU). These metabolites are less toxic than DDT. This research showed that R. picketti synergistically interacts with F. pinicola by enhancing DDT degradation.
Collapse
Affiliation(s)
- Adi Setyo Purnomo
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
| | - Atmira Sariwati
- Department of Tiongkok Traditional Medicine, Faculty of Health Science, Institut Ilmu Kesehatan Bhakti Wiyata Kediri, Jalan KH Wahid Hasyim 65, Kediri, 64114, Indonesia
| | - Ichiro Kamei
- Department of Forest and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, Miyazaki, 889-2192, Japan
| |
Collapse
|
7
|
Lulan TY, Fatmawati S, Santoso M, Ersam T. α-VINIFERIN as a potential antidiabetic and antiplasmodial extracted from Dipterocarpus littoralis. Heliyon 2020; 6:e04102. [PMID: 32509997 PMCID: PMC7264059 DOI: 10.1016/j.heliyon.2020.e04102] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/24/2019] [Accepted: 05/27/2020] [Indexed: 01/07/2023] Open
Abstract
Over the past few decades, complementary medicine therapy using medicinal plants have been developed in healthcare. Phytochemical studies about medicinal plants have been conducted to verify their potency as medicinal remedies in modern therapeutics. Dipterocarpus littoralis commonly known as Meranti Jawa in Indonesia is traditionally used to treat diseases such as diarrhea, diabetic and malaria. This study aimed to isolate bioactive compounds from D. littoralis using bioguided fractionation method. The bioactivity measured were antioxidant, antidiabetic, and antiplasmodial activity. Alpha-glucosidase and alpha-amylase assays were applied to estimate the in vitro antidiabetic activity of D. littoralis. The antioxidant activities were determined by using the free radical scavenging assays 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2-2″-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). Analysis of total flavonoid and phenolic contents were expressed as Quercetin Equivalent (QE) and Gallic Acid Equivalent (GAE), respectively. The in vitro antiplasmodial activity test of methanol extract of D. littoralis was also conducted against Plasmodium falciparum strain 3D7. Purification of the ethyl acetate fraction of the methanol extract of D. littoralis resulted in an oligostilbenes namely α-viniferin (1). The structure of the α-viniferin was characterized by comprehensive spectral analysis including IR, 1D and 2D NMR, and in comparison with the literature data. Compound 1 showed an alpha-glucosidase and alpha-amylase inhibitory activity with IC50 values of 256.17 and 212.79 μg/mL, respectively. The in vitro antiplasmodial activity test against Plasmodium falciparum strain 3D7 at a concentration of 100 μg/mL revealed a strong antiplasmodial inhibitory activity with IC50 value of 2.76 μg/mL. Our findings indicated that α-viniferin (1) which is isolated from D. littoralis extract could be regarded as potential antidiabetic and antiplasmodial resources in the future.
Collapse
Affiliation(s)
- Theodore Y.K. Lulan
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
- Department of Chemistry, Faculty of Science and Engineering, University of Nusa Cendana, Kupang, 85000, Indonesia
| | - Sri Fatmawati
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
| | - Mardi Santoso
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
| | - Taslim Ersam
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
| |
Collapse
|
8
|
Klein-Júnior LC, Campos A, Niero R, Corrêa R, Vander Heyden Y, Filho VC. Xanthones and Cancer: from Natural Sources to Mechanisms of Action. Chem Biodivers 2020; 17:e1900499. [PMID: 31794156 DOI: 10.1002/cbdv.201900499] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022]
Abstract
Xanthones are a class of heterocyclic natural products that have been widely studied for their pharmacological potential. In fact, they have been serving as scaffolds for the design of derivatives focusing on drug development. One of the main study targets of xanthones is their anticancer activity. Several compounds belonging to this class have already demonstrated cytotoxic and antitumor effects, making it a promising group for further exploration. This review therefore focuses on recently published studies, emphasizing their natural and synthetic sources and describing the main mechanisms of action responsible for the anticancer effect of promising xanthones.
Collapse
Affiliation(s)
- Luiz C Klein-Júnior
- Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí - UNIVALI, 88302-901, Itajaí, Brazil
| | - Adriana Campos
- Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí - UNIVALI, 88302-901, Itajaí, Brazil
| | - Rivaldo Niero
- Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí - UNIVALI, 88302-901, Itajaí, Brazil
| | - Rogério Corrêa
- Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí - UNIVALI, 88302-901, Itajaí, Brazil
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel - VUB, B-1090, Brussels, Belgium
| | - Valdir Cechinel Filho
- Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí - UNIVALI, 88302-901, Itajaí, Brazil
| |
Collapse
|
9
|
Antioxidant Nature Adds Further Therapeutic Value: An Updated Review on Natural Xanthones and Their Glycosides. DIGITAL CHINESE MEDICINE 2019. [DOI: 10.1016/j.dcmed.2019.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
10
|
A New Flavanone as a Potent Antioxidant Isolated from Chromolaena odorata L. Leaves. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1453612. [PMID: 31316568 PMCID: PMC6604423 DOI: 10.1155/2019/1453612] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 05/20/2019] [Indexed: 11/17/2022]
Abstract
Chromolaena odorata L. (Asteraceae) is one of the tropical plants which is widely used as traditional medicines for diabetes and soft tissue wounds treatment in some regions in East Indonesia. The present study was aimed at determining the bioactive compounds of C. odorata leaves. The methanol and ethyl acetate extracts of C. odorata leaves have the inhibitory activity against 2,2-diphenyl-1-picryl-hydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals as well as α-glucosidase rat intestine enzyme. A new flavanone was isolated from the methanol extract and elucidated as 5,3'-dihydroxy-7,6'-dimethoxyflavanone or, namely, odoratenin (1) together with two known compounds: isosakuranetin (2) and subscandenin (3). The antioxidant activity of odoratenin (1) exhibited very potent ABTS radical inhibitory activity with IC50 value of 23.74 μM which is lower than that of trolox (IC50 31.32 μM) as a positive control. The result showed that a new flavanone, odoratenin (1), should be potential as an antioxidant source.
Collapse
|
11
|
1,2-Dihydroxyxanthone: Effect on A375-C5 Melanoma Cell Growth Associated with Interference with THP-1 Human Macrophage Activity. Pharmaceuticals (Basel) 2019; 12:ph12020085. [PMID: 31167479 PMCID: PMC6630936 DOI: 10.3390/ph12020085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022] Open
Abstract
Xanthones have been suggested as prospective candidates for cancer treatment. 1,2- dihydroxyxanthone (1,2-DHX) is known to interfere with the growth of several cancer cell lines. We investigated the effects of 1,2-DHX on the growth of the A375-C5 melanoma cell line and THP-1 human macrophage activity. 1,2-DHX showed a moderate growth inhibition of A375-C5 melanoma cells (concentration that causes a 50% inhibition of cell growth (GI50) = 55.0 ± 2.3 µM), but strongly interfered with THP-1 human macrophage activity. Supernatants from lipopolysaccharide (LPS)-stimulated THP-1 macrophage cultures exposed to 1,2-DHX significantly increased growth inhibition of A375-C5 cells, when compared to supernatants from untreated LPS-stimulated macrophages or to direct treatment with 1,2-DHX only. 1,2-DHX decreased THP-1 secretion of interleukin-1β (IL-1β) and interleukin-10 (IL-10), but stimulated tumor necrosis factor-α (TNF-α) and transforming growth factor-β1 (TGF-β1) production. This xanthone also inhibited nitric oxide (NO) production by RAW 264.7 murine macrophages, possibly through inhibition of inducible NO synthase production. In conclusion, these findings suggest a potential impact of 1,2-DHX in melanoma treatment, not only due to a direct effect on cancer cells but also by modulation of macrophage activity.
Collapse
|
12
|
Sukandar ER, Kaennakam S, Rassamee K, Ersam T, Siripong P, Tip-Pyang S. Tetrandraxanthones A-I, Prenylated and Geranylated Xanthones from the Stem Bark of Garcinia tetrandra. JOURNAL OF NATURAL PRODUCTS 2019; 82:1312-1318. [PMID: 30978023 DOI: 10.1021/acs.jnatprod.9b00046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nine new xanthones, tetrandraxanthones A-I (1-9), and 22 known xanthones (10-31) were isolated from Garcinia tetrandra stem bark. The structures of 1-9 were characterized through detailed spectroscopic analysis, including HRESIMS and 2D NMR data. Among the compounds tested for their cytotoxicity, 26 showed significant cytotoxic effects against five human cancer cell lines, including MCF-7, HT-29, KB, Hep G2, and HeLa S3, with IC50 values in the range of 1.6-3.4 μM, while 10 and 11 were cytotoxic against the MCF-7, HeLa S3, and KB cell lines, with IC50 values of 4.3-9.0 μM.
Collapse
Affiliation(s)
- Edwin Risky Sukandar
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science , Chulalongkorn University , Bangkok 10330 , Thailand
- Natural Products and Synthesis Chemistry Research Laboratory, Department of Chemistry, Faculty of Science , Institut Teknologi Sepuluh Nopember , Kampus ITS Sukolilo , Surabaya 60111 , Indonesia
| | - Sutin Kaennakam
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science , Chulalongkorn University , Bangkok 10330 , Thailand
| | - Kitiya Rassamee
- Natural Products Research Section, Research Division , National Cancer Institute , Bangkok 10400 , Thailand
| | - Taslim Ersam
- Natural Products and Synthesis Chemistry Research Laboratory, Department of Chemistry, Faculty of Science , Institut Teknologi Sepuluh Nopember , Kampus ITS Sukolilo , Surabaya 60111 , Indonesia
| | - Pongpun Siripong
- Natural Products Research Section, Research Division , National Cancer Institute , Bangkok 10400 , Thailand
| | - Santi Tip-Pyang
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science , Chulalongkorn University , Bangkok 10330 , Thailand
| |
Collapse
|
13
|
Acylphloroglucinol Derivatives from Garcinia multiflora with Anti-Inflammatory Effect in LPS-Induced RAW264.7 Macrophages. Molecules 2018; 23:molecules23102587. [PMID: 30308951 PMCID: PMC6222856 DOI: 10.3390/molecules23102587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/03/2018] [Accepted: 10/07/2018] [Indexed: 11/16/2022] Open
Abstract
Two new acylphloroglucinol derivatives, 13,14-didehydroxygarcicowin C (1) and 13,14-didehydroxyisoxanthochymol (2), have been isolated from the stems of Garcinia multiflora, together with seven known compounds (3⁻9). The structures of new compounds 1 and 2 were elucidated by MS and extensive 1D/2D NMR spectroscopic analyses. Among the isolates, 13,14-didehydroxy-isoxanthochymol (2) and sampsonione B (3) exhibited inhibition against lipopolysaccharide (LPS)-induced NF-κB activation in macrophages at 30 μM with relative luciferase activity values (inhibitory %) of 0.75 ± 0.03 (24 ± 4%) and 0.12 ± 0.03 (88 ± 4%), respectively. Additionally, sampsonione B (3) reduced LPS-induced nitric oxide (NO) production in murine RAW264.7 macrophages and did not induce cytotoxicity against RAW 264.7 cells after 24 h treatment. Compound 3 is worth further investigation and may be expectantly developed as an anti-inflammatory drug candidate.
Collapse
|
14
|
Sukandar ER, Kaennakam S, Rassamee K, Siripong P, Fatmawati S, Ersam T, Tip-pyang S. Xanthones and biphenyls from the stems of Garcinia cylindrocarpa and their cytotoxicity. Fitoterapia 2018; 130:112-117. [DOI: 10.1016/j.fitote.2018.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 01/21/2023]
|
15
|
Ruan J, Zheng C, Liu Y, Qu L, Yu H, Han L, Zhang Y, Wang T. Chemical and Biological Research on Herbal Medicines Rich in Xanthones. Molecules 2017; 22:E1698. [PMID: 29019929 PMCID: PMC6151445 DOI: 10.3390/molecules22101698] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/09/2017] [Indexed: 01/01/2023] Open
Abstract
Xanthones, as some of the most active components and widely distributed in various herb medicines, have drawn more and more attention in recent years. So far, 168 species of herbal plants belong to 58 genera, 24 families have been reported to contain xanthones. Among them, Calophyllum, Cratoxylum, Cudrania, Garcinia, Gentiana, Hypericum and Swertia genera are plant resources with great development prospect. This paper summarizes the plant resources, bioactivity and the structure-activity relationships (SARs) of xanthones from references published over the last few decades, which may be useful for new drug research and development on xanthones.
Collapse
Affiliation(s)
- Jingya Ruan
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China.
| | - Chang Zheng
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China.
| | - Yanxia Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China.
| | - Lu Qu
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshan Road, Nankai District, Tianjin 300193, China.
| | - Haiyang Yu
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshan Road, Nankai District, Tianjin 300193, China.
| | - Lifeng Han
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshan Road, Nankai District, Tianjin 300193, China.
| | - Yi Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China.
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshan Road, Nankai District, Tianjin 300193, China.
| | - Tao Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China.
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshan Road, Nankai District, Tianjin 300193, China.
| |
Collapse
|
16
|
Auranwiwat C, Laphookhieo S, Rattanajak R, Kamchonwongpaisan S, Pyne SG, Ritthiwigrom T. Antimalarial polyoxygenated and prenylated xanthones from the leaves and branches of Garcinia mckeaniana. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.09.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
New depsidones and xanthone from the roots of Garcinia schomburgkiana. Fitoterapia 2016; 111:73-7. [DOI: 10.1016/j.fitote.2016.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/15/2016] [Accepted: 04/17/2016] [Indexed: 01/30/2023]
|