1
|
Luo S, Huang M, Lu X, Zhang M, Xiong H, Tan X, Deng X, Zhang W, Ma X, Zeng J, Efferth T. Optimized therapeutic potential of Yinchenhao decoction for cholestatic hepatitis by combined network meta-analysis and network pharmacology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155573. [PMID: 38583348 DOI: 10.1016/j.phymed.2024.155573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/13/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Cholestatic hepatitis is recognized as a significant contributor to the development of liver fibrosis and cirrhosis. As a well-known classic formula for the treatment of cholestatic hepatitis, Yinchenhao decoction (YCHD) is widely used in countries in Asia, including China, Japan, and Korea. However, in recent years, a risk of liver injury has been reported from Rheum palmatum L. and Gardenia jasmonoides J.Ellis which are the main ingredients of YCHD. Therefore, the question arises whether YCHD is still safe enough for the treatment of cholestatic hepatitis or whether an optimized ratio of ingredients should be applied. These is inevitable questions for the clinical application of YCHD. PURPOSE To provide a scientific basis for the clinical application of YCHD through a combination of meta-analysis and network pharmacology and to find the best ratio of components to ensure optimal therapeutic efficacy and safety. At the same time, a deeper understanding of the mechanisms of YCHD was explored. METHODS We retrieved relevant trials from various databases including PubMed, Web of Science, EMBASE, Cochrane Library, China National Knowledge Infrastructure (CNKI), VIP and Wanfang databases up to August 2023. After screening for inclusion and exclusion criteria, we assessed efficiency, ALT, AST, and TBIL as outcome parameters. The relevant data underwent a network meta-analysis using STATA 16.0 software. Based on network pharmacology, we screened the disease targets, active ingredients, and targets related to YCHD. The targets were visualized using Cytoscape 3.9.1. Then, potential mechanisms were explored based on bioinformatic techniques. RESULTS Twenty eligible studies were finally screened and a total of 1,591 patients who fulfilled the inclusion criteria were enrolled in the study. The meta-analysis results indicated that TG-c (treatment group c) [(Artemisia capillaris Thunb. : Gardenia jasminoides J.Ellis : Rheum palmatum L. = 10:5:2-10:5:3) + CT] was the most promising therapeutic approach, demonstrating superior efficacy and notable improvements in both AST and TBIL levels. For ALT, TG-d [(Artemisia capillaris : Gardenia jasminoides : Rheum palmatum = 5:1:1-5:2:1) + CT] exhibited the greatest potential as optimal therapy option. Based on the surface under the cumulative ranking curve (SUCRA) values, TG-c was the best therapy in terms of efficiency and improvement in TBIL levels, while TG-d was the most effective in reducing ALT levels. For AST levels, TG-e [(Artemisia capillaris : Gardenia jasminoides : Rheum palmatum = 5:2:2-5:3:3) + CT] was the most effective therapy. The comprehensive analysis revealed that TG-c exhibited the most pronounced efficacy. Combined network pharmacology, GO enrichment analysis and KEGG pathway enrichment analysis displayed that the key target genes of Artemisia capillaris, Rheum palmatum, and Gardenia jasminoides were closely involved in inflammation response, bile transport, apoptosis, oxidative stress, and regulation of leukocyte migration. Notably, bile secretion dominated the common pathway of the three herbs. On the other hand, Artemisia capillaris exhibited a unique mode of action by regulating the IL-17 signaling pathway, which may play a crucial role in its effectiveness. CONCLUSION Based on our findings, the optimal TG-C demonstrated the most favorable overall therapeutic efficacy by increasing the dosage of Artemisia capillaris while reducing the dosage of Gardenia jasminoides and Rheum palmatum. This is attributed to the potent ability of Artemisia capillaris. to effectively modulate the IL-17 signaling pathway, thereby exerting a beneficial therapeutic effect. Conversely, Gardenia jasminoides and Rheum palmatum may potentially enhance the activation of the NF-кB signaling pathway, thereby elevating the risk of hepatotoxicity.
Collapse
Affiliation(s)
- Shiman Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Meilan Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaohua Lu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Mingming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Huiling Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiyue Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
2
|
Yu J, Zhu Q, Zhou M, Huang X, Le Y, Ouyang H, Cheng S. Mechanism of Tianma-Gouteng granules lowering blood pressure based on the bile acid-regulated Farnesoid X Receptor-Fibroblast Growth Factor 15- Cholesterol 7α-hydroxylase pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118091. [PMID: 38521427 DOI: 10.1016/j.jep.2024.118091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tianma-Gouteng granules (TGG) is a traditional Chinese medicine (TCM) compound that was first recorded by modern medical practitioner Hu Guangci in "New Meaning of the Treatment of Miscellaneous Diseases in Traditional Chinese Medicine". It is widely used to treat hypertensive vertigo, headache and insomnia. AIM OF STUDY To investigate the antihypertensive effect of TGG and explore its mechanism. MATERIALS AND METHODS Spontaneously hypertensive rats (SHR) were prepared a model of the ascendant hyperactivity of liver yang syndrome (AHLYS), blood pressure and general state of rats were recorded. A series of experiments were performed by enzyme-linked immunosorbent assay (ELISA), ultra high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS), 16S rRNA sequencing, real-time fluorescence quantitative PCR (RT-qPCR), and enzymatic colorimetry. RESULTS TGG can effectively lower blood pressure and improve related symptoms. TGG significantly reduced the levels of IL-1β, IL-6, TNF-α, Renin and AngII. A total of 17 differential metabolites were found in plasma, with the two most potent metabolic pathways being glycerophospholipid metabolism and primary bile acid biosynthesis. After TGG intervention, 7 metabolite levels decreased and 10 metabolite levels increased. TGG significantly increased the relative abundance of Desulfovibio, Lachnoclostridium, Turicibacter, and decreased the relative abundance of Alluobaculum and Monoglobu. TGG also downregulated Farnesoid X Receptor (FXR) and Fibroblast Growth Factor 15 (FGF15) levels in the liver and ileum, upregulated Cholesterol 7α-hydroxylase (CYP7A1) levels, and regulated total bile acid (TBA) levels. CONCLUSION TGG can regulate bile acid metabolism through liver-gut axis, interfere with related intestinal flora and plasma metabolites, decrease blood pressure, and positively influence the pathologic process of SHR with AHLYS. When translating animal microbiota findings to humans, validation studies are essential to confirm reliability and applicability, particularly through empirical human research.
Collapse
Affiliation(s)
- Jianjun Yu
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qing Zhu
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Maofu Zhou
- Jiangxi University of Chinese Medicine, Nanchang, China
| | | | - Yimin Le
- Fuzhou Medical College of Nanchang University, Fuzhou, China
| | - Hui Ouyang
- Jiangxi University of Chinese Medicine, Nanchang, China.
| | - Shaomin Cheng
- Jiangxi University of Chinese Medicine, Nanchang, China.
| |
Collapse
|
3
|
Wu L, Wang X, Jiang J, Chen Y, Peng B, Jin W. Mechanism of rhubarb in the treatment of hyperlipidemia: A recent review. Open Med (Wars) 2023; 18:20230812. [PMID: 37808167 PMCID: PMC10552914 DOI: 10.1515/med-2023-0812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Hyperlipidemia is a metabolic disorder, which is a major risk factor for atherosclerosis, stroke, and coronary heart disease. Although lipid-lowering treatments have been extensively studied, safer treatments with fewer adverse effects are needed. Rhubarb is a traditional Chinese medicine that has lipid-lowering, anti-inflammatory, and antioxidant properties. Disturbance in lipid metabolism is the basis of tissue damage caused by hyperlipidemia and plays a key role in the development of hyperlipidemia; however, the molecular mechanisms by which rhubarb regulates lipid metabolism to lower lipid levels are yet to be elucidated. We conducted this study to summarize the phytochemical constituents of Rheum officinale and provide a comprehensive review of the molecular mechanisms underlying the regulation of lipid metabolism during hyperlipidemia treatment. It was found that rhubarb extracts, including emodin, rhubarb acid, and rhubarb phenol, regulate total cholesterol, triglyceride, TNF-α, and IL-1β levels through signaling pathways such as C/EBP α, 3T3-L1, PPAR α, and AMPK, thereby improving the hyperlipidemic state. This suggests that rhubarb is a natural drug with lipid-lowering potential, and an in-depth exploration of its lipid-lowering mechanism can provide new ideas for the prevention and treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Lijiao Wu
- Chengdu University of Traditional Chinese Medicine School of Clinical Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiangjin Wang
- College of Sports Medicine and Health, Chengdu Sports University, Chengdu, China
| | - Jihang Jiang
- Chengdu University of Traditional Chinese Medicine School of Clinical Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Chen
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Peng
- Respiratory Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Jin
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Lakshmi JN, Babu AN, Kiran SSM, Nori LP, Hassan N, Ashames A, Bhandare RR, Shaik AB. Herbs as a Source for the Treatment of Polycystic Ovarian Syndrome: A Systematic Review. BIOTECH (BASEL (SWITZERLAND)) 2023; 12:biotech12010004. [PMID: 36648830 PMCID: PMC9844343 DOI: 10.3390/biotech12010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Polycystic ovarian syndrome (PCOS) is a neuroendocrine metabolic disorder characterized by an irregular menstrual cycle. Treatment for PCOS using synthetic drugs is effective. However, PCOS patients are attracted towards natural remedies due to the effective therapeutic outcomes with natural drugs and the limitations of allopathic medicines. In view of the significance of herbal remedies, herein, we discuss the role of different herbs in PCOS. METHODS By referring to the Scopus, PubMed, Google Scholar, Crossref and Hinari databases, a thorough literature search was conducted and data mining was performed pertaining to the effectiveness of herbal remedies against PCOS. RESULTS In this review, we discuss the significance of herbal remedies in the treatment of PCOS, and the chemical composition, mechanism of action and therapeutic application of selected herbal drugs against PCOS. CONCLUSIONS The present review will be an excellent resource for researchers working on understanding the role of herbal medicine in PCOS.
Collapse
Affiliation(s)
- Jada Naga Lakshmi
- Department of Pharmacology, Vignan Pharmacy College, Jawaharlal Nehru Technological University, Vadlamudi 522213, Andhra Pradesh, India
- Correspondence: (J.N.L.); (A.A.); (A.B.S.)
| | - Ankem Narendra Babu
- Department of Pharmacology, Sir C.R. Reddy College of Pharmaceutical Sciences, Andhra University, Eluru 534007, Andhra Pradesh, India
| | - S. S. Mani Kiran
- Department of Pharmacognosy, Vignan Pharmacy College, Jawaharlal Nehru Technological University, Vadlamudi 522213, Andhra Pradesh, India
| | - Lakshmi Prasanthi Nori
- Department of Pharmaceutics, Shri Vishnu College of Pharmacy, Andhra University, Bhimavaram 534202, Andhra Pradesh, India
| | - Nageeb Hassan
- Department of Clinical Sciences, College of Pharmacy & Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Akram Ashames
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Correspondence: (J.N.L.); (A.A.); (A.B.S.)
| | - Richie R. Bhandare
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Afzal B. Shaik
- St. Mary’s College of Pharmacy, St. Mary’s Group of Institutions Guntur, Affiliated to Jawaharlal Nehru Technological University Kakinada, Chebrolu, Guntur 522212, Andhra Pradesh, India
- Correspondence: (J.N.L.); (A.A.); (A.B.S.)
| |
Collapse
|
5
|
Guo Y, Zhang R, Li W. Emodin in cardiovascular disease: The role and therapeutic potential. Front Pharmacol 2022; 13:1070567. [PMID: 36618923 PMCID: PMC9816479 DOI: 10.3389/fphar.2022.1070567] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
Emodin is a natural anthraquinone derivative extracted from Chinese herbs, such as Rheum palmatum L, Polygonum cuspidatum, and Polygonum multiflorum. It is now also a commonly used clinical drug and is listed in the Chinese Pharmacopoeia. Emodin has a wide range of pharmacological properties, including anticancer, antiinflammatory, antioxidant, and antibacterial effects. Many in vivo and in vitro experiments have demonstrated that emodin has potent anticardiovascular activity. Emodin exerts different mechanisms of action in different types of cardiovascular diseases, including its involvement in pathological processes, such as inflammatory response, apoptosis, cardiac hypertrophy, myocardial fibrosis, oxidative damage, and smooth muscle cell proliferation. Therefore, emodin can be used as a therapeutic drug against cardiovascular disease and has broad application prospects. This paper summarized the main pharmacological effects and related mechanisms of emodin in cardiovascular diseases in recent years and discussed the limitations of emodin in terms of extraction preparation, toxicity, and bioavailability-related pharmacokinetics in clinical applications.
Collapse
Affiliation(s)
- Yuanyuan Guo
- School of Pharmacy, Harbin University of Commerce, Harbin, China,Department of Cardiology, Geriatrics, and General Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rongzhen Zhang
- Department of Heart Failure, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenlan Li
- School of Pharmacy, Harbin University of Commerce, Harbin, China,*Correspondence: Wenlan Li,
| |
Collapse
|
6
|
Chen K, Gao Z, Ding Q, Tang C, Zhang H, Zhai T, Xie W, Jin Z, Zhao L, Liu W. Effect of natural polyphenols in Chinese herbal medicine on obesity and diabetes: Interactions among gut microbiota, metabolism, and immunity. Front Nutr 2022; 9:962720. [PMID: 36386943 PMCID: PMC9651142 DOI: 10.3389/fnut.2022.962720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/20/2022] [Indexed: 08/30/2023] Open
Abstract
With global prevalence, metabolic diseases, represented by obesity and type 2 diabetes mellitus (T2DM), have a huge burden on human health and medical expenses. It is estimated that obese population has doubled in recent 40 years, and population with diabetes will increase 1.5 times in next 25 years, which has inspired the pursuit of economical and effective prevention and treatment methods. Natural polyphenols are emerging as a class of natural bioactive compounds with potential beneficial effects on the alleviation of obesity and T2DM. In this review, we investigated the network interaction mechanism of "gut microbial disturbance, metabolic disorder, and immune imbalance" in both obesity and T2DM and systemically summarized their multiple targets in the treatment of obesity and T2DM, including enrichment of the beneficial gut microbiota (genera Bifidobacterium, Akkermansia, and Lactobacillus) and upregulation of the levels of gut microbiota-derived metabolites [short-chain fatty acids (SCFAs)] and bile acids (BAs). Moreover, we explored their effect on host glucolipid metabolism, the AMPK pathway, and immune modulation via the inhibition of pro-inflammatory immune cells (M1-like Mϕs, Th1, and Th17 cells); proliferation, recruitment, differentiation, and function; and related cytokines (TNF-α, IL-1β, IL-6, IL-17, and MCP-1). We hope to provide evidence to promote the clinical application of natural polyphenols in the management of obesity and T2DM.
Collapse
Affiliation(s)
- Keyu Chen
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zezheng Gao
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiyou Ding
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Tang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Haiyu Zhang
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiangang Zhai
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Weinan Xie
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zishan Jin
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenke Liu
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Wang Y, Zhang J, Xu Z, Zhang G, Lv H, Wang X, Xu G, Li X, Yang Z, Wang H, Wang Y, Li H, Shi Y. Identification and action mechanism of lipid regulating components from Rhei Radix et rhizoma. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115179. [PMID: 35278606 DOI: 10.1016/j.jep.2022.115179] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhei Radix et Rhizoma is widely used in Traditional Chinese Medicine to attack stagnation, clear damp heat, relieve fire, cool blood, remove blood stasis and detoxify recorded in Chinese Pharmacopoeia. Modern pharmacological research has showed the extract of Rhei Radix et Rhizoma has the effect of lowering blood lipids, but the main active components and their mechanisms are still not clear. AIM OF THE STUDY To reveal the lipid regulating components from Rhei Radix et Rhizoma and preliminarily explore their related action mechanisms. MATERIALS AND METHODS A rat model of dyslipidemia was established by administration of a high-fat emulsion via gavage, and the intervention effect of different polar fractions of Rhei Radix et Rhizoma on rat blood lipids as well as their related action mechanisms were preliminarily investigated. The effective components were inferred based on the above tests and identified by high performance liquid chromatography in comparison with reference substances, their UV absorption and high resolution mass spectra characteristics. RESULTS The extract with dichloromethane fraction (DF) containing rhubarb free anthraquinones (aloe-emodin, rhein, emodin, chrysophanol and physcion) significantly regulated the disordered blood lipids, lowered TC and LDLC, reversed TG and increased HDLC level in dyslipidemic rats and also showed lipid-lowering effect on lipid abnormalities in HepG2 cells. DF could alter the signaling pathways such as PPARα and AMPK implicated in lipid metabolism, and it down-regulated the mRNA expression of liver APOA2, SCD-1, HMGCR, SREBP-2 and PCSK9, but up-regulated the expressions of liver APOE, LPL and intestinal ABCG8. Besides, it could change the composition of Firmicutes, Bacteroidetes and Proteobacteria in dyslipidemic rat feces samples. CONCLUSIONS Rhubarb free anthraquinones have a significant regulating effect on the levels of serum TC, LDLC and HDLC, and probably possess a bidirectional regulatory effect on TG level in dyslipidemic rats. These effects may be achieved by regulating the expressions of the liver PPARα and SREBP target genes, PCSK9 and the intestinal ABCG8 genes, which are involved in blood cholesterol transport, liver lipid metabolism and intestinal cholesterol excretion. Rhubarb free anthraquinones may also affect energy metabolism by changing the composition of gut microflora related to lipid metabolism in dyslipidemic rats.
Collapse
Affiliation(s)
- Yudong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Jianing Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Zheng Xu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Guifang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Huijuan Lv
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Xinben Wang
- Gansu Qingdai Chinese Herbal Medicine Beauty Research Co. Ltd., Lanzhou, 730050, China.
| | - Guijing Xu
- Gansu Qingdai Chinese Herbal Medicine Beauty Research Co. Ltd., Lanzhou, 730050, China.
| | - Xuefeng Li
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Zhigang Yang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Haoliang Wang
- Gansu Digital Materia Medica Testing Center Co., Ltd., Longxi, 748100, China.
| | - Yongfu Wang
- Gansu Digital Materia Medica Testing Center Co., Ltd., Longxi, 748100, China.
| | - Hongfang Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Yanbin Shi
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
8
|
Liudvytska O, Kolodziejczyk-Czepas J. A Review on Rhubarb-Derived Substances as Modulators of Cardiovascular Risk Factors—A Special Emphasis on Anti-Obesity Action. Nutrients 2022; 14:nu14102053. [PMID: 35631194 PMCID: PMC9144273 DOI: 10.3390/nu14102053] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
The currently available anti-obesity therapies encounter many associated risks and side effects often causing the ineffectiveness of treatment. Therefore, various plant-derived substances have been extensively studied as a promising support or even an alternative for existing anti-obesity therapies. This review is dealing with the anti-obesity potential of edible and ethnomedicinal rhubarb species and emerging possible role of the rhubarb-derived extracts or individual compounds in the prevention of obesity and perspectives for their use in an anti-obesity treatment. A special emphasis is put on the most popular edible specimens, i.e., Rheum rhabarbarum L. (garden rhubarb) and Rheum rhaponticum L. (rhapontic rhubarb, Siberian rhubarb); however, the anti-obesity potential of other rhubarb species (e.g., R. officinale, R. palmatum, and R. emodi) is presented as well. The significance of rhubarb-derived extracts and low-molecular specialized rhubarb metabolites of diversified chemical background, e.g., anthraquinones and stilbenes, as potential modulators of human metabolism is highlighted, including the context of cardiovascular disease prevention. The available reports present multiple encouraging rhubarb properties starting from the anti-lipidemic action of rhubarb fibre or its use as purgative medicines, through various actions of rhubarb-derived extracts and their individual compounds: inhibition of enzymes of cholesterol and lipid metabolism, targeting of key molecular regulators of adipogenesis, regulators of cell energy metabolism, the ability to inhibit pro-inflammatory signalling pathways and to regulate glucose and lipid homeostasis contributing to overall in vivo and clinical anti-obesity effects.
Collapse
|
9
|
He LF, Wang C, Zhang YF, Guo CC, Wan Y, Li YX. Effect of Emodin on Hyperlipidemia and Hepatic Lipid Metabolism in Zebrafish Larvae Fed a High-Cholesterol Diet. Chem Biodivers 2021; 19:e202100675. [PMID: 34866324 DOI: 10.1002/cbdv.202100675] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/03/2021] [Indexed: 12/15/2022]
Abstract
Hyperlipidemia (HLP) is a complex pathological condition results from lipid metabolism disorder, which is closely related to obesity, atherosclerosis and steatohepatitis. Emodin (EM), a natural anthraquinone, exhibits prominent hypolipidemic effects. However, its exact mechanism is still unclear. In this study, we successfully established hyperlipidemic zebrafish model induced by 4 % high-cholesterol diet (HCD) for 10 days and explored the anti-hyperlipidemic roles and underlying mechanisms of EM. The results indicated that EM attenuated the mortality and body mass index (BMI) of zebrafish with HLP, and ameliorated abnormal lipid levels involved in TC, TG, LDL-C and HDL-C levels. Besides, EM effectively reduced lipid accumulation in blood vessels and liver, alleviated hepatic histological damage, and inhibited vascular neutrophil inflammation. Finally, the mRNA expression of molecules related to lipid metabolism were studied by using real-time quantitative polymerase chain reaction (RT-qPCR) to investigated the underlying mechanism. Further results found that treatment with EM up-regulated AMPKα, LDLR, ABCA1 and ABCG1, and down-regulated SREBP-2, PCSK9 and HMGCR expression. In conclusion, EM showed a prominent mitigative effect on lipid metabolism disorder in zebrafish larvae with HCD-stimulated HLP, which was associated with the enhancement of LDL-C uptake and reverse cholesterol transport, and inhibition of cholesterol synthesis.
Collapse
Affiliation(s)
- Lin-Feng He
- National Key Laboratory of Southwestern Chinese Medicine Resources & Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education & School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Cheng Wang
- National Key Laboratory of Southwestern Chinese Medicine Resources & Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education & School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Ya-Fang Zhang
- National Key Laboratory of Southwestern Chinese Medicine Resources & Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education & School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Chao-Cheng Guo
- National Key Laboratory of Southwestern Chinese Medicine Resources & Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education & School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Yan Wan
- National Key Laboratory of Southwestern Chinese Medicine Resources & Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education & School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Yun-Xia Li
- National Key Laboratory of Southwestern Chinese Medicine Resources & Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education & School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, China
| |
Collapse
|
10
|
Ruan L, Jiang L, Zhao W, Meng H, Zheng Q, Wang J. Hepatotoxicity or hepatoprotection of emodin? Two sides of the same coin by 1H-NMR metabolomics profiling. Toxicol Appl Pharmacol 2021; 431:115734. [PMID: 34606778 DOI: 10.1016/j.taap.2021.115734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
Emodin is the major anthraquinone component of many important traditional Chinese herbs, such as Rheum palmatum L. and Polygonum multiflorum Thunb. They have been popular health products but recently aroused concerns about their hepatotoxicity, which are believed to be arising from the contained anthraquinones, such as emodin. However, emodin exerts potent hepatoprotective ability, such as anti-fibrotic, anti-oxidative, and anti-inflammatory effects. In this study, 1H NMR based metabolomics approach, complemented with histopathological observation, biochemical measurements, western blotting analysis and real-time quantitative PCR (RT-qPCR), was applied to interpret the paradox of emodin (30 mg/kg, 10 mg/kg BW) using both healthy mice (male, ICR) and chronic CCl4-injured mice (0.1 mL/kg, 0.35% CCl4, 3 times a week for a month). Emodin exerted a weight loss property associated with its lipid-lowing effects, which helped alleviate CCl4-induced steatosis. Emodin effectively ameliorated CCl4-induced oxidative stress and energy metabolism dysfunction in mice liver via regulating glucose, lipid and amino acid metabolism, and inhibited excessive inflammatory response. In healthy mice, emodin only exhibited hepatoxicity on high-dosage by disturbing hepatic anti-oxidant homeostasis, especially GSH and xanthine metabolism. This integrated metabolomics approach identified the bidirectional potential of emodin, which are important for its rational use.
Collapse
Affiliation(s)
- Lingyu Ruan
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China.
| | - Lei Jiang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China.
| | - Wenlong Zhao
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China.
| | - Huihui Meng
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China.
| | - Qi Zheng
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China.
| | - Junsong Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China.
| |
Collapse
|
11
|
Zhang L, Yuan JQ, Song FC, Zhu MD, Li Q, Liu SH, Zhao K, Zhao C. Ameliorative effects of the traditional Chinese medicine formula Qing-Mai-Yin on arteriosclerosis obliterans in a rabbit model. PHARMACEUTICAL BIOLOGY 2020; 58:785-795. [PMID: 33073642 PMCID: PMC7592894 DOI: 10.1080/13880209.2020.1803368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
CONTEXT Qing-Mai-Yin (QMY) is a clinically used herbal formula for treating arteriosclerosis obliterans (ASO). OBJECTIVE To evaluate the chemical constituents and effects of QMY on ASO rabbit model. MATERIALS AND METHODS Forty-eight New Zealand rabbits were divided into six groups (n = 8): normal (normal rabbits treated with 0.5% CMC-Na), vehicle (ASO rabbits treated with 0.5% CMC-Na), positive (simvastatin, 1.53 mg/kg), and QMY treatment (300, 600, and 1200 mg/kg). ASO rabbit model was prepared by high fatty feeding, roundly shortening artery, and bovine serum albumin immune injury. QMY (300, 600 and 1200 mg/kg) was orally administered for 8 weeks. The effects and possible mechanisms of QMY on ASO rabbits were evaluated by pathological examination, biochemical assays, and immunohistochemical assays. The compositions of QMY were analysed using HPLC-Q-TOF-MS/MS analysis. RESULTS Compared to the vehicle rabbit, QMY treatment suppressed plaque formation and intima thickness in aorta, and decreased intima thickness, whereas increased lumen area of femoral artery. Additionally, QMY treatment decreased TC, TG and LDL, decreased CRP and ET, and increased NO and 6-K-PGF1α in serum. Furthermore, the potential mechanisms studied revealed that QMY treatment could suppress expression of TNF-α, IL-6, ICAM-1 and NF-κB in endothelial tissues, and increase IκB. In addition, HPLC analysis showed QMY had abundant anthraquinones, stilbenes, and flavonoids. CONCLUSION QMY has ameliorative effects on ASO rabbit, and the potential mechanisms are correlated to reducing inflammation and down-regulating NF-κB. Our study provides a scientific basis for the future application and investigation of QMY.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Vascular Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Jia-Qin Yuan
- Department of Vascular Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Fu-Chen Song
- Department of Vascular Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Mei-Dong Zhu
- Department of Vascular Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Qi Li
- Yueyang Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Sheng-Hua Liu
- Yueyang Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Kai Zhao
- Department of Traditional of Chinese Medicine, General Hospital of Ningxia Medical University, Yinchuan, PR China
- CONTACT Kai Zhao Department of Traditional of Chinese Medicine, General Hospital of Ningxia Medical University, 804 Shengli Road, Yinchuan, Ningxia750004, PR China
| | - Cheng Zhao
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
- Cheng Zhao Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai200437, PR China
| |
Collapse
|
12
|
Xue X, Quan Y, Gong L, Gong X, Li Y. A review of the processed Polygonum multiflorum (Thunb.) for hepatoprotection: Clinical use, pharmacology and toxicology. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113121. [PMID: 32693115 DOI: 10.1016/j.jep.2020.113121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonum multiflorum (Thunb.) (PMT) is a member of Polygonaceae. Traditional Chinese medicine considers that the processed PMT can tonify liver, nourish blood and blacken hair. In recent years, the processed PMT and its active ingredients have significant therapeutic effects on nonalcoholic fatty liver disease, alcoholic fatty liver disease, viral hepatitis, liver fibrosis and liver cancer. AIM OF THE STUDY The main purpose of this review is to provide a critical appraisal of the existing knowledge on the clinical application, hepatoprotective pharmacology and hepatotoxicity, it provides a comprehensive evaluation of the liver function of the processed PMT. MATERIALS AND METHODS A detailed literature search was conducted using various online search engines, such as Pubmed, Google Scholar, Mendeley, Web of Science and China National Knowledge Infrastructure (CNKI) database. The main active components of the processed PMT and the important factors in the occurrence and development of liver diseases are used as key words to carry out detailed literature retrieval. RESULTS In animal and cell models, the processed PMT and active components can treat various liver diseases, such as fatty liver induced by high-fat diet, liver injury and fibrosis induced by drugs, viral transfected hepatitis, hepatocellular carcinoma, etc. They can protect liver by regulating lipid metabolism related enzymes, resisting insulin resistance, decreasing the expression of inflammatory cytokines, inhibiting the activation of hepatic stellate cells, reducing generation of extracellular matrix, promoting cancer cell apoptosis and controlling the growth of tumor cells, etc. However, improperly using of the processed PMT can cause liver injury, which is associated with the standardization of processing, the constitution of the patients, the characteristics of the disease, and the administration of dosage and time. CONCLUSION The processed PMT can treat various liver diseases via reasonably using, and the active compounds (2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside, emodin, physcion, etc.) are promising candidate drugs for developing new liver protective agents. However, some components have a "toxic-effective" bidirectional effect, which should be used cautiously.
Collapse
Affiliation(s)
- Xinyan Xue
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Yunyun Quan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Lihong Gong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Xiaohong Gong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Yunxia Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| |
Collapse
|
13
|
Targeting foam cell formation and macrophage polarization in atherosclerosis: The Therapeutic potential of rhubarb. Biomed Pharmacother 2020; 129:110433. [PMID: 32768936 DOI: 10.1016/j.biopha.2020.110433] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis, a chronic inflammatory disease associated with high morbidity and mortality, is characterized by the accumulation of foam cells in the arterial wall. It has long been acknowledged that the formation of foam cells is caused by excess lipid uptake and abnormal cholesterol metabolism function. And increasing evidence shows that inhibiting foam cell formation is a promising way to suppress the development of atherosclerotic lesions. In addition to excess foam cells accumulation, inflammation is another major contributor of atherosclerotic lesions. Recently, macrophage polarization has been demonstrated to play a vital role in the regulation of inflammatory response. Generally, macrophages mainly polarized into two phenotypes: either classically activated pro-inflammatory M1 or alternatively activated anti-inflammatory M2. And targeting macrophage polarization has been considered as a feasible approach to prevent the development of atherosclerosis. At present, the anti-atherosclerosis drugs mainly classified into two types: lipid-lowering drugs and anti-inflammatory drugs. A large part of those drugs belong to western medicine, and various side effects are unavoidable. Interestingly, in recent years, Traditional Chinese medicine has attracted growing attention because of its good efficacy and low negative effects. Rhubarb (called Da Huang in Chinese) is a famous folk medicine with a wide spectrum of pharmacological effects, such as lipid-lowering and anti-inflammatory effects. In this review, we summarized current findings about the regulatory effects of Rhubarb on foam cell formation and macrophage polarization, with emphasis on the molecular mechanisms of action that have been revealed during the past two decades, to better understand its pivotal role in the treatment and prevention of atherosclerosis.
Collapse
|
14
|
Hu N, Liu J, Xue X, Li Y. The effect of emodin on liver disease -- comprehensive advances in molecular mechanisms. Eur J Pharmacol 2020; 882:173269. [PMID: 32553811 DOI: 10.1016/j.ejphar.2020.173269] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 01/30/2023]
Abstract
Liver injury could be caused by a variety of causes, including alcohol, drug poisoning, autoimmune overreaction, etc. In the period of liver injury, hepatic stellate cells (HSCs) will be activated and produce excessive extracellular matrix (ECM). If injury cannot be suppressed, liver injury will develop into fibrosis, even cirrhosis and liver cancer. It is reported that some monomer components extracted from traditional Chinese medicine have better effects on protecting liver. Emodin, an anthraquinone compound extracted from the traditional Chinese medicine RHEI RADIX ET RHIZOMA, has anti-inflammatory, antioxidant, liver protection and anti-cancer effects, and can prevent liver injury induced by a variety of factors. By searching literatures related to the liver protection of emodin in PUBMED, SINOMED, EBM and CNKI databases, it was found that emodin could inhibit the production and promote the secretion of bile acids, and have a protective effect on intrahepatic cholestasis. Also, emodin reduce collagen synthesis and anti-hepatic fibrosis by inhibiting oxidative stress, TGF-β/Smad pathway and HSCs proliferation, and promoting apoptosis of HSCs. Emodin can also regulate lipid metabolism and regulate the synthesis and oxidation of lipids and cholesterol to protect the nonalcoholic fatty liver. Besides, emodin can induce the apoptosis of hepatocellular carcinoma cells by acting on the death receptor pathway and mitochondrial apoptosis pathway, thus inhibiting the development of hepatocellular carcinoma. Moreover, emodin can modulate immunity and improve immune rejection in liver transplantation animals. In conclusion, emodin has a good effect on liver protection, but further experimental data are needed to verify it.
Collapse
Affiliation(s)
- Naihua Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Jie Liu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyan Xue
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Yunxia Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| |
Collapse
|
15
|
Naturally Occurring PCSK9 Inhibitors. Nutrients 2020; 12:nu12051440. [PMID: 32429343 PMCID: PMC7284437 DOI: 10.3390/nu12051440] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/25/2022] Open
Abstract
Genetic, epidemiological and pharmacological data have led to the conclusion that antagonizing or inhibiting Proprotein convertase subtilisin/kexin type 9 (PCSK9) reduces cardiovascular events. This clinical outcome is mainly related to the pivotal role of PCSK9 in controlling low-density lipoprotein (LDL) cholesterol levels. The absence of oral and affordable anti-PCSK9 medications has limited the beneficial effects of this new therapeutic option. A possible breakthrough in this field may come from the discovery of new naturally occurring PCSK9 inhibitors as a starting point for the development of oral, small molecules, to be used in combination with statins in order to increase the percentage of patients reaching their LDL-cholesterol target levels. In the present review, we have summarized the current knowledge on natural compounds or extracts that have shown an inhibitory effect on PCSK9, either in experimental or clinical settings. When available, the pharmacodynamic and pharmacokinetic profiles of the listed compounds are described.
Collapse
|
16
|
Yan Y, Wang K, Tang X, Gao JF, Wen BY. Phytochemicals protect L02 cells against hepatotoxicity induced by emodin via the Nrf2 signaling pathway. Toxicol Res (Camb) 2019; 8:1028-1034. [PMID: 32153769 PMCID: PMC7021199 DOI: 10.1039/c9tx00220k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
Dihydromyricetin (DMY), hyperoside and silybin are phytochemicals that belong to a class called flavonoids, and they have been used in liver protection pharmaceutical preparations, but the specific mechanism of these chemicals is still unclarified. This study aims to investigate the hepatoprotective effects and potential mechanism of these phytochemicals. The immortalized human hepatocyte cell line L02 was treated with 200 μM emodin for 48 h, and this was used as a hepatocyte injury model. The L02 cells were treated with both 200 μM emodin and different concentrations of DMY/hyperoside/silybin for 48 h to investigate the protective effects of these phytochemicals. The CCK-8 assay was used to detect cell viability. RT-qPCR and western blotting were performed to examine the mRNA and protein expression, respectively, of the classic bile acid synthetic pathway gene CYP7A1, the bile acid efflux transporter bile salt export pump (BSEP), the nuclear factor erythroid-2-related factor 2 (Nrf2) and the drug processing gene CYP1A2. DMY, hyperoside and silybin prevented the impairment of cell viability that was caused by emodin-induced hepatotoxicity in a dose-dependent manner, and at a low concentration (10 μM), the protective effect followed the order hyperoside > DMY > silybin, while at a high concentration (160 μM), the protective effect followed the order DMY > hyperoside > silybin. These phytochemicals reduced the expression of CYP7A1 at both the mRNA and protein levels. BSEP was not influenced by the phytochemical intervention. When 200 μM emodin was used for 48 h with the addition of the phytochemicals at 200 μM, the nuclear protein expression of Nrf2 significantly increased and CYP1A2 expression decreased. DMY, hyperoside and silybin prevented the hepatotoxicity induced by emodin in the L02 cells, potentially, via the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yan Yan
- Dongfang Hospital , Beijing University of Chinese Medicine , Beijing 100078 , P.R. China .
| | - Kang Wang
- Dongfang Hospital , Beijing University of Chinese Medicine , Beijing 100078 , P.R. China .
| | - Xu Tang
- Dongfang Hospital , Beijing University of Chinese Medicine , Beijing 100078 , P.R. China .
| | - Jun-Feng Gao
- Dongfang Hospital , Beijing University of Chinese Medicine , Beijing 100078 , P.R. China .
| | - Bin-Yu Wen
- Dongfang Hospital , Beijing University of Chinese Medicine , Beijing 100078 , P.R. China .
| |
Collapse
|
17
|
Liao WT, Chiang JH, Li CJ, Lee MT, Su CC, Yen HR. Investigation on the Use of Traditional Chinese Medicine for Polycystic Ovary Syndrome in a Nationwide Prescription Database in Taiwan. J Clin Med 2018; 7:E179. [PMID: 30037150 PMCID: PMC6069244 DOI: 10.3390/jcm7070179] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/12/2018] [Accepted: 07/19/2018] [Indexed: 12/23/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common condition, affecting 5⁻10% of women of reproductive age worldwide. It has serious reproductive implications and causes mood disorders and metabolic disorders, such as type-2 diabetes. Because PCOS reflects multiple abnormalities, there is no single drug that can treat all its symptoms. Existing pharmaceutical agents, such as oral contraceptives (OCs), are suggested as a first-line therapy for menstrual irregularities; however, OCs are not appropriate for women pursuing pregnancy. Additionally, insulin-sensitizing agents, which appear to decrease insulin levels and hyperandrogenemia in women with PCOS, have been associated with a high incidence of gastrointestinal adverse effects. It is a common practice in Chinese society to receive traditional Chinese medicine (TCM) for treatment of gynecological problems and infertility. Current research demonstrates that several herbs and herbal formulas show beneficial effects in PCOS treatment. In this study, we conducted the first large-scale survey through the Taiwan National Health Insurance Program database to analyze TCM utilization patterns among women with PCOS in Taiwan during 1997⁻2010. The survey results revealed that 89.22% women with newly diagnosed PCOS had received TCM therapy. Jia-Wei-Xiao-Yao-San and Xiang-Fu (Rhizoma Cyperi) were the most commonly used formula and single herb, respectively, in the database. In addition, we found that the top five commonly prescribed single herbs and herbal formulas have shown promise in treating symptoms associated with PCOS.
Collapse
Affiliation(s)
- Wan-Ting Liao
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404 Taiwan.
- Department of Chinese Medicine, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
| | - Jen-Huai Chiang
- Management Office for Health Data, China Medical University Hospital, Taichung 404, Taiwan.
- College of Medicine, China Medical University, Taichung 404, Taiwan.
| | - Chia-Jung Li
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
| | - Ming-Tsung Lee
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
| | - Cheng-Chiung Su
- Post Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Hung-Rong Yen
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404 Taiwan.
- Department of Chinese Medicine, China Medical University Hospital, Taichung 404, Taiwan.
- Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan.
- Research Center for Chinese Herbal Medicine, China Medical University, Taichung 404, Taiwan.
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan.
- Department of Biotechnology, Asia University, Taichung 413, Taiwan.
| |
Collapse
|
18
|
Liang Z, Ren C. Emodin attenuates apoptosis and inflammation induced by LPS through up-regulating lncRNA TUG1 in murine chondrogenic ATDC5 cells. Biomed Pharmacother 2018; 103:897-902. [DOI: 10.1016/j.biopha.2018.04.085] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 12/31/2022] Open
|
19
|
Jin X, Xu Z, Cao J, Yan R, Xu R, Ran R, Ma Y, Cai W, Fan R, Zhang Y, Zhou X, Li Y. HO-1/EBP interaction alleviates cholesterol-induced hypoxia through the activation of the AKT and Nrf2/mTOR pathways and inhibition of carbohydrate metabolism in cardiomyocytes. Int J Mol Med 2017; 39:1409-1420. [PMID: 28487965 PMCID: PMC5428940 DOI: 10.3892/ijmm.2017.2979] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 05/03/2017] [Indexed: 02/06/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is an inducible and cytoprotective enzyme that provides a defense against oxidant damage. The present study screened 137 HO-1/interacting proteins using a profound co-immunoprecipitation (Co-IP) coupled with proteomics, and profiled the global HO-1 interactome network, including oxidative phosphorylation, endoplasmic reticulum and transport vesicle functions. Among these molecules, we observed that a novel interactor, emopamil-binding protein (EBP), is closely related to the cholesterol metabolism process. This study demonstrated that cholesterol promotes excessive oxidative stress and alters the energy metabolism in cardiomyocytes, further triggering numerous cardiovascular diseases. We observed that cholesterol caused the overexpression of EBP and HO-1 by the activation of AKT and Nrf2/mTOR pathways. In addition, HO-1 and EBP performed a myocardial protective function. The overexpression of HO-1 alleviated the cholesterol-induced excessive oxidative stress status by inhibition of the carbohydrate metabolism. Notably, we also confirmed that the loss of partial HO-1 activity aggravated the oxidative damage and cardiac systolic function induced by a high-fat diet in HO-1 heterozygous (HO-1+/−) mice. These findings indicate that the HO-1/EBP interaction plays a protective role in alleviating the dysfunction of oxidative stress and cardiac systolic function induced by cholesterol stimulation.
Collapse
Affiliation(s)
- Xiaohan Jin
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Tianjin 300162, P.R. China
| | - Zhongwei Xu
- Central Laboratory, Logistics University of the Chinese People's Armed Police Force, Tianjin 300309, P.R. China
| | - Jin Cao
- Department of Basic Medicine, Logistics University of the Chinese People's Armed Police Force, Tianjin 300309, P.R. China
| | - Rui Yan
- Central Laboratory, Logistics University of the Chinese People's Armed Police Force, Tianjin 300309, P.R. China
| | - Ruicheng Xu
- Department of Basic Medicine, Logistics University of the Chinese People's Armed Police Force, Tianjin 300309, P.R. China
| | - Ruiqiong Ran
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Tianjin 300162, P.R. China
| | - Yongqiang Ma
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Tianjin 300162, P.R. China
| | - Wei Cai
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Tianjin 300162, P.R. China
| | - Rong Fan
- Central Laboratory, Logistics University of the Chinese People's Armed Police Force, Tianjin 300309, P.R. China
| | - Yan Zhang
- Central Laboratory, Logistics University of the Chinese People's Armed Police Force, Tianjin 300309, P.R. China
| | - Xin Zhou
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Tianjin 300162, P.R. China
| | - Yuming Li
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Tianjin 300162, P.R. China
| |
Collapse
|