1
|
Zhang JJ, Qin FY, Cheng YX. Insights into Ganoderma fungi meroterpenoids opening a new era of racemic natural products in mushrooms. Med Res Rev 2024; 44:1221-1266. [PMID: 38204140 DOI: 10.1002/med.22006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024]
Abstract
Ganoderma meroterpenoids (GMs) containing 688 structures to date were discovered to have multiple remarkable biological activities. 65.6% of meroterpenoids featuring stereogenic centers from Ganoderma species are racemates. Further, GMs from different Ganoderma species seem to have their own characteristics. In this review, a comprehensive summarization of GMs since 2000 is presented, including GM structures, structure corrections, biological activities, physicochemical properties, total synthesis, and proposed biosynthetic pathways. Additionally, we especially discuss the racemic nature, species-related structural distribution, and structure-activity relationship of GMs, which will provide a likely in-house database and shed light on future studies on GMs.
Collapse
Affiliation(s)
- Jiao-Jiao Zhang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Fu-Ying Qin
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Yong-Xian Cheng
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| |
Collapse
|
2
|
Peng XR, Unsicker SB, Gershenzon J, Qiu MH. Structural diversity, hypothetical biosynthesis, chemical synthesis, and biological activity of Ganoderma meroterpenoids. Nat Prod Rep 2023; 40:1354-1392. [PMID: 37051770 DOI: 10.1039/d3np00006k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Covering: 2018 to 2022Meroterpenoids found in fungal species of the genus Ganoderma and known as Ganoderma meroterpenoids (GMs) are substances composed of a 1,2,4-trisubstituted benzene and a polyunsaturated side chain. These substances have attracted the attention of chemists and pharmacologists due to their diverse structures and significant bioactivity. In this review, we present the structures and possible biosynthesis of representative GMs newly found from 2018 to 2022, as well as chemical synthesis and biological activity of some interesting GMs. We propose for the first time a plausible biosynthetic pathway for GMs, which will certainly motivate further research on the biosynthetic pathway in Ganoderma species, as well as on chemical synthesis of GMs as important bioactive compounds for the purpose of drug development.
Collapse
Affiliation(s)
- Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Sybille B Unsicker
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll Str. 8, 07745 Jena, Germany
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll Str. 8, 07745 Jena, Germany
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| |
Collapse
|
3
|
Bondzie-Quaye P, Swallah MS, Acheampong A, Elsherbiny SM, Acheampong EO, Huang Q. Advances in the biosynthesis, diversification, and hyperproduction of ganoderic acids in Ganoderma lucidum. Mycol Prog 2023. [DOI: 10.1007/s11557-023-01881-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
4
|
Fang DS, Cheng CR, Qiu MH, Peng XR. Diverse meroterpenoids with α-glucosidase inhibitory activity from Ganoderma cochlear. Fitoterapia 2023; 165:105420. [PMID: 36586625 DOI: 10.1016/j.fitote.2022.105420] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Three new meroterpenoids, cochlearins J-L (1-3) and three known meroterpenoids (4-6) were isolated from the fruiting bodies of Ganoderma cochlear. NMR (1H and 13C NMR, 1H - 1H COSY, HSQC, HMBC and ROESY), and HRESIMS were employed for the structure elucidation of new compounds. The stereostructures of 1-3 were confirmed by calculated ECD and optical rotation methods. Furthermore, compounds (+)-1, (-)-1, (+)-2, (-)-2, (+)-3, (-)-3, and 4-6 were evaluated for their α-glucosidase inhibitory activity. The results showed that compounds (+)-1, (-)-1 and (+)-2 exhibited stronger inhibition against α-glucosidase with IC50 values of 24.18 ± 1.98, 26.49 ± 3.20 and 29.68 ± 2.73 μM, respectively, compared to the positive control ursolic acid (49.65 ± 2.21 μM). The molecular docking experiments reveal that (+)-2 and (-)-2 had different binding mode with α-glucosidase, leading to their different inhibition.
Collapse
Affiliation(s)
- Da-Shuang Fang
- College of Chemical Engineering, Institute of Pharmaceutical Engineering Technology and Application, Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science & Engineering, Zigong 643000, Sichuan, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
| | - Chun-Ru Cheng
- College of Chemical Engineering, Institute of Pharmaceutical Engineering Technology and Application, Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science & Engineering, Zigong 643000, Sichuan, PR China.
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China.
| | - Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China.
| |
Collapse
|
5
|
Fuloria NK, Raheja RK, Shah KH, Oza MJ, Kulkarni YA, Subramaniyan V, Sekar M, Fuloria S. Biological activities of meroterpenoids isolated from different sources. Front Pharmacol 2022; 13:830103. [PMID: 36199687 PMCID: PMC9527340 DOI: 10.3389/fphar.2022.830103] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Meroterpenoids are natural products synthesized by unicellular organisms such as bacteria and multicellular organisms such as fungi, plants, and animals, including those of marine origin. Structurally, these compounds exhibit a wide diversity depending upon the origin and the biosynthetic pathway they emerge from. This diversity in structural features imparts a wide spectrum of biological activity to meroterpenoids. Based on the biosynthetic pathway of origin, these compounds are either polyketide-terpenoids or non-polyketide terpenoids. The recent surge of interest in meroterpenoids has led to a systematic screening of these compounds for many biological actions. Different meroterpenoids have been recorded for a broad range of operations, such as anti-cholinesterase, COX-2 inhibitory, anti-leishmanial, anti-diabetic, anti-oxidative, anti-inflammatory, anti-neoplastic, anti-bacterial, antimalarial, anti-viral, anti-obesity, and insecticidal activity. Meroterpenoids also possess inhibitory activity against the expression of nitric oxide, TNF- α, and other inflammatory mediators. These compounds also show renal protective, cardioprotective, and neuroprotective activities. The present review includes literature from 1999 to date and discusses 590 biologically active meroterpenoids, of which 231 are from fungal sources, 212 are from various species of plants, and 147 are from marine sources such as algae and sponges.
Collapse
Affiliation(s)
| | | | - Kaushal H. Shah
- SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Manisha J. Oza
- SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Yogesh A. Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, Mumbai, India
| | | | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Bedong, Malaysia
- *Correspondence: Shivkanya Fuloria,
| |
Collapse
|
6
|
Antioxidant Activity of Natural Hydroquinones. Antioxidants (Basel) 2022; 11:antiox11020343. [PMID: 35204225 PMCID: PMC8868229 DOI: 10.3390/antiox11020343] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Secondary metabolites derived from hydroquinone are quite rare in nature despite the original simplicity of its structure, especially when compared to other derivatives with which it shares biosynthetic pathways. However, its presence in a prenylated form is somewhat relevant, especially in the marine environment, where it is found in different algae and invertebrates. Sometimes, more complex molecules have also been identified, as in the case of polycyclic diterpenes, such as those possessing an abietane skeleton. In every case, the presence of the dihydroxy group in the para position gives them antioxidant capacity, through its transformation into para-quinones.This review focuses on natural hydroquinones with antioxidant properties referenced in the last fifteen years. This activity, which has been generally demonstrated in vitro, should lead to relevant pharmacological properties, through its interaction with enzymes, transcription factors and other proteins, which may be particularly relevant for the prevention of degenerative diseases of the central nervous system, or also in cancer and metabolic or immune diseases. As a conclusion, this review has updated the pharmacological potential of hydroquinone derivatives, despite the fact that only a small number of molecules are known as active principles in established medicinal plants. The highlights of the present review are as follows: (a) sesquiterpenoid zonarol and analogs, whose activity is based on the stimulation of the Nrf2/ARE pathway, have a neuroprotective effect; (b) the research on pestalotioquinol and analogs (aromatic ene-ynes) in the pharmacology of atherosclerosis is of great value, due to their agonistic interaction with LXRα; and (c) prenylhydroquinones with a selective effect on tyrosine nitration or protein carbonylation may be of interest in the control of post-translational protein modifications, which usually appear in chronic inflammatory diseases.
Collapse
|
7
|
Jiang M, Wu Z, Liu L, Chen S. The chemistry and biology of fungal meroterpenoids (2009-2019). Org Biomol Chem 2021; 19:1644-1704. [PMID: 33320161 DOI: 10.1039/d0ob02162h] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fungal meroterpenoids are secondary metabolites from mixed terpene-biosynthetic origins. Their intriguing chemical structural diversification and complexity, potential bioactivities, and pharmacological significance make them attractive targets in natural product chemistry, organic synthesis, and biosynthesis. This review provides a systematic overview of the isolation, chemical structural features, biological activities, and fungal biodiversity of 1585 novel meroterpenoids from 79 genera terrestrial and marine-derived fungi including macrofungi, Basidiomycetes, in 441 research papers in 2009-2019. Based on the nonterpenoid starting moiety in their biosynthesis pathway, meroterpenoids were classified into four categories (polyketide-terpenoid, indole-, shikimate-, and miscellaneous-) with polyketide-terpenoids (mainly tetraketide-) and shikimate-terpenoids as the primary source. Basidiomycota produced 37.5% of meroterpenoids, mostly shikimate-terpenoids. The genera of Ganoderma, Penicillium, Aspergillus, and Stachybotrys are the four dominant producers. Moreover, about 56% of meroterpenoids display various pronounced bioactivities, including cytotoxicity, enzyme inhibition, antibacterial, anti-inflammatory, antiviral, antifungal activities. It's exciting that several meroterpenoids including antroquinonol and 4-acetyl antroquinonol B were developed into phase II clinically used drugs. We assume that the chemical diversity and therapeutic potential of these fungal meroterpenoids will provide biologists and medicinal chemists with a large promising sustainable treasure-trove for drug discovery.
Collapse
Affiliation(s)
- Minghua Jiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Zhenger Wu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| |
Collapse
|
8
|
Wang L, Li JQ, Zhang J, Li ZM, Liu HG, Wang YZ. Traditional uses, chemical components and pharmacological activities of the genus Ganoderma P. Karst.: a review. RSC Adv 2020; 10:42084-42097. [PMID: 35516772 PMCID: PMC9057998 DOI: 10.1039/d0ra07219b] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022] Open
Abstract
In recent years, some natural products isolated from the fungi of the genus Ganoderma have been found to have anti-tumor, liver protection, anti-inflammatory, immune regulation, anti-oxidation, anti-viral, anti-hyperglycemic and anti-hyperlipidemic effects. This review summarizes the research progress of some promising natural products and their pharmacological activities. The triterpenoids, meroterpenoids, sesquiterpenoids, steroids, alkaloids and polysaccharides isolated from Ganoderma lucidum and other species of Ganoderma were reviewed, including their corresponding chemical structures and biological activities. In particular, the triterpenes, polysaccharides and meroterpenoids of Ganoderma show a wide range of biological activities. Among them, the hydroxyl groups on the C-3, C-24 and C-25 positions of the lanostane triterpenes compound were the necessary active groups for the anti-HIV-1 virus. Previous study showed that lanostane triterpenes can inhibit human immunodeficiency virus-1 protease with an IC50 value of 20-40 μM, which has potential anti-HIV-1 activity. Polysaccharides can promote the production of TNF α and IFN-γ by macrophages and spleen cells in mice, and further inhibit or kill tumor cells. Some meroterpenoids contain oxygen-containing heterocycles, and they have significant antioxidant activity. In addition, Ganoderma has been used as a medicine to treat diseases for more than 2000 years, and we also reviewed its traditional uses.
Collapse
Affiliation(s)
- Li Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University Kunming 650201 China
| | - Jie-Qing Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University Kunming 650201 China
| | - Ji Zhang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences Kunming 650200 China
| | - Zhi-Min Li
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences Kunming 650200 China
| | - Hong-Gao Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University Kunming 650201 China
| | - Yuan-Zhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences Kunming 650200 China
| |
Collapse
|
9
|
Meroterpenoids produced by fungi: Occurrence, structural diversity, biological activities, and their molecular targets. Eur J Med Chem 2020; 209:112860. [PMID: 33032085 DOI: 10.1016/j.ejmech.2020.112860] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022]
Abstract
Meroterpenoids are partially derived from the terpenoids, distributing widely in the plants, animals and fungi. The complex structures and diverse bioactivities of meroterpenoids have attracted more attention for chemists and pharmacologists. Since the first review summarized by Geris in 2009, there are absent of systematic reviews reported about meroterpenoids from the higher and lower fungi up to now. In the past decades, myriads of meroterpenoids were discovered, and it is necessary to summarize these meroterpenoids about their unique structures and promising bioactivities. In this review, we use a new classification method based on the non-terpene precursors, and also highlight the structural features, bioactivity of natural meroterpenoids from the higher and lower fungi covering the period of September 2008 to February 2020. A total of 709 compounds were discussed and cited the 182 references. Meanwhile, we also primarily summarize their occurrence, structural diversity, biological activities, and molecular targets.
Collapse
|
10
|
Su HG, Peng XR, Shi QQ, Huang YJ, Zhou L, Qiu MH. Lanostane triterpenoids with anti-inflammatory activities from Ganoderma lucidum. PHYTOCHEMISTRY 2020; 173:112256. [PMID: 32062196 DOI: 10.1016/j.phytochem.2019.112256] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/29/2019] [Accepted: 12/30/2019] [Indexed: 05/23/2023]
Abstract
Ganoderma lucidum is one of the most famous medicinal fungi and is traditional Chinese medicine with various biological activities in Asian countries. To clarify its pharmacodynamic material basis, 15 lanostane triterpenoidswere obtained from the fruiting bodies of G. lucidum, including 8 previously undescribed lanostanoids. Their structures, including absolute configuration, were established based on ultraviolet, infrared, high-resolution electrospray ionisation mass spectrometry, 1D and 2D nuclear magnetic resonance, and X-ray crystallographic analysis. Ganoluciduone A was an unusual octonorlanostane, which was isolated from Ganoderma for the first time. In addition, the anti-inflammatory activities of all isolates were evaluated by observing their inhibitory effects on nitric oxide production in RAW264.7 cells activated by a lipopolysaccharide. Ganoluciduone B exhibited moderate inhibitory activity on nitric oxide production, with an inhibition rate of 45.5% at a concentration of 12.5 μM.
Collapse
Affiliation(s)
- Hai-Guo Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China; University of the Chinese Academy of Science, Beijing, 100049, China
| | - Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
| | - Qiang-Qiang Shi
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China; University of the Chinese Academy of Science, Beijing, 100049, China
| | - Yan-Jie Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China; University of the Chinese Academy of Science, Beijing, 100049, China
| | - Lin Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China.
| |
Collapse
|
11
|
Wang H, Peng X, Ge Y, Zhang S, Wang Z, Fan Y, Huang W, Qiu M, Ye RD. A Ganoderma-Derived Compound Exerts Inhibitory Effect Through Formyl Peptide Receptor 2. Front Pharmacol 2020; 11:337. [PMID: 32265709 PMCID: PMC7105723 DOI: 10.3389/fphar.2020.00337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/06/2020] [Indexed: 12/28/2022] Open
Abstract
Formyl peptide receptors (FPRs) are G protein-coupled receptors (GPCRs) widely expressed in neutrophils and other phagocytes. FPRs play important roles in host defense, inflammation, and the pathogenesis of infectious and inflammatory diseases. Because of these functions, FPRs are potential targets for anti-inflammatory therapies. In order to search for potentially novel anti-inflammatory agents, we examined Ganoderma (Lingzhi), a Chinese medicinal herbs known for its anti-inflammatory effects, and found that compound 18 (C18) derived from Ganoderma cochlear could limit the inflammatory response through FPR-related signaling pathways. Further studies showed that C18 could bind to FPR2 and induce conformation change of the receptor that differed from the conformational change induced by the pan-agonist, WKYMVm. C18 inhibited at the receptor level and blocked WKYMVm signaling through FPR2, resulting in reduced superoxide production and compromised cell chemotaxis. These results identified for the first time that a Ganoderma-derived component with inhibitory effects that acts through a G protein-coupled receptor FPR2. Considering its less than optimal IC50 value, further optimization of C18 would be necessary for future applications.
Collapse
Affiliation(s)
- Huirong Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, Macau.,Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xingrong Peng
- Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
| | - Yunjun Ge
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, Macau
| | - Shuo Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenyi Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, China
| | - Yu Fan
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, Macau
| | - Wei Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Minghua Qiu
- Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
| | - Richard D Ye
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, Macau.,Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
12
|
Triterpenes and Aromatic Meroterpenoids with Antioxidant Activity and Neuroprotective Effects from Ganoderma lucidum. Molecules 2019; 24:molecules24234353. [PMID: 31795252 PMCID: PMC6930543 DOI: 10.3390/molecules24234353] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 11/30/2022] Open
Abstract
Reactive oxygen/nitrogen species generated in the human body can cause oxidative damage associated with many degenerative diseases such as atherosclerosis, dementia, coronary heart diseases, aging, and cancer. There is a great interest in developing new antioxidants from Ganoderma fungus due to its low toxicity. As part of our ongoing search for antioxidative constituents from the fruiting bodies of Ganoderma lucidum, the chemical constituents were investigated and seven secondary metabolites, including one new lanostane triterpene (1), two known aromatic meroterpenoids (6–7), and four known triterpenes (2–5), were isolated by a series of chromatographic methods. The structures of the seven compounds were elucidated by spectroscopic techniques. The isolated compounds were tested in vitro for antioxidant potencies and neuroprotective activities against H2O2 and aged Aβ-induced cell death in SH-SY5Y cells. As a result, compounds 1, 6, and 7 exhibited potent antioxidant and neuroprotective activities. Additionally, all isolated compounds were tested for radical scavenging activities. Compounds 6 and 7 showed the comparable free radical scavenging activities with the standard drug in both ABTS (2, 2’-azobis (3-ethylbenzothiazole-6-sulfonaic acid)) and ORAC (oxygen radical absorbance capacity) experiments. The results from this study suggested that G. lucidum and its metabolites (especially the meroterpenoids) may be potential functional food ingredients for the antioxidation and prevention of neurogenerative diseases.
Collapse
|
13
|
Five New Meroterpenoids from the Fruiting Bodies of the Basidiomycete Clitocybe clavipes with Cytotoxic Activity. Molecules 2019; 24:molecules24224015. [PMID: 31698810 PMCID: PMC6891274 DOI: 10.3390/molecules24224015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 11/16/2022] Open
Abstract
Five new meroterpenoids, clavipols A-B (1-2) with a 12-membered ether ring and clavilactones G-I (3-5) having a 10-membered carbocycle connected to a hydroquinone and an α,β-epoxy/unsaturated lactone, were obtained from the fruiting bodies of the basidiomycete Clitocybe clavipes. Their structures were determined by comprehensive analysis of their spectroscopic data, and the absolute configuration of 1 was established by quantum chemical calculations of electronic circular dichroism (ECD). All the isolated compounds (1-5) were tested for their cytotoxic activity against three human tumor cell lines (Hela, SGC-7901, and SHG-44) in vitro after treatment for 48 h. Compound 4 exhibited moderate cytotoxic activity against Hela and SGC-7901 tumor cell lines, with IC50 values of 23.5 and 14.5 µM, respectively.
Collapse
|
14
|
Australeols A−F, neuroprotective meroterpenoids from Ganoderma australe. Fitoterapia 2019; 134:250-255. [DOI: 10.1016/j.fitote.2019.02.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 02/06/2023]
|
15
|
Aromatic constituents from Ganoderma lucidum and their neuroprotective and anti-inflammatory activities. Fitoterapia 2019; 134:58-64. [PMID: 30763720 DOI: 10.1016/j.fitote.2019.01.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 12/24/2022]
Abstract
Five new aromatic compounds, designed as lucidumins A-D (1-4) and lucidimine E (9), along with seven known aromatic compounds (5-8, 10-12) were isolated from Ganoderma lucidum. Their structures were determined by spectroscopic method. Bioactive evaluation showed that compounds 2-4 and 6-10 displayed remarkable neuroprotective activities against corticosterone-induced PC12 cell damage, with the cell viability ranging from 69.99% to 126.00%; and compounds 1-4, 9 and 10 exhibited significant anti-inflammatory activities against LPS-induced nitric oxide (NO) production in RAW264.7 macrophages, with IC50 values ranging from 4.68 to 15.49 μM. In particular, compound 10 showed remarkable neuroprotection with EC50 value of 2.49 ± 0.12 μM, and potent anti-inflammation with IC50 value of 4.68 ± 0.09 μM.
Collapse
|
16
|
Gong T, Yan R, Kang J, Chen R. Chemical Components of Ganoderma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1181:59-106. [DOI: 10.1007/978-981-13-9867-4_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Liao GF, Wu ZH, Liu Y, Yan YM, Lu RM, Cheng YX. Ganocapenoids A–D: Four new aromatic meroterpenoids from Ganoderma capense. Bioorg Med Chem Lett 2019; 29:143-147. [DOI: 10.1016/j.bmcl.2018.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/25/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022]
|
18
|
|
19
|
Peng X, Qiu M. Meroterpenoids from Ganoderma Species: A Review of Last Five Years. NATURAL PRODUCTS AND BIOPROSPECTING 2018; 8:137-149. [PMID: 29722004 PMCID: PMC5971034 DOI: 10.1007/s13659-018-0164-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 04/23/2018] [Indexed: 05/31/2023]
Abstract
Meroterpenoids are hybrid natural products that partially originate from the terpenoid pathway. Ganoderma meroterpenoids (GMs) are a type of meroterpenoids containing a 1,2,4-trisubstituted phenyl and a polyunsaturated terpenoid part. Over last 5 years, great efforts have been made to conduct phytochemistry research on the genus Ganoderma, which have led to the isolation and identification of a number of GMs. These newly reported GMs showed diverse structures and a wide range of biological activities. This review gives an overview of new GMs from genus Ganoderma and their biological activities and biosynthetic pathway, focusing on the period from 2013 until 2018.
Collapse
Affiliation(s)
- Xingrong Peng
- State Key Laboratory of Phytochemistry and Plant Sources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Minghua Qiu
- State Key Laboratory of Phytochemistry and Plant Sources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
- University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
20
|
Peng XR, Lu SY, Shao LD, Zhou L, Qiu MH. Structural Elucidation and Biomimetic Synthesis of (±)-Cochlactone A with Anti-Inflammatory Activity. J Org Chem 2018; 83:5516-5522. [PMID: 29707952 DOI: 10.1021/acs.joc.8b00525] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xing-Rong Peng
- Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People’s Republic of China
| | - Shuang-Yang Lu
- Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People’s Republic of China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Li-Dong Shao
- Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People’s Republic of China
| | - Lin Zhou
- Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People’s Republic of China
| | - Ming-Hua Qiu
- Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People’s Republic of China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
21
|
Botta L, Brunori F, Tulimieri A, Piccinino D, Meschini R, Saladino R. Laccase-Mediated Enhancement of the Antioxidant Activity of Propolis and Poplar Bud Exudates. ACS OMEGA 2017; 2:2515-2523. [PMID: 30023668 PMCID: PMC6044900 DOI: 10.1021/acsomega.7b00294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/16/2017] [Indexed: 05/08/2023]
Abstract
The treatment of propolis and poplar bud exudates with laccase from Trametes versicolor and 2,2,6,6-tetramethyl-1-piperidinyloxy free radical increased the antioxidant activity, as evaluated by the 2,2'-diphenyl picrylhydrazyl (DPPH)- and t-butyl-OOH-induced DNA breakage comet assay analyses. The effect was highest for shorter reaction times. Propolis showed the highest antioxidant activity in the DPPH test, whereas poplar bud exudates were more active in reducing the t-butyl-OOH-induced lesions in the Chinese hamster ovary cell line. Even if the concentration of polyphenols decreased during the oxidation, the formation of low-molecular-weight phenols phloroglucinol 4 (1,3,5-trihydroxy benzene), hydroquinone 5 (1,4-dihydroxy benzene), and catechol 6 (1,2-dihydroxy benzene), characterized by the radical-scavenging activity, can account for the observed increase in the antioxidant activity.
Collapse
|
22
|
Yang YL, Tao QQ, Han JJ, Bao L, Liu HW. Recent Advance on Bioactive Compounds from the Edible and Medicinal Fungi in China. MEDICINAL AND AROMATIC PLANTS OF THE WORLD 2017. [DOI: 10.1007/978-981-10-5978-0_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Secondary Metabolites from Higher Fungi. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 106 2017; 106:1-201. [DOI: 10.1007/978-3-319-59542-9_1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Li L, Li H, Peng XR, Hou B, Yu MY, Dong JR, Li XN, Zhou L, Yang J, Qiu MH. (±)-Ganoapplanin, a Pair of Polycyclic Meroterpenoid Enantiomers from Ganoderma applanatum. Org Lett 2016; 18:6078-6081. [PMID: 27934392 DOI: 10.1021/acs.orglett.6b03064] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
(±)-Ganoapplanin (1), a pair of novel meroterpenoid enantiomers featuring an unprecedented dioxaspirocyclic skeleton constructed from a 6/6/6/6 tetracyclic system and an unusual tricyclo[4.3.3.03',7']dodecane motif, were isolated from Ganoderma applanatum. Its structure and absolute configurations were determined by spectroscopic analyses, X-ray crystallography, and ECD (electronic circular dichroism calculations). A plausible biogenetic pathway, involving a key Gomberg-Bachmann reaction, was also proposed for (±)-1. Biological studies showed that (±)-1 and its enantiomers exhibited different inhibitory activities on T-type voltage-gated calcium channels.
Collapse
Affiliation(s)
- Lei Li
- Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China.,Graduate University of the Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Huan Li
- Graduate University of the Chinese Academy of Sciences , Beijing 100049, People's Republic of China.,Key Laboratory of Animal Models and Human Disease Mechanisms, and Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, People's Republic of China
| | - Xing-Rong Peng
- Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| | - Bo Hou
- Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China.,Graduate University of the Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Mu-Yuan Yu
- Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China.,Graduate University of the Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Jin-Run Dong
- Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China.,Graduate University of the Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Xiao-Nian Li
- Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| | - Lin Zhou
- Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| | - Jian Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, People's Republic of China
| | - Ming-Hua Qiu
- Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China.,Graduate University of the Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| |
Collapse
|
25
|
Abstract
The first total synthesis of structurally unique polycyclic phenolic meroterpenoids, ganocins B and C is reported.
Collapse
Affiliation(s)
- Yao Liu
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Chu-Jun Zhou
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Qingjiang Li
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
- State Key Laboratory of Natural and Biomimetic Drugs
| | - Honggen Wang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| |
Collapse
|