1
|
Zheng Z, Song X, Shi Y, Long X, Li J, Zhang M. Recent Advances in Biologically Active Ingredients from Natural Drugs for Sepsis Treatment. Comb Chem High Throughput Screen 2024; 27:688-700. [PMID: 37254548 DOI: 10.2174/1386207326666230529101918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 06/01/2023]
Abstract
Sepsis refers to the dysregulated host response to infection; its incidence and mortality rates are high. It is a worldwide medical problem but there is no specific drug for it. In recent years, clinical and experimental studies have found that many monomer components of traditional Chinese medicine have certain effects on the treatment of sepsis. This paper reviews the advances in research on the active ingredients of traditional Chinese medicine involved in the treatment of sepsis in recent years according to their chemical structure; it could provide ideas and references for further research and development in Chinese materia medica for the treatment of sepsis.
Collapse
Affiliation(s)
- Zhenzhen Zheng
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Xiayinan Song
- Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yanmei Shi
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaofeng Long
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Jie Li
- Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Min Zhang
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| |
Collapse
|
2
|
Holdorf HT, Brown WE, Combs GJ, Henisz SJ, Kendall SJ, Caputo MJ, Ruh KE, White HM. Increasing the prepartum dose of rumen-protected choline: Effects of maternal choline supplementation on growth, feed efficiency, and metabolism in Holstein and Holstein × Angus calves. J Dairy Sci 2023; 106:6005-6027. [PMID: 37500446 DOI: 10.3168/jds.2022-23068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/22/2023] [Indexed: 07/29/2023]
Abstract
Feeding pregnant cows rumen-protected choline (RPC) may have the potential to affect the growth and health of offspring, but little is known about the optimal dose, or the potential mechanisms of action. The objectives of this experiment were to 1) determine if increasing RPC supplementation during late gestation in multiparous Holstein cows would improve calf growth and 2) determine if maternal choline supplementation alters global DNA methylation patterns. Pregnant multiparous Holstein cows (n = 116) were randomly assigned to diets targeting 0g choline ion (0.0 ± 0.000 choline ion, %DM, control; CTL), 15g of choline ion (recommended dose; RD) from an established RPC product (0.10 ± 0.004 choline ion, %DM, RPC1RD; ReaShure, Balchem Corp.; positive control), or 15g (0.09 ± 0.004 choline ion, %DM, RPC2RD) or 22g (0.13 ± 0.005 choline ion, %DM, high dose; RPC2HD) of choline ion from a concentrated RPC prototype (RPC2; Balchem Corp.). Treatments were mixed into a total mixed ration and cows had ad libitum access via a roughage intake control system (Hokofarm Group, Marknesse, Netherlands). All female Holstein (n = 49) and Holstein × Angus calves (male, n = 18; female, n = 30) were enrolled and fed colostrum from a cow within the same treatment. Holstein calves and Holstein × Angus calves were fed an accelerated and traditional milk replacer program, respectively, and offered ad libitum access to calf starter. Jugular vein blood samples were collected, and body weight was measured at 7, 14, 28, 42, and 56 d of age. Categorical treatment and continuous effects of actual prepartum maternal choline ion intake were analyzed using mixed effect models. An interaction of treatment with sex, nested within breed, resulted in any choline treatment increasing the proportion of methylated whole blood DNA in male, but not female calves. Although 37% of Holstein calves across all treatments experienced abomasal bloat, no evidence for differences in health measurements (signs of respiratory disease and fecal consistency) were observed across treatments. During the first 2 wk of life in Holstein calves, RPC2HD tended to increase average daily gain (ADG) and feed efficiency (FE) compared with CTL and increasing maternal choline ion intake linearly increased ADG and FE. Maternal choline supplementation increased plasma glucose compared with CTL, while increasing serum insulin-like growth factor-1 and decreasing serum lipopolysaccharide binding protein at 7 d of age in Holstein calves. In Holstein × Angus calves, the effect of treatment on ADG tended to interact with sex: in males, RPC2HD increased ADG after 2 wk of life compared with CTL, without evidence of a treatment effect in female calves. Increasing maternal choline ion intake linearly increased ADG after 2 wk of age in male Holstein × Angus calves, while quadratically increasing FE in both sexes. Altered global DNA methylation patterns in male Holstein × Angus calves, and changes in blood metabolites in Holstein calves, provide 2 potential mechanisms for observed improvements in calf growth. Continuous treatment models demonstrated that the effects of maternal choline supplementation are sensitive to the amount of maternal choline ion intake, with greater benefit to calves observed at higher maternal intakes.
Collapse
Affiliation(s)
- H T Holdorf
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - W E Brown
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - G J Combs
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - S J Henisz
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - S J Kendall
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - M J Caputo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - K E Ruh
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - H M White
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706.
| |
Collapse
|
3
|
Peng J, Li H, Olaolu OA, Ibrahim S, Ibrahim S, Wang S. Natural Products: A Dependable Source of Therapeutic Alternatives for Inflammatory Bowel Disease through Regulation of Tight Junctions. Molecules 2023; 28:6293. [PMID: 37687122 PMCID: PMC10488775 DOI: 10.3390/molecules28176293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), can affect the entire gastrointestinal tract and mucosal layer and lead to intestinal damage and intestinal dysfunction. IBD is an inflammatory disease of the gastrointestinal tract that significantly impacts public health development. Monoclonal antibodies and other synthetic medications are currently used to treat IBD, but they are suspected of producing serious side effects and causing a number of other problems with long-term use. Numerous in vitro and in vivo studies have shown that organic macromolecules from plants and animals have an alleviating effect on IBD-related problems, and many of them are also capable of altering enzymatic function, reducing oxidative stress, and inhibiting the production of cytokines and release of proinflammatory transcriptional factors. Thus, in this paper, the natural products with potential anti-IBD activities and their mechanism of action were reviewed, with a focus on the protective effects of natural products on intestinal barrier integrity and the regulation of tight junction protein expression and remodeling. In conclusion, the insights provided in the present review will be useful for further exploration and development of natural products for the treatment of IBD.
Collapse
Affiliation(s)
- Jing Peng
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, China; (J.P.); (H.L.); (O.A.O.)
| | - Hao Li
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, China; (J.P.); (H.L.); (O.A.O.)
| | - Oladejo Ayodele Olaolu
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, China; (J.P.); (H.L.); (O.A.O.)
- Department of Animal Health Technology, Oyo State College of Agriculture and Technology Igboora Nigeria, Igboora 201003, Nigeria
| | - Saber Ibrahim
- Packaging Materials Department, National Research Centre, Giza 12111, Egypt;
- Nanomaterials Investigation Laboratory, Central Laboratory Network, National Research Centre, Giza 12111, Egypt
| | - Sally Ibrahim
- Department of Animal Reproduction and AI, Veterinary Research Institute, National Research Centre, Dokki 12622, Egypt;
| | - Shengyi Wang
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, China; (J.P.); (H.L.); (O.A.O.)
| |
Collapse
|
4
|
Gao Y, Ma X, Zhou Y, Li Y, Xiang D. Dietary supplementation of squalene increases the growth performance of early-weaned piglets by improving gut microbiota, intestinal barrier, and blood antioxidant capacity. Front Vet Sci 2022; 9:995548. [PMID: 36406080 PMCID: PMC9669083 DOI: 10.3389/fvets.2022.995548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
This study aimed to investigate the effects of dietary squalene (SQ) supplementation on the growth performance of early-weaned piglets. Twenty early-weaned piglets were randomly divided into two groups, the squalene group (SQ) and the control group (CON). The CON group was fed a basal diet, and the SQ group was fed a basal diet with 250 mg/kg squalene. The feeding period lasted 21 days. The results showed that SQ significantly increased the final body weight (FWB, P < 0.05), average daily gain (ADG, P < 0.05), and average daily feed intake (ADFI, P < 0.05) and significantly decreased the F/G ratio (feed intake/gain, P < 0.05) and diarrhea index (DI, P < 0.05). In terms of blood biochemical indicators, SQ significantly increased anti-inflammatory factors such as transforming growth factor-β (TGF-β, P < 0.001), interleukin-10 (IL-10, P < 0.001), and interferon-γ (IFN-γ, P < 0.01), and decreased pro-inflammatory factors such as tumor necrosis factor-α (TFN-α, P < 0.001) and interleukin-6 (IL-6, P < 0.001). Furthermore, SQ significantly increased blood antioxidant indexes (P < 0.001) such as superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and total antioxidant capacity (T-AOC) and significantly decreased the level of malondialdehyde (MDA) (P < 0.001). The villus height (P < 0.001) and V/C ratio (villus height/crypt depth, P < 0.001) of the jejunum were significantly increased in the SQ group, while the crypt depth (P < 0.01) was decreased compared to the CON group. The intestinal permeability indexes, namely diamine oxidase (DAO), D-lactic acid (D-Lac), regenerative insulin-derived protein 3 (REG-3), and FITC-Dextran 4 (FD4), significantly decreased the concentrations in the treatment group (P < 0.001), and the antioxidant indexes of the jejunum, such as SOD, GSH-Px, CAT, and MDA, were improved by adding SQ. The qPCR results showed that adding SQ could significantly increase the mRNA expression of jejunal tight-junction proteins, such as zonula occludens-1 (ZO-1, P < 0.001), Occludin (P < 0.001), Claudin (P < 0.001), glucagon-like peptide-2 (GLP-2, P < 0.001), and insulin-like growth factor-1 (IGF-1, P < 0.001). Then, we used Western blotting experiments to further confirm the qPCR results. In addition, it was found that adding SQ increased the abundance of beneficial bacteria such as Gemmiger (P < 0.01) and decreased the abundance of harmful bacteria such as Alloprevotella (P < 0.05), Desulfovibrio (P < 0.05), and Barnesiella (P < 0.05). It was interesting that there was a very close correlation among the fecal microbes, growth performance parameters, intestinal barrier, and blood biochemical indicators. In conclusion, the data suggest that SQ supplementation could effectively improve the growth performance of early-weaned piglets by improving the gut microbiota, intestinal barrier, and antioxidant capacity of the blood and jejunal mucosa.
Collapse
Affiliation(s)
- Yang Gao
- College of Life Science, Baicheng Normal University, Baicheng, China
- *Correspondence: Yang Gao
| | - Xue Ma
- College of Life Science, Baicheng Normal University, Baicheng, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yingqing Zhou
- College of Life Science, Baicheng Normal University, Baicheng, China
| | - Yongqiang Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Dong Xiang
- Muyuan Joint Stock Company, Nanyang, China
| |
Collapse
|
5
|
Izadparast F, Riahi-Zajani B, Yarmohammadi F, Hayes AW, Karimi G. Protective effect of berberine against LPS-induced injury in the intestine: a review. Cell Cycle 2022; 21:2365-2378. [PMID: 35852392 PMCID: PMC9645259 DOI: 10.1080/15384101.2022.2100682] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 12/11/2022] Open
Abstract
Sepsis is a systemic inflammatory condition caused by an unbalanced immunological response to infection, which affects numerous organs, including the intestines. Lipopolysaccharide (LPS; also known as endotoxin), a substance found in Gram-negative bacteria, plays a major role in sepsis and is mostly responsible for the disease's morbidity and mortality. Berberine is an isoquinoline alkaloid found in a variety of plant species that has anti-inflammatory properties. For many years, berberine has been used to treat intestinal inflammation and infection. Berberine has been reported to reduce LPS-induced intestinal damage. The potential pathways through which berberine protects against LPS-induced intestinal damage by inhibiting NF-κB, suppressing MAPK, modulating ApoM/S1P pathway, inhibiting COX-2, modulating Wnt/Beta-Catenin signaling pathway, and/or increasing ZIP14 expression are reviewed.Abbreviations: LPS, lipopolysaccharide; TLR, Toll-like receptor; MD-2, myeloid differentiation factor 2; CD14, cluster of differentiation 14; LBP, lipopolysaccharide-binding protein; MYD88, myeloid differentiation primary response 88; NF-κB, nuclear factor kappa light-chain enhancer of activated B cells; MAPK, mitogen-activated protein kinase; IL, interleukin; TNFα, tumor necrosis factor-alpha; Caco-2, cyanocobalamin uptake by human colon adenocarcinoma cell line; MLCK, myosin light-chain kinase; TJ, tight junction; IκBα, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha; IBS, irritable bowel syndrome; ERK, extracellular signal-regulated kinase; JNK, c-Jun N-terminal kinase (JNK; GVB, gut-vascular barrier; ApoM, apolipoprotein M; S1P, sphingosine-1-phosphate; VE-cadherin, vascular endothelial cadherin; AJ, adherens junction; PV1, plasmalemma vesicle-associated protein-1; HDL, high-density lipoprotein; Wnt, wingless-related integration site; Fzd, 7-span transmembrane protein Frizzled; LRP, low-density lipoprotein receptor-related protein; TEER, transendothelial/transepithelial electrical resistance; COX-2, cyclooxygenase-2; iNOS, inducible nitric oxide synthase; IGF, insulin-like growth factor; IGFBP, insulin-like growth factor-binding protein; ZIP, Zrt-Irt-like protein; PPAR, peroxisome proliferator-activated receptors; p-PPAR, phosphorylated-peroxisome proliferator-activated receptors; ATF, activating transcription factors; SOD, superoxide dismutase; GSH-Px, glutathione peroxidase; SARA, subacute ruminal acidosis; IPEC-J2, porcine intestinal epithelial cells; ALI, acute lung injury; ARDS, acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Faezeh Izadparast
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bamdad Riahi-Zajani
- Medical Toxicology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Yarmohammadi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A. Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Lin XL, Shi YN, Cao YL, Tan X, Zeng YL, Luo ST, Li YM, Qin L, Xia BH, Fu RG, Lin LM, Li K, Cao D, Zeng JG, Liao DF. Sanguinarine protects against indomethacin-induced small intestine injury in rats by regulating the Nrf2/NF-κB pathways. Front Pharmacol 2022; 13:960140. [PMID: 36304153 PMCID: PMC9593053 DOI: 10.3389/fphar.2022.960140] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/27/2022] [Indexed: 12/04/2022] Open
Abstract
In recent years, small intestine as a key target in the treatment of Inflammatory bowel disease caused by NSAIDs has become a hot topic. Sanguinarine (SA) is one of the main alkaloids in the Macleaya cordata extracts with strong pharmacological activity of anti-tumor, anti-inflammation and anti-oxidant. SA is reported to inhibit acetic acid-induced colitis, but it is unknown whether SA can relieve NSAIDs-induced small intestinal inflammation. Herein, we report that SA effectively reversed the inflammatory lesions induced by indomethacin (Indo) in rat small intestine and IEC-6 cells in culture. Our results showed that SA significantly relieved the symptoms and reversed the inflammatory lesions of Indo as shown in alleviation of inflammation and improvement of colon macroscopic damage index (CMDI) and tissue damage index (TDI) scores. SA decreased the levels of TNF-α, IL-6, IL-1β, MDA and LDH in small intestinal tissues and IEC-6 cells, but increased SOD activity and ZO-1 expression. Mechanistically, SA dose-dependently promoted the expression of Nrf2 and HO-1 by decreasing Keap-1 level, but inhibited p65 phosphorylation and nuclear translocation in Indo-treated rat small intestine and IEC-6 cells. Furthermore, in SA treated cells, the colocalization between p-p65 and CBP in the nucleus was decreased, while the colocalization between Nrf2 and CBP was increased, leading to the movement of gene expression in the nucleus to the direction of anti-inflammation and anti-oxidation. Nrf2 silencing blocked the effects of SA. Together our results suggest that SA can significantly prevent intestinal inflammatory lesions induced by Indo in rats and IEC-6 cells through regulation of the Nrf2 pathway and NF-κBp65 pathway.
Collapse
Affiliation(s)
- Xiu-lian Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ya-ning Shi
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yu-ling Cao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xi Tan
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ya-ling Zeng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Shi-teng Luo
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ya-mei Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Li Qin
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Bo-hou Xia
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Rong-geng Fu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Li-mei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Kai Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Deliang Cao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
- *Correspondence: Deliang Cao, ; Jian-guo Zeng, ; Duan-fang Liao,
| | - Jian-guo Zeng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- *Correspondence: Deliang Cao, ; Jian-guo Zeng, ; Duan-fang Liao,
| | - Duan-fang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
- *Correspondence: Deliang Cao, ; Jian-guo Zeng, ; Duan-fang Liao,
| |
Collapse
|
7
|
Wang YF, Li JW, Wang DP, Jin K, Hui JJ, Xu HY. Anti-Hyperglycemic Agents in the Adjuvant Treatment of Sepsis: Improving Intestinal Barrier Function. Drug Des Devel Ther 2022; 16:1697-1711. [PMID: 35693534 PMCID: PMC9176233 DOI: 10.2147/dddt.s360348] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/28/2022] [Indexed: 12/19/2022] Open
Abstract
Intestinal barrier injury and hyperglycemia are common in patients with sepsis. Bacteria translocation and systemic inflammatory response caused by intestinal barrier injury play a significant role in sepsis occurrence and deterioration, while hyperglycemia is linked to adverse outcomes in sepsis. Previous studies have shown that hyperglycemia is an independent risk factor for intestinal barrier injury. Concurrently, increasing evidence has indicated that some anti-hyperglycemic agents not only improve intestinal barrier function but are also beneficial in managing sepsis-induced organ dysfunction. Therefore, we assume that these agents can block or reduce the severity of sepsis by improving intestinal barrier function. Accordingly, we explicated the connection between sepsis, intestinal barrier, and hyperglycemia, overviewed the evidence on improving intestinal barrier function and alleviating sepsis-induced organ dysfunction by anti-hyperglycemic agents (eg, metformin, peroxisome proliferators activated receptor-γ agonists, berberine, and curcumin), and summarized some common characteristics of these agents to provide a new perspective in the adjuvant treatment of sepsis.
Collapse
Affiliation(s)
- Yi-Feng Wang
- Department of Critical Care Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, People's Republic of China
| | - Jia-Wei Li
- Department of Critical Care Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, People's Republic of China
| | - Da-Peng Wang
- Department of Critical Care Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, People's Republic of China
| | - Ke Jin
- Department of Critical Care Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, People's Republic of China
| | - Jiao-Jie Hui
- Department of Critical Care Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, People's Republic of China
| | - Hong-Yang Xu
- Department of Critical Care Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|
8
|
Yang J, He Q, Wang Y, Pan Z, Zhang G, Liang J, Su L, Wang A, Zeng C, Luo H, Liu L, Li J, Rao Q, Wang B, Wang H, Chen P. Gegen Qinlian Decoction ameliorates type 2 diabetes osteoporosis via IGFBP3/MAPK/NFATc1 signaling pathway based on cytokine antibody array. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 94:153810. [PMID: 34798519 DOI: 10.1016/j.phymed.2021.153810] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 10/09/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Osteoporosis affects more than half the patients with type 2 diabetes mellitus (T2DM). Up to data, there is no effective clinical practice in managing type 2 diabetes osteoporosis (T2DOP) because of its complex pathogenesis. Gegen Qinlian Decoction (GQD) has been used for the long-term management of T2DM. However, the underlying mechanism of GQD in the treatment of T2DOP remains unknown. PURPOSE To reveal the role of GQD in T2DOP and its potential therapeutic targets in the management of T2DOP. STUDY DESIGN The effect of GQD on T2DOP was observed in db/db mice in four groups: model group, GQD low-dose group (GQD-L), GQD high-dose group (GQD-H), and metformin (positive control) group. C57BL/6J mice were used as the negative control group. METHODS Quantitative phytochemical analysis of GQD was performed using high-performance liquid chromatography (HPLC). Micro-CT and hematoxylin-eosin (H&E) staining were used to evaluate bone histomorphometry. To screen for candidate targets of GQD, a cytokine antibody array was used, followed by bioinformatics analysis. Quantitative real-time PCR (qRT-PCR) and western blotting (WB) were used to determine expression levels. RESULTS The major active components of GQD were confirmed by HPLC. Micro-CT and H&E staining showed that bone mass was significantly increased in the GQD-H group compared with the model group. Antibody arrays revealed that the expression of insulin-like growth factor binding protein 3 (IGFBP3) was elevated in the GQD-H group. The MAPK pathway was identified using bioinformatics analysis. Additionally, the levels of osteoclastogenesis-related genes, including cathepsin K (Ctsk), acid phosphatase 5 (Acp5), matrix metallopeptidase 9 (Mmp9), and ATPase H+ transporting V0 subunit D2 (Atp6v0d2) were significantly decreased in the GQD-H group. Compared with the model group, high-dosage GQD inhibited phosphorylation of extracellular signal-regulated kinases (ERKs) and P38 mitogen-activated protein kinase (MAPK) and the expression of c-Fos and nuclear factor of activated T cells 1 (NFATc1). CONCLUSION GQD plays a protective role in T2DOP by upregulating IGFBP3 expression and downregulating the IGFBP3/MAPK/NFATc1 signaling pathway. IGFBP3 in serum may also be a novel biomarker in the treatment of T2DOP. Our current findings not only expand the application of GQD, but also provide a theoretical basis and guidance for T2DOP.
Collapse
Affiliation(s)
- Junzheng Yang
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China
| | - Qi He
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China
| | - Yunhan Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China
| | - Zhaofeng Pan
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China
| | - Gangyu Zhang
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China
| | - Jianming Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China
| | - Lijun Su
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China
| | - Ailin Wang
- Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China
| | - Chuning Zeng
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China
| | - Haoran Luo
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China
| | - Lingyun Liu
- College of Basic Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China
| | - Jianliang Li
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China
| | - Qiuhong Rao
- Department of Pharmacy, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China
| | - Baohua Wang
- Department of Endocrinology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China.
| | - Haibin Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 16 Jichang Road, Baiyun District, Guangzhou, Guangdon 510405, PR China.
| | - Peng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 16 Jichang Road, Baiyun District, Guangzhou, Guangdon 510405, PR China.
| |
Collapse
|
9
|
Liu Y, Long S, Zhang S, Tan Y, Wang T, Wu Y, Jiang T, Liu X, Peng D, Liu Z. Synthesis and antioxidant activities of berberine 9- O-benzoic acid derivatives. RSC Adv 2021; 11:17611-17621. [PMID: 35480221 PMCID: PMC9033176 DOI: 10.1039/d1ra01339d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/17/2021] [Indexed: 12/22/2022] Open
Abstract
Although berberine (BBR) shows antioxidant activity, its activity is limited. We synthesized 9-O-benzoic acid berberine derivatives, and their antioxidant activities were screened via ABTS, DPPH, HOSC and FRAP assays. The para-position was modified with halogen elements on the benzoic acid ring, which led to an enhanced antioxidant activity and the substituent on the ortho-position was found to be better than the meta-position. Compounds 8p, 8c, 8d, 8i, 8j, 8l, and especially 8p showed significantly higher antioxidant activities, which could be attributed to the electronic donating groups. All the berberine derivatives possessed proper lipophilicities. In conclusion, compound 8p is a promising antioxidant candidate with remarkable elevated antioxidant activity and moderate lipophilicity. Although berberine (BBR) shows antioxidant activity, its activity is limited.![]()
Collapse
Affiliation(s)
- Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Shuo Long
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Shanshan Zhang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Yifu Tan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Ting Wang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University Changsha 410013 China
| | - Yuwei Wu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University Changsha 410013 China
| | - Ting Jiang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Xiaoqin Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Dongming Peng
- Department of Medicinal Chemistry, School of Pharmacy, Hunan University of Chinese Medicine Changsha 410208 China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University Changsha 410013 China
| |
Collapse
|
10
|
He Y, Yuan X, Zuo H, Li X, Sun Y, Feng A. Berberine induces ZIP14 expression and modulates zinc redistribution to protect intestinal mucosal barrier during polymicrobial sepsis. Life Sci 2019; 233:116697. [PMID: 31351968 DOI: 10.1016/j.lfs.2019.116697] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/12/2019] [Accepted: 07/24/2019] [Indexed: 12/19/2022]
Abstract
AIMS The present study investigated if berberine might induce Zrt-Irt-like protein 14 (ZIP14) and affect zinc redistribution to protect intestinal barrier in sepsis. MAIN METHODS Rodent model of sepsis was induced by cecal ligation and puncture (CLP). Plasma endotoxin was assayed by LAL test and plasma zinc was measured by flame atomic spectrophotometer. Gut mucosal permeability was determined by plasma FITC-dextran. Zinc content and ZIP14 mRNA in gut mucosa were assayed by spectrophotometer and qRT-PCR, respectively. Tight junction integrity of Caco-2 was evaluated by transepithelial electrical resistance (TEER). Tight junction (TJ) protein expression was detected by Western blotting. KEY FINDINGS Berberine and zinc gluconate pretreatment to CLP rats improved survival rate, reduced plasma endotoxin level, alleviated hypozincemia, increased zinc accumulation and ZIP14 mRNA expression in the intestinal mucosa. Berberine and zinc gluconate pretreatment decreased CLP-elicited intestinal hyperpermeability to FITC-dextran. These effects of berberine in vivo were abolished by AG1024. In vitro, lipopolysaccharide (LPS) repressed zinc transfer into Caco-2 cells exposed to zinc gluconate. Berberine and IGF-I treatment increased ZIP14 protein expression and promoted zinc transfer into Caco-2 cells exposed to zinc gluconate plus LPS. Berberine treatment induced TJ protein (claudin-1 and occludin) and raised TEER in LPS-treated Caco-2 cells. These effects of berberine in vitro were partially inhibited by ZIP14 siRNA. SIGNIFICANCE The present study reveals that berberine induces ZIP14 expression and affects zinc re- distribution to protect intestinal barrier in sepsis, which is partially linked with the activation of IGF-I signaling.
Collapse
Affiliation(s)
- Yan He
- Department of Oncological Radiotherapy, Affiliated Huai'an First Hospital, Nanjing Medical University, Huaian City, Jiangsu Province, PR China
| | - Xiaoming Yuan
- Department of Gastrointestinal Surgery, Affiliated Huai'an First Hospital, Nanjing Medical University, Huaian City, Jiangsu Province, PR China
| | - Hao Zuo
- Department of Gastrointestinal Surgery, Affiliated Huai'an First Hospital, Nanjing Medical University, Huaian City, Jiangsu Province, PR China
| | - Xiangwei Li
- Department of Gastrointestinal Surgery, Affiliated Huai'an First Hospital, Nanjing Medical University, Huaian City, Jiangsu Province, PR China
| | - Ying Sun
- Department of Gastrointestinal Surgery, Affiliated Huai'an First Hospital, Nanjing Medical University, Huaian City, Jiangsu Province, PR China
| | - Aiwen Feng
- Department of Gastrointestinal Surgery, Affiliated Huai'an First Hospital, Nanjing Medical University, Huaian City, Jiangsu Province, PR China.
| |
Collapse
|
11
|
Wang W, Sun M, Zheng YL, Sun LY, Qu SQ. Effects of Bifidobacterium infantis on cytokine-induced neutrophil chemoattractant and insulin-like growth factor-1 in the ileum of rats with endotoxin injury. World J Gastroenterol 2019; 25:2924-2934. [PMID: 31249450 PMCID: PMC6589735 DOI: 10.3748/wjg.v25.i23.2924] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/12/2019] [Accepted: 03/30/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The digestive tract is the maximal immunizing tissue in the body, and mucosal integrity and functional status of the gut is very important to maintain a healthy organism. Severe infection is one of the most common causes of gastrointestinal dysfunction, and the pathogenesis is closely related to endotoxemia and intestinal barrier injury. Bifidobacterium is one of the main probiotics in the human body that is involved in digestion, absorption, metabolism, nutrition, and immunity. Bifidobacterium plays an important role in maintaining the intestinal mucosal barrier integrity. This study investigated the protective mechanism of Bifidobacterium during ileal injury in rats.
AIM To investigate the effects of Bifidobacterium on cytokine-induced neutrophil chemoattractant (CINC) and insulin-like growth factor 1 (IGF-1) in the ileum of rats with endotoxin injury.
METHODS Preweaning rats were randomly divided into three groups: Control (group C), model (group E) and treatment (group T). Group E was intraperitoneally injected with lipopolysaccharide (LPS) to create an animal model of intestinal injury. Group T was intragastrically administered Bifidobacterium suspension 7 d before LPS. Group C was intraperitoneally injected with normal saline. The rats were killed at 2, 6 or 12 h after LPS or physiological saline injection to collect ileal tissue samples. The expression of ileal CINC mRNA was evaluated by reverse transcription-polymerase chain reaction (RT-PCR), and expression of ileal IGF-1 protein and mRNA was detected by immunohistochemistry and RT-PCR, respectively.
RESULTS The ileum of rats in Group C did not express CINC mRNA, ileums from Group E expressed high levels, which was then significantly decreased in Group T (F = 23.947, P < 0.05). There was no significant difference in CINC mRNA expression at different times (F = 0.665, P > 0.05). There was a high level of IGF-1 brown granules in ileal crypts and epithelial cells in Group C, sparse staining in Group E, and dark, dense brown staining in Group T. There was a significant difference between Groups C and E and Groups E and T (P < 0.05). There was no significant difference in IGF-1 protein expression at different times (F = 1.269, P > 0.05). IGF-1 mRNA expression was significantly different among the three groups (P < 0.05), though not at different times (F = 0.086, P > 0.05).
CONCLUSION Expression of CINC mRNA increased in the ileum of preweaning rats with endotoxin injury, and exogenous administration of Bifidobacterium reduced CINC mRNA expression. IGF-1 protein and mRNA expression decreased in the ileum of preweaning rats with endotoxin injury, and exogenous administration of Bifidobacterium prevented the decrease in IGF-1 expression. Bifidobacterium may increase IGF-1 expression and enhance intestinal immune barrier function in rats with endotoxin injury.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Mei Sun
- Department of Pediatric Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Yu-Ling Zheng
- Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Liu-Yu Sun
- Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Shu-Qiang Qu
- Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| |
Collapse
|
12
|
Wu A, Bao Y, Yu H, Zhou Y, Lu Q. Berberine Accelerates Odontoblast Differentiation by Wnt/β-Catenin Activation. Cell Reprogram 2019; 21:108-114. [PMID: 30969881 DOI: 10.1089/cell.2018.0060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Berberine, a Chinese medical herbal extract, plays a key role in antidiabetic, antiangiogenesis, anti-inflammatory, antimicrobial, anticancer, and antihypercholesterolemic. Our previous studies revealed that berberine exerted odontoprotective effect by increasing odontoblast differentiation. However, the mechanisms involved in the odontoprotective effect of berberine have not been fully explored. The Wnt/β-catenin pathway is involved in odontoblast differentiation of dental pulp stem cells (DPSCs). If β-catenin is nuclear translocation, the Wnt/β-catenin pathway is activation. In this study, DPSCs were treated with or without berberine. Then, we examined the accelerative effects of berberine on odontoblast differentiation and mineralized nodules formation by real-time polymerase chain reaction, alizarin red S staining, and alkaline phosphatase staining. In addition, while treated with berberine, β-catenin translocated to the nucleus evaluated by western blot and immunofluorescent staining. Our results revealed that berberine functions as a promoter of odontoblast differentiation by promoting Wnt/β-catenin pathway, suggesting that it may be useful in guiding therapeutic strategies for the treatment of dental caries.
Collapse
Affiliation(s)
- Anqian Wu
- 1 Department of Implantology, School of Stomatology, Jilin University, Changchun, Jilin, China
| | - Yueqi Bao
- 2 Department of Ophthalmology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Hongqiang Yu
- 1 Department of Implantology, School of Stomatology, Jilin University, Changchun, Jilin, China
| | - Yanmin Zhou
- 1 Department of Implantology, School of Stomatology, Jilin University, Changchun, Jilin, China.,3 Department of Implantology, Stomatological Hospital of Jilin University, Changchun, Jilin, China
| | - Qi Lu
- 4 Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
13
|
|
14
|
Xiang Q, Liao Y, Chao H, Huang W, Liu J, Chen H, Hong D, Zou Z, Xiang AP, Li W. ISL1 overexpression enhances the survival of transplanted human mesenchymal stem cells in a murine myocardial infarction model. Stem Cell Res Ther 2018; 9:51. [PMID: 29482621 PMCID: PMC5828309 DOI: 10.1186/s13287-018-0803-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 02/08/2018] [Accepted: 02/08/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The LIM-homeobox transcription factor islet-1 (ISL1) has been proposed as a marker for cardiovascular progenitor cells. This study investigated whether forced expression of ISL1 in human mesenchymal stem cells (hMSCs) improves myocardial infarction (MI) treatment outcomes. METHODS The lentiviral vector containing the human elongation factor 1α promoter, which drives the expression of ISL1 (EF1α-ISL1), was constructed using the Multisite Gateway System and used to transduce hMSCs. Flow cytometry, immunofluorescence, Western blotting, TUNEL assay, and RNA sequencing were performed to evaluate the function of ISL1-overexpressing hMSCs (ISL1-hMSCs). RESULTS The in vivo results showed that transplantation of ISL1-hMSCs improved cardiac function in a rat model of MI. Left ventricle ejection fraction and fractional shortening were greater in post-MI hearts after 4 weeks of treatment with ISL1-hMSCs compared with control hMSCs or phosphate-buffered saline. We also found that ISL1 overexpression increased angiogenesis and decreased apoptosis and inflammation. The greater potential of ISL1-hMSCs may be attributable to an increased number of surviving cells after transplantation. Conditioned medium from ISL1-hMSCs decreased the apoptotic effect of H2O2 on the cardiomyocyte cell line H9c2. To clarify the molecular basis of this finding, we employed RNA sequencing to compare the apoptotic-related gene expression profiles of control hMSCs and ISL1-hMSCs. The results showed that insulin-like growth factor binding protein 3 (IGFBP3) was the only gene in ISL1-hMSCs with a RPKM value higher than 100 and that the difference fold-change between ISL1-hMSCs and control hMSCs was greater than 3, suggesting that IGFBP3 might play an important role in the anti-apoptosis effect of ISL1-hMSCs through paracrine effects. Furthermore, the expression of IGFBP3 in the conditioned medium from ISL1-hMSCs was almost fourfold greater than that in conditioned medium from control hMSCs. Moreover, the IGFBP3 neutralization antibody reversed the apoptotic effect of ISL1-hMSCs-CM. CONCLUSIONS These results suggest that overexpression of ISL1 in hMSCs promotes cell survival in a model of MI and enhances their paracrine function to protect cardiomyocytes, which may be mediated through IGFBP3. ISL1 overexpression in hMSCs may represent a novel strategy for enhancing the effectiveness of stem cell therapy after MI.
Collapse
Affiliation(s)
- Qiuling Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, People's Republic of China.,Zhongshan Medical School, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yan Liao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, People's Republic of China.,Zhongshan Medical School, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hua Chao
- Zhongshan Medical School, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, People's Republic of China.,Zhongshan Medical School, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jia Liu
- Department of Cardiology, the Red Cross hospital of Guangzhou City, the Fourth Affiliated Hospital of Jinan University, Guangzhou, People's Republic of China
| | - Haixuan Chen
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Dongxi Hong
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhengwei Zou
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, People's Republic of China.,Zhongshan Medical School, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, People's Republic of China.,Zhongshan Medical School, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Weiqiang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, People's Republic of China. .,Zhongshan Medical School, Sun Yat-sen University, Guangzhou, People's Republic of China.
| |
Collapse
|