1
|
Li XS, Zhang AL, Yuan WB, Feng WB, Zheng TX, Cai HT, Lin ZX, Zhang YB, Lan CY, Yan C. Pregnane C 21-Steroids with Anti-Inflammatory Activity from the Roots of Cynanchum bungei. Chem Biodivers 2025:e202403412. [PMID: 39761037 DOI: 10.1002/cbdv.202403412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/07/2025]
Abstract
Five pregnane C21-steroids, including three 5,6-epoxy steroids (1-3) and two 8,14-seco-steroids (4 and 5), were isolated from the acid hydrolysate of Cynanchum bungei roots. Cynbungenins L-O (1-4) are previously undescribed compounds. Compound 3 with a 5α,6α-epoxy group represents the first example found in the Cynanchum plants. Their structures and absolute configurations were elucidated by a variety of spectroscopic analysis and theoretical ECD calculations. All compounds (1-5) were evaluated for their anti-inflammatory activity by inhibiting the lipopolysaccharide (LPS)-induced nitric oxide (NO) released in RAW264.7 cells. The results showed that they all possessed NO inhibitory activity at 50 µM, and compounds 3 and 4 exhibited stronger NO inhibitory activity than indomethacin.
Collapse
Affiliation(s)
- Xiao-San Li
- Guangdong Engineering Technology Research Center for the Development and Utilization of Mangrove Wetland Medicinal Resources, Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, and School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, P. R. China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, P. R. China
| | - Ai-Ling Zhang
- School of Pharmacy, Guangdong Medical University, Dongguan, P. R. China
| | - Wei-Bin Yuan
- School of Pharmacy, Guangdong Medical University, Dongguan, P. R. China
| | - Wan-Bi Feng
- Guangdong Engineering Technology Research Center for the Development and Utilization of Mangrove Wetland Medicinal Resources, Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, and School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, P. R. China
| | - Tong-Xin Zheng
- Guangdong Engineering Technology Research Center for the Development and Utilization of Mangrove Wetland Medicinal Resources, Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, and School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, P. R. China
| | - Hai-Tao Cai
- School of Pharmacy, Guangdong Medical University, Dongguan, P. R. China
| | - Zi-Xin Lin
- Guangdong Engineering Technology Research Center for the Development and Utilization of Mangrove Wetland Medicinal Resources, Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, and School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, P. R. China
| | - Yu-Bo Zhang
- School of Pharmacy, Guangdong Medical University, Dongguan, P. R. China
| | - Cai-Yun Lan
- School of Chinese Medicine, Zhanjiang University of Science and Technology, Zhanjiang, P. R. China
| | - Chong Yan
- School of Pharmacy, Guangdong Medical University, Dongguan, P. R. China
| |
Collapse
|
2
|
Li XS, Liu MS, Feng WB, Luo YH, Yuan WB, Li TT, Peng XF, Huang YM, Yang XM, Luo H. Cynbungenins A-K, structurally diverse steroids with cytotoxic activity from the roots of Cynanchum bungei Decne. PHYTOCHEMISTRY 2025; 229:114287. [PMID: 39276823 DOI: 10.1016/j.phytochem.2024.114287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
Chemical investigation of the acid hydrolysate of Cynanchum bungei roots led to the isolation of eleven undescribed steroids, namely cynbungenins A-K (1-11), and seven previously described analogues (12-18). The complete structures of these compounds were elucidated using the comprehensive spectroscopic analyses and reference data. Structurally, compounds 1 and 2 represent the first example of androstane-type steroids found in the Cynanchum plants, and compounds 3-6 and 12 are characterized as pregnane-type steroids with a rare 8,14-seco-steroid core. In the cytotoxic activity assay, compound 16 displayed the strongest cytotoxic effect against MCF-7, HCT-116, HeLa, and HepG2 cancer cell lines, with IC50 values of 9.98-16.42 μM, and further research indicated that it induced both apoptosis and cell cycle arrest in the G0/G1 phase in a dose-dependent manner toward HepG2 cells.
Collapse
Affiliation(s)
- Xiao-San Li
- Guangdong Engineering Technology Research Center for the Development and Utilization of Mangrove Wetland Medicinal Resources, Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, and School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, PR China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, 523808, PR China.
| | - Ming-Shang Liu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, 523808, PR China
| | - Wan-Bi Feng
- Guangdong Engineering Technology Research Center for the Development and Utilization of Mangrove Wetland Medicinal Resources, Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, and School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, PR China
| | - Yu-Hao Luo
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, 523808, PR China; School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Wei-Bin Yuan
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, 523808, PR China
| | - Ting-Ting Li
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, 523808, PR China
| | - Xiao-Fu Peng
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, 523808, PR China
| | - Yong-Mei Huang
- Guangdong Engineering Technology Research Center for the Development and Utilization of Mangrove Wetland Medicinal Resources, Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, and School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, PR China
| | - Xue-Mei Yang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, 523808, PR China.
| | - Hui Luo
- Guangdong Engineering Technology Research Center for the Development and Utilization of Mangrove Wetland Medicinal Resources, Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, and School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, PR China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, 523808, PR China.
| |
Collapse
|
3
|
Dong J, Niu D, Xiang P, Dao Z, Li J. Chemical constituents with potential cytotoxic activities from Cynanchum otophyllum. Nat Prod Res 2024:1-8. [PMID: 39290165 DOI: 10.1080/14786419.2024.2404660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/21/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024]
Abstract
Phytochemical investigation of the chloroform extract of the roots of Cynanchum otophyllum (Asclepiadaceae) led to the isolation of a new cardiac aglycone, characterised as Cynanchin A (1), as well as one known cardenolide (2) and nine known C21 steroidal glycosides (3-10), Their structures were established by 1D and 2D NMR spectra referring to the literature, together with high-resolution mass spectrometric analysis. In the present research, the cytotoxic activities of the 11 compounds on five different human cancer cell lines (HL-60, SMMC-7721, A-549, MCF-7 and SW480) were evaluated in vitro. Most of the tested compounds showed potent inhibitory activities towards the five cell lines.
Collapse
Affiliation(s)
- Jinrun Dong
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, China
| | - Deqiong Niu
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, China
| | - Ping Xiang
- School of Ecology and Environment, Southwest Forestry University, Kunming, China
| | - Zhonghai Dao
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, China
| | - Jing Li
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, China
| |
Collapse
|
4
|
Wu GX, Zhao HY, Peng C, Liu F, Xiong L. Eudesmane-type sesquiterpenoids: Structural diversity and biological activity. Heliyon 2024; 10:e35270. [PMID: 39170406 PMCID: PMC11336486 DOI: 10.1016/j.heliyon.2024.e35270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/03/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
Sesquiterpenoids are integral constituents of terpenoid-bearing plants, comprising a diverse and abundant class of natural compounds, among which eudesmane-type sesquiterpenoids have bicyclic structures that feature the fusion of two six-membered carbon rings, thereby attracting considerable attention. They are widespread in nature, with multifaceted biological activities such as anti-inflammatory, anticancer, antimicrobial, antimalarial, and insecticidal activities, thus gaining focus in life science research. The discovery and identification of these active compounds have laid a foundation for unraveling their potential medicinal value. In this review, we comprehensively explore the natural eudesmane-type sesquiterpenoids isolated (totaling 391 compounds) between 2016 and 2022, elucidating their chemical structures, plant distribution patterns, and pertinent biological properties. Accordingly, the study serves not only as a framework for researchers to thoroughly comprehend these compounds but also as a robust reference for future endeavors aimed at exploring the pharmaceutical potential and prospective applications of these molecules.
Collapse
Affiliation(s)
- Guang-Xu Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hao-Yu Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fei Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Liang Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
5
|
Luo DL, Wang XH, Lei YE, Lu CQ, Lu Y, Chen DF, Wang Q. Cynasibirolide A, One New Humulanolide Sesquiterpene from Cynanchum acutum subsp. sibiricum. Chem Biodivers 2023; 20:e202200860. [PMID: 36718608 DOI: 10.1002/cbdv.202200860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Cynasibirolide A (1), one new humulanolide sesquiterpene, together with four known analogs, asteriscanolide (2), (1S,8S)-8-hydroxyhumula-2Z,6E,9E-trien-1,12-olide (3), (1S,7R)-8-oxohumula-2Z,9E-dien-1,12-olide (4), and (+)-6,7,9,10-tetrahydroasteriscunolide (5) were isolated from the roots and rhizomes of Cynanchum acutum subsp. sibiricum. Their structures and configurations were elucidated by spectroscopic methods, including 2D-NMR techniques, and the structure of 1 was confirmed by single-crystal X-ray diffraction. All compounds were evaluated for their anti-complementary activity in vitro, and compound 3 exhibited anti-complement effect with CH50 value of 0.45 mM.
Collapse
Affiliation(s)
- De-Li Luo
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, P. R. China
| | - Xiao-Hua Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, P. R. China
- Experiment Center of Xinjiang Second Medical College, Kelamayi, 834000, P. R. China
| | - Ya-E Lei
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, P. R. China
| | - Chuan-Qi Lu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, P. R. China
- School of Medicine, Tarim University, Alaer, 843300, P. R. China
| | - Yan Lu
- Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Dao-Feng Chen
- Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Qi Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, P. R. China
| |
Collapse
|
6
|
Li XS, Chen TJ, Xu ZP, Long J, He MY, Zhan HH, Zhuang HC, Wang QL, Liu L, Yang XM, Tang JS. Synthesis and biological evaluation of 3β-O-neoglycosides of caudatin and its analogues as potential anticancer agents. Bioorg Med Chem 2021; 54:116581. [PMID: 34968813 DOI: 10.1016/j.bmc.2021.116581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/28/2021] [Accepted: 12/13/2021] [Indexed: 11/02/2022]
Abstract
In order to study the structure-activity relationship (SAR) of C21-steroidal glycosides toward human cancer cell lines and explore more potential anticancer agents, a series of 3β-O-neoglycosides of caudatin and its analogues were synthesized. The results revealed that most of peracetylated 3β-O-monoglycosides demonstrated moderate to significant antiproliferative activities against four human cancer cell lines (MCF-7, HCT-116, HeLa, and HepG2). Among them, 3β-O-(2,3,4-tri-O-acetyl-β-L-glucopyranosyl)-caudatin (2k) exhibited the highest antiproliferative activity aganist HepG2 cells with an IC50 value of 3.11 μM. Mechanical studies showed that compound 2k induced both apoptosis and cell cycle arrest at S phase in a dose dependent manner. Overall, these present findings suggested that glycosylation is a promising scaffold to improve anticancer activity for naturally occurring C21-steroidal aglycones, and compound 2k represents a potential anticancer agent deserved further investigation.
Collapse
Affiliation(s)
- Xiao-San Li
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, PR China; Guangdong Zhanjiang Marine Biomedical Research Institute, Zhanjiang 524023, PR China
| | - Tang-Ji Chen
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, PR China
| | - Zhi-Peng Xu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Juan Long
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, PR China
| | - Miao-Ying He
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, PR China
| | - He-Hui Zhan
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, PR China
| | - Hai-Cai Zhuang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, PR China
| | - Qi-Lin Wang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, PR China
| | - Li Liu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, PR China.
| | - Xue-Mei Yang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, PR China.
| | - Jin-Shan Tang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
7
|
Wang L, Cai F, Zhao W, Tian J, Kong D, Sun X, Liu Q, Chen Y, An Y, Wang F, Liu X, Wu Y, Zhou H. Cynanchum auriculatum Royle ex Wight., Cynanchum bungei Decne. and Cynanchum wilfordii (Maxim.) Hemsl.: Current Research and Prospects. Molecules 2021; 26:7065. [PMID: 34885647 PMCID: PMC8658831 DOI: 10.3390/molecules26237065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 01/12/2023] Open
Abstract
Cynanchum auriculatum Royle ex Wight. (CA), Cynanchum bungei Decne. (CB) and Cynanchum wilfordii (Maxim.) Hemsl. (CW) are three close species belonging to the Asclepiadaceous family, and their dry roots as the bioactive part have been revealed to exhibit anti-tumor, neuroprotection, organ protection, reducing liver lipid and blood lipid, immunomodulatory, anti-inflammatory, and other activities. Until 2021, phytochemistry investigations have uncovered 232 compounds isolated from three species, which could be classified into C21-steroids, acetophenones, terpenoids, and alkaloids. In this review, the morphology characteristics, species identification, and the relationship of botany, extraction, and the separation of chemical constituents, along with the molecular mechanism and pharmacokinetics of bioactive constituents of three species, are summarized for the first time, and their phytochemistry, pharmacology, and clinical safety are also updated. Moreover, the direction and limitation of current research on three species is also discussed.
Collapse
Affiliation(s)
- Lu Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.W.); (F.C.); (W.Z.); (J.T.); (D.K.); (X.S.); (Q.L.); (Y.C.); (Y.A.); (F.W.); (X.L.)
| | - Fujie Cai
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.W.); (F.C.); (W.Z.); (J.T.); (D.K.); (X.S.); (Q.L.); (Y.C.); (Y.A.); (F.W.); (X.L.)
| | - Wei Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.W.); (F.C.); (W.Z.); (J.T.); (D.K.); (X.S.); (Q.L.); (Y.C.); (Y.A.); (F.W.); (X.L.)
| | - Jinli Tian
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.W.); (F.C.); (W.Z.); (J.T.); (D.K.); (X.S.); (Q.L.); (Y.C.); (Y.A.); (F.W.); (X.L.)
| | - Degang Kong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.W.); (F.C.); (W.Z.); (J.T.); (D.K.); (X.S.); (Q.L.); (Y.C.); (Y.A.); (F.W.); (X.L.)
| | - Xiaohui Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.W.); (F.C.); (W.Z.); (J.T.); (D.K.); (X.S.); (Q.L.); (Y.C.); (Y.A.); (F.W.); (X.L.)
| | - Qing Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.W.); (F.C.); (W.Z.); (J.T.); (D.K.); (X.S.); (Q.L.); (Y.C.); (Y.A.); (F.W.); (X.L.)
| | - Yueru Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.W.); (F.C.); (W.Z.); (J.T.); (D.K.); (X.S.); (Q.L.); (Y.C.); (Y.A.); (F.W.); (X.L.)
| | - Ying An
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.W.); (F.C.); (W.Z.); (J.T.); (D.K.); (X.S.); (Q.L.); (Y.C.); (Y.A.); (F.W.); (X.L.)
| | - Fulin Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.W.); (F.C.); (W.Z.); (J.T.); (D.K.); (X.S.); (Q.L.); (Y.C.); (Y.A.); (F.W.); (X.L.)
| | - Xue Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.W.); (F.C.); (W.Z.); (J.T.); (D.K.); (X.S.); (Q.L.); (Y.C.); (Y.A.); (F.W.); (X.L.)
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Honglei Zhou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.W.); (F.C.); (W.Z.); (J.T.); (D.K.); (X.S.); (Q.L.); (Y.C.); (Y.A.); (F.W.); (X.L.)
| |
Collapse
|
8
|
Bailly C. Anticancer properties of caudatin and related C-21 steroidal glycosides from Cynanchum plants. Steroids 2021; 172:108855. [PMID: 33945800 DOI: 10.1016/j.steroids.2021.108855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/29/2021] [Accepted: 04/22/2021] [Indexed: 12/12/2022]
Abstract
Numerous C-21 steroidal glycosides have been isolated from Cynanchum plants. Many of them derive from the aglycone caudatin (CDT) which includes a tetracyclic deacylmetaplexigenin unit and an ikemaoyl ester side chain. CDT can be found in diverse traditional medicines, such as Baishouwu radix used to treat gastro-intestinal disorders. The compound has revealed marked anticancer properties, reviewed here. CDT and its mono-glycoside analogue CDMC display antiproliferative activities against different cancer cell lines in vitro and have revealed significant anticancer effects in tumor xenograft models in vivo. Their mechanism of action is multifactorial, implicating several signaling pathways (Wnt/GSK3/β-catenin, TRAIL/DR5/ER and TNFAIP1/NFκB) which contribute to the antiproliferative, antiangiogenic, antimetastatic and proapoptotic effects of the natural products. CDT also modulates DNA replication, is antioxidant and targets some cancer stem cells. CDT and CDMC are interesting anticancer products, while other CDT glycoside derivatives display antiviral and antifungal activities. Altogether, the present review provides a survey of the pharmacological profiles of CDT and derivatives. The lack of knowledge about the molecular targets of CDT currently limits drug development but the natural product, orally active, warrants further pharmacology and toxicology studies.
Collapse
|
9
|
Chen WH, Zhang ZZ, Ban YF, Rahman K, Ye BZ, Sun XL, Tan HY, Zheng XH, Liu HY, Xu LC, Yan B, Han T. Cynanchum bungei Decne and its two related species for "Baishouwu": A review on traditional uses, phytochemistry, and pharmacological activities. JOURNAL OF ETHNOPHARMACOLOGY 2019; 243:112110. [PMID: 31351190 DOI: 10.1016/j.jep.2019.112110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cynanchum bungei Decne. (CB) (Asclepiadaceae) and its two related species Cynanchum auriculatum Royle ex Wight. (CA) and Cynanchum wilfordii (Maxim.) Hemsl. (CW) are well known Chinese herbal medicines known by the name Baishouwu. Among them, CB has long been used for nourishing the kidney and liver, strengthening the bones and muscles, and regulating stomachache. However, to date, no comprehensive review on Baishouwu has been published. AIM OF THE REVIEW This review aims to provide a comprehensive summary on traditional uses, phytochemistry, pharmacology, and toxicology of the three herbal components of Baishouwu with the ultimate objective of providing a guide for future scientific and therapeutic potential use of Baishouwu. MATERIAL AND METHODS A literature search was undertaken on CB, CA and CW by analyzing the information from scientific databases (SciFinder, Pubmed, Elsevier, Google Scholar, Web of Science, and Baidu Scholar). Information was also gathered from local classic herbal literatures and conference papers on ethnopharmacology and the information provided in this review has been obtained from peer-reviewed papers. RESULTS Comparative analysis of literature search indicate that ethnopharmacological use of CB was recorded in China, however, CA and CW have been used in China, Korea and Japan. To date, 151 chemical compounds have been isolated from these species, and the major chemical constituents have been revealed to be acetophenones, C21-steroids, terpenoids, and alkaloids. These compounds and extracts have been proven to exhibit significant pharmacological activities, including anti-tumor, anti-inflammatory, immunomodulatory, hypolipidemic, anti-obesity, hepatoprotective, antifungal, antiviral, anti-depressant, vasodilating and estrogenic activities. CONCLUSIONS CB, CA and CW collectively known as Baishouwu are valuable medicinal herbs with multiple pharmacological activities. The traditional use for nourishing liver is closely associated with the hepatoprotective activity. The available literature performs that various of the activity of Baishouwu can be attributed to acetophenones and C21-steroids. It is high time that more efforts should be focused on the underlying mechanisms of their beneficial bioactivities and the structure activity relationship of the constituents, as well as their potential synergistic and antagonistic effects. The proper toxicology evaluation is crucial to guarantee the safety, efficacy, and eligibility for medical use. Further research on the comprehensive evaluation of medicinal quality and the understanding of multi-target network pharmacology of Baishouwu is in great request.
Collapse
Affiliation(s)
- Wen-Hua Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, 250355, China
| | - Zhen-Zhen Zhang
- Naval Medical Institute of PLA, 880 Xiangyin Road, Shanghai, 200433, China
| | - Yan-Fei Ban
- Department of Pharmacognosy, School of Pharmacy, Navy Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Khalid Rahman
- Faculty of Science, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Bing-Zhu Ye
- Department of Pharmacognosy, School of Pharmacy, Navy Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Xiao-Lei Sun
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, 250355, China; Department of Pharmacognosy, School of Pharmacy, Navy Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Hui-Ying Tan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, 250355, China
| | - Xiao-Hua Zheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, 250355, China
| | - Hong-Yan Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, 250355, China
| | - Ling-Chuan Xu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, 250355, China.
| | - Bin Yan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, 250355, China.
| | - Ting Han
- Department of Pharmacognosy, School of Pharmacy, Navy Medical University, 325 Guohe Road, Shanghai, 200433, China.
| |
Collapse
|