1
|
Wu Z, Li XM, Yang SQ, Wang BG, Li X. Antibacterial Polyketides from the Deep-Sea Cold-Seep-Derived Fungus Talaromyces sp. CS-258. Mar Drugs 2024; 22:204. [PMID: 38786595 PMCID: PMC11122946 DOI: 10.3390/md22050204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Thirty-two fungal polyketide derivatives, including eleven new compounds, namely (3R,5'R)-5-hydroxytalaroflavone (1), talaroisochromenols A-C (3, 5, and 11), (8R,9R,10aR)-5-hydroxyaltenuene (13), (8R,9R,10aS)-5-hydroxyaltenuene (14), (8R,9S,10aR)-5-hydroxyaltenuene (15), nemanecins D and E (25 and 26), 2,5-dimethyl-8-iodochromone (27), and talarofurolactone A (29), together with one new naturally occurring but previously synthesized metabolite, 6-hydroxy-4-methoxycoumarin (28), were isolated and identified from the deep-sea cold-seep-derived fungus Talaromyces sp. CS-258. Among them, racemic ((±)-11) or epimeric (13-15, 25, and 26) mixtures were successfully separated by chiral or gradient elution HPLC. Meanwhile, compound 27 represents a rarely reported naturally occurring iodinated compound. Their planar structures as well as absolute configurations were determined by extensive analysis via NMR, MS, single-crystal X-ray diffraction, Mosher's method, and ECD or NMR calculation (with DP4+ probability analysis). Possible biosynthetic routes of some isolated compounds, which are related to chromone or isochromone biosynthetic pathways, were put forward. The biological analysis results revealed that compounds 7, 9, 10, 18-22, 24, 30, and 31 showed broad-spectrum antibacterial activities against several human and aquatic pathogens with MIC ranges of 0.5-64 μg/mL.
Collapse
Affiliation(s)
- Zhenger Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China; (Z.W.); (X.-M.L.); (S.-Q.Y.)
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China; (Z.W.); (X.-M.L.); (S.-Q.Y.)
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Sui-Qun Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China; (Z.W.); (X.-M.L.); (S.-Q.Y.)
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China; (Z.W.); (X.-M.L.); (S.-Q.Y.)
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao 266237, China
| | - Xin Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China; (Z.W.); (X.-M.L.); (S.-Q.Y.)
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao 266237, China
| |
Collapse
|
2
|
Eshboev F, Mamadalieva N, Nazarov PA, Hussain H, Katanaev V, Egamberdieva D, Azimova S. Antimicrobial Action Mechanisms of Natural Compounds Isolated from Endophytic Microorganisms. Antibiotics (Basel) 2024; 13:271. [PMID: 38534706 DOI: 10.3390/antibiotics13030271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Infectious diseases are a significant challenge to global healthcare, especially in the face of increasing antibiotic resistance. This urgent issue requires the continuous exploration and development of new antimicrobial drugs. In this regard, the secondary metabolites derived from endophytic microorganisms stand out as promising sources for finding antimicrobials. Endophytic microorganisms, residing within the internal tissues of plants, have demonstrated the capacity to produce diverse bioactive compounds with substantial pharmacological potential. Therefore, numerous new antimicrobial compounds have been isolated from endophytes, particularly from endophytic fungi and actinomycetes. However, only a limited number of these compounds have been subjected to comprehensive studies regarding their mechanisms of action against bacterial cells. Furthermore, the investigation of their effects on antibiotic-resistant bacteria and the identification of biosynthetic gene clusters responsible for synthesizing these secondary metabolites have been conducted for only a subset of these promising compounds. Through a comprehensive analysis of current research findings, this review describes the mechanisms of action of antimicrobial drugs and secondary metabolites isolated from endophytes, antibacterial activities of the natural compounds derived from endophytes against antibiotic-resistant bacteria, and biosynthetic gene clusters of endophytic fungi responsible for the synthesis of bioactive secondary metabolites.
Collapse
Affiliation(s)
- Farkhod Eshboev
- S. Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan
- School of Chemical Engineering, New Uzbekistan University, Movarounnahr Street 1, Mirzo Ulugbek District, Tashkent 100000, Uzbekistan
- Institute of Fundamental and Applied Research, National Research University TIIAME, 39 Kori Niyoziy Str., Tashkent 100000, Uzbekistan
- Faculty of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Nilufar Mamadalieva
- S. Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan
- School of Chemical Engineering, New Uzbekistan University, Movarounnahr Street 1, Mirzo Ulugbek District, Tashkent 100000, Uzbekistan
- Institute of Fundamental and Applied Research, National Research University TIIAME, 39 Kori Niyoziy Str., Tashkent 100000, Uzbekistan
| | - Pavel A Nazarov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1/40 Leninskie Gory, Moscow 119991, Russia
| | - Hidayat Hussain
- Leibniz Institute of Plant Biochemistry, Department of Bioorganic Chemistry, Weinberg 3, D-06120 Halle, Germany
| | - Vladimir Katanaev
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690090, Russia
| | - Dilfuza Egamberdieva
- Institute of Fundamental and Applied Research, National Research University TIIAME, 39 Kori Niyoziy Str., Tashkent 100000, Uzbekistan
- Faculty of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Shakhnoz Azimova
- S. Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan
| |
Collapse
|
3
|
Holkar SK, Ghotgalkar PS, Markad HN, Bhanbhane VC, Saha S, Banerjee K. Current Status and Future Perspectives on Distribution of Fungal Endophytes and Their Utilization for Plant Growth Promotion and Management of Grapevine Diseases. Curr Microbiol 2024; 81:116. [PMID: 38489076 DOI: 10.1007/s00284-024-03635-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/02/2024] [Indexed: 03/17/2024]
Abstract
Grapevine is one of the economically most important fruit crops cultivated worldwide. Grape production is significantly affected by biotic constraints leading to heavy crop losses. Changing climatic conditions leading to widespread occurrence of different foliar diseases in grapevine. Chemical products are used for managing these diseases through preventive and curative application in the vineyard. High disease pressure and indiscriminate use of chemicals leading to residue in the final harvest and resistance development in phytopathogens. To mitigate these challenges, the adoption of potential biocontrol control agents is necessary. Moreover, multifaceted benefits of endophytes made them eco-friendly, and environmentally safe approach. The genetic composition, physiological conditions, and ecology of their host plant have an impact on their dispersion patterns and population diversity. Worldwide, a total of more than 164 fungal endophytes (FEs) have been characterized originating from different tissues, varieties, crop growth stages, and geographical regions of grapevine. These diverse FEs have been used extensively for management of different phytopathogens globally. The FEs produce secondary metabolites, lytic enzymes, and organic compounds which are known to possess antimicrobial and antifungal properties. The aim of this review was to understand diversity, distribution, host-pathogen-endophyte interaction, role of endophytes in disease management and for enhanced, and quality production.
Collapse
Affiliation(s)
| | | | | | | | - Sujoy Saha
- ICAR-National Research Centre for Grapes, Pune, Maharashtra, 412307, India
| | - Kaushik Banerjee
- ICAR-National Research Centre for Grapes, Pune, Maharashtra, 412307, India
| |
Collapse
|
4
|
Gupta S, Choudhary M, Singh B, Kushwaha M, Dhar MK, Kaul S. Green synthesis and biological evaluation of glaucanic acid and dihydrocompactin acid by endophytic fungus Penicillium polonicum from Zingiber officinale. Nat Prod Res 2024; 38:696-700. [PMID: 36896764 DOI: 10.1080/14786419.2023.2188210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 02/28/2023] [Indexed: 03/11/2023]
Abstract
Fungal endophytes are valued for biosynthesizing chemically diverse metabolic cascade with interesting biological activities. In the current investigation, two compounds were isolated from Penicillium polonicum, an endophyte of Zingiber officinale. The active moieties, glaucanic acid (1) and dihydrocompactin acid (2) were isolated from the ethyl acetate extract of P. polonicum and characterized by NMR and mass spectroscopy. Further, bioactive potential of the isolated compounds was evaluated by antimicrobial, antioxidant and cytotoxicity assays. Compounds 1 and 2 displayed antifungal activity against phytopathogen Colletotrichum gloeosporioides with more than 50% reduction in its growth. Both the compounds exhibited antioxidant activity against free radicals (DPPH and ABTS) and cytotoxicity activity against cancer cell lines respectively. The compounds, glaucanic acid and dihydrocompactin acid are being reported for the first time from an endophytic fungus. This is the first report on the biological activities of Dihydrocompactin acid produced by endophytic fungal strain.
Collapse
Affiliation(s)
- Suruchi Gupta
- Fungal Biotech Lab, School of Biotechnology, University of Jammu, Jammu, India
| | - Malvi Choudhary
- Fungal Biotech Lab, School of Biotechnology, University of Jammu, Jammu, India
| | - Baljinder Singh
- Natural Products Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
| | - Manoj Kushwaha
- Natural Products Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
| | - Manoj K Dhar
- Fungal Biotech Lab, School of Biotechnology, University of Jammu, Jammu, India
| | - Sanjana Kaul
- Fungal Biotech Lab, School of Biotechnology, University of Jammu, Jammu, India
| |
Collapse
|
5
|
Bhardwaj M, Kailoo S, Khan RT, Khan SS, Rasool S. Harnessing fungal endophytes for natural management: a biocontrol perspective. Front Microbiol 2023; 14:1280258. [PMID: 38143866 PMCID: PMC10748429 DOI: 10.3389/fmicb.2023.1280258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
In the ever-evolving realm of agriculture, the convoluted interaction between plants and microorganisms have assumed paramount significance. Fungal endophytes, once perceived as mere bystanders within plant tissues, have now emerged as dynamic defenders of plant health. This comprehensive review delves into the captivating world of fungal endophytes and their multifaceted biocontrol mechanisms. Exploring their unique ability to coexist with their plant hosts, fungal endophytes have unlocked a treasure trove of biological weaponry to fend off pathogens and enhance plant resilience. From the synthesis of bioactive secondary metabolites to intricate signaling pathways these silent allies are masters of biological warfare. The world of fungal endophytes is quite fascinating as they engage in a delicate dance with the plant immune system, orchestrating a symphony of defense that challenges traditional notions of plant-pathogen interactions. The journey through the various mechanisms employed by these enigmatic endophytes to combat diseases, will lead to revelational understanding of sustainable agriculture. The review delves into cutting-edge research and promising prospects, shedding light on how fungal endophytes hold the key to biocontrol and the reduction of chemical inputs in agriculture. Their ecological significance, potential for bioprospecting and avenues for future research are also explored. This exploration of the biocontrol mechanisms of fungal endophytes promise not only to enrich our comprehension of plant-microbe relationships but also, to shape the future of sustainable and ecofriendly agricultural practices. In this intricate web of life, fungal endophytes are indeed the unsung heroes, silently guarding our crops and illuminating a path towards a greener, healthier tomorrow.
Collapse
Affiliation(s)
| | | | | | | | - Shafaq Rasool
- Molecular Biology Laboratory, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| |
Collapse
|
6
|
Holkar SK, Ghotgalkar PS, Lodha TD, Bhanbhane VC, Shewale SA, Markad H, Shabeer ATP, Saha S. Biocontrol potential of endophytic fungi originated from grapevine leaves for management of anthracnose disease caused by Colletotrichum gloeosporioides. 3 Biotech 2023; 13:258. [PMID: 37405269 PMCID: PMC10314888 DOI: 10.1007/s13205-023-03675-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/16/2023] [Indexed: 07/06/2023] Open
Abstract
In the present study, 51 fungal endophytes (FEs) were isolated, purified and identified from the healthy leaf segments of ten grapevine varieties based on the spore and colony morphologies and ITS sequence information. The FEs belonged to the Ascomycota division comprising eight genera viz., Alternaria, Aspergillus, Bipolaris, Curvularia, Daldinia, Exserohilum, Fusarium and Nigrospora. The in vitro direct confrontation assay against Colletotrichum gloeosporioides revealed that six isolates viz., VR8 (70%), SB2 (83.15%), CS2 (88.42%), MN3 (88.42%), MS5 (78.94%) and MS15 (78.94%) inhibited the mycelial growth of test pathogen. The remaining 45 fungal isolates showed 20-59.9% growth inhibition of C. gloeosporioides. Indirect confrontation assay manifested that the isolates MN1 and MN4a showed 79.09% and 78.18% growth inhibition of C. gloeosporioides followed by MM4 (73.63%) and S5 (71.81%) isolates. Isolate S5 and MM4 were found to produce azulene and 1,3-Cyclopentanedione, 4,4-dimethyl as antimicrobial volatile organic compounds, respectively. The 38 FEs showed PCR amplification using internal transcribed spacer universal primers. The BLAST search revealed highest similarity with the existing sequences in the database. The phylogenetic analysis revealed the occurrence of seven distinct clusters each corresponding to single genus. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03675-z.
Collapse
Affiliation(s)
- Somnath K. Holkar
- Indian Council of Agricultural Research-National Research Centre for Grapes, Pune, Maharashtra 412307 India
| | - Prabhavati S. Ghotgalkar
- Indian Council of Agricultural Research-National Research Centre for Grapes, Pune, Maharashtra 412307 India
| | - Tushar D. Lodha
- National Centre of Cell Science, Pune, Maharashtra 411 007 India
| | - Vrushali C. Bhanbhane
- Indian Council of Agricultural Research-National Research Centre for Grapes, Pune, Maharashtra 412307 India
| | - Shraddha A. Shewale
- Indian Council of Agricultural Research-National Research Centre for Grapes, Pune, Maharashtra 412307 India
- Present Address: Mahatma Phule Krishi Vidyapeeth, Rahuri, Maharashtra 413 705 India
| | - Harshvardhan Markad
- Indian Council of Agricultural Research-National Research Centre for Grapes, Pune, Maharashtra 412307 India
| | - A. T. P. Shabeer
- Indian Council of Agricultural Research-National Research Centre for Grapes, Pune, Maharashtra 412307 India
| | - Sujoy Saha
- Indian Council of Agricultural Research-National Research Centre for Grapes, Pune, Maharashtra 412307 India
| |
Collapse
|
7
|
Ayilara MS, Adeleke BS, Babalola OO. Bioprospecting and Challenges of Plant Microbiome Research for Sustainable Agriculture, a Review on Soybean Endophytic Bacteria. MICROBIAL ECOLOGY 2023; 85:1113-1135. [PMID: 36319743 PMCID: PMC10156819 DOI: 10.1007/s00248-022-02136-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/24/2022] [Indexed: 05/04/2023]
Abstract
This review evaluates oilseed crop soybean endophytic bacteria, their prospects, and challenges for sustainable agriculture. Soybean is one of the most important oilseed crops with about 20-25% protein content and 20% edible oil production. The ability of soybean root-associated microbes to restore soil nutrients enhances crop yield. Naturally, the soybean root endosphere harbors root nodule bacteria, and endophytic bacteria, which help increase the nitrogen pool and reclamation of another nutrient loss in the soil for plant nutrition. Endophytic bacteria can sustain plant growth and health by exhibiting antibiosis against phytopathogens, production of enzymes, phytohormone biosynthesis, organic acids, and secondary metabolite secretions. Considerable effort in the agricultural industry is focused on multifunctional concepts and bioprospecting on the use of bioinput from endophytic microbes to ensure a stable ecosystem. Bioprospecting in the case of this review is a systemic overview of the biorational approach to harness beneficial plant-associated microbes to ensure food security in the future. Progress in this endeavor is limited by available techniques. The use of molecular techniques in unraveling the functions of soybean endophytic bacteria can explore their use in integrated organic farming. Our review brings to light the endophytic microbial dynamics of soybeans and current status of plant microbiome research for sustainable agriculture.
Collapse
Affiliation(s)
- Modupe Stella Ayilara
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Bartholomew Saanu Adeleke
- Department of Biological Sciences, Microbiology Unit, Faculty of Science, Olusegun Agagu University of Science and Technology, PMB 353, Okitipupa, Nigeria
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
| |
Collapse
|
8
|
Devi R, Verma R, Dhalaria R, Kumar A, Kumar D, Puri S, Thakur M, Chauhan S, Chauhan PP, Nepovimova E, Kuca K. A systematic review on endophytic fungi and its role in the commercial applications. PLANTA 2023; 257:70. [PMID: 36856911 DOI: 10.1007/s00425-023-04087-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
MAIN CONCLUSION EF have been explored for its beneficial impact on environment and for its commercial applications. It has proved its worth in these sectors and showed an impact on biological properties of plants by producing various bioactive molecules and enzymes. Endophytes are plant mutualists that live asymptomatically within plant tissues and exist in almost every plant species. Endophytic fungi benefit from the host plant nutrition, and the host plant gains improved competitive abilities and tolerance against pathogens, herbivores, and various abiotic stresses. Endophytic fungi are one of the most inventive classes which produce secondary metabolites and play a crucial role in human health and other biotic aspects. This review is focused on systematic study on the biodiversity of endophytic fungi in plants, and their role in enhancing various properties of plants such as antimicrobial, antimycobacterial, antioxidant, cytotoxic, anticancer, and biological activity of secondary metabolites produced by various fungal endophytes in host plants reported from 1994 to 2021. This review emphasizes the endophytic fungal population shaped by host genotype, environment, and endophytic fungi genotype affecting host plant. The impact of endophytic fungi has been discussed in detail which influences the commercial properties of plants. Endophytes also have an influence on plant productivity by increasing parameters such as nutrient recycling and phytostimulation. Studies focusing on mechanisms that regulate attenuation of secondary metabolite production in EF would provide much needed impetus on ensuring continued production of bioactive molecules from a indubitable source. If this knowledge is further extensively explored regarding fungal endophytes in plants for production of potential phytochemicals, then it will help in exploring a keen area of interest for pharmacognosy.
Collapse
Affiliation(s)
- Reema Devi
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, H.P., 173229, India
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, H.P., 173229, India.
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, H.P., 173229, India
| | - Ashwani Kumar
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, Uttarakhand, 249405, India
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Business Management, Solan, H.P., 173229, India
| | - Sunil Puri
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, H.P., 173229, India
| | - Monika Thakur
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, H.P., 173229, India
| | - Saurav Chauhan
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, H.P., 173229, India
| | - Prem Parkash Chauhan
- Lal Bahadur Shastri Government Degree College, Saraswati Nagar, Shimla, H.P., 171206, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
- Biomedical Research Center, University Hospital Hradec Kralove, 50005, Hradec Kralove, Czech Republic.
| |
Collapse
|
9
|
Distribution, cytotoxicity, and antioxidant activity of fungal endophytes isolated from Tsuga chinensis (Franch.) Pritz. in Ha Giang province, Vietnam. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01693-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
An endangered Tsuga chinensis (Franch.) Pritz. is widely used as a natural medicinal herb in many countries, but little has been reported on its culturable endophytic fungi capable of producing secondary metabolites applied in modern medicine and pharmacy. The present study aimed to evaluate the distribution of fungal endophytes and their cytotoxic and antioxidant properties.
Methods
This study used the surface sterilization method to isolate endophytic fungi which were then identified using morphological characteristics and ITS sequence analysis. The antimicrobial and cytotoxic potentials of fungal ethyl acetate extracts were evaluated by the minimum inhibitory concentration (MIC) and sulforhodamine B (SRB) assays, respectively. Paclitaxel-producing fungi were primarily screened using PCR-based molecular markers. Additionally, biochemical assays were used to reveal the antioxidant potencies of selected strains.
Results
A total of sixteen endophytic fungi that belonged to 7 known and 1 unknown genera were isolated from T. chinensis. The greatest number of endophytes was found in leaves (50%), followed by stems (31.3%) and roots (18.7%). Out of 16 fungal strains, 33.3% of fungal extracts showed significant antimicrobial activities against at least 4 pathogens with inhibition zones ranging from 11.0 ± 0.4 to 25.8 ± 0.6 mm. The most prominent cytotoxicity against A549 and MCF7 cell lines (IC50 value < 92.4 μg/mL) was observed in Penicillium sp. SDF4, Penicillium sp. SDF5, Aspergillus sp. SDF8, and Aspergillus sp. SDF17. Out of three key genes (dbat, bapt, ts) involved in paclitaxel biosynthesis, strains SDF4, SDF8, and SDF17 gave one or two positive hits, holding the potential for producing the billion-dollar anticancer drug paclitaxel. Furthermore, four bioactive strains also displayed remarkable and wide-range antioxidant activity against DPPH, hydroxyl radical, and superoxide anion, which was in relation to the high content of flavonoids and polyphenols detected.
Conclusion
The present study exploited for the first time fungal endophytes from T. chinensis as a promising source for the discovery of new bioactive compounds or leads for the new drug candidates.
Collapse
|
10
|
Abdelgawad MA, Hamed AA, Nayl AA, Badawy MSEM, Ghoneim MM, Sayed AM, Hassan HM, Gamaleldin NM. The Chemical Profiling, Docking Study, and Antimicrobial and Antibiofilm Activities of the Endophytic fungi Aspergillus sp. AP5. Molecules 2022; 27:1704. [PMID: 35268806 PMCID: PMC8911721 DOI: 10.3390/molecules27051704] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/29/2022] Open
Abstract
Growing data suggest that Aspergillus niger, an endophytic fungus, is a rich source of natural compounds with a wide range of biological properties. This study aimed to examine the antimicrobial and antibiofilm capabilities of the Phragmites australis-derived endophyte against a set of pathogenic bacteria and fungi. The endophytic fungus Aspergillus sp. AP5 was isolated from the leaves of P. australis. The chemical profile of the fungal crude extract was identified by spectroscopic analysis using LC-HRESIMS. The fungal-derived extract was evaluated for its antimicrobial activity towards a set of pathogenic bacterial and fungal strains including Staphylococcus aureus, Pseudomonas aeruginosa, Proteus vulgaris, Klebsiella sp., Candida albicans, and Aspergillus niger. Moreover, antibiofilm activity toward four resistant biofilm-forming bacteria was also evaluated. Additionally, a neural-networking pharmacophore-based visual screening predicted the most probable bioactive compounds in the obtained extract. The AP5-EtOAc extract was found to have potent antibacterial activities against S. aureus, E. coli, and Klebsiella sp., while it exhibited low antibacterial activity toward P. Vulgaris and P. aeruginosa and displayed anticandidal activity. The AP5-EtOAc extract had significant antibiofilm activity in S. aureus, followed by P. aeruginosa. The active metabolites' antifungal and/or antibacterial activities may be due to targeting the fungal CYP 51 and/or the bacterial Gyr-B.
Collapse
Affiliation(s)
- Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Ahmed A. Hamed
- Microbial Chemistry Department, National Research Centre, 33 El-Buhouth Street, Dokki, Giza 12622, Egypt;
| | - AbdElAziz A. Nayl
- Department of chemistry, College of Science, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia;
| | - Mona Shaban E. M. Badawy
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Riyadh, Saudi Arabia;
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt;
| | - Hossam M. Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62513, Egypt
| | - Noha M. Gamaleldin
- Department of Microbiology, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo 11837, Egypt;
| |
Collapse
|
11
|
Deshmukh SK, Dufossé L, Chhipa H, Saxena S, Mahajan GB, Gupta MK. Fungal Endophytes: A Potential Source of Antibacterial Compounds. J Fungi (Basel) 2022; 8:164. [PMID: 35205918 PMCID: PMC8877021 DOI: 10.3390/jof8020164] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
Antibiotic resistance is becoming a burning issue due to the frequent use of antibiotics for curing common bacterial infections, indicating that we are running out of effective antibiotics. This has been more obvious during recent corona pandemics. Similarly, enhancement of antimicrobial resistance (AMR) is strengthening the pathogenicity and virulence of infectious microbes. Endophytes have shown expression of various new many bioactive compounds with significant biological activities. Specifically, in endophytic fungi, bioactive metabolites with unique skeletons have been identified which could be helpful in the prevention of increasing antimicrobial resistance. The major classes of metabolites reported include anthraquinone, sesquiterpenoid, chromone, xanthone, phenols, quinones, quinolone, piperazine, coumarins and cyclic peptides. In the present review, we reported 451 bioactive metabolites isolated from various groups of endophytic fungi from January 2015 to April 2021 along with their antibacterial profiling, chemical structures and mode of action. In addition, we also discussed various methods including epigenetic modifications, co-culture, and OSMAC to induce silent gene clusters for the production of noble bioactive compounds in endophytic fungi.
Collapse
Affiliation(s)
- Sunil K. Deshmukh
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute, Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi 110003, Delhi, India
- Agpharm Bioinnovations LLP, Incubatee: Science and Technology Entrepreneurs Park (STEP), Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India;
| | - Laurent Dufossé
- Chimie et Biotechnologie des Produits Naturels (CHEMBIOPRO Lab) & ESIROI Agroalimentaire, Université de la Réunion, 15 Avenue René Cassin, 97744 Saint-Denis, France
| | - Hemraj Chhipa
- College of Horticulture and Forestry, Agriculture University Kota, Jhalawar 322360, Rajasthan, India;
| | - Sanjai Saxena
- Agpharm Bioinnovations LLP, Incubatee: Science and Technology Entrepreneurs Park (STEP), Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India;
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | | | - Manish Kumar Gupta
- SGT College of Pharmacy, SGT University, Gurugram 122505, Haryana, India;
| |
Collapse
|
12
|
Pradhan P, Margolin W, Beuria TK. Targeting the Achilles Heel of FtsZ: The Interdomain Cleft. Front Microbiol 2021; 12:732796. [PMID: 34566937 PMCID: PMC8456036 DOI: 10.3389/fmicb.2021.732796] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/16/2021] [Indexed: 02/03/2023] Open
Abstract
Widespread antimicrobial resistance among bacterial pathogens is a serious threat to public health. Thus, identification of new targets and development of new antibacterial agents are urgently needed. Although cell division is a major driver of bacterial colonization and pathogenesis, its targeting with antibacterial compounds is still in its infancy. FtsZ, a bacterial cytoskeletal homolog of eukaryotic tubulin, plays a highly conserved and foundational role in cell division and has been the primary focus of research on small molecule cell division inhibitors. FtsZ contains two drug-binding pockets: the GTP binding site situated at the interface between polymeric subunits, and the inter-domain cleft (IDC), located between the N-terminal and C-terminal segments of the core globular domain of FtsZ. The majority of anti-FtsZ molecules bind to the IDC. Compounds that bind instead to the GTP binding site are much less useful as potential antimicrobial therapeutics because they are often cytotoxic to mammalian cells, due to the high sequence similarity between the GTP binding sites of FtsZ and tubulin. Fortunately, the IDC has much less sequence and structural similarity with tubulin, making it a better potential target for drugs that are less toxic to humans. Over the last decade, a large number of natural and synthetic IDC inhibitors have been identified. Here we outline the molecular structure of IDC in detail and discuss how it has become a crucial target for broad spectrum and species-specific antibacterial agents. We also outline the drugs that bind to the IDC and their modes of action.
Collapse
Affiliation(s)
- Pinkilata Pradhan
- Institute of Life Sciences, Nalco Square, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, United States
| | | |
Collapse
|
13
|
da Nóbrega Alves D, Monteiro AFM, Andrade PN, Lazarini JG, Abílio GMF, Guerra FQS, Scotti MT, Scotti L, Rosalen PL, de Castro RD. Docking Prediction, Antifungal Activity, Anti-Biofilm Effects on Candida spp., and Toxicity against Human Cells of Cinnamaldehyde. Molecules 2020; 25:molecules25245969. [PMID: 33339401 PMCID: PMC7767272 DOI: 10.3390/molecules25245969] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022] Open
Abstract
Objective: This study evaluated the antifungal activity of cinnamaldehyde on Candida spp. In vitro and in situ assays were carried out to test cinnamaldehyde for its anti-Candida effects, antibiofilm activity, effects on fungal micromorphology, antioxidant activity, and toxicity on keratinocytes and human erythrocytes. Statistical analysis was performed considering α = 5%. Results: The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of cinnamaldehyde ranged from 18.91 μM to 37.83 μM. MIC values did not change in the presence of 0.8 M sorbitol, whereas an 8-fold increase was observed in the presence of ergosterol, suggesting that cinnamaldehyde may act on the cell membrane, which was subsequently confirmed by docking analysis. The action of cinnamaldehyde likely includes binding to enzymes involved in the formation of the cytoplasmic membrane in yeast cells. Cinnamaldehyde-treated microcultures showed impaired cellular development, with an expression of rare pseudo-hyphae and absence of chlamydoconidia. Cinnamaldehyde reduced biofilm adherence by 64.52% to 33.75% (p < 0.0001) at low concentrations (378.3–151.3 µM). Cinnamaldehyde did not show antioxidant properties. Conclusions: Cinnamaldehyde showed fungicidal activity through a mechanism of action likely related to ergosterol complexation; it was non-cytotoxic to keratinocytes and human erythrocytes and showed no antioxidant activity.
Collapse
Affiliation(s)
- Danielle da Nóbrega Alves
- Graduate Program in Natural and Synthetic Bioactive Products (PgPNSB), Department of Clinic and Social Dentistry, Center for Health Sciences, Federal University of Paraiba, João Pessoa-PB 58051-900, Brazil;
| | - Alex France Messias Monteiro
- Graduate Program in Natural and Synthetic Bioactive Products (PgPNSB), Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Paraíba, João Pessoa-PB 58051-900, Brazil;
| | - Patrícia Néris Andrade
- Experimental Pharmacology and Cell Culture Laboratory, Center for Health Sciences, Federal University of Paraiba, João Pessoa-PB 58051-900, Brazil;
| | - Josy Goldoni Lazarini
- Department of Bioscience, Piracicaba Dental School, University of Campinas, Campinas-SP 13414-903, Brazil; (J.G.L.); (P.L.R.)
| | - Gisely Maria Freire Abílio
- Department of Physiology and Pathology, Center for Health Sciences, Federal University of Paraíba, João Pessoa-PB 58051-900, Brazil;
| | - Felipe Queiroga Sarmento Guerra
- Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Paraíba, João Pessoa-PB 58051-900, Brazil;
| | - Marcus Tullius Scotti
- Graduate Program in Natural and Synthetic Bioactive Products (PgPNSB), Department of Chemistry, Center for Health Sciences, Federal University of Paraíba, João Pessoa-PB 58051-900, Brazil;
| | - Luciana Scotti
- Graduate Program in Natural and Synthetic Bioactive Products (PgPNSB), Cheminformatics Laboratory, Center for Health Sciences, Federal University of Paraíba, João Pessoa-PB 58051-900, Brazil;
| | - Pedro Luiz Rosalen
- Department of Bioscience, Piracicaba Dental School, University of Campinas, Campinas-SP 13414-903, Brazil; (J.G.L.); (P.L.R.)
- Biological Sciences Graduate Program (PPGCB), Institute of Biomedical Sciences (ICB), Federal University of Alfenas (UNIFAL-MG), Alfenas 37130-000, Brazil
| | - Ricardo Dias de Castro
- Department of Clinic and Social Dentistry, Center for Health Sciences, Federal University of Paraiba, João Pessoa-PB 58051-900, Brazil
- Correspondence: ; Tel.: +55-83-3216-7742
| |
Collapse
|
14
|
Monteiro AFM, Scotti MT, Speck-Planche A, Barros RPC, Scotti L. In Silico Studies for Bacterystic Evaluation against Staphylococcus aureus of 2-Naphthoic Acid Analogues. Curr Top Med Chem 2020; 20:293-304. [DOI: 10.2174/1568026619666191206111742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/01/2019] [Accepted: 09/10/2019] [Indexed: 01/27/2023]
Abstract
Background:
Staphylococcus aureus is a gram-positive spherical bacterium commonly present in
nasal fossae and in the skin of healthy people; however, in high quantities, it can lead to complications that
compromise health. The pathologies involved include simple infections, such as folliculitis, acne, and delay in
the process of wound healing, as well as serious infections in the CNS, meninges, lung, heart, and other areas.
Aim:
This research aims to propose a series of molecules derived from 2-naphthoic acid as a bioactive in the
fight against S. aureus bacteria through in silico studies using molecular modeling tools.
Methods:
A virtual screening of analogues was done in consideration of the results that showed activity according
to the prediction model performed in the KNIME Analytics Platform 3.6, violations of the Lipinski
rule, absorption rate, cytotoxicity risks, energy of binder-receptor interaction through molecular docking, and
the stability of the best profile ligands in the active site of the proteins used (PDB ID 4DXD and 4WVG).
Results:
Seven of the 48 analogues analyzed showed promising results for bactericidal action against S.
aureus.
Conclusion:
It is possible to conclude that ten of the 48 compounds derived from 2-naphthoic acid presented
activity based on the prediction model generated, of which seven presented no toxicity and up to one violation
to the Lipinski rule.
Collapse
Affiliation(s)
| | - Marcus Tullius Scotti
- Federal University of Paraíba, Health Science Center, 50670-910, Joao Pessoa, PB, Brazil
| | - Alejandro Speck-Planche
- Department of Chemistry, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Trubetskaya Str., 8, b. 2, 119992, Moscow, Russian Federation
| | | | - Luciana Scotti
- Federal University of Paraíba, Health Science Center, 50670-910, Joao Pessoa, PB, Brazil
| |
Collapse
|
15
|
Endophytic Penicillium species and their agricultural, biotechnological, and pharmaceutical applications. 3 Biotech 2020; 10:107. [PMID: 32095421 DOI: 10.1007/s13205-020-2081-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/20/2020] [Indexed: 12/18/2022] Open
Abstract
Penicillium genus constituted by over 200 species is one of the largest and fascinating groups of fungi, particularly well established as a source of antibiotics. Endophytic Penicillium has been reported to colonize their ecological niches and protect their host plant against multiples stresses by exhibiting diverse biological functions that can be exploited for countless applications including agricultural, biotechnological, and pharmaceutical. Over the past 2 decades, endophytic Penicillium species have been investigated beyond their antibiotic potential and numerous applications have been reported. We comprehensively summarized in this review available data (2000-2019) regarding bioactive compounds isolated from endophytic Penicillium species as well as the application of these fungi in multiple agricultural and biotechnological processes. This review has shown that a very large number (131) of endophytes from this genus have been investigated so far and more than 280 compounds exhibiting antimicrobial, anticancer, antiviral, antioxidants, anti-inflammatory, antiparasitics, immunosuppressants, antidiabetic, anti-obesity, antifibrotic, neuroprotective effects, and insecticidal and biocontrol activities have been reported. Moreover, several endophytic Penicillium spp. have been characterized as biocatalysts, plant growth promoters, phytoremediators, and enzyme producers. We hope that this review summarizes the status of research on this genus and will stimulate further investigations.
Collapse
|
16
|
Yuan Z, Tian Y, He F, Zhou H. Endophytes from Ginkgo biloba and their secondary metabolites. Chin Med 2019; 14:51. [PMID: 31728156 PMCID: PMC6842171 DOI: 10.1186/s13020-019-0271-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/23/2019] [Indexed: 01/02/2023] Open
Abstract
Ginkgo biloba is a medicinal plant which contains abundant endophytes and various secondary metabolites. According to the literary about the information of endophytics from Ginkgo biloba, Chaetomium, Aspergillus, Alternaria, Penicillium and Charobacter were isolated from the root, stem, leaf, seed and bark of G. biloba. The endophytics could produce lots of phytochemicals like flavonoids, terpenoids, and other compounds. These compounds have antibacteria, antioxidation, anticardiovascular, anticancer, antimicrobial and some novel functions. This paper set forth the development of active extracts isolated from endophytes of Ginkgo biloba and will help to improve the resources of Ginkgo biloba to be used in a broader field.
Collapse
Affiliation(s)
- Zhihui Yuan
- 1College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 China.,3College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, 425199 China
| | - Yun Tian
- 1College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 China
| | - Fulin He
- Hunan Provincial Engineering Research Center for Ginkgo Biloba, Yongzhou, 425199 China.,3College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, 425199 China
| | - Haiyan Zhou
- 1College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 China
| |
Collapse
|
17
|
Fungal endophytes: A potent biocontrol agent and a bioactive metabolites reservoir. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101284] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Kusuma KD, Payne M, Ung AT, Bottomley AL, Harry EJ. FtsZ as an Antibacterial Target: Status and Guidelines for Progressing This Avenue. ACS Infect Dis 2019; 5:1279-1294. [PMID: 31268666 DOI: 10.1021/acsinfecdis.9b00055] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The disturbing increase in the number of bacterial pathogens that are resistant to multiple, or sometimes all, current antibiotics highlights the desperate need to pursue the discovery and development of novel classes of antibacterials. The wealth of knowledge available about the bacterial cell division machinery has aided target-driven approaches to identify new inhibitor compounds. The main division target being pursued is the highly conserved and essential protein FtsZ. Despite very active research on FtsZ inhibitors for several years, this protein is not yet targeted by any commercial antibiotic. Here, we discuss the suitability of FtsZ as an antibacterial target for drug development and review progress achieved in this area. We use hindsight to highlight the gaps that have slowed progress in FtsZ inhibitor development and to suggest guidelines for concluding that FtsZ is actually the target of these molecules, a key missing link in several studies. In moving forward, a multidisciplinary, communicative, and collaborative process, with sharing of research expertise, is critical if we are to succeed.
Collapse
|
19
|
Zhang TY, Wu YY, Zhang MY, Cheng J, Dube B, Yu HJ, Zhang YX. New antimicrobial compounds produced by Seltsamia galinsogisoli sp. nov., isolated from Galinsoga parviflora as potential inhibitors of FtsZ. Sci Rep 2019; 9:8319. [PMID: 31165765 PMCID: PMC6549247 DOI: 10.1038/s41598-019-44810-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/24/2019] [Indexed: 12/16/2022] Open
Abstract
A total amount of 116 fungal strains, belonging to 30 genera, were acquired from the rhizosphere soil and plant of Galinsoga parviflora. A strain SYPF 7336, isolated from the rhizospheric soil, was identified as Seltsamia galinsogisoli sp. nov., by morphological and molecular analyses, which displayed high antibacterial activity. In order to study the secondary metabolites of Seltsamia galinsogisoli sp. nov., nine compounds were successfully seperated from the strain fermentation broth, including two new compounds and seven known compounds. Their structures were elucidated based on spectral analysis including 1D and 2D NMR. All the seperated compounds were evaluated for their antimicrobial activities. Compounds 2, 5 and 1 displayed antimicrobial activities against Staphylococcus aureus with MIC values of 25, 32 and 75 μg/mL, respectively. Moreover, morphological observation showed the coccoid cells of S. aureus to be swollen to a volume of 1.4 to 1.7-fold after treatment with compounds 1, 2 and 5, respectively. Molecular docking was carried out to investigate interactions of filamentous temperature-sensitive protein Z (FtsZ) with compounds 1, 2 and 5.
Collapse
Affiliation(s)
- Tian-Yuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ying-Ying Wu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Meng-Yue Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Juan Cheng
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Blessings Dube
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hui-Jia Yu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
20
|
Xie J, Wu YY, Zhang TY, Zhang MY, Peng F, Lin B, Zhang YX. New antimicrobial compounds produced by endophytic Penicillium janthinellum isolated from Panax notoginseng as potential inhibitors of FtsZ. Fitoterapia 2018; 131:35-43. [PMID: 30291967 DOI: 10.1016/j.fitote.2018.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/21/2018] [Accepted: 10/01/2018] [Indexed: 12/13/2022]
Abstract
A total of 180 fungal isolates, belonging to 20 genera and 47 species, were obtained from the roots, stems and leaves of Panax notoginseng. One isolate, the endophytic fungus Penicillium janthinellum SYPF 7899, displayed the strongest antibacterial activity and was studied for its production of secondary metabolites. In total, three new compounds, including rotational isomers 1a, 1b and 2 were isolated from the solid cultures of P. janthinellum, as well as eight known compounds (3-10). These structures were determined on the basis of 1D, 2D NMR and electronic circular dichroism (ECD) spectroscopic analyses as well as theoretical calculations. Compound 1 exhibited significant inhibitory activities against Bacillus subtilis and Staphylococcus aureus with MIC values of 15 and 18 μg/ml, respectively. The other compounds showed moderate or weak activities. In addition, morphological observation showed the rod-shaped cells of B. subtilis growing into long filaments, which reached 1.5- to 2-fold of the length of the original cells after treatment with compound 1. The coccoid cells of S. aureus exhibited a similar response and swelled to a 2-fold volume after treatment with compound 1. In silico molecular docking was explored to study the binding interactions between the compounds and the active sites of filamentous temperature-sensitive protein Z (FtsZ) from B. subtilis and S. aureus. Compound 1a, 1b and 2 showed high binding energies, strong H-bond interactions and hydrophobic interactions with FtsZ. Based on the antimicrobial activities, cellular phenotype observation and docking studies, compound 1 is considered to be a promising antimicrobial inhibitor of FtsZ.
Collapse
Affiliation(s)
- Jun Xie
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ying-Ying Wu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tian-Yuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Meng-Yue Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fei Peng
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|