1
|
Croley CR, Pumarol J, Delgadillo BE, Cook AC, Day F, Kaceli T, Ward CC, Husain I, Husain A, Banerjee S, Bishayee A. Signaling pathways driving ocular malignancies and their targeting by bioactive phytochemicals. Pharmacol Ther 2023:108479. [PMID: 37330112 DOI: 10.1016/j.pharmthera.2023.108479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Ocular cancers represent a rare pathology. The American Cancer Society estimates that 3,360 cases of ocular cancer occur annually in the United States. The major types of cancers of the eye include ocular melanoma (also known as uveal melanoma), ocular lymphoma, retinoblastoma, and squamous cell carcinoma. While uveal melanoma is one of the primary intraocular cancers with the highest occurrence in adults, retinoblastoma remains the most common primary intraocular cancer in children, and squamous cell carcinoma presents as the most common conjunctival cancer. The pathophysiology of these diseases involves specific cell signaling pathways. Oncogene mutations, tumor suppressor mutations, chromosome deletions/translocations and altered proteins are all described as causal events in developing ocular cancer. Without proper identification and treatment of these cancers, vision loss, cancer spread, and even death can occur. The current treatments for these cancers involve enucleation, radiation, excision, laser treatment, cryotherapy, immunotherapy, and chemotherapy. These treatments present a significant burden to the patient that includes a possible loss of vision and a myriad of side effects. Therefore, alternatives to traditional therapy are urgently needed. Intercepting the signaling pathways for these cancers with the use of naturally occurring phytochemicals could be a way to relieve both cancer burden and perhaps even prevent cancer occurrence. This research aims to present a comprehensive review of the signaling pathways involved in various ocular cancers, discuss current therapeutic options, and examine the potential of bioactive phytocompounds in the prevention and targeted treatment of ocular neoplasms. The current limitations, challenges, pitfalls, and future research directions are also discussed.
Collapse
Affiliation(s)
- Courtney R Croley
- Healthcare Corporation of America, Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Hudson, FL 34667, USA
| | - Joshua Pumarol
- Ross University School of Medicine, Miramar, FL 33027, USA
| | - Blake E Delgadillo
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Andrew C Cook
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Faith Day
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Tea Kaceli
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Caroline C Ward
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Imran Husain
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | - Ali Husain
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
2
|
Nassief SM, Amer ME, Shawky E, Sishtla K, Mas-Claret E, Muniyandi A, Corson TW, Mulholland DA, El-Masry S. Antiangiogenic Pterocarpan and Flavonoid Constituents of Erythrina lysistemon. JOURNAL OF NATURAL PRODUCTS 2023; 86:759-766. [PMID: 36938984 DOI: 10.1021/acs.jnatprod.2c00909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The roots of Erythrina lysistemon, growing in Egypt, yielded 24 flavonoid compounds, including 17 pterocarpans, two isoflavanones, one flavanone, two isoflavans, one 2-arylbenzofuran, and an isoflava-3-ene. Nine pterocarpans have not been reported previously (7-9, 11-14, 19, and 20), and 11 are reported here for the first time from this species. Structures were established using HRESIMS, NMR, and circular dichroism techniques. Selected compounds were tested for their ability to block the growth of human retinal endothelial cells and antiangiogenic activity in vitro. The isoflavonoids 5 and 6, and the pterocarpans 1, 2, 4, 20, and 22 demonstrated selective antiproliferative activities on endothelial cells compared to a nonendothelial cell type, with concentration-dependent antiangiogenic effects in vitro against HRECs, a cell type relevant to neovascular eye diseases.
Collapse
Affiliation(s)
- Sarah M Nassief
- Department of Pharmacognosy, Faculty of Pharmacy, University of Alexandria, Alkhartoom Square, Alexandria 21521, Egypt
| | - Masouda E Amer
- Department of Pharmacognosy, Faculty of Pharmacy, University of Alexandria, Alkhartoom Square, Alexandria 21521, Egypt
| | - Eman Shawky
- Department of Pharmacognosy, Faculty of Pharmacy, University of Alexandria, Alkhartoom Square, Alexandria 21521, Egypt
| | - Kamakshi Sishtla
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, 1160 W. Michigan St., Indianapolis, Indiana 46202, United States
| | - Eduard Mas-Claret
- Natural Products Research Group, Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
- Royal Botanic Gardens, Kew, Kew Green, Richmond TW9 3AE, United Kingdom
| | - Anbukkarasi Muniyandi
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, 1160 W. Michigan St., Indianapolis, Indiana 46202, United States
| | - Timothy W Corson
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, 1160 W. Michigan St., Indianapolis, Indiana 46202, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 1160 West Michigan Street, Indianapolis, Indiana 46202, United States
| | - Dulcie A Mulholland
- Natural Products Research Group, Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Sawsan El-Masry
- Department of Pharmacognosy, Faculty of Pharmacy, University of Alexandria, Alkhartoom Square, Alexandria 21521, Egypt
| |
Collapse
|
3
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:660-680. [DOI: 10.1093/jpp/rgac009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/02/2022] [Indexed: 11/12/2022]
|
4
|
Wang L, Qin Y, Wang Y, Zhou Y, Liu B, Bai M, Tong X, Fang R, Huang X. Inhibitory mechanism of two homoisoflavonoids from Ophiopogon japonicus on tyrosinase activity: insight from spectroscopic analysis and molecular docking. RSC Adv 2021; 11:34343-34354. [PMID: 35497266 PMCID: PMC9042378 DOI: 10.1039/d1ra06091k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/08/2021] [Indexed: 12/25/2022] Open
Abstract
The inhibition mechanism of two homoisoflavonoids from Ophiopogon japonicus including methylophiopogonanone A (MO-A) and methylophiopogonanone B (MO-B) on tyrosinase (Tyr) was studied by multiple spectroscopic techniques and molecular docking. The results showed that the two homoisoflavonoids both inhibited Tyr activity via a reversible mixed-inhibition, with a half inhibitory concentration (IC50) of (10.87 ± 0.25) × 10-5 and (18.76 ± 0.14) × 10-5 mol L-1, respectively. The fluorescence quenching and secondary structure change of Tyr caused by MO-A and B are mainly driven by hydrophobic interaction and hydrogen bonding. Molecular docking analysis indicated that phenylmalandioxin in MO-A and methoxy in MO-B could coordinate with a Cu ion in the active center of Tyr, and interacted with amino acid Glu322 to form hydrogen bonding, occupying the catalytic center to block the entry of the substrate and consequently inhibit Tyr activity. This study may provide new perspectives on the inhibition mechanism of MO-A and MO-B on Tyr and serve a scientific basis for screening effective Tyr inhibitors.
Collapse
Affiliation(s)
- Liling Wang
- Zhejiang Academy of Forestry Hangzhou 310023 China
| | - Yuchuan Qin
- Zhejiang Academy of Forestry Hangzhou 310023 China
| | - Yanbin Wang
- Zhejiang Academy of Forestry Hangzhou 310023 China
| | - Yifeng Zhou
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology Hangzhou 310023 China
| | - Bentong Liu
- Zhejiang Academy of Forestry Hangzhou 310023 China
| | - Minge Bai
- Zhejiang Academy of Forestry Hangzhou 310023 China
| | | | - Ru Fang
- Zhejiang Academy of Forestry Hangzhou 310023 China
| | - Xubo Huang
- Zhejiang Academy of Forestry Hangzhou 310023 China
| |
Collapse
|
5
|
Langat L, Langat MK, Wetschnig W, Knirsch W, Mulholland DA. Antiproliferative Bufadienolides from the Bulbs of Drimia altissima. JOURNAL OF NATURAL PRODUCTS 2021; 84:608-615. [PMID: 33478223 DOI: 10.1021/acs.jnatprod.0c01079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The bulbs of the South African Drimia altissima (Asparagaceae or Hyacinthaceae sensu APGII) have yielded a range of previously undescribed bufadienolides, drimianins A-G (1-7), the known bufadienolides bovogenin A (8), 3β-O-β-d-glucopyranosylbovogenin A (9), scillaren F (10), and altoside (11), the known homoisoflavonoid (3S)-3-(4'-methoxybenzyl)-5,6,7-trimethoxychroman-4-one (urgineanin C), the sesquiterpenoids 1β,6α-dihydroxy-4(15)-eudesmene and 6α-hydroxy-4(15)-eudesmen-1-one, polybotrin, adenosine, and 9R-hydroxy-(10E,12Z)-octadecadienoic acid ethyl ester. The bufadienolides isolated were tested at 10 μM in the NCI-60 cancer cell screen, and nine of these were selected for further screening at five concentrations. Drimianins C (3) and E (5) showed activity at the nanomolar level against a number of human cancer cell lines in the NCI-60 screen.
Collapse
Affiliation(s)
- Linda Langat
- Natural Products Research Group, Department of Chemistry, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Moses K Langat
- Natural Products Research Group, Department of Chemistry, University of Surrey, Guildford, GU2 7XH, United Kingdom
- Department of Chemistry, University of KwaZulu-Natal, Durban, 4041, South Africa
| | | | - Walter Knirsch
- Institute of Biology, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Dulcie A Mulholland
- Natural Products Research Group, Department of Chemistry, University of Surrey, Guildford, GU2 7XH, United Kingdom
- Department of Chemistry, University of KwaZulu-Natal, Durban, 4041, South Africa
| |
Collapse
|
6
|
A Comprehensive Review on Chemotaxonomic and Phytochemical Aspects of Homoisoflavonoids, as Rare Flavonoid Derivatives. Int J Mol Sci 2021; 22:ijms22052735. [PMID: 33800482 PMCID: PMC7962952 DOI: 10.3390/ijms22052735] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Homoisoflavonoids (3-benzylidene-4-chromanones) are considered as an infrequent flavonoid class, possessing multi-beneficial bioactivities. The present study gives an overview on phytochemical aspects of homoisoflavonoids, including utilized plant species, parts, extracts, and separation techniques. Overall, these compounds have mainly been isolated and identified from bulbs and rhizomes of the plants belonging to Asparagaceae and Fabaceae families, particularly the genera of Ophiopogon, Dracaena, Scilla, Polygonatum, and Caesalpinia.
Collapse
|
7
|
Ma QG, Wei RR, Sang ZP, Dong JH. Structurally diverse coumarin-homoisoflavonoid derivatives with hepatoprotective activities from the fruits of Cucumis bisexualis. Fitoterapia 2020; 149:104812. [PMID: 33359423 DOI: 10.1016/j.fitote.2020.104812] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/08/2023]
Abstract
Cucumis bisexualis is a favorite wild fruit with high nutritional and medicinal values because of its bioactive constituents. Four previously undescribed coumarin-homoisoflavonoid derivatives (1-4), together with seven known coumarin and homoisoflavonoid derivatives (5-11) were isolated from the fruits of C. bisexualis for the first time. All the compounds were elucidated by their extensive and comprehensive spectroscopic data and references. Compounds (1-11) were evaluated for their hepatoprotective activities in HepG2 cells by the acetaminophen (APAP)-induced damage model at 10.0 μM with bicyclol as the positive control. Among them, compounds 1, 3, 5, and 6 showed moderately hepatoprotective activities to improve the HepG2 cell survival rates from 51.68 ± 2.49% (APAP, 10 mM) to 71.55 ± 4.08%, 65.95 ± 4.39%, 60.77 ± 3.44%, 62.94 ± 2.30%, respectively.
Collapse
Affiliation(s)
- Qin-Ge Ma
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education & Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Rong-Rui Wei
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education & Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Zhi-Pei Sang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Jiang-Hong Dong
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| |
Collapse
|